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ABSTRACT

A Hadwiger-type theorem for the exceptional Lie groups G2 and Spin(7)

is proved. The algebras of G2 or Spin(7) invariant, translation invariant

continuous valuations are both of dimension 10. Geometrically meaningful

bases are constructed and the algebra structures are computed. Finally,

the kinematic formulas for these groups are determined.

1. Introduction

Let V be a finite-dimensional vector space. By K(V ) we denote the space of

compact convex subsets of V . This space has a natural topology, the Hausdorff

topology. A (convex) valuation is a functional μ : K(V ) → C with the following

additivity property:

μ(K ∪ L) = μ(K) + μ(L)− μ(K ∩ L), ∀K,L,K ∪ L ∈ K(V ).

Examples of valuations are the Euler characteristic χ (which equals 1 for non-

empty K) and any Lebesgue measure.

In this paper, we will only consider continuous and translation invariant val-

uations. We set Val = Val(V ) for the vector space of all continuous and trans-

lation invariant valuations on V . Alesker [5], [6] introduced a product structure

on Val (in fact on some dense subspace consisting of smooth valuations).
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A valuation μ ∈ Val is called even if μ(−K) = μ(K) for allK. It is called odd

if μ(K) = −μ(K). The subspaces of even (resp. odd) valuations are denoted by

Val+ (resp. Val−).
Let V be endowed with a scalar product. For a compact subgroup G of

SO(V ) ∼= SO(n), we let ValG ⊂ Val denote the subspace of G-invariant valua-

tions. Alesker has shown that ValG is finite-dimensional if and only if G acts

transitively on the unit sphere [2], [7]. In this case, ValG consists of smooth

valuations and ValG is a finite-dimensional algebra.

Borel [15], [16] and Montgomery–Samelson [25] gave a complete classification

of connected compact Lie groups acting transitively and effectively on the sphere

(compare also [14], 7.13). There are six infinite series

(1) SO(n),U(n), SU(n), Sp(n), Sp(n) · U(1), Sp(n) · Sp(1)
and three exceptional groups

(2) G2, Spin(7), Spin(9).

For each groupG in this list, three fundamental problems of integral geometry

are as follows.

(i) Hadwiger-type theorem for G: determine the dimension of ValG

and give a geometrically meaningful basis of this space.

(ii) Compute the algebra structure of ValG.

(iii) Compute the whole array of kinematic formulas and additive kine-

matic formulas.

The classical case G = SO(n) was studied by Blaschke, Chern, Santaló, Had-

wiger and others. Hadwiger showed that dimValSO(n) = n + 1, with a basis

given by the intrinsic volumes μ0 = χ, . . . , μn = voln. The graded algebra

ValSO(n) is isomorphic to C[t]/(tn+1) (where deg t = 1).

For a compact subgroup G of SO(n), we set Ḡ := G� V with the product of

Haar and Lebesgue measure. The principal kinematic formula for SO(n) is∫
SO(n)

χ(K ∩ ḡL)dḡ =

n∑
k=0

(
n

k

)−1
ωkωn−k

ωn
μk(K)μn−k(L), K, L ∈ K(V ).

Here and in the following, ωn is the volume of the n-dimensional unit ball.

Higher and additive kinematic formulas are also classical.

Problem (i) for G = U(n) was solved by Alesker [3], problem (ii) by Fu [18].

In general, the product structure of ValG determines all kinematic formulas [12],
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but it may be rather hard to write down explicit formulas. For G = U(n), this

was recently achieved in [13], thus solving problem (iii).

Alesker [4] computed the dimension of ValSU(2). The algebra structure was

computed in [9]. The kinematic formulas were known before by work of Tasaki

[27].

Problems (i)–(iii) for G = SU(n) were recently solved in [10] and we will use

these results in an essential way in the present work.

For the other groups from list (1)–(2), very few is known.

In this paper, we will solve problems (i)–(iii) for the exceptional Lie groups

G2 and Spin(7). Our method uses the inclusions

SU(3) < G2 < Spin(7), SU(4) < Spin(7)

and the fact that the integral geometry of SU(3) and SU(4) is well-understood.

In particular, we will need that G2 and Spin(7) act 2-transitively on the unit

sphere. This is not the case for G = Spin(9), which is the reason why other

ideas have to be used in the study of the integral geometry under this group.

2. Results

We define the group G2 following [17]. Other references are [20], [21] and [19].

A nice historical account can be found in [1].

Let V be a 7-dimensional real vector space. Given φ ∈ Λ3V ∗, we set

b(x, y) :=
1

6
ixφ ∧ iyφ ∧ φ ∈ Λ7V ∗, x, y ∈ V.

If b(x, x) 
= 0 for all x 
= 0, φ will be called positive.

Choosing a basis ω1, . . . , ω7 of V ∗, we obtain an example of a positive 3-form

by setting

φ = ω1 ∧ (ω2 ∧ ω3 + ω4 ∧ ω5 + ω6 ∧ ω7)

+ ω2 ∧ ω4 ∧ ω6 − ω2 ∧ ω5 ∧ ω7 − ω3 ∧ ω4 ∧ ω7 − ω3 ∧ ω5 ∧ ω6.

Definition 2.1: Let φ ∈ Λ3V ∗ be positive. Then G2 = G2(V, φ) is defined as

G2 := {g ∈ GL(V )|g∗φ = φ}.
Since φ is positive, b(x, x) lies in the same connected component of Λ7V ∗\{0}

for all x 
= 0. We fix the orientation on V in such a way that b(x, x) > 0 for all

x 
= 0.
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Given an orientation preserving isomorphism τ : Λ7V ∗ → R, we obtain a

scalar product on V by setting 〈x, y〉 := τ ◦ b(x, y). This scalar product induces
an isomorphism τ ′ : Λ7V ∗ → R, sending ω to ω(e1, . . . , e7) for a positively

oriented orthonormal basis e1, . . . , e7 of V . In general τ ′ 
= τ . However, there is

a unique choice of τ such that τ ′ = τ . Indeed, rescaling τ by a positive factor

t2 will rescale τ ′ by t−7, hence there is a unique t with τ ′ = τ . We fix in the

following the scalar product with this property.

Since b is G2-equivariant, G2 preserves 〈·, ·〉 and the orientation. In other

words, G2 ⊂ SO(V ). In particular, the intrinsic volumes μk, k = 0, . . . , 7 are

G2-invariant.

Let W ⊂ V be a 3-dimensional subspace. Choose vectors w1, w2, w3 ∈ W

such that ‖w1 ∧ w2 ∧ w3‖ = 1. We set φ(W ) := φ(w1, w2, w3). Clearly, φ(W )

is well-defined (i.e., independent of the choice of w1, w2, w3) up to a sign; hence

φ(W )2 is well-defined. It may be checked that two spaces W1,W2 ∈ Gr3(V ) are

in the same G2-orbit if and only if φ(W1)
2 = φ(W2)

2, but we will not use this

fact in the following.

For a face F of a convex polytope P ⊂ V , we let WF be the linear space

parallel to F . The normalized volume of the outer angle at F is denoted by

γ(F ).

Theorem 2.2 (Hadwiger-type theorem for G2): There is a unique valuation

ν3 ∈ ValG2,+ such that for each polytope P ⊂ V ,

(3) ν3(P ) =
∑

F,dimF=3

γ(F )φ(WF )
2 vol(F ).

There is a unique valuation ν4 ∈ ValG2,+ such that for each polytope P ⊂ V ,

(4) ν4(P ) =
∑

F,dimF=4

γ(F )φ(W⊥
F )2 vol(F ).

The valuations μ0, . . . , μ7, ν3, ν4 form a basis of the vector space ValG2 . In

particular,

dimValG2 = 10;

and all G2-invariant valuations are even.

Corollary 2.3: Let G be any of the groups from the list (1)–(2). Then ValG

consists only of even valuations.
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Proof. If −1 ∈ G, then the result is clear. The only groups with −1 /∈ G are

SO(n) and SU(n) for n odd and G2. The case G = SO(n) is the classical

Hadwiger theorem, which shows in particular that SO(n)-invariant valuations

are even. The geometric reason behind this is a lemma of Sah ([23], Prop. 8.3.1).

The case G = SU(n) was studied in [10]; again there are no odd invariant

valuations. Finally, the case G = G2 is treated in Theorem 2.2.

We set

ν′3 := 5ν3 − μ3 ν′4 := 5ν4 − μ4.

Theorem 2.4 (Algebra structure of ValG2): Let t and u be variables of degree 1

respectively 3. Then the map t �→ 2
πμ1, u �→ ν′

3

π2 covers an isomorphism between

graded algebras

ValG2 ∼= C[t, u]/(t8, t2u, u2 + 4t6).

By the methods of [12], one can translate this algebra structure into the whole

array of kinematic formulas for G2. As an example, we write down in explicit

form the principal kinematic formula for G2.

Corollary 2.5 (Principal kinematic formula for G2): For compact convex sets

K,L ⊂ V we have∫
G2

χ(K ∩ ḡL)dḡ =

∫
SO(V )

χ(K ∩ ḡL)dḡ +
1

29
ν′3(K)ν′4(L) +

1

29
ν′4(K)ν′3(L).

Now we turn our attention to Spin(7). We can define it in a short way as the

universal covering of SO(7). However, it will be convenient to have an explicit

description similar to the one for G2 given above.

Let V+ be a complex 4-dimensional hermitian vector space. Let Ω be the

symplectic 2-form of V+ and β ∈ Λ4V ∗
+ be the real part of the holomorphic

volume form, i.e., β(v1, v2, v3, v4) = Re det(v1, v2, v3, v4). Set

(5) Φ :=
1

2
Ω ∧Ω + β ∈ Λ4V ∗.

Definition 2.6:

Spin(V+) := {g ∈ Gl(V+)|g∗Φ = Φ} .
This group is a compact connected subgroup of SO(V+) which acts transi-

tively on the unit sphere of V+. For v ∈ S(V+), the stabilizer of Spin(V+) at v
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is G2(W,φ), where W := TvS(V+) and

(6) φ := ∗W (Φ|W ) ∈ Λ3W ∗.

For W ∈ Gr4(V+) we set Φ(W ) := Φ(w1, w2, w3, w4), where w1, w2, w3, w4 ∈
W satisfy ‖w1 ∧ w2 ∧ w3 ∧ w4‖ = 1. Then Φ(W ) is well-defined up to a sign.

It is easy to show that Spin(V+) acts transitively on Grk(V+), k 
= 4 and that

W1,W2 ∈ Gr4(V+) belong to the same Spin(V+)-orbit if and only if Φ(W1)
2 =

Φ(W2)
2.

Theorem 2.7 (Hadwiger-type theorem for Spin(7)): There exists a unique val-

uation η ∈ ValSpin(V+) such that for each polytope P ⊂ V+ we have

(7) η(P ) =
∑

F,dimF=4

γ(F ) vol(F )Φ(WF )
2.

The valuations μ0, . . . , μ8, η form a basis of ValSpin(V+), in particular

dimValSpin(V+) = 10.

We set η′ := 5η − μ4. It will turn out that η′ is primitive in the sense that

μ1 · η′ = 0. Here the dot means the Alesker product of valuations; compare

[5, 6].

Theorem 2.8 (Algebra structure of ValSpin(7)): Let V+ be, as before, a hermit-

ian vector space of complex dimension 4. Let t and u be variables of degree 1

respectively 4. Then the map t �→ 2
πμ1, u �→ η′

π2 covers an isomorphism between

graded algebras

ValSpin(V+) ∼= C[t, u]/(t9, u2 − t8, ut).

Again, we can compute all kinematic formulas for Spin(V+) using this theorem

and the results of [12]. We only give the following example.

Corollary 2.9 (Principal kinematic formula for Spin(7)): For compact convex

sets K,L ⊂ V+ we have∫
Spin(V+)

χ(K ∩ ḡL)dḡ =

∫
SO(V+)

χ(K ∩ ḡL)dḡ +
3

7!
η′(K)η′(L).

3. Tools

Let V be a vector space of dimension n. Let Val := Val(V ) be the vector space

of continuous, translation invariant valuations. A valuation μ ∈ Val has degree
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k if μ(tK) = tkμ(K) for all t ≥ 0. It is even (resp. odd) if μ(−K) = μ(K)

(resp. μ(−K) = −μ(K)). We write Val±k for the subspace of valuations of

degree k and parity ±.

Theorem 3.1 (P. McMullen, [24]): There is a direct sum decomposition

Val =
⊕

k=0,...,n
ε=±

Valεk .

Suppose that V is endowed with a Euclidean scalar product. Let G be a

compact subgroup of SO(V ) acting transitively on the unit sphere. Alesker has

shown that dimValG < ∞. He introduced on ValG a structure of a commutative

and associative algebra with unit χ satisfying Poincaré duality [5, 6].

The next theorem is a particular case of the more general hard Lefschetz

theorem of [11] (where G-invariance is replaced by smoothness in the sense of

[6]).

Theorem 3.2 (Hard Lefschetz theorem, [11]): Let Λ̃ : ValG∗ (V ) → ValG∗−1(V )

be defined by

Λ̃μ(K) :=
d

dt

∣∣∣∣
t=0

μ(K + tB).

Then Λ̃2k−n : ValGk (V ) → ValGn−k(V ) is an isomorphism. In particular, the

Betti numbers

hk := dimValGk

satisfy the inequalities

h0 ≤ h1 ≤ · · · ≤ h�n/2�,

h�n/2� ≥ h�n/2�+1 ≥ · · · ≥ hn,

and the equations

hk = hn−k, k = 0, . . . , n.

The theorem in the case of even valuations was proved before by Alesker [3],

using the following fundamental result.

Theorem 3.3 (Klain, [22]): Let μ ∈ Val+(V ) be simple, i.e., μ vanishes on

lower-dimensional compact convex bodies. Then μ is a multiple of the Lebesgue

measure on V , in particular μ is of degree n.
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This theorem has the following important consequence. The restriction of

μ ∈ Val+k to a subspace W ∈ Grk(V ) is a multiple of the Lebesgue measure

on W . Putting Klμ for the proportionality factor, one gets a function Klμ ∈
C(Grk(V )), called the Klain function of μ. By Klain’s theorem, the resulting

map Val+k → C(Grk(V )) is injective.

If μ is smooth in the sense of [6] (in particular, if μ ∈ ValG for one of the

groups from (1)–(2)), then there exists a unique valuation μ̂ ∈ Val+n−k whose

Klain function is given by Klμ̂ = Klμ ◦ ⊥. This valuation is called the Alesker

dual or Fourier transform of μ. The Fourier transform can be extended to

odd valuations [8], but we will not need this here.

An analogue of Klain’s injectivity result in the case of odd valuations was

proved by Schneider.

Theorem 3.4 (Schneider, [26]): Let μ ∈ Val−(V ) be simple. Then there exists

an odd continuous function f on the unit sphere S(V ) such that

μ(K) =

∫
S(V )

f(v)dSn−1(K, v),

where Sn−1(K, ·) is the (n− 1)-th surface area measure of K. In particular, μ

is of degree n− 1.

Corollary 3.5: Let V be a Euclidean vector space of dimension n. Let G <

SO(V ) act transitively on the unit sphere. For a hyperplane W ⊂ V , let H :=

StabG(W ). Consider the restriction map

r±k : ValG,±
k (V ) → ValH,±

k (W )

μ �→ μ|W .

Then r+k is injective for k 
= n while r−k is injective for k 
= n− 1.

Proof. Since G acts transitively on Grn−1(V ), a valuation μ ∈ ker r±k is simple.

The statement thus follows from Theorems 3.3 and 3.4.

If H acts transitively on the unit sphere of W , then the dimension of ValH,±
k

is finite and we get a bound for the dimension of ValG,±
k . This is the case

precisely when G acts 2-transitively on the unit sphere S(V ) (this means that

if v1, v2, v
′
1, v

′
2 ∈ S(V ) with 〈v1, v2〉 = 〈v′1, v′2〉, then there exists g ∈ G with

gv1 = v′1 and gv2 = v′2). For the groups G from the list (1)–(2), only SO(n),

G2 and Spin(7) have this property.
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We will need some results from [13] and [10]. Let V be a hermitian vector

space of complex dimension n and W ∈ Grk(V ). Set p := �k/2�. The restriction
of the symplectic form Ω of V to W can be written in the form

Ω|W =

p∑
i=1

cos(θi)α2i−1 ∧ α2i.

Here α1, . . . , αk is an orthonormal basis of the dual space W ∗ and 0 ≤ θ1 ≤
· · · ≤ θp ≤ π/2 is called the multiple Kähler angle of W [28]. We denote the

q-th elementary symmetric function by σq .

Theorem 3.6 ([13]): For 0 ≤ q ≤ p, there exists a unique valuation τk,q ∈
Val

U(V )
k such that for a polytope P ⊂ V ,

τk,q(P ) =
∑

F,dimF=k

γ(F ) vol(F )σq(cos
2 θ1(WF ), . . . , cos

2 θp(WF )).

These valuations are called Tasaki valuations. Note that τk,0 = μk, the

k-th intrinsic volume.

Under the subgroup SU(V ) < U(V ), there are some more invariant valua-

tions; they are even and appear in the middle degree n. More precisely,

Val
SU(V )
k = Val

U(V )
k if k 
= n;

dimValSU(V )
n = dimVal

U(V )
k +4 if n ≡ 0 mod 2;

dimValSU(V )
n = dimVal

U(V )
k +2 if n ≡ 1 mod 2.

Let us describe the “new” invariant valuations more explicitly.

For W ∈ Grn(V ), we set Θ(W ) := det(w1, . . . , wn), where w1, . . . , wn is a

basis of W with ‖w1∧· · ·∧wn‖ = 1. If Ω|W is non-degenerated (which happens

if and only if n = 2p is even and θp(W ) < π/2), we ask in addition that

w1, . . . , wn be a positively oriented basis.

If Ω|W is non-degenerated, then Θ(W ) ∈ C is a well-defined invariant. Oth-

erwise, Θ(W ) ∈ C/{±1} is well-defined. It is easily checked (compare [10]) that

in both cases

(8) |Θ(W )| =
p∏

i=1

sin θi(W ).
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Theorem 3.7 ([10]): There exists a unique valuation φn,2 ∈ ValSU(V )
n such that

φn,2(P ) =
∑

F,dimF=n

vol(F )γ(F )Θ(WF )
2.

If n = 2p is even, there exists a unique valuation φn,1 ∈ ValSU(V )
n such that

φn,1(P ) =
∑

F,dimF=n

vol(F )γ(F )Θ(WF )

p∏
j=1

cos θj(WF ).

Note that these valuations are complex-valued. They were denoted by φ1, φ2

in [10].

4. Construction of invariant valuations

In this section, we let V+ be a complex 4-dimensional hermitian vector space

with the 4-form Φ as in (5) and V ⊂ V+ a hyperplane with the positive 3-form

φ from (6). We will write G2 instead of G2(V, φ).

By Corollary 3.5 with G := G2 and H := SU(3), we get the following dimen-

sions:

dimValG2,− = 0,

dimValG2,+
k = 1, k 
= 3, 4,

dimValG2,+
3 = dimValG2,+

4 ≤ 2.

In particular, there are no non-zero odd G2-invariant valuations, which is

non-trivial since −1 /∈ G2.

Clearly, there are no odd Spin(V+)-invariant valuations, since −1 ∈ Spin(V+).

We apply Corollary 3.5 with G := Spin(V+) and H := G2 and find the following

dimensions:

dimVal
Spin(V+)
k = 1, k 
= 4,

dimVal
Spin(V+)
4 ≤ 2.

Let us show that in fact dimVal
Spin(V+)
4 = 2, which also implies that

dimValG2
3 = dimValG2

4 = 2.

Recall that SU(V+) is a subgroup of Spin(V+). Besides the intrinsic vol-

ume μ4, there is another SU(V+)-invariant valuation of degree 4 which remains

invariant under the bigger group Spin(V+).
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Proposition 4.1: η := 1
2τ4,0 − 1

2τ4,1 +
3
2τ4,2 +

1
2Reφ4,2 + 2Reφ4,1 ∈ Val

SU(V+)
4

is Spin(V+)-invariant and satisfies (7).

Proof. Let W ∈ Gr4(V ). Fix a basis w1, . . . , w4 of W with ‖w1 ∧ . . .∧w4‖ = 1.

If Ω|W is non-degenerated, we ask in addition that w1 ∧ · · · ∧ w4 be positive.

Let us write θi := θi(W ), i = 1, 2; σq := σq(cos θ1, cos θ2), q = 0, 1, 2 and

Θ := Θ(W ). Then, by (5) and (8),

Φ(W )2 = (cos θ1 cos θ2 +ReΘ)
2

= cos2 θ1 cos
2 θ2 + (ReΘ)2 + 2 cos θ1 cos θ2ReΘ

= Re

(
cos2 θ1 cos

2 θ2 +
1

2
Θ2 +

1

2
sin2θ1 sin

2 θ2 + 2 cos θ1 cos θ2Θ

)

=
1

2
σ0 − 1

2
σ1 +

3

2
σ2 +Re

(
1

2
Θ2 + 2 cos θ1 cos θ2Θ

)
.

Using Theorems 3.6 and 3.7 we get for each polytope P ⊂ V+

η(P ) =
∑

F,dimF=4

vol(F )γ(F )Φ(WF ),

which is (7). This equation shows in particular that η is Spin(V+)

invariant.

Theorem 2.7 follows from the proposition and the dimension bounds above.

Let V be a hyperplane in V+. The stabilizer of Spin(V+) at V is G2 =

G2(V, φ), where φ := ∗WΦ|W (note that φ is only well-defined up to a sign

depending on the choice of orientation on V ).

We set ν4 := η|V ∈ ValG2
4 . From (6) we deduce that

φ(W⊥)2 = Φ(W )2, W ∈ Gr4(V ).

Equation (4) follows immediately.

We define ν3 by

ν3 := ν̂4 ∈ ValG2
3 .

Unfortunately, the verification of (3) seems to be less simple. If a continuous

translation invariant valuation satisfies (3), then clearly its Klain function is

given by W �→ φ(W )2, which is also the Klain function of ν3 = ν̂4. Without

giving the details, we indicate that (3) follows by noting that ν3 is a constant

coefficient valuation in the sense of [13]. In fact, if N1(K) ∈ I7(V × V ) denotes
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the disk bundle of K, then we can represent ν3 by

ν3(K) =
1

2π2
N1(K)(p∗1φ ∧ p∗2 ∗ φ).

Here p1, p2 : V × V → V are the natural projections. Note that p∗1φ ∧ p∗2 ∗ φ ∈
Λ7(V ∗ × V ∗) has constant coefficients.

5. Algebra structure and kinematic formulas

Proof of Theorem 2.8. Since SU(V+) ⊂ Spin(V+), we get a canonical injection

of graded algebras

ValSpin(V+) ↪→ ValSU(V+) .

The image of η in ValSU(V+) is 1
2τ4,0 − 1

2τ4,1 +
3
2τ4,2 +

1
2Reφ4,2 + 2Reφ4,1. The

valuations φ4,2 and φ4,1 are in the annihilator of μ1. Using the results of [13]

and [10], one computes that

μ1 · η = μ1 ·
(
1

2
τ4,0 − 1

2
τ4,1 +

3

2
τ4,2

)
=

8

15
μ5,

η · η =

(
1

2
τ4,0 − 1

2
τ4,1 +

3

2
τ4,2 +

1

4
φ4,2 +

1

4
φ̄4,2 + φ4,1 + φ̄4,1

)2

=

(
1

2
τ4,0 − 1

2
τ4,1 +

3

2
τ4,2

)2

+
1

8
φ4,2φ̄4,2 + 2φ4,1φ̄4,1

=
203

3
μ8.

Setting η′ := 5η − μ4 one gets η′ · μ1 = 0 and η′ · η′ = 7!
3 μ8.

Next, we study the algebra structure of ValG2 . Fix a hyperplane V0 ⊂ V . Let

x ∈ V ⊥
0 be of norm 1. Then ixφ is a symplectic form on V0 and there exists a

unique almost complex structure J on V0 with 〈v, w〉 = ixφ(Jv, w).

The stabilizer of G2 at V0 is given by SU(V0) ∼= SU(3).

Lemma 5.1: Let r : ValG2 → ValSU(V0) be the natural restriction map. Then

r(ν3) =
1

2
τ3,0 − 1

2
τ3,1 +

1

2
Reφ3,2,

r(ν4) = τ4,2.
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Proof. For W ∈ Gr3(V0), set θ := θ1(W ) and Θ := Θ(W ). Then φ(W ) =

ReΘ(W ) and therefore

φ(W )2 = (ReΘ)2 =
1

2
Re(Θ2 + |Θ|2) = 1

2
Re(Θ2 + 1− cos2 θ).

For W ∈ Gr4(V0), we have φ(W⊥) = cos θ2 = σ2(cos θ1, cos θ2), where 0 =

θ1 ≤ θ2 are the Kähler angles of W .

The statement of the lemma now follows from the definitions in Theorem 3.6

and Theorem 3.7.

Proof of Theorem 2.4. The Alesker product is compatible with the restriction

r : ValG2 → ValSU(V0), μ �→ μ|V0 , hence

r(μ2 · ν3) = 1

2
μ2 · (τ3,0 − τ3,1) =

4

5
μ5.

Similarly,

r(ν3 · ν3) =
(
1

2
τ3,0 − 1

2
τ3,1 +

1

4
φ3,2 +

1

4
φ̄3,2

)2

=
1

4
(τ3,0 − τ3,1)

2 +
1

8
φ3,2φ̄3,2

= −9π

8
μ6.

Since r+5 and r+6 are injective, we deduce that μ2 ·ν3 = 4
5μ5 and ν3 ·ν3 = − 9π

8 μ6

in ValG2 . From these two equations, the theorem follows.

Proof of Corollary 2.5. Let us write ν4 in terms of the basis μ4, μ1 ·ν3 of ValG2
4 .

As above, we get that r(μ1 · ν3) = 3
16π(μ4 − τ4,2) and therefore

ν4 = μ4 − 16

3π
μ1 · ν3.

Corollary 2.5 now follows from the methods in [12].

We rescale the derivation operator Λ̃ of Theorem 3.2 as in [13] by setting, on

ValG2

k ,

Λ :=
ω7−k

ω8−k
Λ̃

and rescale multiplication by μ1 by

Lμ :=
2ωk

ωk+1
μ1 · μ.
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Corollary 5.2: The operators L,Λ define, together with the degree counting

operator Hμ = (2 degμ− 7)μ, a representation of the Lie algebra sl2 on ValG2 .

Proof. The commutator relations [H,L] = 2L and [H,Λ] = −2Λ are immediate.

We have to show that [L,Λ]μ = Hμ for each μ ∈ ValG2 . If μ is one of the

intrinsic volumes, then this follows from a direct computation. It remains to

show that this equation also holds for μ = ν3 and μ = ν4. The Fourier transform

intertwines L and Λ (compare [12]) and therefore

Λν3 = Λν̂4 = L̂ν4 = μ̂5 = μ2.

Similarly,

Λν4 = Λν̂3 = L̂ν3 = μ̂4 − ν̂4 = μ3 − ν3.

It is now easy to compute that [L,Λ]ν3 = −ν3 and [L,Λ]ν4 = ν4.

In the case G = Spin(7), a similar statement holds true. In fact, η is in the

kernel of the corresponding operators Λ, L and H , hence [L,Λ]η = Hη.

Let us conclude with some general remarks. The algebra structure of the

spaces ValG is now known for the groups G = SO(n),U(n), SU(n),G2, Spin(7)

from the list (1)–(2) . By looking at these algebras, some natural questions

arise.

• For G as above, rescaled versions of the derivation operator and of mul-

tiplication by μ1 define an sl2-representation on ValG. We conjecture

that this will also be the case for the remaining groups from the list

(1)–(2). On the bigger space Valsm of smooth translation invariant

valuations, this is not true.

• By Corollary 2.3, ValG ⊂ Val+ for each of these groups G. However,

our proof relies on a non-geometric case-by-case argument. Is there a

direct explanation of this fact?

• For each such group G, ValG consists of constant coefficient valuations

in the sense of [13]. Is this also true for the remaining groups from the

list (1)–(2)?
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