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José L. Torrea
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ABSTRACT

We characterize Lusin type and cotype for a Banach space in terms of

the Lp-boundedness of Littlewood–Paley g-functions associated with the

Hermite and Laguerre expansions.

1. Introduction

The notions of martingale type and cotype for a Banach spaceB were introduced

in the 1970’s by G. Pisier ([19] and [20]) in connection with convexity and

smoothness of the Banach space B. If M = (Mn)n∈N is a martingale defined
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on some probability space and with values in B, the q-square function SqM is

defined by

SqM =

( ∞∑
n=1

‖Mn −Mn−1‖qB
) 1

q

.

The Banach space B is said to be of martingale cotype q, 2 ≤ q < ∞, if for

every bounded Lp-martingale M = (Mn)n∈N on B we have

‖SqM‖Lp ≤ Cp sup
n

‖Mn‖Lp
B
,

for some 1 < p < ∞. The Banach space B is said to be of martingale type

q, 1 < q ≤ 2, if the reverse inequality holds for some 1 < p < ∞. The

martingale type or cotype properties do not depend on 1 < p < ∞ for which

the corresponding inequalities are satisfied.

It is a common fact that results in probability theory have parallels in har-

monic analysis. In this line of thought Xu ([25]) defined the Lusin cotype

and type properties for a Banach space B as follows. Let f be a function

in L1(T, B), where T denotes the one-dimensional torus and L1(T, B) stands

for the Bochner–Lebesgue space of strongly measurable B-valued functions

such that the scalar function ‖f‖B is integrable. Consider the generalized

Littlewood–Paley g-function

gq(f)(z) =

(∫ 1

0

(1− r)q
∥∥∥∂Pr

∂r
∗ f(z)

∥∥∥q
B

dr

1− r

) 1
q

,

where Pr(θ) denotes the Poisson kernel. It is said that B has Lusin cotype q,

q ≥ 2, if for some 1 < p < ∞ we have

‖gq(f)‖Lp(T) ≤ Cp‖f‖Lp
B(T),

and B has Lusin type q, 1 < q ≤ 2, if for some 1 < p < ∞ the following

inequality holds:

‖f‖Lp
B(T) ≤ Cp

(
‖f̂(0)‖B + ‖gq(f)‖Lp(T)

)
.

The Lusin cotype and type properties do not depend on p ∈ (1,∞); see [25].

Moreover, a Banach space B has Lusin cotype q (Lusin type q) if and only if B

has martingale cotype q (martingale type q) ([25, Theorem 3.1]).

For the reader’s convenience we recall that for scalar-valued functions and

1 < p < ∞, the following double inequality is well-known:

(1)
1

Cp
‖f‖Lp(T) ≤ |f̂(0)|+ ‖g2(f)‖Lp(T) ≤ Cp‖f‖Lp(T),
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where Cp is a constant depending only on p. It is also well-known that for

B-valued functions this double inequality holds if and only if B is isomorphic

to a Hilbert space (see [10]).

Mart́ınez, Torrea and Xu extended the results in [25] to subordinated Pois-

son semigroups {Pt}t>0 of general symmetric diffusion markovian semigroups

{Tt}t>0; see [13]. Recall that a symmetric diffusion markovian semigroup is

a collection of linear operators {Tt}t≥0 defined on Lp(Ω, dμ) satisfying: T0 =

Id, Tt+s = TtTs, limt→0 Ttf =L2

f, for f ∈ L2(Ω, dμ), T ∗
t = Tt in L2,

Ttf ≥ 0 if f ≥ 0, and Tt1 = 1. We also recall that the subordintated Poisson

semigroup {Pt}t>0 is defined as

(2) Ptf =
t

2
√
π

∫ ∞

0

u− 3
2 e−

t2

4u Tuf du, t > 0.

The main purpose of this paper is to describe the Lusin cotype and the Lusin

type of a Banach space in terms of Littlewood–Paley g-functions for Poisson

semigroups associated to the Hermite and Laguerre differential operators; see

(3), (5), Theorems 1 and 2. These semigroups are non-markovian. In fact, the

Poisson semigroup associated to the Hermite operator does not send constants

into constants; see [22]. In the Laguerre case, and for certain α > −1, the

Poisson semigroup is unbounded for some p in the range 1 < p < ∞; see [12]

and [3].

Let H be the Hermite differential operator

(3) H = −1

2

( d2

dx2
− x2

)
, x ∈ R.

The heat semigroup {WH
t }t>0, generated by−H , has an integral representation;

see (6). The subordinated Poisson semigroup {PH
t }t>0 can be defined by using

formula (2), just by replacing Tu by WH
u . Given a Banach space B and a B-

valued function f defined on R we define the g-function gHq (f), 1 < q < ∞,

by

(4) gHq (f)(x) =

{∫ ∞

−∞

∥∥∥t ∂
∂t

PH
t (f)(x)

∥∥∥q

B

dt

t

}1/q

.

Let Lα be the Laguerre differential operator

(5) Lα =
1

2

(
− d2

dy2
+ y2 +

1

y2

(
α2 − 1

4

))
, y ∈ (0,∞) and α > −1.

The heat semigroup {Wα
t }t>0, generated by −Lα, also has an integral rep-

resentation, see (9). The subordinated Poisson semigroup, {Pα
t }t>0, and the
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g-function, gαq , are defined for functions defined in (0,∞), in a parallel way to

the Hermite case; see (2) and (4).

We introduce the following notation. Let Ωα = ( 2
2α+3 ,

−2
2α+1 ) when −1 < α ≤

− 1
2 and Ωα = (1,∞) when − 1

2 < α.

The main results of this paper are the following.

Theorem 1: Let B be a Banach space, q ≥ 2 and α > −1. The following

assertions are equivalent.

(i) B has Lusin cotype q.

(ii) For every (or, equivalently, for some) p ∈ Ωα there exists Cp > 0 such

that

‖gαq (f)‖Lp(0,∞) ≤ Cp‖f‖Lp
B(0,∞), f ∈ Lp

B(0,∞).

(iii) For every (or, equivalently, for some) 1 < p < ∞ there exists Cp > 0

such that

‖gHq (f)‖Lp(R) ≤ Cp‖f‖Lp
B(R), f ∈ Lp

B(R).

Theorem 2: Let B be a Banach space, 1 < q ≤ 2 and α > −1. The following

assertions are equivalent.

(i) B has Lusin type q.

(ii) For every (or, equivalently, for some) p ∈ Ωα there exists Cp > 0 such

that
‖f‖Lp

B(0,∞) ≤ Cp‖gαq (f)‖Lp(0,∞).

(iii) For every (or, equivalently, for some) 1 < p < ∞ there exists Cp > 0

such that
‖f‖Lp

B(R) ≤ Cp‖gHq (f)‖Lp(R).

The investigations on Harmonic Analysis in the Laguerre and Hermite set-

tings began with Muckenhoupt ([14] and [15]). In the last decade interest in this

topic has reappeared. In general, the proofs of the boundedness of the operators

in these settings are very technical and essentially they follow two patterns:

(1) By using some kind of spectral theorem, the operator is bounded in L2.

Then, in some sense trying to mimic the theory of Calderón–Zygmund,

the kernel of the operator is analyzed. More precisely, the kernel is

broken in the part close to the diagonal (“local part”) and in the com-

plementary part (“global part”). The local part behaves as a Calderón–

Zygmund operator and the global part is controlled by a positive op-

erator. This procedure goes back to Muckenhoupt (see [14] and [15]),
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and has been used in an essential way in [3], [8], [12], [17], [18] and [21].

(2) The other common strategy is to use different formulae relating the

Hermite polynomials in dimension n with Laguerre polynomials in di-

mension 1 and α = n/2− 1; see, for example, [23]. These formulae can

be used in order to transfer results from the Hermite setting in dimen-

sion n to the one-dimensional Laguerre setting with α = n/2− 1. This

was used systematically in [4], [6] and [7].

Our procedure inherits some ideas of (1) for the case of the Hermite operator.

In particular, by using the results in [13], together with certain kernel estimates,

some L2 boundedness of the gHq -function can be obtained; see Lemma 1. Then

some considerations about the kernel allow us to prove the Lp-estimates. How-

ever, in the Laguerre setting, our procedure to analyze Lp-boundedness proper-

ties of gαq -functions is completely different from (1) and (2). It relies on a new

pointwise relation (see (10)) between the heat kernels Wα
t and WH

t . This new

relation had recently appeared in [2]. This pointwise identity is one-dimensional

in both sides (Hermite and Laguerre) in contrast with the ideas exploited in [7],

[9] and [5]. The identity can be transferred to a pointwise relation between

g-functions. It can be also used backwards (from the Laguerre to the Hermite

settings). One final consequence is Lemma 4.

The organization of the paper is as follows. Section 2 is devoted to the proof

of Theorem 1. In order to not duplicate arguments, we present in the middle of

the section two technical Lemmas (1 and 2) that will be used at the end of the

section to prove the equivalence (i) ⇐⇒ (iii) of Theorem 1. These two Lemmas

together with Lemma 4 in the same section allow us to prove the equivalence

with (ii). Section 3 is devoted to the proof of Theorem 2.

Throughout this paper C and c will always denote suitable positive constants

that can change from one line to the other one. Also, if 1 ≤ p < ∞, by p′ we
represent the exponent conjugate of p, that is, p′ = p/(p− 1).

2. Proof of Theorem 1

The Hermite operator H (see (3)) is formally selfadjoint in L2(R, dx). For every

n ∈ N, the Hermite function hn is defined by

hn(x) = (
√
π2nn!)−

1
2Hn(x)e

−x2/2, x ∈ R,
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where Hn denotes the n-th Hermite polynomial ([23]). We have that Hhn =

(n + 1/2)hn, n ∈ N. The heat semigroup {WH
t }t>0, generated by −H , has

the integral representation WH
t (f)(x) =

∫ +∞
−∞ WH

t (x, y)f(y)dy, where (see [24,

(1.1.11)])

WH
t (x, y) =

∞∑
n=0

e−(n+1/2)thn(x)hn(y)

=
e−t/2

√
π

(1− e−2t)−
1
2 exp

(
− 1

2

1 + e−2t

1− e−2t
(x2 + y2) +

2e−t

1− e−2t
xy

)
(6)

=
e−t/2

√
π

(1− e−2t)−
1
2 exp

(
− |x− e−ty|2 + |y − e−tx|2

2(1− e−2t)

)
,

t ∈ (0,∞), x, y ∈ R.

Given B a Banach space and a B-valued function f defined on R, we define

gHq,loc the “local” part of the Hermite square function gHq (see (4) and comments

after Theorem 2) as follows:

gHq,loc(f)(x) =

{∫ ∞

0

∥∥∥∥t
∫ 2x

x/2

∂

∂t
PH
t (x, y)f(y)dy

∥∥∥∥
q

B

dt

t

}1/q

, x ∈ (0,∞),

where 1 < q < ∞.

For technical reasons that will become clear later, we introduce {WH−I/2
t }t>0,

the heat semigroup generated by −(H − I/2). Clearly, W
H−I/2
t (f)(x) =∫∞

−∞ W
H−I/2
t (x, y)f(y)dy, where W

H−I/2
t (x, y) = et/2WH

t (x, y), t > 0, x, y ∈
R. The Poisson semigroup {PH−I/2

t }t>0 can be defined by the subordination

formula (see (2)) and also the g-function, g
H−I/2
q (see (4) and comments after

Theorem 2). The corresponding local part is defined as

g
H−I/2
q,loc (f)(x) =

{∫ ∞

0

∥∥∥∥t
∫ 2x

x/2

∂

∂t
P

H−I/2
t (x, y)f(y)dy

∥∥∥∥
q

B

dt

t

}1/q

, x ∈ (0,∞).

Lemma 1: Let B be a Banach space and 1 < p, q < ∞. The following assertions

are equivalent.

(a) g
H−I/2
q is bounded from Lp

B(R) into Lp(R).

(b) g
H−I/2
q,loc is bounded from Lp

B(0,∞) into Lp(0,∞).

(c) gHq is bounded from Lp
B(R) into Lp(R).

(d) gHq,loc is bounded from Lp
B(0,∞) into Lp(0,∞).
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Proof. We shall prove (a) ⇐⇒ (b), (c) ⇐⇒ (d) and (b) ⇐⇒ (d). Consider the

operator T defined by

f −→ Tf =

(
t
∂

∂t

∫ ∞

−∞
P

H−I/2
t (x, y)f(y)dy

)
t>0

.

Then g
H−I/2
q is bounded from Lp

B(R) into Lp(R) if and only if T is bounded

from Lp
B(R) into Lp

Lq
B[(0,∞),dt/t]

(R). Since W
H−I/2
v (x, y) = W

H−I/2
v (−x,−y),

x, y ∈ R and v ∈ (0,∞), according to [1, Proposition 3.3], T is bounded from

Lp
B(R) into Lp

Lq
B[(0,∞),dt/t]

(R) if and only if T+ is bounded from Lp
B(0,∞) into

Lp
Lq

B [(0,∞),dt/t]
(0,∞), where T+ is defined as T but acting on functions vanishing

on (−∞, 0). Equivalently, g
H−I/2
q,+ is bounded from Lp

B(0,∞) into Lp(0,∞),

where g
H−I/2
q,+ is defined as g

H−I/2
q but for functions vanishing on (−∞, 0).

On the other hand, since

(7)

∫ ∞

0

e−t2/(4u)u−3/2
(
1− t2

2u

)
du = 0, t > 0,

by using Minkowski’s inequality and subordination formula (2) we have∥∥∥t ∂
∂t

P
H−I/2
t (x, y)

∥∥∥
Lq((0,∞),dt/t)

=

{∫ ∞

0

tq−1

∣∣∣∣ 1

2
√
π

∫ ∞

0

1

u3/2

(
1− t2

2u

)
e−t2/(4u)

× (
WH−I/2

u (x, y)− e−(x2+y2)/2
)
du

∣∣∣∣
q

dt

}1/q

≤ C

(∫ 1

0

1

u3/2
WH−I/2

u (x, y)

{∫ ∞

0

tq−1
∣∣∣1− t2

2u

∣∣∣qe−qt2/(4u)dt

}1/q

du

+ e−(x2+y2)/2

{∫ ∞

0

tq−1

∣∣∣∣
∫ 1

0

1

u3/2

(
1− t2

2u

)
e−t2/(4u)du

∣∣∣∣
q

dt

}1/q

+

∫ ∞

1

1

u3/2

∣∣WH−I/2
u (x, y)− e−(x2+y2)/2

∣∣
×
{∫ ∞

0

tq−1
∣∣∣1− t2

2u

∣∣∣qe−qt2/(4u)dt

}1/q

du

)

≤ C

(∫ 1

0

1

u
WH−I/2

u (x, y)du+

∫ ∞

1

1

u
|WH−I/2

u (x, y)− e−(x2+y2)/2|du

+ e−(x2+y2)/2

{∫ ∞

0

tq−1

∣∣∣∣
∫ 1

0

1

u3/2

(
1− t2

2u

)
e−t2/(4u)du

∣∣∣∣
q

dt

}1/q)
.
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We claim that

(8)

{∫ ∞

0

tq−1

∣∣∣∣
∫ 1

0

1

u3/2

(
1− t2

2u

)
e−t2/(4u)du

∣∣∣∣
q

dt

}1/q

≤ C < ∞.

To prove the claim we first observe that

∫ ∞

1

∣∣∣∣
∫ 1

0

e−t2/(4u)

u3/2

(
1− t2

2u

)
du

∣∣∣∣
q

tq−1dt ≤ C

∫ ∞

1

dt

tq+1

(∫ 1

0

1√
u
du

)q

< ∞.

On the other hand, by using (7) we have

∫ 1

0

∣∣∣∣
∫ 1

0

e−t2/(4u)

u3/2

(
1− t2

2u

)
du

∣∣∣∣
q

tq−1dt

=

∫ 1

0

∣∣∣∣
∫ ∞

1

e−t2/(4u)

u3/2

(
1− t2

2u

)
du

∣∣∣∣
q

tq−1dt < ∞.

These last two estimates give the claim. Hence, one can write, for every x, y ∈
(0,∞),

∣∣∣∣∣∣t ∂
∂t

P
H−I/2
t (x, y)

∣∣∣∣∣∣
Lq((0,∞),dt/t)

≤ C

(∫ 1

0

1

u

1

(1 − e−2u)1/2
exp

(
− |x− ye−u|2 + |y − xe−u|2

2(1− e−2u)

)
du

+

∫ ∞

1

1

u

∣∣∣ 1

(1− e−2u)1/2

× exp
(
− |x− ye−u|2 + |y − xe−u|2

2(1− e−2u)

)
−e−(x2+y2)/2

∣∣∣du+e−(x2+y2)/2

)
.

We make the change of variable u = log 1+w
1−w , and since log 1+w

1−w ∼ w, as w → 0,

we get, when x, y ∈ (0,∞), x = y,

∫ 1

0

1

u

1

(1 − e−2u)1/2
exp

(
− |x− ye−u|2 + |y − xe−u|2

2(1− e−2u)

)
du

≤ C

∫ (e−1)/(e+1)

0

1

w3/2
exp

(
− 1

4
(
1

w
(x− y)2 + w(x + y)2)

)
dw ≤ C

|x− y| .
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On the other hand, the mean value theorem leads to

∫ ∞

1

1

u

∣∣∣ 1

(1 − e−2u)1/2
exp

(
− |x− ye−u|2 + |y − xe−u|2

2(1− e−2u)

)
− e−(x2+y2)/2

∣∣∣du
≤ C

(∫ ∞

1

1

u

∣∣∣ exp(− |x− ye−u|2 + |y − xe−u|2
2(1− e−2u)

)
− e−(x2+y2)/2

∣∣∣du
+ e−(x2+y2)/2

∫ ∞

1

1

u

∣∣∣(1 − e−2u)−1/2 − 1
∣∣∣du)

≤ C

(
e−c|x−y|2

∫ ∞

1

1

u

∣∣∣ |x− ye−u|2 + |y − xe−u|2
2(1− e−2u)

− x2 + y2

2

∣∣∣du
+ e−(x2+y2)/2

)

≤ C
(
(x− y)2e−c|x−y|2 + e−(x2+y2)/2

)
≤ C

⎧⎨
⎩

1
y , y > 2x,

1
x , y < x

2 .

Combining the above estimates we conclude that

∥∥∥t ∂
∂t

P
H−I/2
t (x, y)

∥∥∥
Lq((0,∞),dt/t)

≤ C

⎧⎨
⎩

1
y , y > 2x,

1
x , y < x

2 .

Therefore

|gH−I/2
q (f)(x) − g

H−I/2
q,loc (f)(x)| ≤ C

(
1

x

∫ x

0

‖f(y)‖Bdy +

∫ ∞

x

1

y
‖f(y)‖Bdy

)
,

x ∈ (0,∞).

Hence well-known properties of Hardy operators ([16]) allow us to conclude

that g
H−I/2
q is bounded from Lp

B(0,∞) into Lp(0,∞) if and only if g
H−I/2
q,loc is

bounded from Lp
B(0,∞) into Lp(0,∞). This ends the proof of (a) ⇐⇒ (b). The

proof of (c) ⇐⇒ (d) can be built analogously.
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Finally, we shall prove (b) ⇐⇒ (d). By using (7) and Minkowski’s inequality

we have

{∫ ∞

0

∥∥∥∥t ∂∂t
∫ 2x

x
2

[PH
t (x, y)− P

H−I/2
t (x, y)]f(y)dy

∥∥∥∥
q

B

dt

t

}1/q

≤ C

∫ 2x

x
2

‖f(y)‖B
{∫ ∞

0

tq−1

×
∣∣∣ ∫ ∞

0

e−
t2

4u

u3/2

(
1− t2

2u

)
[WH

u (x, y)−WH−I/2
u (x, y) + e−(x2+y2)/2]du

∣∣∣qdt}1/q

dy

≤ C

(∫ 2x

x
2

‖f(y)‖B
{∫ ∞

0

tq−1

(∫ ∞

0

e−
t2

8u

u3/2

× |WH
u (x, y)−WH−I/2

u (x, y) + χ(1,∞)(u)e
−(x2+y2)/2|du

)q

dt

}1/q

dy

+

∫ 2x

x
2

‖f(y)‖B
{∫ ∞

0

tq−1

∣∣∣∣
∫ 1

0

e−
t2

8u

u3/2

(
1− t2

2u

)
du

∣∣∣∣
q

dt

}1/q

× e−(x2+y2)/2dy

)

= C

(∫ 2x

x
2

‖f(y)‖BK1(x, y)dy +

∫ 2x

x
2

‖f(y)‖BK2(x, y)dy

)
,

with, for x, y ∈ (0,∞),

K1(x, y) =

{∫ ∞

0

tq−1

×
(∫ ∞

0

e−
t2

8u

u3/2
|WH

u (x, y)−WH−I/2
u (x, y) + χ(1,∞)(u)e

−x2+y2

2 |du
)q

dt

}1/q

and

K2(x, y) = e−(x2+y2)/2

{∫ ∞

0

tq−1
∣∣∣ ∫ 1

0

e−t2/(4u)

u3/2

(
1− t2

2u

)
du

∣∣∣qdt
}1/q

.
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By using Minkowski’s inequality we get

K1(x, y) ≤
∫ ∞

0

1

u3/2

∣∣∣WH
u (x, y)−WH−I/2

u (x, y) + χ(1,∞)(u)e
− x2+y2

2

∣∣∣
×
{∫ ∞

0

tq−1e−
t2q
8u dt

}1/q

du

≤C

∫ ∞

0

1

u

∣∣∣WH
u (x, y)−WH−I/2

u (x, y) + χ(1,∞)(u)e
−(x2+y2)/2

∣∣∣du
≤C

(∫ 1

0

1

u
|WH

u (x, y)−WH−I/2
u (x, y)|du+

∫ ∞

1

1

u
|WH

u (x, y)|du

+

∫ ∞

1

1

u
|WH−I/2

u (x, y) − e−(x2+y2)/2|du
)

=K1
1 (x, y) +K2

1(x, y) +K3
1 (x, y), x, y ∈ (0,∞).

The change of variables u = log(1 + w)/(1 − w) leads, when x/2 < y < 2x, to

K1
1 (x, y) ≤C

∫ 1

0

1

u

1− e−u/2

(1 − e−2u)1/2
exp

(
− |x− ye−u|2 + |y − xe−u|2

2(1− e−2u)

)
du

≤C

∫ 1

0

exp
(
− |x− ye−u|2 + |y − xe−u|2

2(1− e−2u)

) du√
u

≤C

∫ (e−1)/(e+1)

0

exp
(
− 1

4
(
1

w
(x− y)2 + w(x + y)2)

)

× 1(
log 1+w

1−w

)1/2

dw

1− w2

≤C

∫ (e−1)/(e+1)

0

exp
(
− 1

4
(
1

w
(x− y)2 + w(x + y)2)

) 1√
w
dw

≤ C√
y

∫ (e−1)/(e+1)

0

e−(x−y)2/(4w)

w3/4
dw ≤ C√

y

1√|x− y| ≤
C

y

√
y√|x− y| ,

where in the sixth inequality we have used [21, Lemma 1.1].

Observe that if u ≥ 1 and x/2 < y < 2x, then |x−ye−u|2+ |y−xe−u|2 ≥ cy2.

Hence for x/2 < y < 2x we have

K2
1(x, y) ≤ C

∫ ∞

1

1

u

( e−u

1− e−2u

)1/2

exp
(
− |x− ye−u|2 + |y − xe−u|2

2(1− e−2u)

)
du

≤ Ce−cx2

∫ ∞

1

e−u/2du ≤ C

y
.
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Finally, for K3
1 one has

K3
1(x, y) ≤C

∫ ∞

1

1

u

∣∣∣ 1

(1− e−2u)1/2
exp

(
− |x− ye−u|2 + |y − xe−u|2

2(1− e−2u)

)
− e−(x2+y2)/2

∣∣∣du
≤C

(∫ ∞

1

1

u

∣∣∣ exp( − |x− ye−u|2 + |y − xe−u|2
2(1− e−2u)

)
− e−(x2+y2)/2

∣∣∣du
+ e−(x2+y2)/2

∫ ∞

1

1

u

∣∣∣ 1

(1− e−2u)1/2
− 1

∣∣∣du)

≤C

(
e−cy2

∫ ∞

1

∣∣∣ |x− ye−u|2 + |y − xe−u|2
2(1− e−2u)

− x2 + y2

2

∣∣∣du
+ e−y2/2

∫ ∞

1

e−udu

)

≤Cy2e−cy2 ≤ C

y
,

x

2
< y < 2x.

By combining the above estimates we obtain

K1(x, y) ≤ C
1

y

(
1 +

( y

|x− y|
)1/2)

,
x

2
< y < 2x.

Therefore, the operator

f −→
∫ 2x

x
2

K1(x, y)f(y)dy

is bounded from Lp(0,∞) into itself.

On the other hand, using (8) we get

K2(x, y) ≤ Ce−
x2+y2

2 ≤ C

x+ y
, x, y ∈ (0,∞).

Hence the operator

f −→
∫ 2x

x
2

K2(x, y)f(y)dy

is bounded from Lp(0,∞) into itself.

In order to finish the proof of (b) ⇐⇒ (d) it is enough to observe that

|gHq,loc(f)(x) − g
H−I/2
q,loc (f)(x)|

≤
{∫ ∞

0

∥∥∥∥t ∂∂t
∫ 2x

x
2

[PH
t (x, y)− P

H−I/2
t (x, y)]f(y)dy

∥∥∥∥
q

B

dt

t

}1/q

.
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Lemma 2: Let B be a Banach space and 1 < q < ∞. If gHq,loc is a bounded

operator from Lp
B(0,∞) into Lp(0,∞), for some 1 < p < ∞, then it is also

bounded for every 1 < p < ∞.

Proof. It is well-known that the g-function gHq can be analyzed from the point

of view of vector-valued Calderón–Zygmund theory. Hence the lemma follows

by using the equivalence (c) ⇐⇒ (d) established in Lemma 1.

Now, we shall deal with the Laguerre setting. The operator Lα (see (5)) is

formally selfadjoint with respect to the Lebesgue measure on (0,∞). For every

n ∈ N the Laguerre function ϕα
n defined by

ϕα
n(y) =

(
Γ(n+ 1)

Γ(n+ 1 + α)

) 1
2

e−
y2

2 yαLα
n(y

2)(2y)
1
2 , y ∈ (0,∞),

where Lα
n denotes the Laguerre polynomial of order α ([23, p. 100]), is an

eigenfunction of Lα. In fact

Lαϕ
α
n = (2n+ α+ 1)ϕα

n, n ∈ N.

The system {ϕα
n}n∈N is complete and orthonormal in L2((0,∞), dx). The

heat semigroup {Wα
t }t>0 generated by −Lα has an integral representation

Wα
t (f)(x) =

∫∞
0 Wα

t (x, y)f(y)dy. By using Mehler’s formula ([24, (1.1.47)])

we can write

Wα
t (x, y) =

∞∑
n=0

e−(2n+1+α)tϕα
n(x)ϕ

α
n(y)

=2(xy)
1
2

e−t

1− e−2t
Iα

(
2xye−t

1− e−2t

)
exp

(
− 1

2
(x2 + y2)

1 + e−2t

1− e−2t

)
,(9)

t, x, y ∈ (0,∞).

Here, Iα denotes the modified Bessel function of the first kind and order α.

As we said in the introduction, the following identity that can be established

with (6) and (9) will be our fulcrum between the Hermite and the Laguerre

settings,

(10) Wα
t (x, y)−WH

t (x, y)

=
{√

2π
( 2xye−t

1− e−2t

)1/2

Iα

( 2xye−t

1− e−2t

)
e
− 2xye−t

1−e−2t − 1
}
WH

t (x, y).

We shall also state a lemma for further reference; see [2].
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Lemma 3: There exists C > 0 such that

(i) Wα
t (x, y) ≤ Cyα+1/2x−α−3/2, t > 0, 0 < y < x/2;

(ii) Wα
t (x, y) ≤ Cxα+1/2y−α−3/2, t > 0, y > 2x;

(iii)
∣∣∣Wα

t (x, y)−WH
t (x, y)

∣∣∣ ≤ C/y, t > 0, 0 < x/2 < y < 2x.

We shall consider the “local” part of the square function gαq (see (4)) defined

by

gαq,loc(f)(x) =

{∫ ∞

0

∥∥∥∥t ∂∂t
∫ 2x

x/2

Pα
t (x, y)f(y)dy

∥∥∥∥
q

B

dt

t

}1/q

.

Lemma 4: Let B be a Banach space, α > −1, 1 < q < ∞, and p ∈ Ωα. The

following assertions are equivalent:

(a) gαq is bounded from Lp
B(0,∞) into Lp(0,∞).

(b) gHq,loc is bounded from Lp
B(0,∞) into Lp(0,∞).

Proof. We start by quoting estimates for Bessel’s function Iα that will be used

throughout the paper (see [11, Ch. 5]):

(11) Iα(z) ∼ 1

2αΓ(α+ 1)
zα, as z → 0,

(12) e−z
√
zIα(z) =

1√
π

(
1 +O

( 1

|z|
))

, as z → ∞,

(13)
d

dz
(z−αIα(z)) = z−αIα+1(z), z ∈ (0,∞).

We consider the following operators that can be seen as “global” (far from the

diagonal) versions of the gαq ,

gαq,glob,+(f)(x) =

{∫ ∞

0

∥∥∥∥t ∂∂t
∫ ∞

2x

Pα
t (x, y)f(y)dy

∥∥∥∥
q

B

dt

t

}1/q

and

gαq,glob,−(f)(x) =
{∫ ∞

0

∥∥∥∥t ∂∂t
∫ x/2

0

Pα
t (x, y)f(y)dy

∥∥∥∥
q

B

dt

t

}1/q

.

By using Minkowski’s inequality we have

gαq,glob,+(f)(x) ≤
∫ ∞

2x

‖f(y)‖B
{∫ ∞

0

tq−1
∣∣∣ ∂
∂t

Pα
t (x, y)

∣∣∣qdt}1/q

dy, x ∈ (0,∞).
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From subordination formula (2) we get

∂

∂t
Pα
t (x, y) =

1√
4π

∫ ∞

0

1

s3/2

(
1− t2

2s

)
Wα

s (x, y)e
−t2/4sds, t, x, y ∈ (0,∞).

Minkowski’s inequality leads to{∫ ∞

0

tq−1
∣∣∣ ∂
∂t

Pα
t (x, y)

∣∣∣qdt}1/q

≤C

∫ ∞

0

1

s3/2
Wα

s (x, y)

{∫ ∞

0

tq−1
∣∣∣1− t2

2s

∣∣∣qe−q t2

4s dt

}1/q

ds

≤C

∫ ∞

0

1

s3/2
Wα

s (x, y)

{∫ ∞

0

tq−1e−q t2

8s dt

}1/q

ds

≤C

∫ ∞

0

1

s
Wα

s (x, y)ds.

To study the last integral we distinguish several different cases.

Let 0 < 2x < y < ∞. According to (12) and (9) it follows that∫ 1

0, 2xye−s

1−e−2s ≥1

1

s
Wα

s (x, y)ds

≤C

∫ 1

0

( e−s

1− e−2s

) 1
2 1

s
exp

(
− 1

2

|x− ye−s|2 + |y − xe−s|2
1− e−2s

)
ds

≤C

∫ 1

0

( 2xye−s

1− e−2s

)α+1 e−cy2/s

s3/2
ds

≤C(xy)α+1

∫ 1

0

e−cy2/s

sα+5/2
ds

≤C
(xy)α+1

y2α+3
≤ C

xα+1

yα+2
,

and∫ ∞

1, 2xye−s

1−e−2s ≥1

1

s
Wα

s (x, y)ds ≤ C(xy)α+1e−cy2

∫ ∞

1

e−s(α+ 3
2 )ds ≤ C

xα+1

yα+2
.

On the other hand, (11) implies that∫ 1

0, 2xye−s

1−e−2s ≤1

1

s
Wα

s (x, y)ds ≤ C(xy)α+
1
2

∫ 1

0

1

sα+2
e−cx2+y2

s ds ≤ C
(xy)α+

1
2

(x2 + y2)α+1

≤ C
xα+ 1

2

yα+
3
2
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and

∫ ∞

1, 2xye−s

1−e−2s ≤1

1

s
Wα

s (x, y)ds ≤ C(xy)α+
1
2 e−c(x2+y2)

∫ ∞

1

e−s(α+1)ds

≤ C
(xy)α+

1
2

(x2 + y2)α+1

≤ C
xα+ 1

2

yα+
3
2

.

By combining the above estimates we conclude that

{∫ ∞

0

tq−1
∣∣∣ ∂
∂t

Pα
t (x, y)

∣∣∣qdt}1/q

≤ C
xα+ 1

2

yα+
3
2

, 0 < 2x < y < ∞.

Hence since the Hardy-type operator H∞
α defined by

H∞
α (g)(x) = xα+ 1

2

∫ ∞

2x

1

yα+
3
2

g(y) dy

is bounded from Lp(0,∞) into itself when (α+ 1
2 )p+1 > 0 (see [3, Lemma 3.2]),

gαq,glob,+ defines a bounded operator from Lp
B(0,∞) into Lp(0,∞) provided that

(α+ 1
2 )p+ 1 > 0.

Analogously, it can be proved that

gαq,glob,−(f)(x) ≤
C

xα+ 3
2

∫ x/2

0

‖f(y)‖Byα+ 1
2 dy.

The Hardy type operator H0
α defined by

H0
αg(x) =

1

xα+ 3
2

∫ x

0

g(y)yα+
1
2 dy

is bounded from Lp(0,∞) into itself when 1 < p(α + 3
2 ) ([3, Lemma 3.1]).

Therefore, gαq,glob,− defines a bounded operator from Lp
B(0,∞) into Lp(0,∞)

provided that 1 < p(α+ 3
2 ).
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On the other hand, Minkowski’s inequality and the subordination formula (2)

give

∣∣∣gαq,loc(f)(x) −√
2gHq,loc(f)(x)

∣∣∣
=

∣∣∣∣
{ ∫ ∞

0

∥∥∥∥t ∂∂t
∫ 2x

x
2

Pα
t (x, y)f(y)dy

∥∥∥∥
q

B

dt

t

} 1
q

−
√
2

{∫ ∞

0

∥∥∥∥t ∂∂t
∫ 2x

x
2

PH
t (x, y)f(y)dy

∥∥∥∥
q

B

dt

t

} 1
q
∣∣∣∣

≤
{∫ ∞

0

∥∥∥∥t ∂∂t
∫ 2x

x
2

(Pα
t (x, y) −

√
2PH

t (x, y))f(y)dy

∥∥∥∥
q

B

dt

t

} 1
q

≤
∫ 2x

x
2

‖f(y)‖B
{∫ ∞

0

∣∣∣t ∂
∂t

(Pα
t (x, y)−

√
2PH

t (x, y))
∣∣∣q dt

t

} 1
q

dy

≤C

∫ 2x

x/2

‖f(y)‖B
∫ ∞

0

1

s
|Wα

s (x, y)−
√
2WH

s (x, y)|dsdy, x ∈ (0,∞).

We denote

Mα(x, y) =

∫ ∞

0

1

s
|Wα

s (x, y)−
√
2WH

s (x, y)|ds, 0 <
x

2
< y < 2x.

To analyze Mα we distinguish the cases 2xye−s

1−e−2s ≥ 1, and 2xye−s

1−e−2s ≤ 1.

By using (6), (10) and (12) we get

∫ ∞

1, 2xye−s

1−e−2s ≥1

1

s
|Wα

s (x, y)−
√
2WH

s (x, y)| ds

≤ C

∫ ∞

1, 2xye−s

1−e−2s ≥1

1

s

(1− e−2s

2xye−s

)1/4( e−s

1− e−2s

)1/2

× exp
(
− |x− e−sy|2 + |y − xe−s|2

2(1− e−2s)

)
ds

≤ Ce−c(x2+y2)

∫ ∞

1

e−
s
2 ds ≤ C

x
, 0 <

x

2
< y < 2x.
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By using again (6), (10), (12) and making the change of variables s = log 1+u
1−u

we have

∫ 1

0, 2xye−s

1−e−2s ≥1

1

s
|Wα

s (x, y)−
√
2WH

s (x, y)| ds

≤ C

∫ 1

0, 2xye−s

1−e−2s ≥1

1

s

(1− e−2s

2xye−s

)1/4( e−s

1− e−2s

)1/2

× exp
(
− |x− e−sy|2 + |y − xe−s|2

2(1− e−2s)

)
ds

≤ C(xy)−1/4

∫ 1

0

1

s5/4
exp

(
− |x− e−sy|2 + |y − xe−s|2

2(1− e−2s)

)
ds

≤ C(xy)−1/4

∫ e−1
e+1

0

1

(− log 1−u
1+u )

5/4
exp

(
− 1

4
(
1

u
(x− y)2 + u(x+ y)2)

) du

1− u2

≤ C(xy)−1/4

∫ e−1
e+1

0

1

u5/4
e−(x−y)2/(4u)du

≤ C
1

(xy)1/4|x− y|1/2 ≤ C
( x

|x− y|
)1/2 1

x
, 0 <

x

2
< y < 2x.

On the other hand, by combining (6), (10) and (11), we obtain

∫ 1

0, 2xye−s

1−e−2s ≤1

1

s
|Wα

s (x, y)−√
2WH

s (x, y)| ds

≤ C

(∫ 1

0, 2xye−s

1−e−2s ≤1

1

s

( e−s

1− e−2s

)1/2( 2xye−s

1− e−2s

)α+ 1
2

× exp
(
− 1

2

1 + e−2s

1− e−2s
(x2 + y2)

)
ds

+

∫ 1

0, 2xye−s

1−e−2s ≤1

1

s

( e−s

1− e−2s

)1/2

exp
(
− 1

2

1 + e−2s

1− e−2s
(x2 + y2)

)
ds

)

≤ C

(
(xy)α+

1
2

∫ 1

0

1

sα+2
e−c(x2+y2)/sds+

∫ 1

0

1

s3/2
e−c(x2+y2)/sds

)

≤ C
( (xy)α+

1
2

(x2 + y2)α+1
+

1

(x2 + y2)1/2

)
≤ C

x
, 0 <

x

2
< y < 2x,
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and ∫ ∞

1, 2xye−s

1−e−2s ≤1

1

s
|Wα

s (x, y)−
√
2WH

s (x, y)|ds

≤ C

(
(xy)α+

1
2 e−c(x2+y2)

∫ ∞

1

e−s(α+1)ds+ e−c(x2+y2)

∫ ∞

1

e−
s
2 ds

)

≤ C
( (xy)α+

1
2

(x2 + y2)α+1
+

1

(x2 + y2)1/2

)
≤ C

x
, 0 <

x

2
< y < 2x.

Hence we conclude that

Mα(x, y) ≤ C
1

x

(
1 +

( x

|x− y|
)1/2)

, 0 <
x

2
< y < 2x.

We observe that the operator Mα,

Mα(g)(x) =

∫ 2x

x
2

1

x

(
1 +

( x

|x− y|
)1/2)

g(y) dy,

is bounded from Lp(0,∞) into Lp(0,∞), for every 1 < p < ∞. As a conse-

quence, gαq,loc is bounded from Lp
B(0,∞) into Lp(0,∞), 1 < p < ∞, if and only

if gHq,loc is bounded from Lp
B(0,∞) into Lp(0,∞), 1 < p < ∞.

Proof of Theorem 1. It is easy to see that

(14) g2H−I
q = gH−I/2

q , 1 < q < ∞.

Consider the operator Uf(x) = e−x2/2f(x). It is clear that U defines an isome-

try from L2(R, e−x2

dx) onto L2(R). If we denote by L the Ornstein–Uhlenbeck

operator L = −d2/dx2 + 2xd/dx then, for every q > 1, it can be checked that

for f =
∑

k ckhk,

(15) gLq (f) = U−1g2H−I
q (Uf),

where gLq , 1 < q < ∞, denotes the g-function associated with the Poisson semi-

group for the operator L. By using identity (15) one immediately gets that for

every 1 < q < ∞ the boundedness of gLq from L2
B(R, e

−x2

dx) into L2(R, e−x2

dx)

is equivalent to the boundedness of g2H−I
q from L2

B(R) into L2(R).

If B has Lusin cotype q, according to [13, Theorem 5.2], gLq is bounded from

L2
B(R, e

−x2

dx) into L2(R, e−x2

dx). By the previous arguments, this implies that

g
H−I/2
q is bounded from L2

B(R) into L2(R). By using Lemma 1 and Lemma 2

we get (i)⇐⇒ (iii) of Theorem 1 and also the equivalence with the boundedness

of gHq,loc. Then Lemma 4 gives the equivalence of (i) with (ii).



20 J. BETANCOR ET AL Isr. J. Math.

3. Proof of Theorem 2

The implication (i) =⇒ (ii) is contained in the following proposition.

Proposition 1: Let B be a Banach space, α > −1, 1 < q ≤ 2, and p ∈ Ωα. If

B has Lusin type q, then

‖f‖Lp
B(0,∞) ≤ C‖gαq (f)‖Lp(0,∞), f ∈ Lp

B(0,∞).

Proof. We claim that

(16)∫ ∞

0

f(x)h(x)dx = 4

∫ ∞

0

∫ ∞

0

t
∂Pα

t (f)(x)

∂t
t
∂Pα

t (h)(x)

∂t

dt

t
dx, f, h ∈ L2(0,∞).

Indeed, assume f =
∑k

n=0 anϕ
α
n and h =

∑k
n=0 bnϕ

α
n , with k ∈ N. Then Pα

t f =∑k
n=1 e

−t
√

λn,αanϕ
α
n and Pα

t h =
∑k

n=1 e
−t
√

λn,αbnϕ
α
n , where λn,α = 2n+α+1,

n ∈ N. Hence∫ ∞

0

t
∂Pα

t (f)(x)

∂t

∂Pα
t (h)(x)

∂t
dt

=
k∑

n,m=0

anbmϕα
n(x)ϕ

α
m(x)

∫ ∞

0

te−t(
√

λn,α+
√

λm,α)
√
λn,αλm,α dt

=

k∑
n,m=0

anbmϕα
n(x)ϕ

α
m(x)

(
√

λn,α +
√
λm,α)2

√
λn,αλm,α, x ∈ (0,∞).

By orthonormality we get

∫ ∞

0

∫ ∞

0

t
∂Pα

t (f)(x)

∂t

∂Pα
t (h)(x)

∂t
dtdx =

1

4

k∑
n=0

anbn =
1

4

∫ ∞

0

f(x)h(x)dx.

Since gα2 is bounded from L2(0,∞) into itself (Theorem 1), Hölder’s inequality

implies that both members of the equality (16) define bounded bilinear map-

pings from L2(0,∞)×L2(0,∞) into R. Then, as {ϕα
n}n∈N is a complete system

in L2(0,∞), we conclude that (16) holds for every f, g ∈ L2(0,∞).

Suppose now that B has Lusin type q. By using [25, Corollary 2.6] it follows

that the dual space B∗ of B has Lusin cotype q′. Hence, according to Theorem

1, we have that for every p ∈ Ωα,

‖gαq′(f)‖Lp(0,∞) ≤ C‖f‖Lp
B∗(0,∞), f ∈ Lp

B∗(0,∞).
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Then, by using (16) and duality arguments (as in [13, proof of Theorem 2.2])

we get

‖f‖Lp
B(0,∞) ≤ C‖gαq (f)‖Lp(0,∞), f ∈ Lp

B(0,∞), 1 < p < ∞.

In order to prove (ii) =⇒ (i) of Theorem 2 we follow some ideas developed

in [13, section 3] (also see [25]). Assume that p ∈ Ωα, α > −1 and 1 < q < ∞.

Consider the operator Qα defined for good enough functions h as follows:

Qα(h)(x) =

∫ ∞

0

t

∫ ∞

0

∂

∂t
(Pα

t (x, y))h(y, t)dy
dt

t
.

Lemma 5: Let B be a Banach space, α > −1, 1 < q < ∞ and p ∈ Ωα. Then

‖gαq (Qαh)‖Lp(0,∞) ≤ C‖h‖Lp
A(0,∞),

where A = Lq
B((0,∞), dt/t).

Proof. Let h be in the dense set of compactly supported and continuous B-

valued functions defined on (0,∞)× (0,∞). By using the semigroup property

we have

s
∂

∂s

∫ ∞

0

Pα
s (x, y)Qα(h)(y)dy

=s
∂

∂s

∫ ∞

0

Pα
s (x, y)

∫ ∞

0

t

∫ ∞

0

∂

∂t
(Pα

t (y, z))h(z, t) dz
dt

t
dy

=

∫ ∞

0

st

∫ ∞

0

h(z, t)
∂

∂s

∂

∂t

∫ ∞

0

Pα
t (y, z)P

α
s (x, y) dydz

dt

t

=

∫ ∞

0

st

∫ ∞

0

h(z, t)
∂2

∂u2
Pα
u (x, z)|u=t+sdz

dt

t

=

∫ ∞

0

∫ ∞

0

h(z, t)Mα(x, s; z, t)
dt

t
dz, x, s ∈ (0,∞),

where

(17) Mα(x, s; z, t) = st
∂2

∂u2
Pα
u (x, z)|u=t+s, x, z, s, t ∈ (0,∞).

In order to prove the lemma, it is enough to show that

Tα(h)(x, s) =

∫ ∞

0

∫ ∞

0

Mα(x, s; z, t)h(z, t)
dt

t
dz

is bounded from Lp
A(0,∞) into itself.
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By the subordination formula (2) we have

∂2

∂u2
Pα
u (x, z) =

∂2

∂u2

( u

2
√
π

∫ ∞

0

e−
u2

4v

v
3
2

Wα
v (x, z)dv

)

=
1

2
√
π

∫ ∞

0

u

v
5
2

(u2

4v
− 3

2

)
e−

u2

4v Wα
v (x, z)dv, u, x, z ∈ (0,∞).(18)

Hence the estimates for the heat kernel Wα contained in Lemma 3 drive us to

∣∣∣ ∂2

∂u2
Pα
u (x, z)

∣∣∣ ≤ Cu−2

⎧⎨
⎩zα+

1
2x−α− 3

2 , 0 < z < x/2

xα+ 1
2 z−α− 3

2 , 2x < z < ∞
, u ∈ (0,∞).

Therefore

|Mα(x, s; z, t)| ≤ C
st

(s+ t)2

⎧⎨
⎩zα+

1
2x−α− 3

2 , 0 < z < x/2

xα+ 1
2 z−α− 3

2 , 2x < z < ∞
, s, t ∈ (0,∞).

We split Tα in three parts as follows;

Tα(h)(x, s) =

(∫ x
2

0

+

∫ 2x

x
2

+

∫ ∞

2x

)∫ ∞

0

Mα(x, s; z, t)h(z, t)
dt

t
dz

=Tα,1(h)(x, s) + Tα,2(h)(x, s) + Tα,3(h)(x, s).
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Then Minkowski’s and Jensen’s inequalities lead to

‖Tα,1(h)‖Lp
A(0,∞)

=

{∫ ∞

0

{∫ ∞

0

∥∥∥ ∫ x
2

0

∫ ∞

0

Mα(x, s; z, t)h(z, t)
dt

t
dz

∥∥∥q
B

ds

s

} p
q

dx

} 1
p

≤C

{∫ ∞

0

{∫ ∞

0

{∫ x
2

0

∫ ∞

0

st

(s+ t)2
zα+

1
2

xα+ 3
2

‖h(z, t)‖B dt

t
dz

}q
ds

s

} p
q

dx

} 1
p

≤C

{∫ ∞

0

{∫ ∞

0

{∫ ∞

0

st

(s+ t)2

×
[

1

xα+ 3
2

∫ x
2

0

zα+
1
2 ‖h(z, t)‖Bdz

]
dt

t

}q
ds

s

} p
q

dx

} 1
p

≤C

{∫ ∞

0

{∫ ∞

0

[
1

xα+ 3
2

∫ x
2

0

zα+
1
2 ‖h(z, t)‖Bdz

]q
dt

t

} p
q

dx

} 1
p

≤C

{∫ ∞

0

∥∥∥∥ 1

xα+ 3
2

∫ x
2

0

zα+
1
2 ‖h(z, t)‖Bdz

∥∥∥∥
p

Lq((0,∞), dtt )

dx

} 1
p

≤C

{∫ ∞

0

∣∣∣∣ 1

xα+ 3
2

∫ x
2

0

zα+
1
2 ‖h(z, ·)‖Lq

B((0,∞), dtt )dz

∣∣∣∣
p

dx

} 1
p

≤C‖h‖Lp
A(0,∞).

In the last inequality we have taken into account that the Hardy-type operator

H0
α defined by

H0
α(g)(x) =

1

xα+3/2

∫ x

0

yα+1/2g(y)dy

is bounded from Lr(0,∞) into itself when 1 < r(α + 3/2) ([3, Lemma 3.1]).

In a similar way we obtain that

‖Tα,3(h)‖Lp
A(0,∞) ≤ C‖h‖Lp

A(0,∞).

Now we shall deal with Tα,2. By invoking again Lemma 3 one has

Wα
v (x, y) = WH

v (x, y) +Nv(x, y), x/2 < y < 2x and v ∈ (0,∞),

with |Nv(x, y)| ≤ C/y, x/2 < y < 2x and v ∈ (0,∞). Observe that the

integral

N(x, s; z, t) = st

∫ ∞

0

u

v
5
2

(u2

4v
− 3

2

)
e−u2/(4v)Nv(x, z) dv|u=s+t
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satisfies

|N(x, s; z, t)| ≤ C
1

(s+ t)2z
, x/2 < z < 2x, and s, t ∈ (0,∞).

Hence the operator

h −→
∫ 2x

x
2

∫ ∞

0

N(x, s; z, t)h(z, t)
dt

t
dz

is bounded from Lp
A(0,∞) into itself. Then (see (17) and (18)) the operator Tα

is bounded from Lp
A(0,∞) into itself if and only if the operator S2 defined by

S2(h)(x, s) =

∫ 2x

x
2

∫ ∞

0

MH(x, s; z, t)h(z, t)
dt

t
dz,

with MH given by

MH(x, s; z, t) = st
∂2

∂u2
PH
u (x, z)|u=t+s, x, z, t, s ∈ (0,∞),

is bounded from Lp
A(0,∞) into itself.

We claim that

(19) |MH(x, s; z, t)| ≤ C
st

(s+ t+ |x− z|)3 , s, t, x, z ∈ (0,∞).

To see the claim, we make the change of variable v = log 1+w
1−w and get

MH(x, s; z, t) =
st

2
√
π

∫ ∞

0

s+ t

v
5
2

(
(s+ t)2

4v
− 3

2

)
e−(s+t)2/(4v)WH

v (x, z)dv

=
st

2π

∫ 1

0

s+ t(
log 1+w

1−w

) 5
2

( (s+ t)2

4 log 1+w
1−w

− 3

2

)
exp

(−(s+ t)2

4 log 1+w
1−w

)

×
(1− w2

4w

) 1
2

exp
(
− 1

4
(
1

w
(x − z)2 + w(x + z)2)

) 2dw

1− w2

=I1(x, s; z, t) + I2(x, s; z, t),
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where for I1 and I2 the integral is extended to (0, 1
2 ) and (12 , 1), respectively.

Since log 1+w
1−w ∼ w, as w → 0, we can write

|I1(x, s; z, t)| ≤Cst

∫ 1
2

0

s+ t

w3

(
(s+ t)2

w
+ 1

)
e−

c(s+t)2

w

× exp
(
− 1

4

( (x− z)2

w
+ w(x + z)2

))
dw

≤Cst

∫ 1
2

0

1

w
5
2

exp
(
− c

(s+ t)2

w
− 1

4

((x− z)2

w
+ w(x + z)2

))
dw

≤Cst

∫ 1
2

0

1

w
5
2

exp
(
− c

(s+ t+ |x− z|)2
w

)
dw, s, t, x, z ∈ (0,∞).

Then by using [21, Lemma 1.1] we obtain

|I1(x, s; z, t)| ≤ C
st

(s+ t+ |x− z|)3 , s, t, x, z ∈ (0,∞).

On the other hand, since log 1+w
1−w ∼ − log(1− w), as w → 1−, we get

|I2(x, s; z, t)| ≤Cst

∫ 1

1
2

1

| log(1 − w)| 32 (1− w)
1
2

× exp
(
− c

| log(1− w)| ((s+ t)2 + (x− z)2)
)
dw

≤Cst

∫ 1

1
2

1

| log(1 − w)w| 32 (1− w)
1
2

× exp
(
− c

| log(1− w)| (s+ t+ |x− z|)2
)
dw

≤C
st

(s+ t+ |x− z|)3 , s, t, x, z ∈ (0,∞).

The claim is proved. We now consider the operator

L(x, z)(φ)(s) =

∫ ∞

0

MH(x, s; z, t)φ(t)
dt

t
, φ ∈ A.

Note that

S2(h)(x, s) =

∫ 2x

x
2

L(x, z)(h(z, ·))(s) dz.

We define the operator

S2(h)(x, s) =

∫ ∞

0

L(x, z)(h(z, ·))(s) dz.
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Now we claim that S2 is an A-valued Calderón–Zygmund operator. By Hölder’s

inequality and (19) we get

‖S2(h)(x, s)‖B =

∥∥∥∥
∫ ∞

0

L(x, z)(h(z, ·))(s)dz
∥∥∥∥
B

=

∥∥∥∥
∫ ∞

0

∫ ∞

0

MH(x, s; z, t)h(z, t)
dt

t
dz

∥∥∥∥
B

≤C

{∫ ∞

0

∫ ∞

0

st

(s+ t+ |x− z|)3 ‖h(z, t)‖
q
B

dt

t
dz

} 1
q

×
{∫ ∞

0

∫ ∞

0

st

(s+ t+ |x− z|)3
dt

t
dz

} 1
q′

≤C

{∫ ∞

0

∫ ∞

0

s

(s+ t+ |x− z|)3 ‖h(z, t)‖
q
Bdtdz

} 1
q

.

Then

‖S2(h)‖qLq
A(0,∞)

≤C

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

1

(s+ t+ |x− z|)3 ‖h(z, t)‖
q
Bdt dz ds dx

≤C

∫ ∞

0

∫ ∞

0

‖h(z, t)‖qB
∫ ∞

0

∫ ∞

0

1

(s+ t+ |x− z|)3 ds dx dt dz(20)

≤C‖h‖q
Lq

A(0,∞)
.

On the other hand,

‖L(x, z)‖A→A ≤
{∫ ∞

0

{∫ ∞

0

|M(x, s; z, t)|q′ ds
s

} q

q′ dt

t

} 1
q

≤C

{∫ ∞

0

{∫ ∞

0

(st)q
′

(s+ t+ |x− z|)3q′
ds

s

} q

q′ dt

t

} 1
q

(21)

≤C

{∫ ∞

0

{∫ ∞

0

ds

(s+ t+ |x− z|)2q′+1

} q
q′
tq−1dt

} 1
q

≤C

{∫ ∞

0

tq−1

(t+ |x− z|)2q dt
} 1

q

≤C

{∫ ∞

0

dt

(t+ |x− z|)q+1

} 1
q

≤ C

|x− z| , x, z ∈ (0,∞), x = z.
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Moreover,∣∣∣∣ ∂∂x
[
exp

(
− 1

4
(
1

w
(x− z)2 + w(x + z)2)

)]∣∣∣∣
=
1

2

∣∣∣ 1
w
(x− z) + w(x+ z)

∣∣∣ exp(− 1

4
(
1

w
(x − z)2 + w(x + z)2)

)
≤C

1√
w

exp
(
− c(

1

w
(x− z)2 + w(x + z)2)

)
, w ∈ (0, 1), x, z ∈ (0,∞).(22)

Proceeding as above we get∣∣∣ ∂
∂x

MH(x, s; z, t)
∣∣∣ ≤ C

st

(s+ t+ |x− z|)4 , s, t, x, z ∈ (0,∞).

Hence ∥∥∥ ∂

∂x
L(x, z)

∥∥∥
A→A

≤ C

|x− z|2 , x, z ∈ (0,∞), x = z.(23)

Analogously,∥∥∥ ∂

∂z
L(x, z)

∥∥∥
A→A

≤ C

|x− z|2 , x, z ∈ (0,∞), x = z.(24)

Inequalities (20), (21), (23) and (24) allow us to use vector-valued Calderón–

Zygmund’s theory and therefore S2 is a bounded operator from Lp
A(0,∞) into

itself. Moreover, from the size condition on ‖L(x, z)‖ we deduce

∥∥∥∥
∫ x

2

0

L(x, z)(h(z, ·))(s)dz
∥∥∥∥
A

≤
∫ x

2

0

‖L(x, z)‖A→A‖h(z, ·)‖Adz

≤C
1

x

∫ x

0

‖h(z, ·)‖Adz

and ∥∥∥∥
∫ ∞

2x

L(x, z)(h(z, ·))(s)dz
∥∥∥∥
A

≤
∫ ∞

2x

‖L(x, z)‖A→A‖h(z, ·)‖Adz

≤C

∫ ∞

2x

‖h(z, ·)‖A dz

z
.

Then, well-known results about Hardy operators ([16]) imply that the operators

h −→
∫ x

2

0

L(x, z)(h(z, ·))(s)dz

and

h −→
∫ ∞

2x

L(x, z)(h(z, ·))(s)dz
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are bounded from Lp
A(0,∞) into itself. Thus we have proved that S2 and

then Tα is bounded from Lp
A(0,∞) into itself and the proof of the Lemma is

finished.

Now we can prove (ii) =⇒ (i). Let f ∈ Lp′
B∗(0,∞). We choose h ∈

Lp

Lq
B((0,∞), dtt )

(0,∞) such that ‖h‖Lp

L
q
B

((0,∞),dt/t)
(0,∞) = 1 and

‖gαq′(f)‖Lp′(0,∞) =

∫ ∞

0

∫ ∞

0

〈
t
∂Pα

t f

∂t
(x), h(x, t)

〉
dt

t
dx.

We assume that f and h are smooth. Then it can be written as

‖gαq′(f)‖Lp′(0,∞) =

∫ ∞

0

∫ ∞

0

〈
f(x), t

∫ ∞

0

∂

∂t
(Pα

t (x, y)))h(y, t)dy

〉
dt

t
dx

=

∫ ∞

0

〈f(x), Qα(h)(x)〉dx

≤‖f‖
Lp′

B′(0,∞)
‖Qα(h)‖Lp

B(0,∞).

Hence, if (ii) holds, by using Lemma 5 we get

‖gαq′(f)‖Lp′(0,∞) ≤ C‖f‖
Lp′

B′(0,∞)
‖gαq (Qα(h))‖Lp(0,∞) ≤ C‖f‖Lp

B′(0,∞).

According to Theorem 1 this proves that B∗ has Lusin cotype q′. By using [25,

Corollary 2.6] we conclude that B has Lusin type q.

Finally, (i)⇔ (iii) can be proved following similar arguments to these used

previously to establish (i) ⇔ (ii).
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