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ABSTRACT

The following result is proved. Let n be a positive integer and G a resid-

ually finite group in which every product of at most 68 commutators has

order dividing n. Then G′ is locally finite.

1. Introduction

Groups with commutators of finite order bounded by a given number have re-

ceived a good deal of attention in recent years. The following question, originally

due to MacDonald [15], was posed by Mazurov in [14, Question 13.34].

1.1: Let G be a group satisfying the identity [x, y]n ≡ 1. Does it follow that

G′ is periodic?

It has been known for some time that G′ is periodic if n = 2 [15] or n = 3

[9, 16] (in the former case G′ has exponent 4). Some other partial positive

results were obtained by Brandl [4].

In general, the answer to the above question is negative: Deryabina and

Kozhevnikov showed that for sufficiently big odd integers n there exist counter-

examples [5]. Their methods are based on Olshanskii’s techniques [18]. Inde-

pendently, Adian used the Novikov–Adian theory [1] to prove that the answer

is negative for any odd n > 1001 [2]. In sharp contrast with the above negative

results in the case that G is residually finite we have the following theorem.
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Theorem 1.2: Let n be a prime-power and G a residually finite group satis-

fying the identity [x, y]n ≡ 1. Then G′ is locally finite.

Note that in general a periodic residually finite group need not be locally

finite. The corresponding examples have been constructed in [3, 7, 8, 10, 27].

Theorem 1.2 was proved in [21] using the techniques developed by Zelmanov in

his solution of the Restricted Burnside Problem [28, 29]. The natural question

whether Theorem 1.2 remains valid if n is not a prime-power proved to be hard

to deal with. We mention the following two results obtained in [22] and [25],

respectively.

Theorem 1.3: Let n be a positive integer that is not divisible by p2q2 for any

distinct primes p and q. Let G be a residually finite group satisfying the identity

([x1, x2][x3, x4])
n ≡ 1. Then G′ is locally finite.

Theorem 1.4: For any positive integer n there exists t depending only on n

such that if G is a residually finite group in which every product of t commu-

tators has order dividing n, then G′ is locally finite.

The purpose of the present article is to improve the above result as follows.

Theorem 1.5: Let n be a positive integer and let G be a residually finite group

in which every product of 68 commutators has order dividing n. Then G′ is
locally finite.

The constant 68 in the theorem comes from the famous results of Nikolov and

Segal on commutator width of finite groups. In the paper of Segal [20] it was

shown that every element in the derived group of a finite soluble d-generated

group is a product of at most 72d2+46d commutators. A better bound can be

obtained working through the proofs given in [17]. It follows that every element

of the derived group of a finite soluble d-generated group is a product of at most

min{d(6d2 + 3d+ 4), 8d(3d+ 2)}
commutators. In the case that d = 2 this is 68. The author would like to thank

the referee for mentioning this improvement.

Thus, the theorem of Nikolov and Segal plays an important role in the proof

of Theorem 1.5. The proof also relies on the classification of finite simple groups

as well as on the Lie-theoretical techniques that Zelmanov created in his solution

of the Restricted Burnside Problem. We also use our recent result that a finite
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group G is soluble with Fitting height at most h if and only if every pair of

conjugate elements generates a subgroup with that property [24].

2. The proof

We use the expression “{a, b, c, . . .}-bounded” to mean “bounded from above by

some function depending only on a, b, c, . . . ”. Recall that the Fitting subgroup

F (G) of a group G is the product of all normal nilpotent subgroups of G. The

Fitting series of G can be defined by the rules: F0(G) = 1, F1(G) = F (G),

Fi+1(G)/Fi(G) = F (G/Fi(G)), for i = 1, 2, . . . . If G is a finite soluble group,

then the minimal number h = h(G) such that Fh(G) = G is called the Fitting

height of G.

A well-known corollary of the Hall–Higman theory [12] says that the Fitting

height of a finite soluble group of exponent n is bounded by a number depending

only on n. We will denote the number by h(n).

Lemma 2.1: Let G be a finite soluble group in which every product of 68

commutators has order dividing n. Then h(G) ≤ h(n) + 1.

Proof. Assume the lemma is false. Set h = h(n). By [24] G contains two

conjugate elements a, b such that h(〈a, b〉) ≥ h + 2. Put H = 〈a, b〉. We know

from [17] that every element of H ′ is a product of 68 commutators. Hence, H ′

is of exponent n and so the Fitting height of H ′ is at most h. But then the

Fitting height of H is at most h+ 1, a contradiction.

The next lemma is given without proof as it is precisely Lemma 2.8 from [22].

Lemma 2.2: Let G be a group with the identity [x, y]n ≡ 1. Let H be a

nilpotent subgroup of G generated by a set of commutators. Assume that H is

m-generated for some m ≥ 1. Then the order of H is {m,n}-bounded.
Let G be a finite group. If G has odd order, put n2(G) = 0. If G is of even

order, choose a Sylow 2-subgroup P in G and define n2(G) as the maximum of

the orders of [x, y], where x, y ∈ P .

We call a group G monolithic if it has a unique minimal normal subgroup

which is non-abelian simple.
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Proposition 2.3: Let G be a finite group of even order. Assume that G has

no non-trivial normal soluble subgroups. Then G possesses a normal subgroup

L such that L is residually monolithic and n2(G/L) < n2(G).

Proof. Let M be a minimal normal subgroup of G. We know that M ∼= S1 ×
S2 × · · · × Sr, where S1, S2, . . . , Sr are isomorphic simple groups. The group

G acts on M by permuting the simple factors so we obtain a representation

of G by permutations of the set {S1, S2, . . . , Sr}. Let LM be the kernel of

the representation. We want to show that n2(G/LM ) < n2(G). Suppose this

is not true. Let P be a Sylow 2-subgroup of G and let q = n2(G). First

we consider the case where q 	= 1. Since n2(G/LM ) = n2(G), there exist a

and b in P such that [a, b] is of order q modulo LM . Then [a, b] permutes

regularly some q factors in {S1, S2, . . . , Sr}. Without loss of generality we will

assume that S1 is one of those factors and S1, . . . , Sq is the corresponding orbit

under [a, b]. Suppose that for every i both the a-orbit and the b-orbit of Si

are contained in S1, . . . , Sq. We have the natural representation of the group

〈a, b〉 by permutations of S1, . . . , Sq. The cycle (1, 2, . . . , q) corresponds to the

commutator [a, b]. However this cycle does not belong to the alternating group

Aq and so it cannot be a commutator in the symmetric group. A contradiction.

So either a or b takes some Si outside S1, . . . , Sq. Suppose that a takes S1

outside the orbit S1, . . . , Sq.

Let Pi = P ∩ Si. Choose a non-trivial element x ∈ P1 and set y = [a, x], c =

[a, b]x. Then yc = [a, bx] is a commutator in elements of P . Write

(yc)q = yyc
−1

yc
−2 · · · yc.

The element yyc
−1

yc
−2 · · · yc is a product of some non-trivial 2-elements (ele-

ments of the form xcj ), each lying in a different Sj and some other elements in

other simple factors. Looking at it we conclude that yyc
−1

yc
−2 · · · yc 	= 1. But

that means that the order of yc is divisible by 2q, a contradiction.

Now assume that n2(G) = 1, that is, the Sylow 2-subgroups of G are abelian.

If g is any 2-element of G, it is contained in a Sylow 2-subgroup that has non-

trivial intersection with S1. The Sylow subgroup is abelian so g must normalize

S1. Similarly, g must normalize Si for every i. Hence g ∈ LM and G/LM is of

odd order.

Let now L be the intersection of all the subgroups LM , where M ranges

through the minimal normal subgroups of G. It follows that n2(G/L) < n2(G),
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so the proof of the proposition will be complete once it is shown that L is

residually monolithic. If T is the product of the minimal normal subgroups

of G, it is clear that T is the product of pairwise commuting simple groups

S1, S2, . . . , St and that L is the intersection of the normalizers of Si. Since G

has no non-trivial normal soluble subgroups, it follows that CG(T ) = 1 and

therefore any element of L induces a non-trivial automorphism of some of the

Si. Let ρi be the natural homomorphism of L into the group of automorphisms

of Si. It is easy to see that the image of ρi is monolithic and that the intersection

of the kernels of all ρi is trivial. Hence L is residually monolithic.

Proposition 2.4: Let m and n be positive integers and G a finite group in

which every product of 68 commutators has order dividing n. Assume that G

can be generated by m elements g1, g2, . . . , gm each of which is of order dividing

n. Then the order of G is bounded by a number depending only on m and n.

Proof. Let S be the product of all normal soluble subgroups of G. We know

from Lemma 2.1 that h(S) ≤ h(n) + 1 so we will use induction on h(S). Let

F = F (S). We assume that S 	= 1. Thus, by induction the order of G/F

is {m,n}-bounded. Suppose first that F ≤ Z(G). In this case |G : Z(G)|
is {m,n}-bounded and Schur’s Theorem [19, p. 102] guarantees that so is the

order of G′. Since G is generated by m elements of order dividing n, the result

follows.

If F is not central, consider the subgroup K = [F,G]. According to our pre-

vious conclusions G/K has {m,n}-bounded order. Hence, K can be generated

by a bounded number of elements. Now it is sufficient to show that K has

{m,n}-bounded order. However, this is immediate from Lemma 2.2. Therefore

it is sufficient to deal with the case where S = 1.

Since n2(G) divides n, we use induction on n2(G). If n2(G) = 0, the group

G has odd order and so is soluble by the Feit–Thompson theorem [6]. This

contradicts the assumption that S = 1. Thus, we assume that n2(G) ≥ 1. The

induction hypothesis is that there exists a number N0 with the property that if

Q is a quotient of G such that n2(Q) < n2(G), then Q has order at most N0.

Proposition 2.3 tells us that G possesses a normal subgroup L such that L is

residually monolithic and n2(G/L) < n2(G). It follows that G/L is of order at

most N0. We conclude that the minimal number, say r, of generators for L is

{m,n}-bounded.
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A result of Jones [13] says that any infinite family of finite simple groups

generates the variety of all groups. It follows that up to isomorphism there exist

only finitely many monolithic groups in which every product of 68 commutators

has order dividing n. Let N1 be the maximum of their orders. Then L is

residually of order at most N1. Since L is r-generated, the number of distinct

normal subgroups of index at most N1 in L is {m,n}-bounded [11, Theorem

7.2.9]. Therefore L has {m,n}-bounded order. We conclude that |G| is {m,n}-
bounded, as required.

In [23] we raised the following problem that generalizes the Restricted Burn-

side Problem.

Problem 2.5: Let n ≥ 1 and w a group-word. Consider the class of all groups

G satisfying the identity wn ≡ 1 and having the verbal subgroup w(G) locally

finite. Is that a variety?

Recall that variety is a class of groups defined by equations. More precisely, if

W is a set of words in x1, x2, . . . , the class of all groups G such that W (G) = 1

is called the variety determined by W . By a well-known theorem of Birkhoff,

varieties are precisely classes of groups closed with respect to taking quotients,

subgroups and cartesian products of their members.

Proposition 2.4 allows us to solve Problem 2.5 positively in the case where w

is the product of 68 commutators, that is,

w = [x1, x2][x3, x4] · · · [x135, x136].

Other results in this direction can be found in [25, 26].

Theorem 2.6: Given a positive integer n, let X denote the class of all groups

G in which every product of 68 commutators has order dividing n and G′ is
locally finite. Then X is a variety.

Proof. We observe that the class X is closed with respect to taking quotients

and subgroups of its members. Hence, we only need to show that if D is a

cartesian product of groups from X, then D ∈ X. Of course, every product of

68 commutators in D has order dividing n, so it remains only to show that D′

is locally finite. Let T be any finite subset of D′. Clearly, there exist finitely

many commutators h1, . . . , hm in D such that T ≤ 〈h1, . . . , hm〉. Thus, it is

sufficient to show that the group H = 〈h1, . . . , hm〉 is finite. Note that D′ is
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residually locally finite. By Proposition 2.4 any locally finite image of H has

finite {m,n}-bounded order. We conclude that H is finite, as required.

The proof of Theorem 1.5 is now straightforward.

Proof. Let X have the same meaning as in Theorem 2.6, and let G satisfy the

hypothesis of Theorem 1.5. Then G residually belongs to X. Now, Theorem 2.6

tells us that X is a variety. It follows that actually G ∈ X, that is, G′ is locally
finite.
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