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ABSTRACT

We show that NIP fields have no Artin–Schreier extension, and that simple

fields have only a finite number of them.

1. Introduction

In [20], Macintyre showed that an infinite ω-stable commutative field is alge-

braically closed; this was subsequently generalized by Cherlin and Shelah to the

superstable case; they also showed that commutativity need not be assumed but

follows [7]. It is known [28] that separably closed infinite fields are stable; the

converse has been conjectured early on [3], but little progress has been made.
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In 1999 the second author published on his web page a note proving that an

infinite stable field of characteristic p at least has no Artin–Schreier extensions,

and hence no finite Galois extension of degree divisible by p. This was later gen-

eralized to fields without the independence property (NIP fields) by (mainly)

the first author.

In the simple case, the situation is even less satisfactory. It is known that

an infinite perfect, bounded (i.e., with only finitely many extensions of each

degree) PAC (pseudo-algebraically closed: every absolutely irreducible variety

has a rational point) field is supersimple of SU-rank one [13]. Conversely, Pillay

and Poizat have shown that supersimple fields are perfect and bounded; it is

conjectured that they are PAC, but the existence of rational points has only

been shown for curves of genus zero (and more generally Brauer–Severi varieties)

[23], certain elliptic or hyperelliptic curves [21], and abelian varieties over pro-

cyclic fields [22, 16]. Bounded PAC fields are simple [4] and again the converse

is conjectured, with even less of an idea on how to prove this [27, Conjecture

5.6.15]; note though that simple and PAC together imply boundedness [5]. In

2006 the third author adapted Scanlon’s argument to the simple case and showed

that simple fields have only finitely many Artin–Schreier extensions.

In this paper we present the proofs for the simple and the NIP case, and

moreover give a criterion for a valued field to be NIP due to the first author.

Acknowledgement. We would like to thank Martin Hils and Françoise Delon

for some very helpful comments and discussion on valued fields.

2. Preliminaries

Notation 2.1: (1) Throughout the paper,K will be a field of characteristic p > 0.

All fields considered will be supposed to be contained in a big algebraically

closed field K. We shall identify algebraic varieties defined over subfields of K

with the set of their K-rational points.

(2) We denote by Kalg and Ksep the algebraic and separable closures of K,

respectively.

(3) When we write ā ∈ K for a tuple ā = (a0, . . . , an) we mean that ai ∈ K

for i ≤ n.

Definition 2.2: A field extension L/K is called an Artin–Schreier extension if

L = K(α) for some α ∈ L \K such that αp − α ∈ K.
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Note that if α is a root of the polynomial xp−x−a, then {α, α+1, . . . , α+p−1}
are all the roots of the polynomial. Hence, if α /∈ K then L/K is Galois and

cyclic of degree p. The converse is also true: if L/K is Galois and cyclic of

degree p then it is an Artin–Schreier extension [19, Theorem VI.6.4].

Let ℘ : K → K be the additive homomorphism given by ℘(x) = xp − x.

Then the Artin–Schreier extensions of K are bounded by the number of cosets

in K/℘(K). Indeed, since K contains ker℘ = Fp, if K(α) and K(β) are two

Artin–Schreier extensions, then a = ℘(α) and b = ℘(β) are both in K \ ℘(K),

and

a− b = ℘(α− β) ∈ ℘(K)

implies α− β ∈ K and hence K(α) = K(β).

Remark 2.3: In fact, the Artin–Schreier extensions of K are in bijection with

the non-trivial orbits under the action of F×
p on K/℘(K).

Proof. Let G = Gal(Ksep/K). From [24, X.3] we know that K/℘(K) is iso-

morphic to Hom(G,Z/pZ) as additive groups. This isomorphism respects the

action of F×
p . Hence the non-trivial orbits of this action on K/℘(K) are in

bijection with the non-trivial orbits of the action on Hom(G,Z/pZ).

Since Aut(Z/pZ) = F×
p , these orbits are in bijection with

{ker(ϕ) | 0 �= ϕ ∈ Hom(G,Z/pZ)}.

By Galois theory, these are in bijection with Artin–Schreier extensions.

We now turn to vector groups.

Definition 2.4: A vector group is an algebraic group isomorphic as an algebraic

group to a finite Cartesian power of the additive group of a field.

Fact 2.5 ([15, 20.4, Corollary]): A closed connected subgroup of a vector group

is a vector group.

Using infinite Galois cohomology (namely, thatH1(Gal(Ksep/K), (Ksep)×)=1,
for more on that see [24, X]), one can deduce the following fact:

Corollary 2.6: SupposeK is perfect, and G a closed connected 1-dimensional

algebraic subgroup of (K,+)n defined over K, for some n < ω. Then G is

isomorphic over K to (K,+).
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This fact can also be proved by combining Théorème 6.6 and Corollaire 6.9

in [9, IV.3.6]. Note that since K is perfect, “defined over K” in the sense of

algebraic geometry is the same as “definable over K in the structure K” in the

model-theoretic sense.

We shall be working with the following group:

Definition 2.7: Let (a1, . . . , an) = ā ∈ K. Put

Gā = {(t, x1, . . . , xn) ∈ Kn+1 | t = ai · ℘ (xi)) for 1 ≤ i ≤ n}.
This is an algebraic subgroup of (K,+)n+1.

Recall that for an algebraic group G we denote by G0 the connected com-

ponent (subgroup) of the unit element of G. Note that if G is definable over

ā ∈ K, then G0 is definable over ā as well. Hence if K is perfect and G is

defined over K, then G0 is defined over K.

Lemma 2.8: If ā ∈ K is algebraically independent, then Gā is connected.

Proof. By induction on n :=length(ā). If n=1, then Gā={(t, x) | t=a1 · ℘ (x)}
is the graph of a morphism, hence isomorphic to (K,+) and thus connected.

Assume the claim for n, and for some algebraically independent ā ∈ K of

length n + 1 let ā′ = ā � n. Consider the projection π : Gā → Gā′ . Since K

is algebraically closed, π is surjective. Let H = G0
ā be the identity connected

component of Gā. As [Gā′ : π(H)] ≤ [Gā : H ] < ∞, it follows that π(H) = Gā′

by the induction hypothesis. Assume that H �= Gā.

Claim: For every (t, x̄) ∈ Gā′ there is exactly one xn+1 such that (t, x̄, xn+1) ∈
H .

Proof. Suppose for some (t, x̄) there were x1
n+1 �= x2

n+1 such that (t, x̄, xi
n+1) ∈

H for i = 1, 2. Hence their difference (0, 0̄, α) ∈ H . But 0 �= α ∈ Fp by definition

of Gā. Hence, (0, 0̄, 1) ∈ H , and (0, 0̄, β) ∈ H for all β ∈ Fp. We know that

for every (t, x̄, xn+1) ∈ Gā there is some x′
n+1 such that (t, x̄, x′

n+1) ∈ H ; as

xn+1 − x′
n+1 ∈ Fp we get (t, x̄, xn+1) ∈ H and Gā = H , a contradiction.

So H is a graph of a function f : Gā′ → K defined over ā. Now put t = 1

and choose xi ∈ K for i ≤ n such that ai · ℘ (xi) = 1. Let L = Fp(x1, . . . , xn)

and note that ai ∈ L for i ≤ n. Then

xn+1 := f(1, x̄) ∈ dcl(an+1, x1, . . . , xn) = L(an+1)ins,
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where L(an+1)ins is the inseparable closure
⋃

n<ω L(an+1)
p−n

of L(an+1). Since

xn+1 is separable over L(an+1), it follows that xn+1 ∈ L(an+1). By assumption,

an+1 is transcendental over ā′, whence over L, and so xn+1 /∈ L. Hence xn+1 =

h(an+1)/g(an+1) for some mutually prime polynomials g, h ∈ L[X ]. But then

an+1 ·
[
h(an+1)

p/g(an+1)
p − h(an+1)/g(an+1)

]
= 1

implies the equality in L [X ]:

X · [hp − hgp−1
]
= gp.

This implies that h divides gp, whence h ∈ L is constant. Similarly, g divides

X , which easily yields a contradiction.

Corollary 2.9: If K is perfect and ā ∈ K, then G0
ā is isomorphic over K

to (K,+). In particular, for any field L ⊇ K with L ⊆ K the group G0
ā(L) is

isomorphic to (L,+). In the case where ā is algebraically independent, G0
ā = Gā,

so the same is true for Gā.

Proof. Over K the projection to the first coordinate of Gā is onto and has

finite fibers, so dimGā = 1 (as a variety). But then G0
ā is isomorphic over K to

(K,+) by Corollary 2.6; this isomorphism sends G0
ā(L) onto (L,+). Finally, if

ā is algebraically independent, Gā = G0
ā by Lemma 2.8.

3. Simple fields

For background on simplicity theory, the interested reader may consult [27].

The only property we shall need is a type-definable variant of Schlichting’s

Theorem.

Fact 3.1 ([27, Theorem 4.5.13]): Let G and Γ be type-definable groups with

a definable action of Γ on G, and let F be a type-definable Γ-invariant family

of subgroups of G. Then there is a Γ-invariant type-definable subgroup N ≤ G

containing some bounded intersection of groups in F such that [N : N ∩ F ] is

bounded for all F ∈ F.

Theorem 3.2: Let K be a type-definable field in a simple theory. Then K has

only boundedly many Artin–Schreier extensions.
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This means that in any elementary extension M, the number of Artin–

Schreier extensions of KM remains bounded. In particular, by compactness,

if K is definable, it has only finitely many Artin–Schreier extensions.

Proof. If K is finite, then it has precisely one Artin–Schreier extensions. So

we may assume it is infinite, and that the model is sufficiently saturated. Let

k = Kp∞
=

⋂
Kpn

, a perfect infinite type-definable sub-field. We shall show

that ℘(K) has bounded index in K (as an additive subgroup).

Let F = {a℘(K) | a ∈ k×}; this is a type-definable k×-invariant family of

additive subgroups of K. By Fact 3.1 there exists a type-definable additive

k×-invariant subgroup N ≤ K containing a bounded intersection of groups in

F, say
⋂

a∈A a℘(K) for some bounded A ⊂ k, such that [N : N ∩F ] is bounded

for all F ∈ F.

For any finite ā ∈ A the group G0
ā(k) is isomorphic to (k,+) by Corollary

2.9. Now the projection of Gā(k) to the first coordinate is equal to
⋂

a∈ā a℘(k);

since the fibers of the projection are finite and k is infinite,
⋂

a∈ā a℘(k) must

be infinite, too. By compactness
⋂

a∈A a℘(k) is infinite, so N ∩ k is infinite as

well. But N ∩ k is k×-invariant, hence an ideal in k, and must equal k. Since

[N : N ∩ ℘(K)] is bounded, so is [k : k ∩ ℘(K)].

Now a = ap + ℘(−a) for any a ∈ K, whence K = Kp + ℘(K). Assume

K = Kpn

+ ℘(K). Then Kp = Kpn+1

+ ℘(Kp), whence

K = Kp + ℘(K) = Kpn+1

+ ℘(Kp) + ℘(K) = Kpn+1

+ ℘(K);

by compactness K=k+℘(K). Thus [K :℘(K)]=[k :k∩℘(K)] is bounded.

Remark 3.3: The important category of objects in simple theories are the hyper-

definable ones: Quotients of a type-definable set by a type-definable equivalence

relation. However, a hyper-definable field is easily seen to be type-definable:

If K is given by a partial type π modulo a type-definable equivalence rela-

tion E, then for a, b ∈ K the inequivalence ¬aEb is given by the partial type

∃x [π(x) ∧ (a− b)xE1]. By compactness, E is definable on π.

4. NIP fields

Definition 4.1: A theory T has the independence property if there is a for-

mula ϕ(x̄, ȳ) and some model M containing tuples (āi : i ∈ ω) and (b̄I : I ⊂ ω)

such that M |= ϕ(āi, b̄I) if and only if i ∈ I.
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A theory T is NIP if it does not have the independence property. Such a

theory is also called a dependent theory.

Remark 4.2: Let K be an infinite field, and let f : K → K be an additive

polynomial, i.e., f(x + y) = f(x) + f(y) for all x, y ∈ K. Then f is of the

form
∑

aix
pi

. Furthermore, if K is algebraically closed and ker(f) = Fp, then

f = a · (xp − x)p
n

for some n < ω and a ∈ K.

Proof. The first part appears in [11, Proposition 1.1.5]. Assume now that K is

algebraically closed and | ker(f)| = p. If a0 �= 0, then (f, f ′) = 1, hence f has no

multiple factors and deg(f) = p. If a0 = 0, then f = (g(x))p for some additive

polynomial g with | ker(g)| = p. So by induction f = (a0x + a1x
p)p

n

for some

n < ω. If moreover ker(f) = Fp, then a0 + a1 = 0, hence f = a · (xp − x)p
n

for

some a ∈ K.

Theorem 4.3: LetK be an infinite NIP field. Then K is Artin–Schreier closed.

Proof. We may assume that K is ℵ0-saturated, and we put k = Kp∞
, a type-

definable infinite perfect sub-field (all contained in an algebraically closed K).

By dependence the Baldwin–Saxl condition [1] holds, which means that there

is some n < ω such that for every (n+1)-tuple ā there is a sub-n-tuple ā′ with
⋂

a∈ā a℘(K) =
⋂

a∈ā′ a℘(K). We fix some algebraically independent (n + 1)-

tuple ā ∈ k. Let Gā be the group defined in 2.7. By Corollary 2.9 we have

algebraic isomorphisms Gā → (K,+) and Gā′ → (K,+) over k. Hence we can

find an algebraic map ρ over k which makes the following diagram commute:

Gā
π ��

��

Gā′

��
(K,+)

ρ �� (K,+)

As all groups and maps are defined over k ⊆ K, we can restrict to K. By

Baldwin–Saxl π � Gā(K) is onto Gā′(K), so ρ � K must be onto as well.

Moreover,

| ker(ρ)| = | ker(π)| = |(0, 0̄)× Fp| = p ;

since ker(π) is contained in Gā(K), this remains true in the restrictions to K.

Finally, ρ is a group homomorphism, i.e., additive, and a polynomial, as it is

an algebraic morphism of (K,+).
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Suppose that 0 �= c ∈ ker(ρ) ⊆ k, and put ρ′(x) = ρ(c · x). Then ρ′ is an

additive polynomial whose kernel is Fp. By Remark 4.2 there are a ∈ K (in fact,

a ∈ k because c ∈ k, and ρ is over k) and n < ω such that ρ′(x) = a · (xp−x)p
n

.

As ρ′ � K is onto K, for any y ∈ K there is some x ∈ K with

a · (xp − x)p
n

= a · ypn

,

so ℘(x) = xp − x = y and we are done.

In fact, n must be 0, as the degree of π (as algebraic morphism) is p, and so

is the degree of ρ′, since the vertical arrows are algebraic isomorphisms.

Corollary 4.4: If K is an infinite NIP field of characteristic p > 0 and L/K

is a finite separable extension, then p does not divide [L : K].

Proof. Assume not, and let L′ be the normal closure of L/K. Then p | [L′ : K],

so we may assume that L/K is Galois. Let G ≤ Gal(L/K) be a subgroup of

order p, and let KG ⊆ L be its fixed field. As KG is interpretable in K, it

is also NIP. But L/KG is an Artin–Schreier extension, contradicting Theorem

4.3.

Corollary 4.5: Let K be an infinite NIP field of characteristic p > 0. Then

K contains Falg
p .

Proof. Let k = K∩Falg
p , the relative algebraic closure of Fp inK. AsK is Artin–

Schreier closed, so is k. Hence k is infinite, perfect, and pseudo-algebraically

closed. But [10, Theorem 6.4] of Duret states that a field with a relatively alge-

braically closed PAC subfield which is not separably closed has the independence

property. Hence k is algebraically closed, i.e., k = Falg
p .

One might wonder what happens for a type-definable field in a NIP theory.

We were unable to generalize our theorem to this case. However, one easily

sees:

Proposition 4.6: Let K be a type-definable field in a NIP theory. Then K

has either no, or unboundedly many, Artin–Schreier extensions.

Proof. By [25] (another presentation appears in [14, Proposition 6.1]) there is

a minimal type-definable subgroup K00 of (K,+) of bounded index. As for

any λ ∈ K×, the multiplicative translate λK00 is also a type-definable additive

subgroup of bounded index, K00 is an ideal of bounded index and must therefore
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be equal to K. On the other hand, the image of ℘ is a type-definable subgroup

of (K,+). Remark 2.3 tells us that it has bounded index if and only if there are

boundedly many Artin–Schreier extensions. But if it has bounded index, then

it contains K00 = K, and K is Artin–Schreier closed.

We can, however, prove that a type-definable field is Artin–Schreier closed

under a stronger hypothesis.

Definition 4.7: Call a type-definable groupG strongly connected when G00 =

G.

Note that if π : G → H is a definable surjective group homomorphism and

G is strongly connected, then so is H , since |G : π−1(H00)| is bounded by

|H : H00| and π is onto.

Theorem 4.8: Let K be a type-definable field in a NIP theory such that there

is no infinite decreasing sequence of type-definable additive subgroups, each of

unbounded index in its predecessor. Then K is Artin–Schreier closed.

Proof. We work in a saturated model. Let ā = (ai : i < ω) be a sequence of

algebraically independent elements from k =
⋂
Kpn

. Let Hi = ai · ℘ (K), and

recall that
⋂

j<n Hij = π1(G(ai0 ,...,ain−1
)(K)) for all i0 < · · · < in−1, where π1

is the projection to the first coordinate. Since G(ai0 ,...,ain−1
)(K) is isomorphic

(over k) to (K,+) and we mentioned in 4.6 that the latter is strongly connected,
⋂

j<n Hij is strongly connected, too. By assumption, there is some n such that
⋂

i<n Hi =
⋂

i<n+1 Hi. Now proceed as in the proof of Theorem 4.3.

Remark 4.9: Saharon Shelah has shown [26] that this condition holds when T

is strongly2 dependent.

5. Some results on NIP valued fields

Here we find a characterization of “nice” NIP valued fields of characteristic

p > 0. First we recall the definitions and notations:

Definition 5.1: A valued field is a pair (K, v) where K is a field and

v : K → Γ ∪ {∞}

for an ordered group Γ such that:
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(1) v (x) = ∞ if and only if x = 0,

(2) Γ = v (K×),
(3) v (x · y) = v (x) + v (y), and

(4) v (x+ y) ≥ min {v (x) , v (y)}.
If (K, v) is a valued field, then Γ is the valuation group, OK =

{x ∈ K | v(x) ≥ 0} is the (local) ring of integers, mK = {x ∈ K | v(x) > 0} is

its maximal ideal, and k = OK/mK is the residue field. As a structure we

think of it as a 3-sorted structure (K,Γ, k) equipped with the valuation map

v : K× → Γ, and the quotient map π : OK → k. Other interpretations are

known to be equivalent (i.e., bi-interpretable, and hence to preserve properties

such as dependence).

In [8] Delon gave the following characterization of Henselian NIP valued fields

of characteristic 0.

Fact 5.2 ([8]): Let (K, v) be a Henselian valued field of characteristic 0. Then

(K, v) is NIP if and only if the residue field k is NIP.

Historically, this theorem stated that the valuation group must also be NIP,

but by a result of Gurevich and Schmitt [12], every ordered abelian group is

NIP.

Delon assumed initially that the field is radically closed, but later she saw

that this assumption is redundant. In [2], this fact appears as well, without this

requirement.

Here we discuss valued fields of characteristic p, i.e., with char(K)=char(k)=

p.

Proposition 5.3: If (K, v) is a NIP valued field of characteristic p > 0, then

the residue field contains Falg
p .

Proof. Suppose π (a) ∈ k with a ∈ OK . Since K is Artin–Schreier closed,

there is b ∈ K with bp − b = a. If v(b) < 0, then v(bp) = p v(b) < v(b), whence

v(bp−b) = v(bp) < 0, contradicting v(a) ≥ 0. Hence v(b) ≥ 0 and b ∈ OK . Thus

π (b) ∈ k, and π (b)p − π (b) = π (a). In other words, k is also Artin–Schreier

closed, and hence infinite; since it is interpretable, it is NIP, and contains Falg
p

by Corollary 4.5.

Proposition 5.4: If (K, v) is a NIP valued field of characteristic p > 0, then

the valuation group Γ is p-divisible.
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Proof. Let 0 > α ∈ Γ. So α = v (a) for some a ∈ K×. As K is Artin–Schreier

closed, there is some b ∈ K× such that bp−b = a. Clearly v(b) ≥ 0 is impossible.

Hence v(bp) = p v(b) < v(b), and

α = v(a) = v(bp − b) = min{v(bp), v(b)} = v(bp) = p v(b).

So α is p-divisible, as is Γ (for α positive, consider −α).

As a corollary we obtain a result of Cherlin [6].

Corollary 5.5: Fp ((t)) has the independence property, and so does Falg
p ((t)).

Propositions 5.3 and 5.4 are also sufficient for a valued field to be NIP, under

certain conditions. In order to explain these conditions, we give two definitions.

Definition 5.6: A valued field (K, v) of characteristic p > 0 is called a Kaplansky

field if it satisfies:

(1) the valuation group Γ is p-divisible,

(2) the residue field k is perfect, and does not admit a finite separable

extension whose degree is divisible by p.

This definition is taken from the unpublished book on valuation theory by

Franz-Viktor Kuhlmann [18, 13.11]. It is first-order expressible, as the second

condition is equivalent to saying that for every additive polynomial f ∈ k [x],

and every a ∈ k, there is a solution to f (x) = a in k (for a proof, see [17,

Theorem 5]).

Definition 5.7: A valued field (K, v) is called algebraically maximal if it does

not admit any non-trivial algebraic immediate extension (i.e., keeping both the

residue field and the valuation group).

This is also first-order axiomatizable [18, Chapter 14, Section 2]. It always

implies Henselianity, and is equivalent to it in characteristic 0. In characteristic

p, it is weaker than being Henselian and defectless ([18, 9.39]).

We shall use the following result of Bélair.

Fact 5.8 ([2, Corollaire 7.6]): A valued field K of characteristic p which is

Kaplansky and algebraically maximal is NIP if and only if k is NIP.

Finally, we have:
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Theorem 5.9: Let (K, v) be an algebraically maximal valued field of charac-

teristic p whose residue field k is perfect. Then (K, v) is NIP if and only if k is

NIP and infinite and Γ is p-divisible.

Proof. If (K, v) is NIP then k is infinite (it even contains Falg
p ), and NIP, and

Γ is p-divisible, by Propositions 5.3 and 5.4. On the other hand, if k is NIP

and infinite, by Corollary 4.4 we get that (K, v) is Kaplansky and we can apply

Fact 5.8.

It is interesting to note the connection to Kuhlmann’s notion of a tame valued

field (see [18, Chapter 13, Section 9]). A valued field (K, v) is called tame if

and only if it is algebraically maximal, Γ is p-divisible and k is perfect. Note

the difference between this and Kaplansky.

We get as an immediate corollary:

Corollary 5.10: Let (K, v) be an algebraically maximal NIP valued field.

Then K is tame if and only if K is Kaplansky, if and only if k is perfect.
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