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ABSTRACT

Consider the random entire function

f(z) =
∞∑

n=0

φnanz
n,

where the φn are independent standard complex Gaussian coefficients, and

the an are positive constants, which satisfy

lim
n→∞

log an

n
= −∞.

We study the probability PH (r) that f has no zeroes in the disk

{|z| < r} (hole probability). Assuming that the sequence an is logarith-

mically concave, we prove that

logPH (r) = −S(r) + o (S(r)) ,

where

S(r) = 2 ·
∑

n : anrn≥1

log (anr
n) ,

and r tends to ∞ outside a (deterministic) exceptional set of finite

logarithmic measure.

∗ Research supported by the Israel Science Foundation of the Israel Academy of

Sciences and Humanities, grant 171/07.

Received November 5, 2009 and in revised form March 11, 2010

197



198 ALON NISHRY Isr. J. Math.

1. Introduction

Consider the random entire function

(1.1) f(z) =
∞∑

n=0

φnanz
n,

where the φn’s are independent standard complex Gaussian coefficients and the

an’s are positive constants, such that

lim
n→∞

log an
n

= −∞.

The latter condition guarantees that almost surely the series on the right-hand

side of (1.1) has infinite radius of convergence. The probability PH(r) of the

event that f has no zeros in the disk {|z| ≤ r} is called the hole probability. We

are interested in the decay rate of the hole probability as r grows to infinity.

This question was studied by Sodin and Tsirelson [ST3] for a special choice of

the coefficients an = 1√
n!

(see also the earlier paper [Sod], for an approach to the

problem in a more general setting). Their work was continued in [Nis], where

we gave more precise estimates for the hole probability. Since the technique

in [Nis] was mostly independent of the special choice of the coefficients an,

it led naturally to the generalizations in this paper. Here, we combine ideas

introduced in [ST3] and [Nis] with the classical Wiman–Valiron theory of growth

of power series.

To state the main result, we need to introduce two functions which depend

on the coefficients an. The first N1(r) is the set that contains the “significant”

coefficients of f(z), for the given value of r,

N1(r) = {n : log (anr
n) ≥ 0} ;

we also write

N1(r) = #N1(r).

The second function is

S(r) = log

⎛
⎝ ∏

n∈N1(r)

(anr
n)

2

⎞
⎠ = 2 ·

∑
n∈N1(r)

log (anr
n) .

For the sake of simplicity of the presentation, we will assume that the coefficients

an are the restriction of a (real, positive) function a(t) ∈ C2 ((0,∞)) to the set

of natural integers (it is clear though, that we can interpolate any such sequence
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with a smooth function). In order for f(z) to be an entire function we require

the following:

lim
t→∞

log a(t)

t
= −∞.

In addition, we require that a(t) is a log-concave function. We also use the

notation

pH(r) = − logPH(r) = log− PH(r).

A measurable set E ⊂ [1,∞) has a finite logarithmic measure if�

E

1

t
dt <∞.

The following is our main result

Theorem 1: Suppose that a(t) is a log-concave function. For r → ∞ not

belonging to a (deterministic) set of finite logarithmic measure,

pH(r) = S(r) + o (S(r)) .

We do not know whether the log-concavity condition is essential for this

result. If, in addition, we have some lower bound condition on the function a(t)

(i.e. the function f does not grow too slowly), we can say more, for example we

can prove 1

Theorem 2: Let α ≥ 1. If a(t) is log-concave and a(t) ≥ exp (−t logα t), then
there exist positive absolute constants c1 and c2, such that for any ε > 0 and

for r not belonging to a set of finite logarithmic measure,

S(r)− c1 (S(r))
0.9+ε ≤ pH(r) ≤ S(r) + c2 (S(r))

0.5+ε
.

Remark: If the coefficients an are given in explicit form, then it is possible to

prove results that are true for every value of r that is large enough, using direct

computations instead of Wiman–Valiron theory. As an example, one can take

Mittag–Leffler coefficients (α > 0)

an =
1

Γ (αn+ 1)
;

in that case

pH(r) =
1

2α
r2/α +Oα

(
r9/5α

)
.

1 Recently we found a proof for this theorem, which does not require any regularity con-

ditions on the coefficients an.
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We do not reproduce these calculations here, since they are very similar to the

general ones. See the paper [Nis] for the case an = 1√
n!
.

Acknowledgment. This work is based on part of my master’s thesis, which

was written in Tel Aviv University. I would like to thank my advisor Mikhail

Sodin for his guidance and encouragement throughout my studies. I also thank

Manjunath Krishnapur and the referee for numerous remarks on the preliminary

version of this paper, that significantly improved the presentation.

2. Preliminaries

2.1. Notation. We denote by rD the disk {z : |z| < r} and by rT its boundary

{z : |z| = r}, with r ≥ 1. The letters c and C denote positive absolute constants

(which can change across lines). We use the notation logmn as a shortcut for the

n times iterated logarithm, taken to the m-th power (i.e. log22(x) ≡ (log log(x))
2

and logm1 x is written as logm x).

In order to simplify some of the expressions in the paper, we will assume from

now on that

a0 = a(0) = 1.

2.2. Results from Wiman–Valiron theory. Let g(z) be a transcendental

entire function given in the form

g(z) =

∞∑
n=0

anz
n.

We recall some of the results of Wiman–Valiron theory, taken from [Ha1] and

[Ha2, Section 6.5]. Let r ≥ 0; we denote by M(r) the maximum of g(z) inside

rD, by μ(r) the maximal term of g(z),

μ(r) = max
n

|an|rn,
and by ν(r) the (maximal) index of the maximal term μ(r) (Hayman’s survey

uses the notation N(r) for this function). For every transcendental entire func-

tion we have μ(r) → ∞ and ν(r) → ∞ as r → ∞. We note that the maximal

index and the maximal term are related to each other by a simple equation (see

[Ha1, p. 318])

(2.1) logμ(r) = logμ(1) +

r�

1

ν(t)

t
dt, r ≥ 1.
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We will give the following simple example: Take an = 1
n! , and so g(z) = ez.

The maximal term can be estimated using Stirling’s approximation:

rn

n!
=

rn√
2πn

(
n
e

)n (1 + o(1)) ⇒

ν(r) =r +O(1),

μ(r) =
er√
2πr

(1 + o(1)) ,

so there is an asymptotic agreement with (2.1). Notice that we also have

logM(r) = logμ(r) + o(log μ(r)).

Most of the statements in Wiman–Valiron theory include a positive decreasing

function b(m), which satisfies
∞�

1

b(m) dm <∞.

Here, we always use the function

b(m) =
1

m log2m
.

The following theorem ([Ha1, p. 322]) bounds from above the values of the terms

away from the maximal term for values of r, outside a set of finite logarithmic

measure (FILM ).

Theorem I: Set n = k + ν(r). If r is outside a set of FILM then

(2.2)
|an|rn
μ(r)

≤ exp
(−ck2 · b (|k|+ ν(r))

)
,

with c a positive absolute constant (notice that the exceptional set depends only

on the an’s).

The most famous result in this theory [Ha1, p. 333] gives an estimate for

M(r) in terms of μ(r) and ν(r):

Theorem II: For all sufficiently large values of r, outside a set of FILM

(2.3) M(r) < μ(r) log1/2 μ(r) log22 μ(r).

We will use the theorem above in the most basic way, claiming that logM(r) =

logμ(r)+o (logμ(r)) for large values of r outside a set of FILM. We also borrow

the following result from [Ha2, p. 360]:
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Theorem III: Outside a set of FILM

(2.4) ν(r) < log μ(r) log22 μ(r).

From now on we will call r normal if it satisfies both (2.2) and (2.4); this

again holds outside a set of FILM.

2.3. The function Nx(r). We use the following notation:

Nx(r) = {n : log (anr
n) ≥ (1− x) logμ(r)} , x ≥ 0,

and

Nx(r) = #Nx(r).

Also

Nm,m+1(r) = Nm+1(r)\Nm(r)

and Nm,m+1(r) is the size of Nm,m+1(r). Note that if n ∈ Nm,m+1(r) then

(2.5) anr
n ≤ μ1−m(r).

We also partition the “tail” indexes into a union of sets:

(N1(r))
c =

∞⋃
m=1

Nm,m+1(r).

We will use the fact that a(t) is a log-concave function to derive some prop-

erties of Nx(r) and Nm,m+1(r). We use the function

h(t) = log a(t) + t log r;

note that it is concave since a(t) is log-concave. Now denote by N ′
1(r) the largest

root of the equation h (t) = 0, we see that N1(r) = [N ′
1(r)]+1, and in particular

N ′
1(r) < N1(r) ≤ N ′

1(r) + 1. If we draw the line from the point (ν(r), log μ(r))

to the point (N ′
1(r), 0), then it satisfies the following equation:

(2.6) y(t) =
log μ(r)

N ′
1(r) − ν(r)

· (N ′
1(r)− t) .

It will be useful to keep in mind the following picture:
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Figure 2.1. The graph of h(t). The dashed line is y(t).

The following lemma gives an estimate for the tail of h(t).

Lemma 3: For t ≥ N ′
1(r) we have

h(t) ≤ logμ(r)

N ′
1(r) − ν(r)

· (N ′
1(r)− t) ,

and for x ≥ 1 we have

Nx(r) ≤ xN1(r).

Proof. Looking at the picture above, we see that for t ≥ N ′
1(r) the function

h(t) lies under the line given by (2.6), and we get the first result. The second

part follows from the log-concavity of a(t), since

h (xN1(r)) ≤y (xN1(r)) =
logμ(r)

N ′
1(r) − ν(r)

· (N ′
1(r) − xN1(r))

=
logμ(r)

N ′
1(r) − ν(r)

· (N ′
1(r) − ν(r) + ν(r) − xN1(r))

= logμ(r) − logμ(r) ·
(
xN1(r) − ν(r)

N ′
1(r) − ν(r)

)
< (1− x) logμ(r).

The last inequality is true since N1(r) > N ′
1(r).

It follows immediately from the previous lemma that for m ≥ 1 we have

(2.7) Nm,m+1(r) ≤ mN1(r).
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We will now use Wiman–Valiron theory to find an upper bound for N1(r) in

terms of logμ(r).

Lemma 4: For large normal values of r, we have

(2.8) N1(r) < C logμ(r) log22 μ(r),

with C > 1 some positive absolute constant.

Proof. We use Theorem I with n = k + ν(r) and k > 0 and get

log anr
n ≤ logμ(r) − ck2

(
n log2 n

)−1
.

We now put n =
⌊
C logμ(r) log22 μ(r)

⌋
, with some C > 1, to be selected later.

Notice that using (2.4) we have

k = n− ν(r) ≥ (C − 1) logμ(r) log22 μ(r).

We also note that for r large enough

log2 n ≤ 2 · log22 μ(r).
We now have the following inequality:

log anr
n ≤ log μ(r)− (C − 1)2

C · 2 · logμ(r) ≤ 0,

with a suitable choice of the constant C.

We will also use the following lower bound for N1(r):

Lemma 5: We have

N1(r) ≥ ν(r) ≥ logμ(r) − logμ(1)

log r
.

Proof. The left inequality follows from the fact that h(t) is concave. The right

inequality follows from (2.1). We remark that as a conclusion we see that

N1(r) → ∞ as r → ∞.

2.4. Properties of S(r). Looking again at Figure 2.1, we clearly have

S(r) = 2 ·
∑

n∈N1(r)

log (anr
n) ≥ N ′

1(r) · max
n∈N1(r)

log (anr
n) = N ′

1(r) · logμ(r),

or

(2.9) S(r) ≥ (N1(r) − 1) · logμ(r).
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Notice that similarly we also have

(2.10) S(r) ≤ 2N1(r) log μ(r) ≤ C log2 μ(r) log22 μ(r).

2.5. Gaussian distributions. We frequently use the fact that if a has a

NC(0, 1) distribution, we have

(2.11) P (|a| ≥ λ) = exp(−λ2),
and for λ ≤ 1,

(2.12) P (|a| ≤ λ) ∈
[
λ2

2
, λ2
]
.

3. Upper bound for pH(r)

In this section we prove the following.

Proposition 6: For normal values of r, we have

pH(r) ≤ S(r) + C ·N1(r) logN1(r),

with C some positive absolute constant.

Remark: We note that r is assumed to be large. Later we will analyze the error

term.

The simplest case where f(z) has no zeros inside rD is when the constant

term dominates all the others. We therefore study the event Ωr, which is the

intersection of the events (i), (ii) and (iii), where

(i) : |φ0| ≥
√
N1(r) + 3,

(ii) :
⋂

n∈N1(r)

(ii)n,

(iii) :
⋂

m∈{1,2,...}
(iii)m,m+1,

(iii)m,m+1 :
⋂

n∈Nm,m+1(r)

(iii)m,m+1,n,

and
(ii)n : |φn| ≤ (anr

n)−1

(N1(r))
1/2 ,

(iii)m,m+1,n : |φn| ≤ μ(r)m−1

Nm,m+1(r)·m2 .

Lemma 7: If Ωr holds, then f has no zeros inside rD.
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Proof. To see that f(z) has no zeros inside rD we note that

(3.1) |f(z)| ≥ |φ0| −
∞∑
n=1

|φn|anrn.

First we estimate the sum over the terms in N1(r)\ {0}∑
n∈N1(r)\{0}

|φn|anrn ≤
∑

n∈N1(r)

N1(r)
− 1

2 = N1(r)
1
2 .

Now the tail is bounded by (using (2.5))

∑
n∈N c

1 (r)

|φn|anrn =

∞∑
m=1

⎡
⎣ ∑
n∈Nm,m+1(r)

|φn|anrn
⎤
⎦

≤
∞∑

m=1

⎡
⎣ ∑
n∈Nm,m+1(r)

(Nm,m+1(r))
−1
m−2

⎤
⎦

and we have

∑
n∈N c

1 (r)

|φn|anrn ≤
∞∑

m=1

1

m2
< 2.(3.2)

From (3.1)

|f(z)| >
√
N1(r) + 3−N1(r)

1/2 − 2 = 1,

we have that f(z) �= 0 inside rD.

Lemma 8: The probability of the event Ωr is bounded from below by

logP (Ωr) ≥ −S(r)− C ·N1(r) logN1(r),

for normal values of r which are large enough.

Proof. In the calculations we use the estimates (2.11) and (2.12). First we have

P ((i)) ≥ exp(−N1(r) − 2C
√
N1(r)).

For the second part, since anr
n ≥ 1,

P ((ii)n) ≥
(anr

n)−2

2N1(r)
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and so

P ((ii)) ≥
∏

n∈N1(r)\{0}

(anr
n)−2

2N1(r)

≥
⎛
⎝ ∏

n∈N1(r)

1

(anrn)2

⎞
⎠ exp (−N1(r) logN1(r) + C ·N1(r))

≥ exp (−S(r)− C ·N1(r) logN1(r)) .

We handle the terms of (iii) separately for the first term and the rest. For

m = 1, we have

|φn| ≤ 1

N1,2(r)

and so (using (2.7))

P

(
(iii)1,2

)
≥
(

1

2 · (N1,2(r))
2

)N1,2(r)

≥ exp (−C ·N1,2(r) logN1,2(r))

≥ exp (−C ·N1(r) logN1(r)) .

For a fixed m ≥ 2 and n ∈ Nm,m+1, we have

P

(
(iii)m,m+1,n

)
= 1− exp

(
− μ(r)2(m−1)

(Nm,m+1(r))
2 ·m4

)
.

We use the following inequality (for some positive sequence {An}):
P (∀n : |φn| ≤ An) = 1− P (∃n : |φn| > An) ≥ 1−

∑
P (|φn| > An) .

Using this inequality, we have

(3.3) P

(
(iii)m≥2

)
≥ 1−

∞∑
m=2

Nm,m+1(r)·exp
(
− μ(r)2(m−1)

(Nm,m+1(r))
2 ·m4

)
= 1−Σ1.

Taking r which is normal and large enough we now have (using (2.7) and Lemma

4)

Σ1 ≤ C ·N1(r) ·
∞∑

m=1

m · exp
(
−μ(r)

2m−1

m6

)
;

the first term in the sum is clearly the dominant one, and so

P ((iii)) ≥1− exp (−c1μ(r) + C2 logN1(r))

≥1− exp (−cμ(r)) .(3.4)
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For our purposes here it is sufficient that P ((iii)) is larger than some absolute

constant.

Since the φn are independent, we find that

P (Ωr) = P ((i))P ((ii))P ((iii)) ≥ exp (−S(r) − C ·N1(r) logN1(r))

and the lemma is proved.

Proposition 6 now follows from the previous lemmas.

4. Lower bound for pH(r)

In this section we prove the following theorem.

Proposition 9 (Lower bound): Let δ ∈ (0, 1). For normal values of r, and for

values of δ which satisfy δ−4 = o (N1(r)), we have

pH(r) ≥ S((1− δ) r) − C1 ·N1(r) log logμ(r)− C2δ
−4 logμ(r)

where C1, C2 are positive absolute constants.

Remark: In principle it is possible to select δ−4 = cN1(r), for some constant

c > 0, but we note that in this case the error term will be of the same order of

magnitude as the main term (using (2.10)).

Recall that for the lower bound we study the event in which f does not vanish

in rD (for large values of r). We define the deterministic counterpart of f(z),

ψ(z) =
∞∑

n=0

anz
n,

and writeM(r)=max|z|≤r |ψ(z)|=
∑∞

n=0 anr
n; we also setM(r)=max|z|≤r |f(z)|.

We start by studying the deviations of logM(r) from logM(r). Then we con-

sider large deviations of the expression
�

rT

log |f(z)| dm,

where m is the normalized angular measure on rT. Finally, we use the fact that

if f(z) �= 0 in rD, then log |f(z)| is a harmonic function inside rD, to get the

result.
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4.1. Large deviations for logM(r). We expect that log M(r) will be very

close to logM(r) with high probability, but we don’t need this accuracy for the

lower bound. In the next lemma we prove that the probability that log M(r)

will be large relative to logM(r) is very small.

Lemma 10: Let 0 < σ ≤ 1
2 . Then

logP

(
log M(r)

logM(r)
≥ 1 + σ

)
≤ −cμ2σ(r),

for normal values of r which are large enough.

Proof. We will construct an event with probability close to one, for which

logM(r) is bounded by (1 + σ) logM(r). Denote by Ωr the event which is

the intersection between the events (i), (ii), where

(i) :
⋂

n∈N1(r)

(i)n,

(ii) :
⋂

m∈{1,2,...}
(ii)m,m+1,

(ii)m,m+1 :
⋂

n∈Nm,m+1(r)

(ii)m,m+1,n,

where

(i)n |φn| ≤ μσ(r),

(ii)m,m+1,n |φn| ≤ μ(r)m−1

Nm,m+1(r)·m2 .

We notice that

P ((i)
c
n) = exp

(−μ2σ(r)
)
.

In the proof of Lemma 8, we showed (see (3.4))

P ((ii)) ≥ 1− exp (−cμ(r)) .

Therefore the probability that Ωr does not occur is bounded by

P (Ωc
r) ≤ exp (−cμ(r)) +N2(r) · P ((i)

c
n) .

Using Lemmas 3 and 4 we have, for r large enough,

P (Ωc
r) ≤ exp

(−cμ2σ(r)
)
.
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It is now sufficient to prove that for functions satisfying the above inequalities,

we have the aforementioned upper bound. Indeed

|f(z)| ≤
∑

n∈N2(r)

|φn|anrn +
∑

n∈N c
2 (r)

|φn|anrn;

in (3.2) we already found that some absolute constant is an upper bound for

the second summand. The first summand is bounded by

∑
n∈N2(r)

|φn|anrn ≤ μσ(r) ·
∞∑

n=0

anr
n = μσ(r) ·M(r),

and so, for r large enough (since M(r) ≥ μ(r) + 1),

|f(z)| ≤ μσ(r) ·M(r) + C ≤M1+σ(r).

In the next lemma we prove that the probability that log M(r) will be small

is also very small.

Lemma 11: We have

log P (log M(r) ≤ 0) ≤ −S(r).
Proof. Suppose that log |f(z)| ≤ 0 in rD; using Cauchy’s estimate for the

coefficients of f(z) we can get an estimate as to the probability of this event.

We have

|φn|anrn ≤ M(r) ≤ 1;

therefore for n ∈ N1(r) we have

P

(
|φn| ≤ (anr

n)−1
)
≤ (anr

n)−2 ,

and so

P (logM(r) ≤ 0) ≤
∏

n∈N1(r)

(anr
n)

−2
= exp (−S(r)) .

4.2. Discretization of the logarithmic integral. In this section N ≥ 1

and δ ∈ (0, 1) are fixed, κ = 1−δ and the points {zj}N−1
j=0 are equally distributed

on κrT, that is

zj = κr exp

(
2πij

N

)
.

Also m is the normalized angular measure on rT. Under these conditions we

have
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Lemma 12: For normal values of r, and outside an exceptional set of probability

at most 2 · exp (−S(κr)) , we have

(4.1)

∣∣∣∣∣∣
1

N

N∑
j=1

log |f(zj)| −
�

rT

log |f | dm
∣∣∣∣∣∣ ≤

C

δ4N
logμ(r).

Proof. Denote by Pj(z) = P (z, zj) the Poisson kernel for the disk rD, |z| = r,

|zj | < r. Since log |f | is a harmonic function we have

1

N

N∑
j=1

log |f(zj)| =
�

rT

⎛
⎝ 1

N

N∑
j=1

Pj

⎞
⎠ log |f | dm

=

�

rT

log |f | dm+

�

rT

⎛
⎝ 1

N

N∑
j=1

Pj − 1

⎞
⎠ log |f | dm.

The last expression can be estimated by

(4.2)

�

rT

⎛
⎝ 1

N

N∑
j=1

Pj − 1

⎞
⎠ log |f | dμ ≤ max

z∈rT

∣∣∣∣∣∣
1

N

N∑
j=1

Pj − 1

∣∣∣∣∣∣ ·
�

rT

|log |f || dm.

For the first factor in the RHS of (4.2), we start with
�

κrT

P (z, ω) dm(ω) = 1,

and then split the circle κrT into a union of N disjoint arcs Ij of equal angular

measure μ(Ij) =
1
N centered at the zj’s. Then

1 =
1

N

N∑
j=1

P (z, zj) +

N∑
j=1

�

Ij

(P (z, ω)− P (z, zj)) dm(ω),

and

|P (z, ω)− P (z, zj)| ≤max
ω∈Ij

|ω − zj| ·max
z,ω

|∇ωP (z, ω)|

≤2πr

N
· Cr

(r − |ω|)2 ≤ C

δ2N
.(4.3)

For the second factor on the RHS of (4.2), using Lemma 11, we may suppose

that there is a point a ∈ κrT such that log |f(a)| ≥ 0 (discarding an exceptional
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event of probability at most exp (−S(κr))). Then we have

0 ≤
�

rT

P (z, a) log |f(z)| dm(z),

and hence �

rT

P (z, a) log− |f(z)| dm(z) ≤
�

rT

P (z, a) log+ |f(z)| dm(z).

For |z| = r and |a| = κr we have

δ

2
≤ 1− (1 − δ)

1 + (1 − δ)
≤ P (z, a) ≤ 1 + (1− δ)

1− (1− δ)
≤ 2

δ
.

By Lemma 10, outside a very small exceptional set (of the order exp (−μ(r))),
we have logM(r) ≤ 2 · logM(r), and we notice that from (2.10) it follows

that μ(r) is much bigger than S(κr), so this exceptional set is indeed small.

Therefore �

rT

log+ |f | dμ ≤ 2 logM(r).

Now we have �

rT

log− |f | dμ ≤ C

δ2
logM(r).

Finally, (and using (2.3))

(4.4)

�

rT

|log |f || dμ ≤ C

δ2
logM(r) ≤ C

δ2
logμ(r).

Combining (4.3) and (4.4) we get the result.

4.3. Deviations for the logarithmic integral. We recall that if

f(z) =

∞∑
n=0

φnanz
n,

where φn are i.i.d. standard complex Gaussian random variables, then the vec-

tor (f(z1), . . . , f(zN)) has a multivariate complex Gaussian distribution, with

covariance matrix:

(4.5) Σij = Cov(f(zi), f(zj)) = E(f(zi)f(zj)) =
∑

a2k (ziz̄j)
k
.

The density function of a multivariate complex Gaussian distribution is

ζ �→ 1

πN detΣ
exp(−ζ∗Σ−1ζ).
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We introduce the set (log2 μ(r) ≡ log logμ(r))

(4.6) A′ =

⎧⎨
⎩ζ ∈ C

N :

N∏
j=1

|ζj | ≤ exp
(
2N log2 μ(r) + Cδ−4 log μ(r)

)⎫⎬⎭
and denote by B the set where estimate (4.1) in Lemma 12 holds. We abuse

notation by writing

P (A′) = P ((f(z1), . . . , f(zN)) ∈ A′) .

Using this notation we get the simple

Lemma 13:

P

(�
rT

log |f(z)| dm ≤ 2 log2 μ(r)

)
≤ P (A′) + P (Bc) .

Proof. We start by discarding the exceptional set in Lemma 12; this adds the

term P (Bc). Now we can assume that

1

N

N∑
j=1

log |f(zj)| ≤
�

rT

log |f | dm+
C

δ4
· logμ(r)

N
,

or

N∏
j=1

|f(zj)| ≤ exp

⎛
⎝N ·

�

rT

log |f | dm+
C

δ4
logμ(r)

⎞
⎠ .

In terms of probabilities we can write

P

(�
rT

log |f(z)| dm ≤ 2 log2 μ(r)

)
≤ P (Bc) + P (A′) .

Before we continue, we need two asymptotic estimates.

Lemma 14: Let Σ be the covariance matrix defined in (4.5). Choose N =

N1(r); then we have the following estimate:

log (det Σ) ≥ S(κr).

Proof. Notice that we can represent Σ in the following form:

Σ = V · V ∗
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where

V =

⎛
⎜⎜⎝
a0 a1 · z1 . . . an · zn1 . . .
...

...
...

... . . .

a0 a1 · zN . . . an · znN . . .

⎞
⎟⎟⎠ .

We observe that since a(t) is a log-concave function, it follows that n �→ an ·rn is

a unimodal sequence, and thereforeN1(r) = {0, 1, . . . , N1(r) − 1}. Therefore we
can estimate the determinant of Σ by projecting V on the firstN1(r) coordinates

(let us denote this projection by P ). Since detΣ is the square of the product of

the singular values of V , and these values are only reduced by the projection,

we have

detΣ ≥ (detPV )
2
=

∣∣∣∣∣∣∣∣
a0 a1z1 . . . aN−1z

N−1
1

...
...

...
...

a0 a1zN . . . aN−1z
N−1
N

∣∣∣∣∣∣∣∣

2

and so

detΣ ≥
∏

n∈N1(r)

a2n ·

∣∣∣∣∣∣∣∣
1 z1 . . . zN−1

1
...

...
...

...

1 zN . . . zN−1
N

∣∣∣∣∣∣∣∣

2

=
∏

n∈N1(r)

a2n ·
∏

1≤i
=j≤N

|zi − zj|

=Π1 · Π2.

The zi’s are the roots of the equation zN = (κr)N . Denoting z1 = κr we get

N∏
i=2

(z1 − zi) = N (κr)N−1 ,

and

Π2 =
∏

1≤i
=j≤N

|zi − zj | =
(

N∏
i=2

|z1 − zi|
)N

= (κr)
N(N−1)

NN .

We now partition the product of the κr’s in the following way:

(κr)N(N−1) =
N−1∏
n=0

(κr)2n ,
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and get

detΣ ≥
N−1∏
n=0

a2n (κr)
2n = exp (S (κr)) .

We denote by A the following set (see (4.6) for the definition of the set A′):

(4.7) A =
{
ζ ∈ C

N : ζ ∈ A′ and |ζj | ≤M2(r), 0 ≤ j ≤ N − 1
}
,

and by I the following quantity:

(4.8) I = π−N · volCN(A).

We use the following lemma (see [Nis, Lemma 11]) to estimate I:

Lemma 15: Set s > 0, t > 0 and N ∈ N+, such that log
(
tN/s

) ≥ N . Denote

by CN the following set:

CN = CN (t, s) =

{
r = (r1, . . . , rN ) : 0 ≤ rj ≤ t,

N∏
1

rj ≤ s

}
.

Then

volRN(CN ) ≤ s

(N − 1)!
logN

(
tN/s

)
.

Now we have an almost immediate

Corollary 16: Suppose that r is normal and large enough and that δ satisfies

δ−4 = o (N1(r)). Then we have

log I ≤ C ·N1(r) log2 μ(r) + Cδ−4 logμ(r).

Proof. Set N = N1(r) and recall that

A =

⎧⎪⎨
⎪⎩

|ζj | ≤M2(r), 0 ≤ j ≤ N − 1

ζ : and∏N
j=1 |ζj | ≤ exp

(
2N log logμ(r) + Cδ−4 logμ(r)

)
⎫⎪⎬
⎪⎭ .

To shorten the expressions above, we write

s = exp
(
2N log logμ(r) + Cδ−4 logμ(r)

)
, t =M2(r).

We want to translate the integral I into an integral in RN , using the change of

variables ζj = rj cos(θj) + irj sin(θj). Integrating out the variables θj , we get
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I ′ = 2N
�
C
∏
rj dr, where the new domain is

C =

⎧⎨
⎩r = (r1, . . . , rN ) : 0 ≤ rj ≤ t,

N∏
j=1

rj ≤ s

⎫⎬
⎭ .

We can find an explicit expression for this integral, but instead we will simplify

it even more to

(4.9) I ′ ≤ 2Ns · volRN(C).

Now, in order to use the previous lemma, we have to check the condition

log
(
tN/s

) ≥ N , or (where C > 0)

2N1(r) logM(r) − 2N1(r) log2 μ(r)− Cδ−4 logμ(r) ≥ N1(r),

which is satisfied under our assumptions, for r large enough. After applying the

lemma, we get (for r large enough)

I ′ ≤N · 2Ns2
N !

logN
(
tN/s

) ≤ s2e2N

NN
logN

(
tN/s

)
=exp (2 log s+N log2 t+ 2N −N log2 s)

≤ exp (2 log s+N log2 t) .

Recalling the definitions of s and t, we finally get

log I ′ ≤4N log2 μ(r) + Cδ−4 logμ(r) +N log2M(r) + C

≤C1N1(r) log2 μ(r) + C2δ
−4 logμ(r).

We now continue to estimate probabilities of the events A and A′ introduced
in (4.7) and (4.6).

Lemma 17: With r and δ satisfying the conditions of Corollary 16, we have the

following estimates:

P (A′\A) ≤ exp (−cμ(r))
and

P (A) ≤ exp
(−S(κr) + C1N1(r) log2 μ(r) + C2δ

−4 logμ(r)
)
.

Proof. If ζ ∈ A′\A, then for some j we have |f(zj)| = |ζj | > M2(r). Using

Lemma 10, with the choice σ = 1
2 , we see that this event has a probability at
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most exp (−cμ(r)). For the second estimate we need to bound from above the

integral �

A

1

πN detΣ
exp
(−ζ∗Σ−1ζ

)
dζ.

Discarding the exponential function and using Lemma 14 and Corollary 16, we

get

P (A) ≤ volCN(A)

πN detΣ
≤ exp

(−S(κr) + C1N1(r) log2 μ(r) + C2δ
−4 logμ(r)

)
.

4.4. Lower bound for pH. We collect all the previous results into the proof

of Proposition 9

Proof. Suppose that f(z) has no zeros inside rD; then
�
rT

log |f(z)| dm = log |f(0)|.

We can use the fact that log |f(0)| cannot be too large; in fact

P (log |f(0)| ≥ 2 log2 μ(r)) = P
(|φ0| ≥ log2 μ(r)

) ≤ exp
(− log4 μ(r)

)
.

Now combining Lemma 13 and Lemma 17, we see that the probability of the

event {f(z) �= 0 in rD} does not exceed

exp
(− log4 μ(r)

)
+exp (−μ(r))
+2 exp (−S(κr))
+ exp

(−S(κr) + C1N1(r) log2 μ(r) + C2δ
−4 logμ(r)

)
.

Since by (2.10) the functions μ(r) and log4 μ(r) are much bigger than S(κr),

we have the required estimate

(4.10) pH(r) ≥ S(κr)− C1N1(r) log2 μ(r) − C2δ
−4 logμ(r).

5. Proofs of Theorems 1 and 2

In this section we prove Theorem 1 using the lower and upper bound estimates

from the previous sections. We also estimate the size of the error terms, for

functions with sufficient growth rate, and prove Theorem 2.
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5.1. Proof of Theorem 1. By Proposition 6 the error term for the upper

bound is (using (2.9))

N1(r) logN1(r) ≤ C ·N1(r) log2 μ(r) = o (S(r)) ,

so it is indeed small.

For the lower bound (4.10), we start by selecting δ in the following way:

(5.1) δ = (N1(r))
−1/5

.

Now by Proposition 9 the error term is

C1N1(r) log2 μ(r) + C2δ
−4 logμ(r)

and we see that the error term is asymptotically smaller than S(r). What

remains is to show that S(κr) is close to S(r).

Lemma 18: Set r′ = (1− δ)r. For normal values of r which are large enough,

S(r′) ≥ S(r) − C (N1(r))
9/5

and

(N1(r))
9/5

= o (S(r)) .

Proof. We notice that for δ < 1
2 we have

log (1− δ) ≥ −δ − δ2.

Then it follows that (note that N1(r
′) ⊂ N1(r))

S(r) − S(r′)
2

=
∑

n∈N1(r)\N1(r′)

log anr
n +

∑
n∈N1(r′)

(
log anr

n − log an (r
′)n
)

≤Σ1 +Σ2.

For the first sum we notice that if n ∈ N1(r)\N1(r
′), then

0 ≥ log an (r
′)n ≥ log anr

n − n
(
δ + δ2

)
⇓

log anr
n ≤n (δ + δ2

) ≤ 2N1(r)δ ≤ 2 (N1(r))
4/5

and so

Σ1 ≤ 2 (N1(r)−N1(r
′)) (N1(r))

4/5 ≤ 2 (N1(r))
9/5 .

For the second sum we have

Σ2 ≤ (N1(r))
2
(− log (1− δ)) ≤ 2 (N1(r))

9/5
,
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and overall we get the required estimate.

Now we will prove that N1(r) ≤ C
√
S(r) logS(r), which will give us the

second claim. We start with

S(r)
(2.10)

≤ C log2 μ(r) log22 μ(r) ≤ C log2 μ(r) log2 S(r),

therefore √
S(r) ≤ C logμ(r) log S(r)

or

(5.2) N1(r)
(2.9)

≤ 2 · S(r)

log μ(r)
≤ C

√
S(r) logS(r),

and so

(N1(r))
9/5 ≤ C (S(r))

9/10
(logS(r))

9/5
= o (S(r)) .

This concludes the proof of Lemma 18 and Theorem 1.

5.2. Proof of Theorem 2. We need the following

Lemma 19: Let γ > 0. Suppose that logμ(r) ≥ exp (logγ r). Then for values

of r which are normal and large enough

(N1(r))
4/5

logμ(r) ≤ C (S(r))
9/10

log1/γ+8/5 S(r).

Proof. We first note that from the assumption on logμ(r), we have (for r large

enough)

log
8/5
2 μ(r) ≤ log

1/γ+8/5
2 μ(r)

log9/10 r
.

Now (by Lemma 4, Lemma 5 and (2.9))

(N1(r))
4/5 logμ(r) ≤C log9/5 μ(r) log

8/5
2 μ(r)

≤C
(
log2 μ(r)

log r

)9/10

log
1/γ+8/5
2 μ(r)

≤C
(
1

2
·N1(r) log μ(r)

)9/10

log
1/γ+8/5
2 μ(r)

≤C (S(r))
9/10

log1/γ+8/5 S(r).

Proof of Theorem 2. Let α ≥ 1. We note that if a(t) ≥ exp (−t logα t), then for

r large enough we have

logμ(r) ≥ max
n∈N

[−n logα n+ n log r] ≥ c1 exp
(
c2 (log r)

1/α
)
,
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for example by selecting n in such a way that it will satisfy logα n �
1
2 log r.

Finally, we see that logμ(r) satisfies the condition in the previous lemma.

We note that using our methods, Theorem 2 cannot be proved for arbitrary

(log-concave) coefficients. The problem comes from the following error term in

the lower bound:

δ−4 logμ(r) = (N1(r))
4/5 logμ(r).

To see that we cannot bound it by an expression of the form (S(r))
α
with α < 1,

we take a(t) = exp (− exp (t)). For this function we have

N1(r) = log2 r + log3 r +O (1) ,

logμ(r) = log r log2 r +O (log r) ,

S(r) =Θ
(
log r log22 r

)
.

We see that for every ε > 0 (for r large enough)

S(r)

(N1(r))
4/5

logμ(r)
= Θ

(
log

1/5
2 r

)
= o ((S(r))ε) .
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