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ABSTRACT

We characterize Lusin type and cotype for a Banach space in terms of
the LP-boundedness of Littlewood—Paley g-functions associated with the

Hermite and Laguerre expansions.

1. Introduction

The notions of martingale type and cotype for a Banach space B were introduced
in the 1970’s by G. Pisier ([19] and [20]) in connection with convexity and
smoothness of the Banach space B. If M = (M,,)nen is a martingale defined
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on some probability space and with values in B, the g-square function S, M is
defined by

00 1
S,M = (Z | M,, — Mnlll‘}g> .
n=1

The Banach space B is said to be of martingale cotype ¢, 2 < ¢ < o0, if for
every bounded LP-martingale M = (M,,)nen on B we have

[1SgM||» < Cpsup [[Mal| Ly,
n

for some 1 < p < oo. The Banach space B is said to be of martingale type
q, 1 < q < 2, if the reverse inequality holds for some 1 < p < oo. The
martingale type or cotype properties do not depend on 1 < p < oo for which
the corresponding inequalities are satisfied.

It is a common fact that results in probability theory have parallels in har-
monic analysis. In this line of thought Xu ([25]) defined the Lusin cotype
and type properties for a Banach space B as follows. Let f be a function
in L1(T, B), where T denotes the one-dimensional torus and L'(T, B) stands
for the Bochner—Lebesgue space of strongly measurable B-valued functions
such that the scalar function ||f||p is integrable. Consider the generalized

1
a dr \¢
Bl—r> ’

where P,.(6) denotes the Poisson kernel. It is said that B has Lusin cotype g,

Littlewood—Paley g-function

winE = [a=ri %12

r

q > 2, if for some 1 < p < oo we have

ng(f)”Lp(']r) < CPHfHL%(T))

and B has Lusin type ¢, 1 < ¢ < 2, if for some 1 < p < oo the following
inequality holds:

171w < Co (17O + 190 por)) -

The Lusin cotype and type properties do not depend on p € (1,00); see [25].
Moreover, a Banach space B has Lusin cotype ¢ (Lusin type ¢) if and only if B
has martingale cotype ¢ (martingale type ¢) ([25, Theorem 3.1]).

For the reader’s convenience we recall that for scalar-valued functions and
1 < p < oo, the following double inequality is well-known:

1 .
(1) c I fllzeery < [FO)] + llg2(f )l ey < CopllfllLe(mys
p



Vol. 182, 2011 LAGUERRE ¢g-FUNCTION 3

where C), is a constant depending only on p. It is also well-known that for
B-valued functions this double inequality holds if and only if B is isomorphic
to a Hilbert space (see [10]).

Martinez, Torrea and Xu extended the results in [25] to subordinated Pois-
son semigroups {P;}+~o of general symmetric diffusion markovian semigroups
{T:}+>0; see [13]. Recall that a symmetric diffusion markovian semigroup is
a collection of linear operators {T}};>o defined on LP(),du) satisfying: Ty =
Id, Ty = T,Ts, limy_oTif =L f, for f € L2(Qdp), Ty =T, in L2,
Tif > 0if f >0, and T3;1 = 1. We also recall that the subordintated Poisson
semigroup {P;}¢~0 is defined as

t o . 2
(2) Ptf:2\/ﬁ/0 u_ge_%Tufdu, t>0.

The main purpose of this paper is to describe the Lusin cotype and the Lusin
type of a Banach space in terms of Littlewood—Paley g-functions for Poisson
semigroups associated to the Hermite and Laguerre differential operators; see
(3), (5), Theorems 1 and 2. These semigroups are non-markovian. In fact, the
Poisson semigroup associated to the Hermite operator does not send constants
into constants; see [22]. In the Laguerre case, and for certain @ > —1, the
Poisson semigroup is unbounded for some p in the range 1 < p < oo; see [12]
and [3].

Let H be the Hermite differential operator
1/ d?
2 (d:z:2

The heat semigroup {W/?};~0, generated by —H, has an integral representation;

(3) H=— —5132), z eR.

see (6). The subordinated Poisson semigroup { P };~¢ can be defined by using
formula (2), just by replacing T}, by W . Given a Banach space B and a B-
valued function f defined on R we define the g-function gf (f),1 < q < oo,
by

o] b q dt 1/q

H _ H
(@) wnw={ [ frarrnalt)
Let L, be the Laguerre differential operator
1, & 5, 1/, 1

(5) LQ:Q(fdy2+y +y2(a —4)), y € (0,00) and o > —1.
The heat semigroup {W>}is0, generated by —L,, also has an integral rep-
resentation, see (9). The subordinated Poisson semigroup, {P}:>0, and the
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g-function, gg', are defined for functions defined in (0,00), in a parallel way to

the Hermite case; see (2) and (4).
2 -2

We introduce the following notation. Let £}, = (2a+3, 2atl

— and Qq = (1,00) when —} < o

The main results of this paper are the following.

) when —1 < o <

THEOREM 1: Let B be a Banach space, ¢ > 2 and a > —1. The following

assertions are equivalent.

(i) B has Lusin cotype q.
(ii) For every (or, equivalently, for some) p € €1, there exists Cp, > 0 such
that

||g;l(f)HLP(O,oo) < CprHL%(O,oo)a f € LpB(O,OO)

(iii) For every (or, equivalently, for some) 1 < p < oo there exists C, > 0
such that

g (Nlr@ < Coll fllie®y, f € LB(R).

THEOREM 2: Let B be a Banach space, 1 < ¢ <2 and a > —1. The following
assertions are equivalent.
(i) B has Lusin type q.
(ii) For every (or, equivalently, for some) p € €, there exists Cp, > 0 such
that
11128 0,00) < Collgg ()l Lr0,00)-
(iii) For every (or, equivalently, for some) 1 < p < oo there exists C, > 0
such that
”f”L”B(R) < Cp”gf(f)HLP(R)-

The investigations on Harmonic Analysis in the Laguerre and Hermite set-
tings began with Muckenhoupt ([14] and [15]). In the last decade interest in this
topic has reappeared. In general, the proofs of the boundedness of the operators
in these settings are very technical and essentially they follow two patterns:

(1) By using some kind of spectral theorem, the operator is bounded in L?.
Then, in some sense trying to mimic the theory of Calderén-Zygmund,
the kernel of the operator is analyzed. More precisely, the kernel is
broken in the part close to the diagonal (“local part”) and in the com-
plementary part (“global part”). The local part behaves as a Calderén—
Zygmund operator and the global part is controlled by a positive op-
erator. This procedure goes back to Muckenhoupt (see [14] and [15]),
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and has been used in an essential way in [3], [8], [12], [17], [18] and [21].

(2) The other common strategy is to use different formulae relating the
Hermite polynomials in dimension n with Laguerre polynomials in di-
mension 1 and a = n/2 — 1; see, for example, [23]. These formulae can
be used in order to transfer results from the Hermite setting in dimen-
sion n to the one-dimensional Laguerre setting with o = n/2 — 1. This
was used systematically in [4], [6] and [7].

Our procedure inherits some ideas of (1) for the case of the Hermite operator.
In particular, by using the results in [13], together with certain kernel estimates,
some L? boundedness of the gf -function can be obtained; see Lemma 1. Then
some considerations about the kernel allow us to prove the LP-estimates. How-
ever, in the Laguerre setting, our procedure to analyze LP-boundedness proper-
ties of gg-functions is completely different from (1) and (2). It relies on a new
pointwise relation (see (10)) between the heat kernels W and W2 . This new
relation had recently appeared in [2]. This pointwise identity is one-dimensional
in both sides (Hermite and Laguerre) in contrast with the ideas exploited in [7],
[9] and [5]. The identity can be transferred to a pointwise relation between
g-functions. It can be also used backwards (from the Laguerre to the Hermite
settings). One final consequence is Lemma 4.

The organization of the paper is as follows. Section 2 is devoted to the proof
of Theorem 1. In order to not duplicate arguments, we present in the middle of
the section two technical Lemmas (1 and 2) that will be used at the end of the
section to prove the equivalence (i) <= (iii) of Theorem 1. These two Lemmas
together with Lemma 4 in the same section allow us to prove the equivalence
with (ii). Section 3 is devoted to the proof of Theorem 2.

Throughout this paper C' and ¢ will always denote suitable positive constants
that can change from one line to the other one. Also, if 1 < p < oo, by p’ we
represent the exponent conjugate of p, that is, p’ = p/(p — 1).

2. Proof of Theorem 1

The Hermite operator H (see (3)) is formally selfadjoint in L?(R, dz). For every
n € N, the Hermite function h,, is defined by

ho(z) = (Vr2"n) 2 Hy(z)e /2, 2 €R,
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where H,, denotes the n-th Hermite polynomial ([23]). We have that Hh,, =
(n +1/2)h,, n € N. The heat semigroup {W/?};~o, generated by —H, has
the integral representation W (f)(z) = _J:: WH (z,9) f(y)dy, where (see [24,
(1.1.11)))

o0

Wi (@,y) = em 2, ()b (y)
n=0
e /2 o1 114e 2 2¢"
(6) = G e (=, DL @) T )
—t/2 =t )2 =t 2
:e (1_ —2t) 2exp( |$ € yl +|7y e $| ))
Ve 2(1 — e~2t)

€ (0,00), z,y €R.

Given B a Banach space and a B-valued function f defined on R, we define
ggloc the “local” part of the Hermite square function g (see (4) and comments
after Theorem 2) as follows:

©dt
gt

st = { [ e [ st sty 1 e

where 1 < g < o0.

For technical reasons that will become clear later, we introduce {WtHfl/ 2}t>0,
the heat semigroup generated by —( — 1/2). Clearly, WtHfl/Q(f)(x) =
f_ H I/2 (x,y)f(y)dy, where Wt I/Q(z,y) = ePWH(z,y), t >0, z,y €
R. The Poisson semigroup {Pt 172 ti>0 can be defined by the subordination

—1/2 (

formula (see (2)) and also the g-function, go' see (4) and comments after

Theorem 2). The corresponding local part is defined as

H—1/2 pi- 172 AR
e ={ ["e [ o nreswal T3 se 000
/2

gt
LEMMA 1: Let B be a Banach space and 1 < p,q < co. The following assertions

are equivalent.

(a) gf 2 is bounded from LL(R) into LP(R).

(b) gq loc ? is bounded from LP(0,00) into LP(0, 00).
(c) g is bounded from L% (R) into LP(R).

(d) gq loc 1s bounded from L%,(0, c0) into L”(0, 00).
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Proof. We shall prove (a) <= (b), (¢) <= (d) and (b) <= (d). Consider the
operator 1" defined by

o [ _m_

r1i=(1g [P sy
—0o0 t>0
Then 9571/2 is bounded from L%(R) into LP(R) if and only if 7" is bounded
. . H-T/2 H—1/2
from L% (R) into Li%[(07w)7dt/t] (R). Since W, / (z,y) = W, / (—z, —y),
z,y € R and v € (0,00), according to [1, Proposition 3.3], T is bounded from
L% (R) into L’Z%[(Om)dt/t] (R) if and only if T'; is bounded from L% (0, co) into
L?, (0,00), where T is defined as T but acting on functions vanishing
L%[(0,00),dt/t]
on (—o00,0). Equivalently, 95;1/2 is bounded from L% (0,00) into L?(0,c0),
where g,f;” % is defined as g, ~172 but for functions vanishing on (—o0,0).
On the other hand, since

[ee) t2
(7) / e*t2/<4u>u*3/2(1 - )du =0, t>0,
0 2u
by using Minkowski’s inequality and subordination formula (2) we have
0 H-1/2
top ‘
H ot ! (z,9) La((0,00),dt/t)

o) 2
1 / 1 (1 7 t )e‘tz/(4“)
2y Jo  ud/? 2u

x (WH2(z,y) - e_(zzﬂ/z)/z)du

[

q 1/q
dt}
Y1 m 1/2 > 1 19 o2 (4 Ha
- q— _ —q U
SC(/O u3/2W“ (:C,y){/o t ‘1 2u‘ e dt} du
0o 1 2 q 1/q
—(a4y?)/2 g-1 1 ( _t ) —£2/(4u)
+e {/0 t /0 w32 1 o e du| dt

> 1 H—1/2 —(@24y2)/2
7 Wy e

o0 2 1/q
X {/ tq_l‘l _ ‘qe_qt2/(4“)dt} du)
0 2U

1 o]
1 1
< C( / W12 (@ y)du + / (WHT2 (2, y) — e~ @092 gy
0 1 u

u

00 1 2 q 1/q
— (@2 4y?)/2 g—1 1 ( _t ) 42 (4u)

+e {/0 t /0 w32 1 o e du| dt .
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We claim that

. [e%s} tq,1 1 1 ) t2 7t2/(4u)d q
( ) 0 0 U3/2( B 2’“)6 u
To prove the claim we first observe that
7t /(4u) t2 q e} dt 1 1 q
1— )d t‘Hdt<C/ / du) < oc.
JTIL e s mase 7 () ) <o
On the other hand, by using (7) we have
1 1 —t%/(4u) 12 q
/ / © e (- )du 111t
0 0 u /2 2u
1 oo —t2/(4u) 2 q
e t
- 1- )d
/0 /1 u3/? ( 2u) ™

These last two estimates give the claim. Hence, one can write, for every =,y €

(0, 00),

1/q
dt} < C < 0.

t1dt < 0.

[t P12, )|

L4((0,00),dt/t)
1 —u|2 —ul2
1 1 |z —ye ™" + |y — ze |)
< - d
= c</0 u (1 — e—2uyt/z P ( 2(1 — e—2u) “

Jr/001‘ 1
Loul (1= e2u)1/2

_ —u|2 _ w|2
*exXp (* . ye2(1| _+e|_y2u):ce | )e(x2+y2)/2’d“+e(12#)/2)'

We make the change of variable u = log iJ_rZ, and since log %J_rz’) ~w,as w — 0,
we get, when z,y € (0,00), x # vy,

/1 1 1 exp(_ |$—y€_u|2+|y—$e_“|2)du
o u(l—e 2u)l/2 2(1 — e2v)

(e=1)/(e+1)
SC/ 1 1.1
0

w3/2 eXP(* 4(w($*y)2 +w(x+y)2))dw < ¢

lz —y|
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On the other hand, the mean value theorem leads to

o] —u|2 —ul|2
1

ul(l—e2v 2(1 —e—2v)
0 _ —u|2 _ —u|2

A G A B
U 2(1 — e2uv)

u

b2 /m L (=22
1

)

<C e—c\w—y\2 /OO 1 ‘ |$ - ye—u|2 + |y - xe—u|2 o 552 + y2 ‘du
1 U 2(1 — e™2v) 2

N e<x2+y2>/z>

1
< C((z _ y)2eic|xiy|2 I 67(x2+y2)/2) <C y? y > 2:07
- - 1 T
e Y< 2
Combining the above estimates we conclude that
0 H-1/2 Ly > 2,
t_. P T, ‘ <C<qVY
H ot ! (z,9) La((0,00),dt/t) Loy<r.

Therefore

o) — ot 2l < O L [ 1swladn+ [T 15w lady).

z € (0,00).

Hence well-known properties of Hardy operators ([16]) allow us to conclude
that 9571/2 is bounded from L% (0, 00) into LP(0,00) if and only if gfl;{p is
bounded from L%, (0, 00) into LP(0, c0). This ends the proof of (a) <= (b). The

proof of (¢) <= (d) can be built analogously.
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Finally, we shall prove (b) <= (d). By using (7) and Minkowski’s inequality
we have

[ee] 2x q 1/q
{/ }tgt [P e~ PP )y Cf}
0 5 B
2x %)
<cf |f<y>|3{/0 oot
e iu 2 - H_1/2 IPETIPIH q 1/q
’/ u3/2 u)[Wu (z,y) =W, (z,y) +e ]du’ dt} dy

<o(f” ||f(y)||3{ e ([ "

a y1/q
x |Wf($a y) — Wf_lm(iﬁ, y) + X(17m)(U)€_(m2+y2)/2|du) dt} dy

2x oo 1 2 q 1/q
g—1 e 8u _ t )
+[£ ||f(y)||B{/0 t /0 32 (1 5, )u| dt

y e<m2+y2>/2dy)

~of / @) aKa )y + / 1wkt )

with, for z,y € (0,00),

Ki(z,y) = {/OOO it

2
® e fu B - a y1/a
< ( | Wi = W2 )+ xg o ()eF |du) }
0

and

00 1 —#2/(4u) 02 . 1/q
— (@ +y?)/2 q—1‘ e ( _ ) ‘
Ka(z,y) = e { /O t /O 2 (L=, )Jdujdiy
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By using Minkowski’s inequality we get

mz+y2

Ki(z,y) S/0 u3/2‘W z,y) — W2 (2, y) + X(1,00) (w)e ™ 2

oo t2q 1/q
X {/ 19 le™ su dt} du
0

<1
SC/ u ’Wf(x’y) — Wi (@) + X(1,oo)(U)e*(m2+y2)/2’du
0

oo

"1 1
<o [ e - wi e gaes [ W @l
0 1

b [T LW ) )
1
=Ki(z,y) + K%(z,y) + K}(z,y), =,y € (0,00).

The change of variables u = log(1 + w)/(1 — w) leads, when z/2 < y < 2z, to

—e /2 ( | — ye * + |y — ze~"|?

Ki(z,y) <C/ (1 — e-2uy1/2 exp 2(1 — e—2v) >du
1 —u|2 —u|2
|;C—y€ | + |y_$e | du
< _
_O/ exp ( 2(1 _ e—2u) ) \/’u

0
(e=1)/(e+1)
X

<C exp(— i(;(:c—y)2 +w(:v+y)2))

1 dw
1/2 1 — o2
(log Hw) 1-w

(e=1)/(e+1) 11 ) ) 1
< _ _
<[ exp (= 4 (=P +ule+y?) | du
(e=1)/(e+1) o—(z—y)*/(4w)
SC/ e we € 10w
vy w VIVIE =yl T Y e -yl

where in the sixth inequality we have used [21, Lemma 1.1].
Observe that if u > 1 and z/2 < y < 2z, then |z —ye %+ |y —xe |2 > cy®.
Hence for z/2 < y < 2z we have
—u 1/2 _
xy <C/ ) exp(—'x ve

176 2u

< Ce —cx / 7u/2d < O
1 )

_u|2 + |y _ xe—u|2)du
2(1 — e—2u)
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Finally, for K3 one has

0 1 1 |z —ye "2 + |y — ze 4|2
Pz, y) < /1 ul(1— e—2u)1/2 eXp 2(1 —e2v)

_ 67<12+y2>/2}du

o] _ —ul|2 _ —u|2
SC / 1 } exp ( _ |J] ye | + |y €re | ) _ e—(zz+y2)/2‘du
1u 2(1 — e2v)

*(12+y2)/2 > ]. ‘ ]. B ‘
+e /1 wl (1= e=2uy1/2 1|du

<o e-ev? /°° ’ |z —ye P+ |y —we P 2?4y ’du
. 2(1 — e~2v) 2

+e_y2/2/ e_“du)
1

<CyPe ¥ <

C T
, <y <2z
Y 2

By combining the above estimates we obtain

1 1/2
Ki(z,y) <C (1+( 4 ) ), x<y<2:17.
y |z =y 2
Therefore, the operator

2z

f— Ki(z,y)f(y)dy

is bounded from LP(0, c0) into itself.

On the other hand, using (8) we get

2+y2

K2(xay) < Ceiz 2 y LY E (0,00)

xr+y

Hence the operator
2x

f— | Ka(x,y)f(y)dy
2
is bounded from LP(0, c0) into itself.

In order to finish the proof of (b) <= (d) it is enough to observe that
H-1/2
[95100(F) (@) = ggioe*(F)(@)]
4 g }1/q
Bt '

U

t
ot

2x
L P () — PE12 ()] f () dy
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LEMMA 2: Let B be a Banach space and 1 < q < oco. If ggloc is a bounded
operator from L%,(0,00) into LP(0,00), for some 1 < p < oo, then it is also
bounded for every 1 < p < oo.

Proof. 1t is well-known that the g-function gf can be analyzed from the point
of view of vector-valued Calderéon-Zygmund theory. Hence the lemma follows
by using the equivalence (¢) <= (d) established in Lemma 1.

Now, we shall deal with the Laguerre setting. The operator L, (see (5)) is
formally selfadjoint with respect to the Lebesgue measure on (0, 00). For every
n € N the Laguerre function ¢ defined by

et = (prt i) € TrEIAED v 0.,

where LY denotes the Laguerre polynomial of order « ([23, p. 100]), is an
eigenfunction of L,. In fact
Loy =(C2n+a+ 1), neN.

The system {¢%}nen is complete and orthonormal in L2((0,00),dz). The
heat semigroup {W};~¢ generated by —L, has an integral representation
W) () =[5 We(z,y) f(y)dy. By using Mehler’s formula ([24, (1.1.47)])

we can write

W (x,y) =Y e CnHFolge ()0 (y)
n=0

. et 2;z:ye_t 1, 5 9 14+e 2
(9) =2(zy)? 1— efztlo‘ (1 - 62t) eXPp ( B 2(1j +y )1 - e*Qt)’
t,x,y € (0,00).

Here, I, denotes the modified Bessel function of the first kind and order .

As we said in the introduction, the following identity that can be established
with (6) and (9) will be our fulcrum between the Hermite and the Laguerre
settings,

(10) Wta(xay) - WtH(‘ra y)

2zye~t \1/2 2zrye” _2wye
() () e

We shall also state a lemma for further reference; see [2].

t t t
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LEMMA 3: There exists C > 0 such that

(1) We(z,y) < Oyt 279732 50,0 < y < 2/2;
(i) We(z,y) < Caott/2y=a=3/2 ¢ > 0,y > 2x;
(ii) }Wta(x,y) - WtH(z,y)} <COfy,t>0,0<z/2<y< 2

We shall consider the “local” part of the square function g (see (4)) defined

by
00 b 2x q d 1/q
w0 ={ [ g, [ Peamswm| 71

LEMMA 4: Let B be a Banach space, a > —1,1 < q¢ < oo, and p € Q. The

following assertions are equivalent:
(a) g is bounded from L';(0,00) into LP(0, 00).
(b) g2 is bounded from L7(0,00) into LP(0, 00).

Proof. We start by quoting estimates for Bessel’s function I, that will be used
throughout the paper (see [11, Ch. 5]):

(11) Ia(z)NQO‘F(olé—f—l)Za’ as z — 0,
(12) e_z\/zla(z):\/l (1—|—O(| |)), as z — 09,

d

(13) &

(271 (2)) = 27 %n41(2), 2z € (0,00).

We consider the following operators that can be seen as “global” (far from the
9 ¢ }1/ q
gt

AR

ot .

rwlla{ [~ o] reea)]a} Ma e 0.0,

diagonal) versions of the 9q

o D@ = { [ eg, [~ Petnsoan

and

om0 ={ [ |2 [ peswa

By using Minkowski’s inequality we have

g;globﬂL(f)((E) < /OO

2x
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From subordination formula (2) we get

o) 1 [ 1 t2 .2
e _ o « —t°/4s
6tPt (r,y) = \/471_/0 $3/2 (1 2S)WS (z,y)e ds, t,x

Minkowski’s inequality leads to

00 1/q
{/0 tql‘gtpta(z,y)‘th}
[e'e] 1 [e'e] t2
< o tq—1‘1,
_O/O SB/ZWS (zay){/o 28

[e'e] 1 [e'e] 2 1/q
<[ ] W?(:c,y){ / tq_le_qSSdt} s
0 53/2 0

1
§C/ W (z,y)ds.
0 S

To study the last integral we distinguish several different cases.
Let 0 < 22 < y < oo. According to (12) and (9) it follows that

L 1
/ WP (2, y)ds
0

2wye—$ S
Y1—e—2s 21

1 —s 1 —s2 —
e 21 1z —ye ®|* + |y — ze
- /0 1—e2) §5P 2 1—e2s

15

;Y € (0,00).

q 2 1/q
e 14s dt} ds

s|2

)ds

1 _ _ 2
2rye® \atle ey /s
=¢ 0 (1—6*25) s3/2 ds
+1 Lemet/s
«@
Sc(wy) /() Sa+5/2 dS
Sc(x?;)a—i-l < xa-{-l ,
y a+3 ya+2
and
& 1 1 2 oo 3 xa-{-l
/ Wo(x,y)ds < C(ay)* eV / e~slata)gs < C ata’
1, fiii’;s >1 1 Yy
On the other hand, (11) implies that
1 1 !
1 « a+} 1 —cmz+y2 (wy)a+2
/0 dvee SWS (w,y)ds < C(xy)*" 2 ; gt s ds < C($2 4 y2jatt

’1—e—28 =
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and
° ]. 1 2 2 o
/ W (z,y)ds < Clay)tze @ +y )/ et g
12 far s O N 1
Pl—e—2s8 =
N
= (22  y2)atl
ot 2

By combining the above estimates we conclude that

1/q wa—i—é
{/ td~ l‘atPto‘:cy)’dt} <C Lao 0<2z<y<oo.
yere

Hence since the Hardy-type operator H3® defined by

HE (g) () = 2 / oL

yota

is bounded from LP(0, 00) into itself when (a+ 3)p+1 > 0 (see [3, Lemma 3.2]),
94 glob,+ defines a bounded operator from L%,(0, 00) into L?(0, 00) provided that
(a+3)p+1>0.

Analogously, it can be proved that

c [ L
9g.glob,— () (@) < a+3/ LF @)l sy = dy.
X 2 Jo

The Hardy type operator H defined by

I 1
Haog(z) = a+3/ 9(y)y* "2 dy
x 2 Jo

is bounded from LP(0,00) into itself when 1 < p(a + 3) ([3, Lemma 3.1]).
Therefore, g3 ., defines a bounded operator from L';(0,00) into LP(0, 00)
provided that 1 < p(a+ 3).
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On the other hand, Minkowski’s inequality and the subordination formula (2)
give

9510e()(@) = V20 8h0c (1) @)

o o 2 . 4 g ;

H/ Htﬁté PGl )y t}
o o 2x - q gt ;
a{ Htaté YO

[ e [ = vari s

th}3
st

e Iwlad [ e g - ¢2PtH(z,y))‘qit};dy

oo
0

2z 1
<C [ 1l [ [IWen) — VoW sy, € 0,00).
x/2
We denote

> 1
Mo (z,y) /o S|V[/S°‘(:c,y) - \/QWSH(:c,y)|d5, 0< :26 <y <2z

To analyze M, we distinguish the cases ffyee:; > 1, and ffyee:; <1.
By using (6), (10) and (12) we get

oo 1 o
[ St - vy
1, 2eve >

oo 1/1—e28\1/4 e~ S 1/2
<c Compes ) (1 Zear)
1,200 > 8 2xye 1-e
o — e~y + |y — we‘slz)
X — d
&P ( 2(1 — e—2) §

o0 s C
< Ce—cl@®+v") / e 2ds <, 0< ; <y < 2.
1 x
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By using again (6), (10), (12) and making the change of variables s = log | T“

we have

1
1
|Wa($,y)f\/2WH(:L’,y)|dS
0,20ve 2 >1 8 ° °

—2s5 =

1 1/1—e 25\1/4 e’ 1/2
=¢ / ( ) ( )
T Jozve 5 8\ 2mye® 1—e2s
l—e—45 —

|z — e "yl* + |y —we*?
X exp ( 21 — e-29) )ds
1/4/1 exp( |z —e™ y|2+|y*ze*5|2)dS
2(1 —e=29)
—1/4 e (_11 2 2) du
Y A o o (= 4= e ), O

~1/4 / = o (@) (4u) g,
0

T 1/21 T
<C <c( ) L 0< 2.
= CwP“M—MV2_ w—yl) z g SYS

On the other hand, by combining (6), (10) and (11), we obtain

1
1
[ W) - Vo s

Y] _e—2s =

1 —s 1/2 —s +1
<C / 1( e ) (Qxye )a 3
NS 1—e 2 1—e2s
1—e—2s =

11+4e28
21 — -2 (a* + yQ))ds

1 _ _
1 e—s 1/2 114 e2s ) )
- + d

/0, zeve <18 (1 - 6*25> exp( 21—e 2 (" +y )> s

1 1
1 1
C ((:L,y)orf*; /O Sa+2 676(12+y2)/5d8 + / 83/2 ec(;pz«l»yz)/sds)

0

(zy)ot2 1 C x
o )< 2
(x2+y2)a+1+(:v2+y2)1/2 . 0<2<y< x,

xexp(f

IN

IN



Vol. 182, 2011 LAGUERRE ¢g-FUNCTION 19

and
o 1
/ |We(z,y) — V2WH (z,y)|ds

Lyt s

< O((zy)oﬁ-;e—c(zzﬁ-yz) /OO 6_5(a+1)d5 + e_c($2+y2) /oo e_;ds>
1 1
(CL'y)Ol—i_é 1 C T

_C(($2+y2)a+1+(:C2+y2)1/2)_ z’ 0<2<y<2x.

Hence we conclude that
1 1/2
My (z,y) <C (1+( v ) ), 0<? <y <2z
x |z — y| 2
We observe that the operator 91,
2x
1

Ma(g)(z) = / - (1 + (|:c f y|)1/2)g(y) dy,

is bounded from LP(0,00) into LP(0,00), for every 1 < p < co. As a conse-
quence, g¢',. is bounded from L0, 00) into LP(0,0), 1 < p < oo, if and only
if g, is bounded from L (0, 00) into LP(0,00), 1 < p < oo.

Proof of Theorem 1. It is easy to see that

(14) ggH*I:gffl/Q, 1<g< .

Consider the operator U f(z) = e_IQ/Qf(x). It is clear that U defines an isome-
try from L?(R, e~*"dz) onto L? (R). If we denote by L the Ornstein—Uhlenbeck
operator L = —d?/dxz? + 2xd/dz then, for every q > 1, it can be checked that
for f =3, ckhi,

(15) gg () =U"g2" U ),

where gg“, 1 < ¢ < o0, denotes the g-function associated with the Poisson semi-
group for the operator L. By using identity (15) one immediately gets that for
every 1 < g < oo the boundedness of g7 from L% (R, e~ dz) into L2(R, e~ dz)
is equivalent to the boundedness of g2~/ from L% (R) into L*(R).

If B has Lusin cotype ¢, according to [13, Theorem 5.2], gg‘ is bounded from
LL(R, e~ dz) into L2(R, e~ dz). By the previous arguments, this implies that
ge7 =172 is bounded from L%(R) into L*(R). By using Lemma 1 and Lemma 2
we get (i)<=> (iii) of Theorem 1 and also the equivalence with the boundedness

of /.. Then Lemma 4 gives the equivalence of (i) with (ii).
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3. Proof of Theorem 2
The implication (i) = (ii) is contained in the following proposition.

PROPOSITION 1: Let B be a Banach space, a > —1,1 < ¢ <2, and p € Q. If
B has Lusin type q, then

1120000 < Cllgg (FllLro,00), | € Lip(0,00).

Proof. We claim that

16
= _ [T [T 0P (f)(@) 0P (h)(x) dt
/Of(:v)h(:c)dx—él/o /Ot o b o , dz, fih € L*(0,00).

Indeed, assume f = ZZ:O ane® and h = ZZ:O bp%, with k € N. Then P> f =
2221 e_t\/A"v“angof{ and P*h = Zﬁzl e_t\/’\“vabngpg, where A\,.o = 2n+a+1,
n € N. Hence
[ R om i,
0 ot ot
k

= Z anbmpy (T) e, (2) / te (WAt YA, a)\/)‘ﬂ aAm,a d
0

n,m=0

anbm @l ()5, ()
>\ a>\m.o¢7 07 .
- L st 0

By orthonormality we get

e v - Zamzi/omf@)h(x)dx

Since ¢g¢ is bounded from L?(0, o) into itself (Theorem 1), Holder’s inequality
implies that both members of the equality (16) define bounded bilinear map-
pings from L?(0, 00) x L?(0, 00) into R. Then, as {¢% }nen is a complete system
in L?(0, 00), we conclude that (16) holds for every f,g € L?(0, c0).

Suppose now that B has Lusin type ¢g. By using [25, Corollary 2.6] it follows
that the dual space B* of B has Lusin cotype ¢’. Hence, according to Theorem
1, we have that for every p € Q,,

Hg?/(f)HLP(O,OO < Cllf”LP (0,00)» f € L%* (0,00)
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Then, by using (16) and duality arguments (as in [13, proof of Theorem 2.2])

we get
||f||L%(O,oo) < C”g((;(f)”LT’(O,oo)a f € L:DB(O,OO), 1< p < oo.

In order to prove (ii) = (i) of Theorem 2 we follow some ideas developed
n [13, section 3] (also see [25]). Assume that p € ,, a > —1 and 1 < ¢ < 0.
Consider the operator @), defined for good enough functions h as follows:

/ / oy (L (@ y)h (y,t)dydtt-

LEMMA 5: Let B be a Banach space, « > —1,1 < g < 0o and p € §),. Then

195 (Qal)|ILr(0,00) < ClIPl L5 (0,00)
where A = L%((0, 00), dt/t).

Proof. Let h be in the dense set of compactly supported and continuous B-
valued functions defined on (0, 00) x (0,00). By using the semigroup property

we have

/Paxyczam()

<9 dt
=s /P“xy/ / 6tP“y, 2))h(z,t) =, dy

o° dt
t) 8 P& (y, z) P (x,y) dydz
Yo 0

/ st/ (z,
o dt
= st h(z,t)8 2Pu (7, 2) ju=t+sd2 ;
dt
/ / h(z, t) M*( z,s,z,t)tdz, x,s € (0, 00),

where

2
po

(17) M“(x,s;z,t) (T, 2) ju=tyss  T,%,8,1 € (0,00).

= st
88u2

In order to prove the lemma, it is enough to show that

To(h)(x,8) = /000 /000 M*(z,s;z,t)h(z,1t) itdz

is bounded from L% (0, co) into itself.



22 J. BETANCOR ET AL Isr. J. Math.

By the subordination formula (2) we have

V2

0% 02 u e~ o
P @) = oo (o [0 S Wete )
u

1 o U 3\ W
(18) 2\/77/0 Uz(anﬁz)e LW (2, 2)dv, u,z,z € (0,00).

Hence the estimates for the heat kernel W< contained in Lemma 3 drive us to

0? zotagme=3 0<z<a/2
o Py (,2) <COu™? | 5 / , u € (0,00).
Ou 2OT227972 0 20 < 2 < 00
Therefore
t zotigmai 0<z< /2
Mo sz<c, 4T 12 ste .0
(s+8)? | potiz70=3 22 <2< o0

We split T}, in three parts as follows;

To(h)(z, ) (/ /21 /M)/ Ma:vszt)h(zt)dtdz

=Ta1(h)(,5) + Ta2(h)(z,5) + Ta3(h) (2, 5).
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Then Minkowski’s and Jensen’s inequalities lead to

[T (P27, (0,00)

{/ { H/ / M, 552, (1) Uz
A { {// s} )
A _

|y /0 S Galads] L ae}
A { [ g/OgZ‘”ilh(z,t>|3dz]qi’*}§dz};
C{/f e
] 1.

1
CllRl 2 (0,00)-

| /\

IN

IN

IN

2% 2|z, 1) pdz

IN

CYJr2||h( M La ((0,00), 212

p P
dx}

In the last inequality we have taken into account that the Hardy-type operator
HO defined by

1 x o
A = rge [ 07 a(0)dy

is bounded from L"(0, c0) into itself when 1 < r(a 4+ 3/2) ([3, Lemma 3.1]).
In a similar way we obtain that

||Ta,3(h)||L’;(o,oo) < C||h||L’;,(0,oo)-
Now we shall deal with T, 2. By invoking again Lemma 3 one has
W (z,y) = WH(z,y) + Ny(z,9), z/2<y<2zandwv e (0,00),

with |Ny(z,9)] < Cly, z/2 < y < 2z and v € (0,00). Observe that the
integral

e 3
N(LL', 53 Zat) = St/ ,Li’ (u B )e_UZ/(4U)NU($’ Z) dU‘UZSJFt
0 v
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satisfies

1
[N(z,s;2,t)| < O(s—i—t)?z’ z/2 < z <2z, and s,t € (0,00).

Hence the operator

2z dt
h— stzth(z,t)tdz

is bounded from L% (0, c0) into itself. Then (see (17) and (18)) the operator Ty,
is bounded from L% (0, 00) into itself if and only if the operator Sy defined by

2z o'}
Seos) = [ [ M G@osinonn s
5 0

with M*H given by

62
M (z,8,2,t) = St8u2 Pf(m,z)‘u:tﬂ, x,z,t,8 € (0,00),

is bounded from L% (0, co) into itself.
We claim that

st
(19) |IMH (z,5;2,1)| < C(s+t+|x—z|)3’ s, t,x,z € (0,00).

w

To see the claim, we make the change of variable v = log ;™ 1+ and get

st P s+t ((s+1)? 3\ _iein?/(40
MH (2,8 2,1) = 2\/77/ o <( 4?}) 2)6 (s+1)*/(4 )WvH(z,z)dv

st s+t (s+t)? 3 —(s+1)?
“or (410g1+w *2)@(})(41 1+W)
(log%ﬂﬁ)
1—w?\ 2 1.1 2d
O R G ) P

=I(z,s;2,t) + Iz2(x, s; 2, t),
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where for I; and I, the integral is extended to (0, 1) and (é, 1), respectively.

12
Since log }i”“w“ ~ w, as w — 0, we can write

1
2 t t)? o2
|Il($75§zvt)|§Cst/ s+ <(5+) +1>e<;'>
0 w

w3

X exp(f i((:z: —2) +w(x+z)2))dw

w

2 1 2 1/(z—z)?
SC’st/2 s exp(fc(sJr ¥ ((z ?) +w(z+z)2))dw
0 w2 w 4 w
1
Y
SCst/2 15 exp(fc(s+t+|x 20) )dw, s,t,x,z € (0,00).
0 w2 w

Then by using [21, Lemma 1.1] we obtain

st

I iz, ) < C
|11 (552, )| < (5+t+ |0 —2)

s,t,x,z € (0,00).

On the other hand, since log }J_“i ~ —log(l —w), as w — 17, we get

1

1
|I3(z, s;2,t)] SCst/ 5 L
3 [og(1 —w)|z(1 —w)2

X exp ( (s+t)*+ (v — 2)2))dw

B c
[log(1 — w)
1
1
§C’st/ 5 )
b llog(1 — wyul# (1 - w)>
X exp(

st
(s+t+ |z —2])3

c
~ Jog(1 7w)|(s—|—t+ |x—z|)2)dw

s,t,x,z € (0,00).

The claim is proved. We now consider the operator

L)@ = [ M@ sz0o0. oea

Note that

2z
Sa(h)(z,s) = L L(z,2z)(h(z,-))(s) dz.

We define the operator

Sa(h)(z,s) = /000 L(z,z)(h(z,-))(s) dz.
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Now we claim that Ss is an A-valued Calderén—Zygmund operator. By Holder’s
inequality and (19) we get

1S2(h) (. )15 }

/000 L(z, z)(h(z,-))(s)dz

B

dt
/ MHxszt)h(zt) dz
B
1

<O{/ / s+t+|x |)3|h(zvt)|q3itdz}q
S VAV AT AR
</

1
q q
(s+t+|:cz|)3|h(2’t)|3dtd2} .

Then
q
1S2(P)1 70 0,00y < //// S+t+|$ |)3||h(z,t)||Bdtdzdsd:c
1
2 < h(z,t)||4 dsdx dtd
(20) <o [" [T [T [T L dsdedrs
<O T 0,00)-

On the other hand,

(21) <C /0

{

S VAR A 0
{
{

[

1

e o] tq—l d q
t
/0 (t+ [z — z2[)% }

1
> dt q C
<C < 0 .
< /0 (t+|:z:z|)q+1} Sle— 2 x,z € (0,00), x #£ 2
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Moreover,
puleo (=4 = vt )]

1,1 9 9
(@@= +u+2)%)

(22) SC\/lw exp ( - c(i}(m —2)2 +w(r + z)2)>, w € (0,1), z,z € (0,00).

Proceeding as above we get

:;‘i}(m—z)—i—w(m—i—z)‘exp(—

0 st

M (2, 5:2,1)| < C t 0,0).
Hence

0 C
23 H Lz, H < . 2,2 € (0,00), .
(23) P (x,2) Aoa S o= o2 z,z € (0,00), = # 2
Analogously,

0
24 |, L2  m,z€(0,00), £ 2.
(24) 95 (x,2) Aoa S o — 22 z,z € (0,00),  # z

Inequalities (20), (21), (23) and (24) allow us to use vector-valued Calderén—
Zygmund’s theory and therefore S, is a bounded operator from L (0, co) into
itself. Moreover, from the size condition on ||L(z, z)|| we deduce

x

H/O’z” L(z,z)(h(z,"))(s)dz §/02 |L(x, 2) || ass all 2 (2, )| adz

A
1 x

<) [ IhGe. ) ladz
Z Jo

an

d
H /:» Lz, 2)(h(z,))(s)dz

< [ 1L anallitz, ) adz

2x
o dz
<c [ Gl
2z z

Then, well-known results about Hardy operators ([16]) imply that the operators

A

h—s /0 L(z, 2)(h(z,-))(s)dz

and
oo

h — j L(z,2)(h(z,-))(s)dz
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are bounded from L% (0,00) into itself. Thus we have proved that S, and

then T, is bounded from L% (0, 00) into itself and the proof of the Lemma is
finished.

Now we can prove (ii) = (i). Let f € Lp/*(O,oo). We choose h €

p
LL

£((0,00),%9)

(0, 00) such that ||h||z» (0,00) = 1 and

LL((0,00),d¢/4)

195 (Do 000y = //<P“f< ),h(:c,t)>citdx.

We assume that f and h are smooth. Then it can be written as

93 Dl = [ [ (0t [ pm i) Yo

- / " (F(@), Qu(h)(@))da

S X O] P

Hence, if (ii) holds, by using Lemma 5 we get

lgg (Do 0.00) < CUS 27 (0,009 197 (Qu(P) | Lo(0,00) < Cllf N2z, 0,009

According to Theorem 1 this proves that B* has Lusin cotype ¢’. By using [25,

Corollary 2.6] we conclude that B has Lusin type q.

Finally, (i)« (iii) can be proved following similar arguments to these used

previously to establish (i) < (ii).
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