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ABSTRACT

We continue the study of matrices over a supertropical algebra, proving

the existence of a tangible adjoint of A, which provides the unique right

(resp. left) quasi-inverse maximal with respect to the right (resp. left)

quasi-identity matrix corresponding to A; this provides a unique maxi-

mal (tangible) solution to supertropical vector equations, via a version of

Cramer’s rule. We also describe various properties of this tangible adjoint,

and use it to compute supertropical eigenvectors, thereby producing an ex-

ample in which an n × n matrix has n distinct supertropical eigenvalues

but their supertropical eigenvectors are tropically dependent.

1. Introduction

This paper is a continuation of [6]; here, we solve vector equations in supertrop-

ical algebra, using the tangible version ̂adj(A) of the adjoint, which yields a

version of Cramer’s rule (Theorem 3.5 below). This solution is the unique max-

imal solution in a certain sense (Theorem 3.8). In §4 we compare adj(adj(A))

to A. These computational techniques using the adjoint are quite powerful; in

Theorem 5.6, we apply them to compute supertropical eigenvectors and to refute
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the natural conjecture that the supertropical eigenvectors would be tropically

independent when their supertropical eigenvalues are distinct.

Some of the parallels to classical matrix theory are quite unexpected, espe-

cially since their natural analogs in the max-plus algebra often fail. See [1] for

some of the max-plus theory; related references are given in the bibliography of

[6]. However, the supertropical algebra, which covers the max-plus algebra, is

endowed with the “ghost surpassing” relation |
gs
= given in Definition 1.3, which

specializes to equality on the “tangible” elements, and provides suitable analogs

of these basic results from matrix theory.

The paper [2] was written independently of the earlier version of this paper,

and contains some relevant results, especially an elegant meta-theorem about

identities of matrix semirings described in Section 2.1 below. During the course

of the current version of this paper, we indicate how the results of [2] interact

with our results.

We recall that this work is in the environment of a semiring with ghosts [5],

which is a triple (R,G�, ν), where R is a semiring with zero element, �R (often

identified in the examples with −∞, as indicated below), and G� = G ∪ {�R} is

a semiring ideal, called the ghost ideal, together with an idempotent semiring

projection

ν : R −→ G ∪ {�R}

called the ghost map, i.e., which preserves multiplication as well as addition,

defined as

ν(a) = a+ a.

We write aν for ν(a), called the ν-value of a. We write a ≥ν b, and say

that a dominates b, if aν ≥ bν . Likewise we say that a strictly dominates b,

written a >ν b, if aν > bν . Two elements a and b in R are said to be ν-matched

if they have the same ν-value, in which case we also write a ∼=ν b.

1.1. Supertropical semirings.

Definition 1.1: A supertropical semiring is a semiring with ghosts that has

the extra properties:

(i) a+ b = aν if aν = bν ;

(ii) a + b ∈ {a, b}, ∀a, b ∈ R s.t. aν 	= bν . (Equivalently, G� is ordered, via

aν ≤ bν iff aν + bν = bν .)
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A supertropical domain (the focus of interest for us) is a commutative su-

pertropical semiring R = (R,G�, ν) in which the following two extra conditions

are satisfied:

(i) R \ G� is a monoid T with respect to the semiring multiplication; the

elements of T are called tangible.

(ii) The map νT : T → G (defined as the restriction from ν to T ) is onto;

in other words, every element of G has the form aν for some a ∈ T .

We write T� for T ∪{�R}. Note that T� acts as the max-plus algebra, except

in the case when aν = bν , in which case the ghost layer plays its role.

Definition 1.2: A supertropical semifield is a supertropical domain (R,G�, ν)
in which every tangible element is invertible; in other words, T is a multiplicative

group. Thus, G is also a multiplicative group.

Recall from [5, Remark 3.12] that any supertropical domain R is

ν-cancellative, in the sense that caν = cbν for c 	= �R implies aν = bν , and in

particular its ghost ideal G is cancellative as a multiplicative monoid. Since any

commutative cancellative monoid has an Abelian group of fractions, one often

can reduce from the case of a supertropical domain to that of a supertropical

semifield. (More details are given in [5, Proposition 3.19 and Remark 3.20].)

1.2. The supertropical relation “ghost surpasses”. The following re-

lation, stronger than ≥ν , plays a key role in the theory, and especially in this

paper.

Definition 1.3: We say b = a+ ghost if b = a+ c for c some ghost element. We

define the relation |
gs
=, called “ghost surpasses,” on any semiring with ghosts R,

by

b |
gs
= a iff b = a+ ghost.

Note that b |
gs
= a implies a + b ∈ G�. In a supertropical semiring, b |

gs
= a iff

b = a or b is a ghost ≥ν a. In particular, if b |
gs
= a, then b ≥ν a. (The converse is

false, since one could have tangible b >ν a.) In fact the relation |
gs
= is a partial

order on R, and is not symmetric; for example aν |
gs
= a, for a tangible, but not

vice versa; i.e., a 	 |
gs
= aν .
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Remark 1.4: In a supertropical domain, if a is tangible with a |
gs
= b , then a = b.

(Indeed, write a = b + c with c ∈ G�. Then b 	∼=ν c since a ∈ T , and likewise

a 	= c, since a is tangible, so a = b.)

Thus, for tangible elements, the relation |
gs
= generalizes equality in the max-

plus algebra, and seems to be the “correct” generalization to enable us to find

analogs of theorems from classical linear algebra. This is the reason for our use

of the symbol |
gs
=, not to be confused with the usage in model theory. On the

other hand, we have the following observation.

Lemma 1.5: The relation |
gs
= is antisymmetric in any supertropical semiring.

Proof. We need to show that if a |
gs
= b and b |

gs
= a, then a = b. This holds by

Remark 1.4 if a is tangible (and thus, by symmetry, if b is tangible). Hence, we

may assume that a, b ∈ G�, in which case

a = aν = bν = b.

1.3. The tangible retract function. Although in general, the map

νT : T → G need not be 1:1 in a supertropical domain, νT is onto by defi-

nition; we find it convenient to choose a “tangible retract” function ν̂ : R → T�
restricting to the identity map on T�, such that ν ◦ ν̂ restricts to the identity

map on G�. We write b̂ for ν̂(b); thus, (b̂)ν = b for all b ∈ G�. We retain the

notation ν̂ when working with more complicated expressions.

We do not see any general way to define ν̂ on G other than applying the axiom

of choice rather freely, although in special cases there are canonical definitions

for ν̂ (such as when ν is 1:1 or a “lowest term” valuation on power series).

Proposition 1.6: If F is a divisibly closed semifield, the map ν̂ : F → T
can be defined such that its restriction ν̂|G : G → T is a multiplicative group

homomorphism.

Proof. This can be seen by using the general theory of ordered Abelian groups,

but we present an easy direct proof for the reader’s convenience. Consider all

pairs (M, ν̂), where M ⊂ (G, ·) is a subgroup with a partial tangible retract

function ν̂M : M → T� that is multiplicative. We order these pairs by saying

(M, ν̂M ) > (M ′, ν̂M ′) if M ⊃ M ′
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and ν̂M restricts to ν̂M ′ on M ′, i.e., ν̂M |M ′ = ν̂M ′ .

Note that such pairs (M, ν̂) exist, since we could take a group M = 〈aν〉
generated by a single element aν , and ν̂(aν) = a.

By Zorn’s lemma, there is a subgroup M ⊂ (G, ·) for which (M, ν̂M ) is maxi-

mal. If M 	= G, then take a ∈ G \M. Let

P = {n ∈ � : an ∈ M},

an ideal of �, and write P = k� for some k ≥ 0. If k > 0, choose â such

that âk = âk. (This is possible since F is divisibly closed.) If k = 0, choose â

arbitrarily in T such that (â)ν = a. Define

âib := âib̂

for each b ∈ M and each i > 0. To see that this is well-defined, suppose

aib = ajb′ for i ≥ j and b′ ∈ M . Then ai−j = b′b−1 ∈ M, which by definition

is âi−j = âi−j since k divides i − j, implying âib̂ = âj b̂′. Thus, we could

define ν̂ multiplicatively on the group generated by M and a, contradicting the

maximality of M , so we must have M = G. Then we put �̂F = �F .

Remark 1.7: Whenever a 	∼=ν b, the retract map ν̂ must satisfy

(1.1) ν̂(a+ b) = â+ b̂.

Indeed, we may assume that a >ν b, and thus ν̂(a+ b) = â = â+ b̂.

But for a ∈ G, we have â+ â = (â)ν = a which is not â = â+ a, so ν̂ is not a

semiring homomorphism.

The following observation enables us to utilize ν̂ to make calculations paral-

leling those in the max-plus algebra.

Proposition 1.8: If
∑

k ak b̂j,k ∈ G� for each 1 ≤ j ≤ m, then

∑
k

akν̂

( m∑
j=1

bj,kcj

)
∈ G�

for any cj ∈ R.

Proof. Otherwise, consider the single dominating term ak1
̂(bj1,k1cj1) of the left

side. We are done unless ak1 ∈ T . But ak1
̂(bj1,k1cj1) dominates ak ̂(bj1,kcj1) for

each k, implying ak1
̂bj1,k1 ∈ T dominates each ak b̂j1,k. Thus, there must be k2
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with ak1
̂bj1,k1

∼=ν ak2
̂bj1,k2 . But then

ak1
̂(bj1,k1cj1)

∼=ν ak2
̂(bj1,k2cj1)

implying that their sum is ghost.

Proposition 1.9:

∑
k ak

∑
j b̂j,k |

gs
=
∑

k ak
̂(
∑

j bj,k).

Proof. The two sides are ν-matched, so it remains to show that if the left side

is tangible, then it equals the right side.

Suppose that ak b̂j′,k alone dominates the left side. Then bj,k <ν bj′,k for each

j 	= j′, implying
∑

j bj,k = bj′,k. Hence, the single dominating term in the sum

at the right must also be ak b̂j′,k.

1.4. Vectors. We also recall the definition of R(n) as the Cartesian product∏n
i=1 R of n copies of the supertropical semiring R, viewed as a module via

componentwise multiplication, with zero element � = (�R) and ghost submodule

H� = G(n)
�

. Let H = H� \ {�R}. When R is a supertropical semifield, R(n) is

called a tropical vector space over R. A vector 	= � is called tangible if all

of its components are in T�.
Our partial orders |

gs
= and≥ν on R, and the tangible retract function ν̂ :R→T�,

extend respectively to the partial orders |
gs
= and ≥ν on R(n), and the tangible

retract function ν̂ : R(n) → T (n)
�

, by matching the corresponding components;

note that vectors v, w satisfy w |
gs
= v iff w = v + ghost. For example,

(�νR, �
ν
R, �

ν
R) |

gs
= (�νR, �

ν
R, �R) |

gs
= (�νR, �R, �R).

Also, by checking components, we see that |
gs
= is antisymmetric for vectors.

Lemma 1.10: Suppose v, w ∈ R(n), with w tangible. Then |
gs
= w iff v + w ∈ H�.

Proof. (⇒) is obvious.

(⇐) By assumption, each component wi of w is in T�, and vi+wi ∈ H� implies

vi = wi or vi is ghost ≥ν wi; thus vi |
gs
= wi for each i, implying v |

gs
= w.

1.5. The ν-topology. We also need the following topology on R; cf. [5, Def-

inition 3.22]:
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Definition 1.11: Suppose (R,G�, ν) is a supertropical domain. Viewing G as an

ordered monoid with respect to ≥ν , we define the ν-topology on R, whose

open sets have a base comprised of the open intervals

Wα,β = {a ∈ R : α <ν a <ν β}; Wα,β;T = {a ∈ T : α <ν a <ν β}, α, β ∈ G�.

This topology extends to the product topology on R(n) for any n.

Note that the tangible vectors in R(n) are a dense subset in the ν-topology.

When we need to apply topological arguments, in order that multiplication be

a continuous function, we assume that T is dense, in the sense that Wα,β;T 	= ∅
whenever α <ν β.

1.6. The semiring of functions. Let Fun(R(n), R) (resp. CFun(R(n), R))

denote the semiring of functions (resp. continuous functions) from R(n) to R;

cf. [5, Definition 3.31]. We can also define our partial orders on Fun(R(n), R):

Definition 1.12: For f, g ∈ Fun(R(n), R), we write f ≥ν g if f(a) ≥ν g(a) for all

a = (a1, . . . , an) in R(n).

The ghost-surpassing identity f |
gs
= g holds for f, g ∈ Fun(R(n), R), if

f(a1, . . . , an) |
gs
= g(a1, . . . , an) for every a1, . . . , an ∈ R.

Proposition 1.13: Suppose f, g ∈ CFun(R(n), R).

(i) If f(a) ≥ν g(a) for all a in a dense subset of R(n), then f ≥ν g.

(ii) If f(a) |
gs
= g(a) for all a in a dense subset S of R(n), then f |

gs
= g.

Proof.

(i) Otherwise, we have f(a) <ν g(a) for some a ∈ R(n), so this inequality

holds for some open interval Wa containing a.

(ii) We are done by (i) unless there exists a such that f(a) ∈ T and

f(a) >ν g(a). But then this inequality holds for some open interval

Wa containing a, implying f(a′) ∈ G� for all a′ ∈ S ∩Wa. We conclude

that f(Wa) ⊆ G�, contrary to a ∈ Wa.

Several examples of ghost surpassing identities are given in [6]; as we shall

see, many of these can be obtained via a powerful new technique of [2].
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1.7. Identities of semirings with symmetry. Any commutative semiring

with ghosts is a semiring with symmetry in the sense of [2, Definition 4.1], where

their map τ is taken to be the identity map, and their So is the ghost ideal G�.
Furthermore, they define a relation a �o b when a = b+ c for some c ∈ So; this

clearly specializes to our relation a |
gs
= b.

Akian, Gaubert and Guterman [2, Theorem 4.21] then proved their strong

transfer principle, which we rephrase slightly:

Theorem 1.14: Suppose p+, p−, q+, q− ∈ �[ξ1, . . . , ξm] are polynomials in

commuting indeterminates ξ1, . . . , ξm, and let p = p+ − p− and q = q+ − q− in

the free commutative ring �[ξ1, . . . , ξm]. If p = q, and if no monomials appear

in both q+ and q−, then p+ + p− �o q+ + q− is an identity for all commutative

semirings.

2. Matrices and adjoints

In this section, we accumulate basic information about matrices and their ad-

joints. We write Mn(R) for the semiring of n×n matrices, whose multiplicative

identity is denoted as I, and we define the supertropical determinant |A| of
A = (ai,j) to be the permanent as in [3, 4, 6, 7]; i.e.,

|A| =
∑
σ∈Sn

a1,σ(1) · · · an,σ(n).

A permutation σ ∈ Sn attains |A| if |A| ∼=ν aσ(1),1 · · · aσ(n),n, where A = (ai,j).

A matrix A is defined to be nonsingular if |A| ∈ T is invertible; A is defined

to be singular if |A| ∈ G�. Thus, over a supertropical semifield, every matrix

is either singular or nonsingular.

Definition 2.1: The minor Ai,j is obtained by deleting the i row and j column

of A. The adjoint matrix adj(A) of a matrix A = (ai,j) is defined as the

transpose of the matrix (a′i,j), where a′i,j = |Ai,j |. The tangible adjoint

matrix ̂adj(A) of A is defined as the transpose of the matrix (â′i,j).

Note that ̂adj(A) depends on the choice of the tangible retract function ν̂.

Viewing matrices as n2-dimensional vectors, we can introduce the product

topology, as well as our relations ≥ν and |
gs
=, to matrices (by comparing the

corresponding entries).
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Lemma 2.2: The function det : A �→ |A| is a continuous function from R(n2)

to R, and the adjoint is a continuous function from R(n2) to R(n2).

Proof. Clear, because the determinant is defined in terms of addition and mul-

tiplication, which are continuous functions in the ν-topology over R(n2).

Remark 2.3: We can reformulate [6, Theorem 3.5] as

|AB| |
gs
= |A| |B| ,

for any A,B ∈ Mn(R), and [6, Proposition 4.8] as adj(AB) |
gs
= adj(B) adj(A).

2.1. Ghost-surpassing identities of matrices. Suppose P+=(p+i,j), P
−=

(p−i,j), Q
+ = (q+i,j), andQ− = (q−i,j) are matrix expressions whose respective (i, j)

entries p+i,j , p
−
i,j , q

+
i,j , and q−i,j ∈ �[ξ1, . . . , ξm] are semiring polynomials in the

entries of x1, . . . , x� (in other words, only involving addition and multiplication,

but not negation). In particular, when xi are n× n matrices, we set m = �n.

Formally set P (x1, . . . , x�) = P+ − P− and Q(x1, . . . , x�) = Q+ − Q−. We

say Q is admissible if the monomials of q+i,j and q−i,j are distinct, for each pair

(i, j).

Theorem 1.14 provides the following metatheorem for matrices:

Theorem 2.4: Suppose P = Q is a matrix identity of Mn(�), with Q ad-

missible. (In other words, P (A1, . . . , A�) = Q(A1, . . . , A�) for all matrices

A1, . . . , A�.) Then for any commutative semiring with ghosts (R,G�, ν), the ma-

trix semiring with ghosts Mn(R) satisfies the ghost-surpassing matrix identity

P+ + P− |
gs
= Q+ +Q−.

The proof is standard: It is enough to check for substitutions to “generic

matrices” in which each indeterminate xk is specialized to a matrix (ξki,j) whose

entries are commuting indeterminates. Then the proposed ghost-surpassing

identity P++P− |
gs
= Q++Q− can be expressed in terms of n2 ghost-surpassing

identities in the commuting indeterminates ξki,j , one for each matrix entry.

Remark 2.5: Define the characteristic polynomial fA of A as |A + λI|. If

fA =
∑n

i=0 αiλ
i, define the tangible characteristic polynomial f̂A of A as∑n

i=0 α̂iλ
i. Here are some results from [6], which are reproved as easy applica-

tions of Theorem 2.4, for any semiring with ghosts (R,G�, ν):
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(i) |AB| |
gs
= |A| |B|.

(ii) Any matrix A satisfies its tangible characteristic polynomial f̂A; i.e.,

f̂A(A) |
gs
= (�).

(iii) Notation as above, let f̃A =
∑n

i=1 αiλ
i−1; then f̃A(A) |

gs
= adj(A).

In order to apply Theorem 2.4, one needs to observe that in each of these

expressions the q+i,j and q−i,j are distinct. This is true in (i) and (iii) because of

the standard formulas for the determinant and adjoint. (We can describe the

left side of (iii) by applying Newton’s formula for computing the coefficients of

the characteristic polynomial of A in terms of traces of powers of A. )

Now (ii) is obtained by multiplying (iii) by A, noting that A adj(A) |
gs
= I by

[6, Remark 4.14].

2.2. Quasi-identity matrices and quasi-inverses. Recall the following

definition from [6]:

Definition 2.6: A quasi-identity matrix is a nonsingular, multiplicatively

idempotent matrix equal to the identity matrix I on the diagonal, and whose

off-diagonal entries are in G�.

Remark 2.7: Any quasi-identity matrix I ′ ghost surpasses I; i.e., I ′ |
gs
= I.

Quasi-identities seem to be the key to the supertropical matrix theory. Note,

however, that the product of quasi-identities is not necessarily a quasi-identity.

For example, take

B1 =

(
0 10ν

−∞ 0

)
and B2 =

(
0 −∞

10ν 0

)
.

Then B1 and B2 are quasi-identities, but

B1B2 =

(
20ν 10ν

10ν 0

)

is a singular matrix. Accordingly, we start with a given matrix A. Most of the

following theorem is contained in [6, Theorem 4.12].



Vol. 186, 2011 SUPERTROPICAL MATRIX ALGEBRA II 79

Theorem 2.8: Suppose A = (ai,j), with |A| invertible. Define

A∇ =
�R

|A| adj(A) and A
̂∇ =

�R

|A|
̂adj(A);

IA = AA∇ = AA
̂∇; I ′A = A∇A = A

̂∇A.

Then AA∇ = AA
̂∇ = IA and A∇A = A

̂∇A = I ′A are quasi-identities.

Proof. Starting with [6, Theorem 4.12], it remains to show that AA∇ = AA
̂∇.

Their ν-values are the same, so we need only check that the diagonal entries of

AA
̂∇ are tangible (which is a fortiori, since this is true for the diagonal entries of

AA∇), and that the off-diagonal entries of AA
̂∇ are ghost, which holds because

of [6, Remark 4.5].

The fact that I2A = IA, proved in [6, Theorem 4.12] by means of Hall’s

Marriage Theorem, is a key ingredient of the theory.

Inspired by Theorem 2.8, when |A| is invertible, we say that A is quasi-

invertible and call A∇ the canonical two-sided quasi-inverse of A and

define the right quasi-identity matrix of A to be the matrix

IA = AA∇ = AA
̂∇,

and the left quasi-identity matrix of A to be the matrix

I ′A = A∇A = A
̂∇A.

(The left tangible quasi-inverse A
̂∇ is introduced here since it plays a

role in solving equations, in §3.) Over a supertropical semifield, a matrix is

quasi-invertible iff it is nonsingular.

Remark 2.9: If C |
gs
= A, then BC |

gs
= BA. In particular, BI ′ |

gs
= B for any

quasi-identity matrix I ′; cf. Remark 2.7. By symmetry, we also have I ′B |
gs
= B.

Remark 2.10: If A ∼=ν B are quasi-invertible, then IA = IB. (Indeed, the di-

agonal of each is the identity matrix I, and the off-diagonal entries are clearly

ν-matched and thus, being ghosts, are equal.)

Example 2.11: For A =
(
a b
c d

)
, we have adj(A) = ( d b

c a ) ; hence

A adj(A) =

(
|A| (ab)ν

(cd)ν |A|

)
whereas adj(A)A =

(
|A| (bd)ν

(ac)ν |A|

)
.
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Thus, the left and right quasi-identities of a quasi-invertible matrix can be quite

different. This enigma will only be resolved in Corollary 4.5 below.

Lemma 2.12: The quasi-invertible matrices are dense in Mn(R).

Proof. Given any matrix, we take some permutation σ attaining |A|, and let α

be a tangible element of ν-value slightly greater than �
ν
R. Replacing aσ(i),i by

αâσ(i),i for each 1 ≤ i ≤ n gives us a matrix close to A whose determinant is

αn |̂A| ∈ T , as desired.

Lemma 2.12 shows us that much of the matrix theory can be developed by

looking merely at the quasi-invertible matrices. For example, Remark 2.3 could

be verified by checking only the quasi-invertible matrices. Along these lines, we

have:

Proposition 2.13: If f, g ∈ CFun(R(n2), R(m)) and f(A) |
gs
= g(A) for all quasi-

invertible matrices A, then f |
gs
= g.

Proof. Combine Lemma 2.12 with Proposition 1.13 (ii).

In view of [6, Proposition 4.17], every quasi-identity matrix IA is its own left

and right quasi-inverse as well as its own left and right quasi-identity matrix,

and IA = IA
∇. In order to obtain the best results, we need to modify our notion

of adjoint.

Remark 2.14: Define

A∇ = A∇IA = A∇AA∇.

Then AA∇ = AA∇IA = (IA)
2 = IA, so A∇ is a right quasi-inverse of A.

By Remark 2.9,

A∇ = A∇IA |
gs
= A∇ |

gs
= A

̂∇.

In fact, A∇ is the “maximal” right quasi-inverse of A, in the following sense:

Lemma 2.15: If AB = IA, then A∇ |
gs
= B.

Proof. A∇ = A∇IA = A∇(AB) = (A∇A)B = I ′AB |
gs
= B.
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By symmetry A∇ is also the “maximal” left quasi-inverse of A (although the

corresponding left and right quasi-identities IA and I ′A may differ!). From this

point of view, A∇ is the “correct” supertropical version of the adjoint. (The

distinction between A∇ and A∇ would not arise in classical matrix algebra.)

The same sort of reasoning as with Lemma 2.15 shows that IA is maximal

with respect to the following property:

Remark 2.16: (i) If A
̂∇B = A

̂∇, then IA = AA
̂∇ = AA

̂∇B = IAB |
gs
= B.

(ii) If A∇B = A∇, then IA = AA∇ = AA∇B = IAB |
gs
= B.

To proceed further, we need a result from [6] that relies on the Hall Marriage

Theorem from graph theory, applied to the digraph of the matrix A (which we

recall is the graph whose edges are indexed and weighted by the entries of A).

Lemma 2.17: |A| adj(A) ≥ν adj(A)A adj(A), for any matrix A.

Proof. The (i, j)-entry of adj(A)A adj(A) is the sum of terms of the form

a′k,i ak,� a
′
j,�, each of which we write out as a product of entries of A, thereby

corresponding to a digraph (having multiple edges, each corresponding to one

of the entries in this product) with in-degree 2 at every vertex except j, and

out-degree 2 at every vertex except i. Hence, by [6, Lemma 3.16(iv)], we can

take out an n-multicycle that has ν-value at most |A|, leaving at most a′i,j , so

|A| adj(A) ≥ν adj(A)A adj(A), as desired.

Theorem 2.18: For any quasi-invertible matrix A,

A∇ ∼=ν A∇ ∼=ν A
̂∇.

Proof. By Lemma 2.17, A∇≥νA
∇AA∇=A∇, so we are done by Remark 2.14.

Recall that the relation

A∇ |
gs
= A∇ |

gs
= A

̂∇

holds for any matrix A.

As with [5], [6], we present our examples in logarithmic notation (i.e., −∞ is

the additive identity and 0 is the multiplicative identity); we often write − for

−∞.
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Example 2.19: In logarithmic notation, for

A =

⎛⎜⎝0 a −
− 0 b

− − 0

⎞⎟⎠ , we have A∇ =

⎛⎜⎝0 a ab

− 0 b

− − 0

⎞⎟⎠ ,

IA =

⎛⎜⎝0 aν abν

− 0 bν

− − 0

⎞⎟⎠ , and A∇ =

⎛⎜⎝0 aν abν

− 0 bν

− − 0

⎞⎟⎠ .

Remark 2.20: Here is an example where A∇ can be tangible off the diagonal:

In Example 2.11, take a = d = −∞, and b, c tangible. IA = I, so A∇ = A∇, a

tangible matrix.

(This is the only way of getting such an example. Looking into the compu-

tations of the proof of Lemma 2.17, one sees that when the determinant of A is

attained by a product of terms including a diagonal entry, then the computation

of any off-diagonal entry of A∇ yields two matching terms containing |A|, and
thus A∇ is ghost off the diagonal.)

Remark 2.21: Although our discussion in this section has focused on nonsingular

matrices, one could define more generally

A∇ =
�R

|̂A|
adj(A)

whenever |A|ν is invertible in G. Some computational results are available in

this situation, such as AA∇ being idempotent, but the diagonal is no longer

tangible.

3. Solving equations

We are ready to turn to one of the main features of this paper. Our objective

in this section is to solve matrix equations over supertropical domains. We look

for tangible solutions, since any large ghost vector would be a solution. There

is an extensive theory of solving equations over the max-plus algebra [1], but

the supertropical theory has a different flavor, relying mostly on standard tools

from classical matrix theory. We work in R(n), with H� = G(n)
�

.
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In general, although the matrix equation Ax = v need not be solvable, we

shall see in Theorems 3.5 and 3.8 that

Ax |
gs
= v, v = (v1, . . . , vn),

always has a tangible solution for x = (x1, . . . , xn), and the unique maximal

tangible solution can be computed explicitly, for any n×n quasi-invertible ma-

trix A and tangible vector v ∈ R(n) over a supertropical domain R = (R,G�, ν).
(These results are somewhat stronger than those in [2, Theorems 6.4 and 6.6],

which deal with a weaker relation.)

Example 3.1: In logarithmic notation, let

A =

(
0 10

− 0

)
and v = (0, 0).

We first look for a tangible solution x = (x1, x2) of the equation Ax+ v ∈ G(2)
�

,

that is, a tangible solution of the equations

x1 + 10x2 + 0 ∈ G�, x2 + 0 ∈ G�,

which requires x2 = 0 and thus x1 = 10.

But this unique tangible solution fails to satisfy the matrix equation Ax = v,

which thus has no tangible solutions!

In view of this example, we turn instead to the equation Ax |
gs
= v, which

we solve in its entirety, and obtain a condition when it gives us a solution to

Ax = v. (When v is tangible, we have seen that the equation Ax |
gs
= v is

equivalent to Ax+ v ∈ H� = G(n)
�

.) First we dispose of a trivial situation.

Remark 3.2: When A is a singular matrix over a supertropical semifield,

then its rows are tropically dependent, and thus Ax ∈ H� for some tangible

vector x by [7, Theorem 2.10] which could be taken with xk = ̂|Ai,k| for some

i (see [7, proof of Lemma 2.8]). Accordingly, for any given vector v, under the

mild assumption that ̂|Ai,k| 	= �R for each k, the matrix equation Ax |
gs
= v has

the tangible vector solution cx for any fixed large tangible constant c.

Here is one case in which we can compute the tangible solution to Ax |
gs
= (�).

We say that two multicycles are disjoint if they have no common edges.
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Proposition 3.3: Suppose �R 	= |A| ∈ G, and |A| =
∑

σ∈Sn
a1,σ(1) · · · an,σ(n),

is attained only by tangible terms a1,σ(1) · · · an,σ(n) whose corresponding multi-

cycles are disjoint. Then taking x to be any column of adj(A), we have Ax̂ ∈ H�.

Proof. Write x as the column vector (a′i,1, . . . , a
′
i,n)

t. Fix j and write |A| =∑
j ai,ja

′
i,j , where a′i,j = |Ai,j |, so the j component of Ax̂ is

∑n
k=1 aj,kâ

′
i,k. By

[6, Remark 4.5], this is ghost unless i = j. When i = j, we get some value

a =
∑n

k=1 ai,kâ
′
i,k, which is ghost unless it has a single dominating summand

ai,kâ′i,k. But
∑n

k=1 ai,ka
′
i,k = |A| is ghost, and is dominated by ai,ka

′
i,k alone,

which thus must be ghost, and |A| = ai,ka
′
i,k. Since |A| 	= �R, we see that

ai,k ∈ T , implying a′i,k ∈ G.
Let J = {σ ∈ Sn : σ attains |A|}; i.e., σ ∈ J iff a1,σ(1) · · · an,σ(n) ∼=ν |A|.

Taking

Ji,k = {σ ∈ J : σ(i) = k},

we have

a′i.k =
∑

σ∈Ji,k

a1,σ(1) · · · ai−1,σ(i−1)ai+1,σ(i+1) · · · an,σ(n),

a ghost. By hypothesis, each summand is tangible, so Ji,k has order at least 2.

This shows J has two permutations with the common edge (i, k), contrary to

hypothesis.

Corollary 3.4: Suppose �R 	= |A| ∈ G, but every entry of A and of adj(A) is

in T�. Then taking x to be the i column of adj(A), we have Ax ∈ H�.

Proof. Otherwise, by the contrapositive of the proposition, two permutations

σ 	= τ attain the determinant where σ(i) = τ(i) = k for suitable i, k, and thus

a′i.k ∈ G, contrary to hypothesis.

The same argument will be used in Theorem 5.6 in a more technical setting,

when we consider eigenvalues. Accordingly, we assume that A is quasi-invertible

(which is the same as nonsingular when R is a supertropical semifield). We start

with the tropical analog of Cramer’s rule.

Theorem 3.5: If A is a quasi-invertible matrix and v is a tangible vector, then

the equation Ax |
gs
= v has the tangible vector solution x = ̂(A∇v).
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Proof. The proposed solution x = (x1, . . . , xn) satisfies |A|xk = ν̂
(∑

j a
′
j,kvj

)
,

for v = (v1, . . . , vn). Thus,

(3.1) |A|(Ax)i =
∑
k

(
ai,k ν̂

(∑
j

a′j,kvj

))
,

which we want to show ghost-surpasses |A|vi. For j = i, we see that∑
k ai,k

̂(a′i,kvi) has the same ν-value as
∑

k ai,ka
′
i,kvi, which is |A|vi ∈ T�, im-

plying ∑
k

ai,k ̂(a′i,kvi) |
gs
= |A|vi.

Thus, we are done if
∑

k ai,k
̂(a′i,kvi) dominates |A|(Ax)i, and we may assume

that

|A|(Ax)i =
∑
k

ai,kν̂

(∑
j �=i

a′j,kvj

)
,

which is ghost by Proposition 1.8 (since
∑

k ai,kâ
′
j,k ∈ G� by [6, Remark 4.5]).

Hence, by components, |A|(Ax) |
gs
= |A|v, implying Ax |

gs
= v.

Note: Suppose that A is quasi-invertible, and v ∈ R(n).

(i) A
̂∇v ∼=ν A∇v, in view of Theorem 2.18.

(ii) When v = IAv, we claim that we have the “true” solution Ax = v.

Indeed,

v = IAv = (AA∇)v |
gs
= Â(A∇v) = Ax,

so Ax = v since v is presumed tangible.

(iii) From this point of view, the “good” vectors for solving the matrix equa-

tion Ax = v are those tangible vectors v = IAw for some w, since then

v = IAw = I2Aw = IAv.

Let us turn to the question of uniqueness of our solution. Note that if A is a

nonsingular matrix, then the only tangible solution to Ax ∈ H� is x = (�R), in

view of [6, Lemma 6.9]. On the other hand, we have the following example.

Example 3.6: In logarithmic notation, take

A =

(
5 0

5 1

)
and v =

(
5

5

)
.
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The tangible solution for Ax |
gs
= v obtained from Theorem 3.5 is

x = ν̂

((
−5 −6

−1 −1

)
v

)
=

(
0

4

)
,

and indeed Ax =
(

5
5ν
)

|
gs
= v. However, instead of x we could take y = ( 0

α ) for

every tangible α <ν 4 and get the equality Ay = v.

Note that these solutions exist despite the fact that IAv 	= v. The supertrop-

ical solution is the limiting case of the other solutions, and would provide the

“maximal” solution over the max-plus algebra.

In general, we do have uniqueness in the sense of the following theorem (3.8):

Proposition 3.7: If Ax |
gs
= v and Ay |

gs
= v for tangible vectors x and y, then

A ̂(x + y) |
gs
= v.

Proof. This is clear unless some tangible component in A ̂(x+ y), say the

i-component, has ν-value at least that of the corresponding component vi

in v. But then it comes from some dominating ai,jxj or ai,jyj with ai,j tangi-

ble. Say ai,jxj ≥ν vi dominates the i-component of A ̂(x + y). But then ai,jxj

is tangible, so either ai,jxj = vi and we are done, or ai,jxj >ν vi, and thus

by hypothesis ai,j′xj′ = ai,jxj for some j′, implying that the i-component of

A ̂(x + y) is (ai,jxj)
ν , a ghost, so again we are done.

It follows that taking the tangible retract of the sum of all tangible solutions x

to Ax |
gs
= v gives us the dominating tangible solution. Actually, this can be

obtained from the solution given in Theorem 3.5, as we see in the next result.

Theorem 3.8: If Ax |
gs
= v for A quasi-invertible and a tangible vector x, then

x ≤ν
̂(A∇v).

Proof. First we assume that A = IA = (ai,j) is a quasi-identity matrix. Since

A∇ = I∇A = IA = A, the equation Ax |
gs
= v has the tangible solution y =

̂(A∇v) = ̂(Av); i.e., for each i, yi = âi,jvj for suitable j (depending on i), and

yi ≥ν ai,ivi = vi. Note that

Ay ∼=ν AA∇v ∼=ν IAv ∼=ν A∇v ∼=ν y,
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implying y = ̂(Ay). Thus, yi ≥ν ai,jyj for all i, j, and hence, since ai,i = �R,

yi = ai,iyi ≥ν

∑
j

ai,jyj ≥ν vi.

Suppose

(3.2) Ax |
gs
= v,

with x = (x1, . . . , xn). We need to show that yi ≥ν xi for each i.

If not, then, for some i, xi >ν yi; take such an i0 = i with xi0/yi0 ν-maximal.

(If some yi = �R, we take i0 such that xi0 is ν-maximal for which yi0 = �R.)

Since by hypothesis xi0 ∈ T�, we must have

ai0,i0xi0 = xi0 >ν yi0 = ai0,i0yi0 ,

implying ai0,i0xi0 >ν vi0 , and thus, in view of (3.2), ai0,i0xi0 ≤ν ai0,i1xi1 for

some i1 	= i0. Then

(3.3) ai0,i1xi1 ≥ν ai0,i0xi0 >ν yi0 ≥ν ai0,i1yi1 .

Hence,
xi1

yi1
≥ν

xi0

yi0
,

so by assumption
xi1

yi1
∼=ν

xi0

yi0
,

and the ends of Equation (3.3) are ν-matched. Inductively, by the same ar-

gument, for each t ≥ 0 we get it+1 	= it such that yit
∼=ν ait,it+1yit+1 , and we

consider the path obtained from the indices i0, i1, . . . , it in the reduced digraph

of A (cf. [6, Section 3.2]). For t > n this must contain a cycle, so there are s < t

such that

yis
∼=ν yisais,is+1 · · · ait,it+1

Hence, ais,is+1 · · · ait,it+1
∼=ν �R, contradicting the fact that A is a quasi-identity

matrix (and thus cannot have a loopless cycle of weight ∼=ν �R).

In general, suppose that Ax |
gs
= v. Then I ′Ax = A∇Ax |

gs
= A∇v, implying by

the previous case that

x ≤ν ν̂(I ′A
∇
A∇v) = ν̂((I ′AA

∇)v) = ν̂((A∇)v) = ν̂(A∇v),

in view of Theorem 2.18.
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This theorem does not provide tangible solutions when v = �, i.e., Ax ∈ H�

for A quasi-invertible, since then ν̂(A
̂∇v) = � and we have no nontrivial solu-

tions; in this sense, Proposition 3.4 is sharp.

4. Properties of the adjoint and tangible adjoint

Example 4.1: Let us compute A∇∇ = (A∇)
∇

for the triangular nonsingular

matrix

A =

⎛⎝ a1,1 a1,2 a1,3

− a2,2 a2,3

− − a3,3

⎞⎠.

Then |A| = a1,1 a2,2 a3,3 and

A∇ =
�R

|A|

⎛⎝ a2,2a3,3 a1,2a3,3 a1,2a2,3 + a1,3a2,2

− a1,1a3,3 a1,1a2,3

− − a1,1a2,2

⎞⎠, so |A∇| = �R

|A| ,

and

A∇∇ =
�R

|A∇| adj(A
∇) = |A| adj(A∇)

=
�R

|A|

⎛⎝ a1,1|A| a1,1a1,2a2,3a3,3
ν + a1,2|A| a1,3|A|

− a2,2|A| a2,3|A|
− − a3,3|A|

⎞⎠.

Clearly a1,1a1,2a2,3a3,3
ν + a1,2|A| |

gs
= a1,2|A|, and thus A∇∇ |

gs
= A.

For further reference, we note that

A∇ = A∇IA =
�R

|A|

⎛⎝ a2,2a3,3 a1,2a3,3
ν a1,2a2,3

ν + a1,3a2,2
ν

− a1,1a3,3 a1,1a2,3
ν

− − a1,1a2,2

⎞⎠,

with |A∇| = �R

|A| .

Consequently,

A∇∇ =
�R

|A∇| adj(A
∇) =

�R

|A|

⎛⎝ a1,1|A| a1,1a1,2a2,3a3,3
ν + a1,2|A|ν a1,3|A|ν

− a2,2|A| a2,3|A|ν
− − a3,3|A|

⎞⎠,

which is not necessarily A∇∇ (although they are ν-matched).
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Remark 4.2: Although A∇∇ 	= A in general, one does get A∇∇ |
gs
= A, as a

consequence of Akian, Gaubert and Guterman [2, Theorem 4.21], quoted above

as Theorem 2.4.

Here are some more computations with adjoints.

Theorem 4.3: adj(A) adj(adj(A)) adj(A) ∼=ν |A|n−1 adj(A) for any n× n ma-

trix A.

Proof. Another application of Hall’s Marriage Theorem. Let adj(adj(A)) =

(a′′i,j). Clearly

adj(A) adj(adj(A)) adj(A) ≥ν |A|n−1 adj(A),

by [6, Theorems 4.9(ii) and 4.12], so it suffices to prove ≤ν . But the (i, j)

entry of the left side is a sum of elements of the form a′i,ka
′′
�,ka

′
�,j which has in-

degree n in all indices except i (which has in-degree n− 1), and out-degree n in

all indices except j (which has out-degree n−1), and thus by [6, Lemma 3.16(iv)]

we can factor out (n − 1) n-multicycles, each of weight ≤ν |A|, and conclude

that each summand ≤ν |A|n−1a′i,j .

Corollary 4.4: If A is a quasi-invertible matrix, then A∇A∇∇A∇ ∼=ν A∇.

We are finally ready for the connection between left quasi-identities and right

quasi-identities; the key is to switch from A to A
̂∇.

Corollary 4.5: If A is a quasi-invertible matrix, then A
̂∇̂∇A

̂∇ = IA. In other

words, IA = I ′
Â∇ = I ′

A∇ .

Proof. I ′
Â∇ =A

̂∇̂∇A
̂∇≤ν IA by Corollary 4.4 and Remark 2.16, but A

̂∇̂∇A
̂∇ ≥ν

AA
̂∇ = IA by Theorem 2.8. Hence the entries of IA and I ′

Â∇ have the same

respective ν-values. We conclude by noting that both IA and I ′
Â∇ are tangible

on the diagonal and ghost off the diagonal. (I ′
Â∇ = I ′

A∇ by Remark 2.10.)

Corollary 4.6: By symmetry, I ′A = IÂ∇ = IA∇ .

At last we have resolved the enigma arising from Example 2.11: The left

quasi-identity of a matrix corresponds to the right quasi-identity of its adjoint,

and vice versa.
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5. Application: Supertropical eigenvectors

Recall from [6] that a tangible vector v is a supertropical eigenvector of A,

with supertropical eigenvalue β ∈ T�, if

Av |
gs
= βv,

i.e., if Av = βv + ghost.

In [6, Theorem 7.10] we showed that every root of the characteristic poly-

nomial of A is a supertropical eigenvalue. However, the proof does not give

much insight into the specific eigenvector. Here, we use the properties of the

adjoint matrix to compute explicitly the supertropical eigenvectors; this method

is expected to be a useful tool for developing linear algebra.

Recall the following observation from [6, Remark 7.9]:

Remark 5.1: If Â is a tangible matrix (i.e., all entries are in T�), such that

Â ∼=ν A, then every tangible supertropical eigenvector of Â is also a supertrop-

ical eigenvector of A with respect to the same supertropical eigenvalue.

In view of this remark, in the sequel, we may assume that all of the entries

of our matrix A are tangible.

Definition 5.2: A polynomial is quasi-tangible if all of its coefficients except

perhaps the constant term are tangible.

We also assume from now on that the essential part fA
es, cf. [5, Definition 4.9],

of the characteristic polynomial fA is quasi-tangible.

(The reason that we exclude the constant term from our hypothesis is that

we want to permit �R to be an eigenvalue.) We write β1, . . . , βt for the distinct

roots of fA
es, written in order of descending ν-values. Thus, β� ∈ T� for each

� ≤ t, with β� ∈ T for each � < t. Recall from [6, Theorem 7.10] that

(5.1) fA
es = λn +

t∑
�=1

α�λ
n−m� ,

where α� equals the maximal weight (with respect to ν-value) of anm�-multicycle

in the digraph of A, which we denote as C�.

Remark 5.3: C� is unique for each � < t, since α� is assumed tangible.
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Since β� is a tangible root of fA
es, we have

(5.2) β
n−m�−1

� α�−1 = βn−m�

� α�,

implying

(5.3) β
m�−m�−1

� α�−1 = α�.

(For � = t, we only have this up to ν-values, and only when βt 	= �R.) Hence, βν
�

equals the negative of the slope of the edge connecting (m�, α
ν
� ) to (m�−1, α

ν
�−1)

in the graph of the coefficients of fA.

Here is an intuitive way of computing a supertropical eigenvector. Let

B� = A+ β�I.

In [6, Proposition 7.8], we showed that B� is a singular matrix for every tangible

root β� of fA. Taking an arbitrary vector w and letting v = adj(B�)w, we have

Av + β�v = (A+ β�I)(adj(B�)w) = B� adj(B�)w

is ghost. Ifw can be chosen such that v is tangible, this implies by [6, Lemma 7.4]

that v is a supertropical eigenvector. This is the motivation for the next result.

First we make our discussion more explicit.

Remark 5.4: Write B� = (bi,j). Thus, bi,j = ai,j for i 	= j, and bi,i = ai,i + β�.

|B�| = (α�β
n−m�

� )ν .

Indeed, the determinant of B� = A + β�I comes from the n-multicycles of

maximal weight. Since β� is a tangible root of fA, there are two dominating

contributions: One comes from n−m� entries of β� along the diagonal, where

the remaining m� entries must come from the dominating m�-multicycle C�

in the digraph of A. (Note that for � = t this contribution might not be

unique.) The other dominating term comes from n−m�−1 entries of β� along

the diagonal, where the remaining m�−1 entries must come from the dominating

m�−1-multicycle C�−1 (in the digraph of A), and we also have

|B�| = (α�−1β
n−m�−1

� )ν

(which follows from Equation (5.2)).

Formally take α0 = �R. Applying induction to (5.2) yields

(5.4) α� =
�∏

u=1

βmu−mu−1
u ,
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and thus

(5.5) |B�| = (β
n−m�−1

�

�−1∏
u=1

βmu−mu−1
u )ν .

We introduce some more notation: For any root β� of fA
es, let

(5.6) J� = {Vertices of C�} \ {Vertices of C�−1}.

(Note that this definition is well-defined even for � = t, since every n-multicycle

contains all the vertices {1, . . . , n} in the digraph of A.) Write b′i,j for the (i, j)

minor of B� = A+ β�I.

Lemma 5.5: ai,i ≤ν β� for any i ∈ J�, and thus

b′i,i = α�−1β
n−m�−1−1
� ,

which is tangible and has the same ν-value as |B�|/β�.

Proof. By definition, C�−1 occurs in the digraph of the minor Ai,i, of weight

α�−1, so C�−1 ∪ {ai,i} is an m�−1 + 1 multicycle of weight α�−1ai,i, and the

coefficient of λn−(m�−1+1) in fA must have at least its ν-value. If ai,i >ν β�,

then C�−1∪{ai,i} would produce the single dominant value for fA(β�), contrary

to hypothesis.

It follows that bi,i = ai,i + β�
∼=ν β�. Remark 5.4 then implies

|B�| ∼=ν α�−1β
n−m�−1

�
∼=ν b′i,ibi,i,

and we conclude that b′i,i
∼=ν |B�|/β�. Furthermore, the only terms which can

contribute to |B�| are α�β
n−m�

� and α�−1β
n−m�−1

� . But, by choice of i, ai,i

cannot occur in C�−1. Hence, the only contribution to b′i,i is α�−1β
n−m�−1−1
� ,

as desired.

Theorem 5.6: For any root β� of fA, and for any i ∈ J�, taking v to be the

i column of adj(B�), we have Av̂ |
gs
= β�v̂. (In other words, v̂ is a supertropical

eigenvector of A.)
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Proof. In view of [6, Lemma 7.4], it suffices to prove that Av̂ + βv̂ ∈ H�; i.e.,

that B�v̂ ∈ H�. Write b′i,j for the (i, j) minor of B�. By definition,

v̂ = (b̂′i,1, . . . , b̂
′
i,n).

In view of Proposition 1.8 and [6, Remark 4.5], the j component of B�v̂ is

ghost unless i = j, and it suffices to prove that
∑n

k=1 bi,k b̂
′
i,k is ghost. This

is clear unless the right side has a single dominating summand bi,kb̂′i,k. But∑n
k=1 bi,kb

′
i,k = |A| is ghost, and is dominated by bi,kb

′
i,k alone, which thus

must be ghost. Furthermore, by Remark 5.4,

bi,kb
′
i,k

∼=ν α�β
n−m�

�
∼=ν α�−1β

n−m�−1

�−1 ;

in other words, the two terms on the right side must occur in bi,kb
′
i,k as the

dominating terms. In particular, one summand of bi,kb
′
i,k must consist of diago-

nal elements β� and the multicycle C�−1. But, by choice of i, ai,k cannot occur

in C�−1; if k 	= i then bi,k = ai,k cannot occur in this summand, a contradiction.

Thus, k = i and Lemma 5.5 shows that ai,i is part of C�, implying that

C� = C�−1 ∪ {ai,i}.

But then β�
∼=ν ai,i, implying bi,i = β� + ai,i ∈ G, and thus bi,ib̂′i,i ∈ G, as

desired.

Here is a surprising example.

Example 5.7: A matrix A whose characteristic polynomial has distinct roots,

but the supertropical eigenvectors are supertropically dependent. Let

(5.7) A =

⎛⎜⎜⎜⎝
10 10 9 −
9 1 − −
− − − 9

9 − − −

⎞⎟⎟⎟⎠ .

Notation as in Remark 5.4,

• C1 = (1), of weight 10,

• C2 = (1, 2), of weight 19,

• C3 = (1, 3, 4), of weight 27,

• C4 = (1, 3, 4)(2), of weight 28.
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Hence, the characteristic polynomial of A is

fA = λ4 + 10λ3 + 19λ2 + 27λ+ 28,

whose roots are 10, 9, 8, 1, which are the respective eigenvalues β1, β2, β3, β4 of

A.

We also have J1 = {1}, J2 = {2}, J3 = {3, 4}, and J4 = {2}. (The pathology

of this example is explained by the fact that J4 = J2, cf. (5.6).)

For each 1 ≤ � ≤ 4, let us compute B� = A + β�I and v̂�, where v� is the

column of adj(B�) corresponding to the j column with j ∈ J�.

β1 = 10:

B1 = A+ β1I =

⎛⎜⎜⎜⎝
10ν 10 9 −
9 10 − −
− − 10 9

9 − − 10

⎞⎟⎟⎟⎠ ,

so v̂1 =

⎛⎜⎜⎜⎝
30

29

28

29

⎞⎟⎟⎟⎠ , the first column of ̂adj(B1), and Av̂1 = 10v̂1.

β2 = 9:

B2 = A+ β2I =

⎛⎜⎜⎜⎝
10 10 9 −
9 9 − −
− − 9 9

9 − − 9

⎞⎟⎟⎟⎠ ,

so v̂2=

⎛⎜⎜⎜⎝
28

28

28

28

⎞⎟⎟⎟⎠ , the second column of ̂adj(B2), and Av̂2=

⎛⎜⎜⎜⎝
38ν

37

37

37

⎞⎟⎟⎟⎠ |
gs
= 9v̂2.

β3 = 8:

B3 = A+ β3I =

⎛⎜⎜⎜⎝
10 10 9 −
9 8 − −
− − 8 9

9 − − 8

⎞⎟⎟⎟⎠ ,
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so v3 =

⎛⎜⎜⎜⎝
25

26

27

26

⎞⎟⎟⎟⎠ , the third column of ̂adj(B3). (Or we could use the

fourth column, which is

⎛⎜⎜⎜⎝
26

27

28

27

⎞⎟⎟⎟⎠ = 1 · v3, so we would obtain the same

result.) Av̂3 =

⎛⎜⎜⎜⎝
36ν

34

35

34

⎞⎟⎟⎟⎠ |
gs
= 8v̂3.

β4 = 1:

B4 = A+ β4I =

⎛⎜⎜⎜⎝
10 10 9 −
9 1 − −
− − 1 9

9 − − 1ν

⎞⎟⎟⎟⎠ ,

so v4=

⎛⎜⎜⎜⎝
12

27

28

20

⎞⎟⎟⎟⎠ , the second column of ̂adj(B4), and Av̂4=

⎛⎜⎜⎜⎝
37ν

28

29ν

21ν

⎞⎟⎟⎟⎠ |
gs
= 1v̂4.

Combining these four column vectors yields the matrix

V =

⎛⎜⎜⎜⎝
30 28 25 12

29 28 26 27

28 28 27 28

29 28 26 20

⎞⎟⎟⎟⎠ ,

which is singular, having determinant 112ν = v1,1v2,4v3,3v4,2 = v1,1v2,2v3,4v4,3.
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