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ABSTRACT

We effect a complete study of the thermodynamic formalism, the entropy

spectrum of Birkhoff averages, and the ergodic optimization problem for a

family of parabolic horseshoes. We consider a large class of potentials

that are not necessarily regular, and we describe both the uniqueness of

equilibrium measures and the occurrence of phase transitions for nonregu-

lar potentials in this class. Our approach consists in reducing the problems

to the study of renewal shifts. We also describe applications of this ap-

proach to hyperbolic horseshoes as well as to noninvertible maps, both

parabolic (with the Manneville–Pomeau map) and uniformly expanding.

This allows us to recover in a unified manner several results scattered in

the literature. For the family of hyperbolic horseshoes, we also describe

the dimension spectrum of equilibrium measures of a class of potentials

that are not necessarily regular. In particular, the dimension spectra need

not be strictly convex.

1. Introduction

Our main objective is to effect a complete study of the thermodynamic formal-

ism and of the multifractal analysis of entropy spectra of Birkhoff averages for

a family of parabolic horseshoes. We also consider a large class of poten-

tials that are not necessarily regular, although this class includes, for example,

all Hölder continuous potentials. Roughly speaking, parabolic horseshoes are

invariant sets topologically equivalent to hyperbolic horseshoes, and thus to

(finite) Markov shifts, although they lack hyperbolicity (or at least uniform

hyperbolicity) at one or more points. We shall consider the model case of para-

bolic horseshoes for which the hyperbolicity breaks down at a single point. We

emphasize that even in this particular situation our results are substantially

different from those in the case of hyperbolic horseshoes.

We recall that in the case of (uniformly) hyperbolic horseshoes the thermo-

dynamic formalism is well-known (and in fact very well-behaved) for several

classes of sufficiently regular potentials. For example, the topological pres-

sure is analytic in the class of Hölder continuous functions, and thus there are no

phase transitions for this class. In another direction, the multifractal analysis of

conformal hyperbolic horseshoes is also well-established, and provides a detailed

study of the complexity of the level sets of invariant local quantities obtained

from a given dynamical system, such as Birkhoff averages, Lyapunov exponents,
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pointwise dimensions, and local entropies. The conformality means that the dy-

namics acts conformally both in the stable and unstable direction, such as in

saddle-type horseshoes on surfaces. In particular, it was shown for several fam-

ilies of conformal dynamical systems and Hölder continuous potentials that the

associated multifractal spectra (such as entropy spectra and dimension spectra)

are real analytic and strictly convex. We refer to [17] for a detailed discussion

and for a list of references.

The good behavior exhibited by hyperbolic horseshoes, in terms both of the

thermodynamic formalism and of the multifractal analysis, may break down

when we make the horseshoe nonhyperbolic (or at least nonuniformly hyper-

bolic, here understood in the sense of the existence of an invariant measure sup-

ported on the horseshoe having nonzero Lyapunov exponents). On the other

hand, it may also break down when we consider more general classes of (non-

regular) potentials. We discuss both situations in our paper and we show that

indeed they occur.

We now describe our results in some detail. First, we obtain a complete

description of the thermodynamic formalism for several families of maps, with

emphasis on the case of parabolic horseshoes. In particular, for a potential φ

in a certain class that includes the class of Hölder continuous functions, there

exists a critical value qc ∈ (0,∞] such that the pressure function q �→ P (qφ) is

real analytic and strictly convex for q ∈ (0, qc), and linear for q > qc (see Theo-

rem 14). Thus, for this class of potentials there are phase transitions. We also

describe the equilibrium measures of the potentials qφ. Furthermore, building

on results of Takens and Verbitskiy [28] we are able to study the multifractal

analysis of entropy spectra of Birkhoff averages. Namely, we show that there

exists a critical value that separates the entropy spectrum into two parts with

very different behavior, one real analytic and strictly convex, and the other lin-

ear (see Theorem 15). Finally, we also study the ergodic optimization problem

for parabolic horseshoes (see Theorem 16).

We emphasize that even though our main results are formulated for parabolic

horseshoes, including both the cases of regular and nonregular potentials, we

also obtain new results in the classical case of hyperbolic horseshoes (for

nonregular potentials). In addition, we describe applications of our approach

to the case of noninvertible dynamics, both parabolic (with the Manneville–

Pomeau map) and uniformly expanding (this allows us to recover in a unified

manner several results scattered in the literature as well as to obtain new results;
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the details are given in Section 6). In the case of hyperbolic horseshoes, we

also describe the dimension spectrum of equilibrium measures of a class of

potentials that are not necessarily regular (see Section 7). In particular, these

spectra need not be strictly convex.

Our strategy in the proofs is to reduce the problems to the study of renewal

shifts. The main idea is to consider dynamical systems that can be modeled by

a full shift on two symbols and from this obtain a renewal shift (by removing

the parabolic fixed point). We note that this has been accomplished before

in some settings, namely in the work of Sarig [27] on the Manneville–Pomeau

map, and in the work of Pesin and Zhang [20] for uniformly expanding maps of

the interval (describing both potentials with a unique equilibrium measure and

potentials exhibiting phase transitions). As it was the case in [20], the study of

the thermodynamic formalism for the renewal shifts carried out by Sarig in [27]

(see Section 2) is central to our analysis.

We also would like to comment on the relation of our work to results concern-

ing the thermodynamic formalism for other classes of maps. Over the last years

a great deal of attention has been given to the study of the thermodynamic for-

malism of one-dimensional real multimodal maps. Recent work by Bruin and

Todd [5, 6] and by Pesin and Senti [18] describe potentials for which there is

a unique equilibrium measure and such that the pressure function is real ana-

lytic in certain domains. Their proofs are based on the study of the so-called

induced maps, which can be modeled by full-shifts on countable alphabets. In

some cases their induced system and the one obtained from the renewal shift

coincide [5]. We should stress that the lack of expansiveness considered here

is milder than the one studied in [5, 6, 18]. Indeed, the maps studied in those

papers have critical points. It should also be pointed out that their description

of the thermodynamic formalism is not as complete as ours. An interesting fea-

ture relating both classes of systems is that the pressure function has the same

type of phase transitions. The reason for this is that in both cases the dynamics

can be divided into two parts: one which is hyperbolic and the other which

is not (the parabolic fixed point or the post-critical set). The difference is that

in a parabolic horseshoe there is only one invariant measure supported on the

nonhyperbolic part of the dynamics (namely, the atomic measure supported on

the parabolic fixed point), whereas in the multimodal case there can be plenty

of them (see [8]). The common feature that causes both systems to have the
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same type of phase transitions is that the measures supported on the nonhyper-

bolic part of the system have zero entropy. The case of rational maps is better

understood than the real case; see the works by Makarov and Smirnov [15] and

by Przytycki and Rivera-Letelier [25]. In the latter, the authors give a complete

description of the pressure function of certain natural potentials and the same

type of phase transition is observed. The reason is again that the invariant

measures supported on the nonhyperbolic part of the system have zero entropy.

2. Renewal shift

2.1. Preliminaries. Let S = {0, 1, 2, . . .} be a countable alphabet. Consider

the transition matrix A = (aij)i,j∈S with a0,0 = a0,n = an,n−1 = 1 for each

n ≥ 1 and with all other entries equal to zero. The renewal shift is the

(countable) Markov shift (ΣR, σ) defined by the transition matrix A, that is,

the shift map σ on the space

ΣR =
{
(xi)i≥0 : xi ∈ S and axixi+1 = 1 for each i ≥ 0

}
.

We equip ΣR with the topology generated by the cylinders sets

Ci0···in = {x ∈ ΣR : xj = ij for 0 ≤ j ≤ n}.

Given a function φ : ΣR → R, for each n ≥ 1 we set

Vn(φ) = sup {|φ(x) − φ(y)| : x, y ∈ ΣR, xi = yi for 0 ≤ i ≤ n− 1} .

We say that φ has summable variation if
∑∞

n=2 Vn(φ) <∞. Clearly, if φ has

summable variation then it is continuous. We say that φ is weakly Hölder

continuous if there exist B > 0 and θ ∈ (0, 1) such that Vn(φ) ≤ Bθn for every

n ≥ 2. Clearly, any weakly Hölder continuous function has summable variation.

We recall the notion of topological pressure introduced by Sarig in [26]. Let

φ : ΣR → R be a function with summable variation. The Gurevich pressure

of φ is defined by

PG(φ) = lim
n→∞

1

n
log

∑
σnx=x

exp

( n−1∑
i=0

φ(σix)

)
1Ci0

(x),

where 1Ci0
denotes the characteristic function of Ci0 . We note that PG(φ) does

not depend on the choice of i0. The Gurevich pressure satisfies the following
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variational principle (see [26]). Let MR be the set of σ-invariant probabil-

ity measures on ΣR, and let hμ(σ) be the metric entropy with respect to the

measure μ.

Proposition 1: If φ : ΣR → R has summable variation and supφ <∞, then

(1) PG(φ) = sup

{
hμ(σ) +

∫
ΣR

φdμ : μ ∈ MR

}
.

A measure μ ∈ MR at which the supremum in (1) is attained is called an

equilibrium measure for φ. We note that for arbitrary countable shifts we

must add the integrability assumption − ∫
ΣR

φdμ < ∞ in (1), with the single

purpose of avoiding expressions of the type ∞ − ∞. In the particular case of

the renewal shift, any measure μ ∈ MR has entropy hμ(σ) ≤ log 2, and thus

the integrability assumption is not needed.

2.2. Induced system and class R. The induced system (ΣI , σ) is defined

as the full-shift on the new alphabet {C0n(n−1)(n−2)···1 : n ≥ 1}. The first return
map to the cylinder C0 is defined by

r(x) = 1C0(x) inf{n ≥ 1 : σnx ∈ C0}.
Given a function φ : ΣR → R with summable variation we define a new function

φ : ΣI → R by

φ(x) =

r(x)−1∑
k=0

(φ ◦ σk ◦ π)(x),

where π : ΣI → C0 is defined by π(Ca0Ca1 · · · ) = (a0a1 · · · ). We now describe

the class of functions that we will consider in the thermodynamic formalism.

Let R be the class of functions φ : ΣR → R such that:

1. φ has summable variation and is bounded from above;

2. φ has finite Gurevich pressure;

3. the induced map φ is weakly Hölder continuous.

We observe that R includes the class of Hölder continuous functions. Neverthe-

less, there are non-Hölder continuous functions that belong to R. Indeed, Sarig

[27] constructed examples of functions in R that are not Hölder continuous.

In fact, he constructed examples of functions exhibiting all possible modes of

recurrence. We refer to his paper for explicit examples. We note that the first

to describe the thermodynamic formalism for some non-Hölder potentials for

the renewal shift was Hofbauer [9].
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Sarig described the thermodynamic formalism for the class R. Set

(2) M =M(φ) = sup

{∫
ΣR

φdμ : μ ∈ MR

}
.

Proposition 2 ([27]; see also [10]): Let (ΣR, σ) be the renewal shift. For each

φ ∈ R there exists qc ∈ (0,+∞] such that:

1. The function q �→ PG(qφ) is strictly convex and real analytic in (0, qc) and

linear in (qc,+∞), with PG(qφ) =Mq. At qc, the function is continuous

but not analytic.

2. For q ∈ (0, qc) there exists a unique equilibrium measure μq for qφ, while

for q > qc there is no equilibrium measure for qφ.

We note that the potential qcφ can have an equilibrium measure (the so-called

positive recurrent case), an infinite σ-finite “equilibrium” measure (null recur-

rent case), or none of the above (transient case). To help determine whether qc

is finite or infinite, we set

An = exp sup

{
n−1∑
i=0

φ(σi(x)) : x ∈ C0(n−1)···0

}
.

For each q ∈ R, let R(q) be the radius of convergence of the series

Fq(ξ) =

∞∑
n=1

Aq
nξ

q.

If Fq(R(q)) is infinite for every q, then qc = ∞. If there exists q > 0 such that

Fq(R(q)) < 1, then qc < ∞. We emphasize that it might happen that neither

of the two alternatives holds.

We emphasize that in Proposition 2 we only discuss the behavior of the

pressure function q �→ PG(qφ) for q > 0. Under an additional assumption on φ

we are able to consider an arbitrary q ∈ R. Set

(3) m = m(φ) = inf

{∫
ΣR

φdμ : μ ∈ MR

}
.

Proposition 3: Let (ΣR, σ) be the renewal shift. For each bounded φ ∈ R
there exist q+c ∈ (0,+∞] and q−c ∈ [−∞, 0) such that:

1. q �→ PG(qφ) is strictly convex and real analytic in (q−c , q
+
c ).

2. PG(qφ) = mq for q < q−c , and PG(qφ) =Mq for q > q+c .

3. At q−c and q+c , the function q �→ PG(qφ) is continuous but not analytic.
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4. For each q ∈ (q−c , q
+
c ) there is a unique equilibrium measure μq for qφ.

5. For each q 	∈ [q−c , q+c ] there is no equilibrium measure for qφ.

6. The critical values q+c and q−c are never simultaneously finite.

Proof. By Proposition 1 we readily obtain the following.

Lemma 1: If φ ∈ R is bounded, then −φ ∈ R.

Thus, we can apply Proposition 2 to φ and −φ to obtain q−c and q+c . State-

ments 1–5 are also direct consequences of Proposition 2. It remains to prove

Statement 6. Assume on the contrary that −∞ < q−c < q+c < ∞. For each

n ≥ 1, let pn = 0n(n− 1) · · · 1 ∈ ΣR be the periodic point of period n + 1 in

the cylinder set C0. We consider the invariant measure

(4) νn =
1

n

n−1∑
k=0

δσkpn
,

where δσkpn
is the atomic measure supported at σkpn. Let also

Rn = {x ∈ ΣR : r(x) = n} .
By the discriminant theorem in [27] and following [10], since q+c <∞ we have

M = lim sup
n→∞

1

n
log

∑
σnx=x

exp

( n−1∑
i=0

φ(σix)

)
1Rn(x)

= lim sup
n→∞

1

n
log

∑
σnx=x

exp

(
n

∫
ΣR

φdνn

)
1Rn(x)

= lim sup
n→∞

1

n
log exp

(
n

∫
ΣR

φdνn

)
= lim sup

n→∞

∫
ΣR

φdνn.

Similarly, since −∞ < q−c we have

−m = lim sup
n→∞

1

n
log

∑
σnx=x

exp

( n−1∑
i=0

−φ(σix)

)
1Rn(x)

= lim sup
n→∞

1

n
log exp

(
n

∫
ΣR

−φdνn
)

= − lim sup
n→∞

∫
ΣR

φdνn = −M.

Therefore, M = m. Hence, there exist q1 < 0 and q2 > 0 with PG(q1φ) =Mq1

and PG(q2φ) =Mq2. But then the pressure function would not be convex, since

PG(0) = log 2. This contradiction proves Statement 6.
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We emphasize that in view of Statement 6 at least one of the critical values

q−c and q+c is not finite.

As the following example shows, it is possible that φ ∈ R but −φ /∈ R. Let

φ : ΣR → R be the locally constant function such that

φ|Cn = −(n+ 1) for each n ≥ 0.

Clearly, φ is weakly Hölder. In particular, φ has summable variation. Moreover,

φ ≤ 0 and PG(φ) is finite. Also, φ is weakly Hölder. Therefore, φ ∈ R. We now

show that PG(−φ) = ∞, which implies that −φ /∈ R. For each n ≥ 1, let νn be

the σ-invariant measure in (4). By the variational principle in Proposition 1 we

have

PG(−φ) = sup

{
hμ(σ) −

∫
ΣR

φdμ : μ ∈ MR

}
≥ −

∫
ΣR

φdνn.

Since

−
∫
ΣR

φdνn =
1

n

n−1∑
i=0

φ|Ci =
1

n

n−1∑
i=0

(i + 1) =
n+ 1

2
,

letting n → ∞ we obtain PG(−φ) = ∞. Therefore, −φ /∈ R. We emphasize

that the potential φ is not bounded from below.

2.3. Embedding in a finite full shift. Let now (Σ+
2 , σ) be the one-sided

full-shift on the alphabet {0, 1}. There exists a topological conjugacy between

the renewal shift (ΣR, σ) and (Σ+
2 \

⋃∞
i=0 σ

−i(0), σ), where 0 = (000 · · · ). Indeed,
denote by (0 · · · 01)n the cylinder C0···01 with n zeros, and consider the alphabet

{(0 · · · 01)n : n ≥ 1} ∪ {C1}. The possible transitions on this alphabet are

(0 · · · 01)n → (0 · · · 01)n−1, C1 → C1, and C1 → (0 · · · 01)n for n ≥ 1.

Note that this is simply a recoding of (Σ+
2 \⋃∞

i=0 σ
−i(0), σ).

3. Hyperbolic approximations

Let f : M →M be a continuous map of the compact metric spaceM . We denote

by P (φ) the classical topological pressure of a continuous function φ : M → R.

We recall that it satisfies the variational principle: for each continuous function



356 LUIS BARREIRA AND GODOFREDO IOMMI Isr. J. Math.

φ : M → R,

P (φ) = sup

{
hμ(f) +

∫
M

φdμ : μ ∈ M
}

= sup

{
hμ(f) +

∫
M

φdμ : μ ∈ ME

}
,

(5)

where M is the set of f -invariant probability measures on M , and ME ⊂ M
is the subset of ergodic measures.

Let MH ⊂ M be a subset satisfying the following property:

H. For every μ ∈ ME \MH there exists a sequence (μn)n≥1 ⊂ MH such

that μn → μ (in the weak* topology) and hμn(f) → hμ(f) as n→ ∞.

We note that Property H is an assumption only on the system and not on the

potential.

Theorem 4 (Hyperbolic variational principle): If Property H holds, then for

every continuous function φ : M → R,

(6) P (φ) = sup

{
hμ(f) +

∫
M

φdμ : μ ∈ MH

}
.

Proof. By the variational principle it is clear that

P (φ) ≥ sup

{
hμ(f) +

∫
M

φdμ : μ ∈ MH

}
.

To prove the reverse inequality, let μ ∈ ME \MH . By Property H there exists

a sequence (μn)n≥1 ⊂ MH such that μn → μ and hμn(f) → hμ(f) as n → ∞.

Therefore,

hμn(f) +

∫
M

φdμn → hμ(f) +

∫
M

φdμ.

Hence, by (5),

P (φ) ≤ sup

{
hμ(f) +

∫
M

φdμ : μ ∈ MH

}
.

This completes the proof.

Let now f : M →M be a C1+ε diffeomorphism of the compact manifold M .

We say that a measure μ ∈ M is hyperbolic if μ-almost every point x ∈M has

nonzero Lyapunov exponents, i.e., for μ-almost every x ∈M and every nonzero

v ∈ TxM ,

lim sup
n→+∞

1

n
log ‖dxfnv‖ 	= 0.
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When MH = {μ ∈ M : μ is hyperbolic}, i.e., the set of hyperbolic invariant

measures, Property H essentially means that the nonhyperbolic parts of the

dynamics can be arbitrarily approximated by their hyperbolic parts. We now

show that for C1+ε diffeomorphisms satisfying Property H when MH is the set

of hyperbolic measures, the topological pressure can be approximated by the

topological pressure on hyperbolic horseshoes.

Theorem 5 (Approximation property): Let f : M → M be a C1+ε diffeomor-

phism of a compact manifold. If Property H holds with respect to the set MH

of hyperbolic f -invariant probability measures on M , then

P (φ) = sup {PΛ(φ) : Λ ⊂M is a hyperbolic horseshoe} ,
where PΛ is the topological pressure computed with respect to f |Λ.
Proof. Since Property H holds, by Theorem 4 we have the identity in (6). In

[12], Katok proved that for each hyperbolic measure μ ∈ MH there exists a

sequence of invariant measures μn supported on hyperbolic horseshoes Λn such

that

hμn(f) → hμ(f) and

∫
M

φdμn →
∫
M

φdμ

as n→ ∞. Therefore, the classical variational principle in (5) implies that

hμ(f) +

∫
M

φdμ ≤ sup
Λ

{
hν(f) +

∫
M

φdν : supp ν ⊂ Λ

}
= sup

Λ
PΛ(φ),

where the supremum is taken over all hyperbolic horseshoes Λ ⊂M . Here supp ν

denotes the support of the measure. It follows from (6) that P (φ) ≤ supΛ PΛ(φ).

On the other hand, it is clear that PΛ(φ) ≤ P (φ), and we obtain the desired

identity.

As the following example shows, Property H is essential in Theorem 4. Let

f : M → M be a C1+ε diffeomorphism of a sphere. We assume that there

exists an f -invariant set Λ ⊂ M topologically conjugated to the full-shift on

two symbols. We also assume that for some open set U ⊂ M containing Λ

there is a parabolic fixed point p /∈ U which is the only f -invariant set that

intersects M \ U . Let φ : M → R be a Hölder continuous function such that

φ|Λ = − log 2, φ(p) = 1, and φ|(M \ {p}) < 1.

Let again MH be the set of hyperbolic f -invariant probability measures on M .

Note that if μ ∈ MH then suppμ ⊂ Λ. Moreover, htop(f) = log 2, and thus
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hμ(f) ≤ log 2 for every μ ∈ M. This implies that

sup

{
hμ(f) +

∫
M

φdμ : μ ∈ MH

}
≤ log 2− log 2 = 0.

On the other hand, for the atomic measure δp ∈ M supported at p we have

hδp(f) +

∫
M

φdδp = 1.

Therefore,

P (φ) = sup

{
hμ(f) +

∫
M

φdμ : μ ∈ M
}

≥ 1 > 0

≥ sup

{
hμ(f) +

∫
M

φdμ : μ ∈ MH

}
.

This shows that the hyperbolic variational principle in (5) does not hold for the

diffeomorphism f . On the other hand, the set of hyperbolic measures is not

dense in M. Indeed, for example, for every sequence (μn)n≥1 ⊂ MH ,

lim sup
n→∞

∫
M

φdμn ≤ − log 2 < 1 =

∫
M

φdδp.

In particular, Property H does not hold.

4. Symbolic models

4.1. The model and its thermodynamic formalism. Let f : M → M be

a C1+ε transformation of the smooth manifold M . We assume that there is a

compact f -invariant set X ⊂M such that:

1. ‖dxf‖ > 1 for every x ∈ X \ {p} and f(p) = p;

2. there is a topological semiconjugacy g : Σ+
2 → X between the two dy-

namics (Σ+
2 , σ) and (f,X).

Consider the coding map

χ : ΣR → X \
∞⋃
i=0

f−i(p)

defined by χ = g|ΣR. We say that a continuous function φ : X → R is in the

classRX if the composition ϕ := φ◦χ : ΣR → R is in the classR (see Section 2.2

for the definition).

We note that since φ is bounded, we have −ϕ ∈ R. In view of Proposi-

tion 3, there is at most one critical value qc ∈ R at which the pressure function
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undergoes a phase transition. For simplicity of the exposition, we always as-

sume in what follows that q−c = −∞, or equivalently that q+c = qc. We remark

that all statements and results in the rest of the paper are valid, with obvious

modifications, under the alternative assumption q+c = +∞.

Applying Proposition 2 we can describe the thermodynamic formalism of

potentials in the class RX .

Theorem 6: For each φ ∈ RX , there exists qc ∈ (0,∞] such that:

1. The pressure function q �→ P (qφ) is strictly convex and real analytic

in (−∞, qc). Moreover, for each q ∈ (−∞, qc) there exists a unique

equilibrium measure μq for qφ (different from the atomic measure δp

supported at p).

2. The pressure function is linear in (qc,∞), with P (qφ) = Mq, and δp is

the equilibrium measure for every qφ when q > qc.

Proof. Let MX be the set of f -invariant probability measures on X . Note

that m �→ m ◦ χ−1 is a bijection between the sets MR (see Section 2.1) and

MX \ {δp}. Thus, the statement in the theorem will follow from Proposition 3

after showing that

P (φ) = sup

{
hμ(f) +

∫
X

φdμ : μ ∈ MX \ {δp}
}
.(7)

Notice that this is the identity in (6) when MH = MX \ {δp}. Thus, in view of

Theorem 4, to establish (7) it is sufficient to show that Property H in Section 3

holds for this set of measures.

For each n ≥ 1, let pn = 0n(n− 1) · · · 1 ∈ ΣR be the periodic point of period

n+ 1 in the cylinder set C0. Let also xn = χ(pn) ∈ X and define the measure

μn =
1

n

n−1∑
k=0

δfkxn
,

where δfkxn
is the atomic measure supported at fkxn. We note that μn ∈

MH = MX \ {δp} for each n. Moreover, if 1χ(Cm) denotes the characteristic

function of the set χ(Cm), then for each m ∈ S and each sufficiently large n ∈ S

we have ∫
X

1χ(Cm)dμn =
1

n
→ 0 as n→ ∞.

Therefore, any accumulation point ν of the sequence of measures (μn)n≥1 is

such that ν(χ(Cm)) = 0 for every m ∈ S. Since the sets χ(Cm) form a cover of
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X \ {p} we have that ν(X \ {p}) = 0. Hence, ν /∈ MX \ {δp} = MH , and the

sequence (μn)n≥1 does not converge in MH . But since MX is compact (recall

that the space X is compact) we have that

lim
n→∞μn = δp.

Moreover, since hμn(f) = hδp(f) = 0 for every n ≥ 1, Property H holds and

we can apply Theorem 4 to obtain equality (7). By the bijection between the

spaces MR and MX \ {δp}, it follows from Proposition 1 that the functions

PG and P coincide, i.e., that PG(φ ◦ χ) = P (φ) for every φ ∈ RX . The desired

statement is now an immediate consequence of Proposition 3.

We also discuss the differentiability of the function q �→ P (qφ) at q = qc.

Theorem 7: Let qc <∞. The function q �→ P (qφ) is differentiable at qc if and

only if δp is the only equilibrium measure for qcφ.

Proof. By the continuity of the pressure function we have P (qcφ) = Mqc, and

thus (see Theorem 6) δp is an equilibrium measure for qcφ. Let us assume

that there exists a measure μ ∈ MX with entropy hμ(f) > 0, which is also an

equilibrium measure for qcφ. We note that if ν were an equilibrium measure for

qcφ, different from δp but with zero entropy, then there would exist an optimal

measure for the symbolic representation of φ in the renewal shift. But this

would contradict Theorem 1.1 in [10]. By Theorem 6, we have

qcM = qc

∫
X

φdδp = P (qcφ) = hμ(f) + qc

∫
X

φdμ.

Thus, since qc > 0 we obtain

M =

∫
X

φdδp >

∫
X

φdμ.

Furthermore, since for q > qc the pressure function is linear we have

lim
q→q+c

∂P (qφ)

∂q
=M.

Take now q < qc. We obtain

P (qcφ)− P (qφ) ≤ hμ(f) + qc

∫
X

φdμ− hμ(f)− q

∫
X

φdμ,

and hence
P (qcφ)− P (qφ)

qc − q
≤

∫
X

φdμ < M.
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Therefore,

lim
q→q−c

∂P (qφ)

∂q
< M = lim

q→q+c

∂P (qφ)

∂q
,

and the pressure function is not differentiable at qc.

Now we assume that q �→ P (qφ) is not differentiable at qc. We will produce

an equilibrium measure for qcφ with positive entropy. Since for q ∈ (0, qc) the

map is differentiable (it is analytic), this is equivalent to

lim
q→q−c

∂P (qφ)

∂q
< M.

By the formula for the derivative of the pressure (which we can use in the

interval (0, qc)), this is the same as

(8) lim
q→q−c

∂P (qφ)

∂q
= lim

q→q−c

∫
X

φdμq < M,

where μq is the equilibrium measure for qφ. Let μ be any accumulation point

of the family {μq}q≥0 when q → q−c . Since the entropy map ν �→ hν(f) is upper

semi-continuous (notice that the map f is expansive on X \ {p}) we have that

(9) lim
q→q−c

(
hμq (f) + q

∫
X

φdμq

)
≤ hμ(f) + qc

∫
X

φdμ.

Furthermore, since the pressure function is continuous,

lim
q→q−c

(
hμq (f) + q

∫
X

φdμq

)
= lim

q→q−c
P (qφ) = P (qcφ).

Combined with (9) this shows that μ is an equilibrium measure for qcφ, and

(10) P (qcφ) =Mqc = hμ(f) + qc

∫
X

φdμ.

By (8) we have that ∫
X

φdμ = lim
q→q−c

∫
X

φdμq < M,

which together with (10) implies that hμ(f) > 0.

We note that the statement in Theorem 7 was proved by Urbański in [29] for

some Manneville–Pomeau type maps with the potential −t log |f ′|. Some of our

arguments follow his proof.
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Corollary 8: Let qc < ∞. If there exists an equilibrium measure μ for qcφ

with positive entropy, then

A :=

∫
X

φdμ = lim
q→q−c

∂P (qφ)

∂q
< M.

Proof. By the proof of Theorem 7, the measure μ is an accumulation point of

the family {μq}q≥0 when q → q−c , where μq is the equilibrium measure for qφ.

It follows from (8) that

lim
q→q−c

∂P (qφ)

∂q
= lim

q→q−c

∫
X

φdμq =

∫
X

φdμ < M,

as desired.

4.2. Multifractal analysis. Let f : X → X be as in Section 4.1. We now

discuss the multifractal analysis of the Birkhoff averages of a function φ ∈ RX .

We recall that we are assuming that q−c = −∞ (see Section 4.1). For each α ∈ R

we consider the level set

Jα =

{
x ∈ X : lim

n→∞
1

n

n−1∑
i=0

φ(f ix) = α

}
,

and the irregular set

(11) J ′ =
{
x ∈ X : the limit lim

n→∞
1

n

n−1∑
i=0

φ(f ix) does not exist

}
.

The associated multifractal decomposition is the disjoint union

X =

( ⋃
α∈R

Jα

)
∪ J ′.

The entropy spectrum of the function φ is defined by

(12) E(α) = h(f |Jα),
where h(f |Z) denotes the topological entropy of f on the set Z (we note that

Z need not be compact nor invariant; see, for example, [17, Chapter 4] for

the definition of topological entropy in this general situation). We describe the

entropy spectrum in this setting. We recall the constantsM in (2) and m in (3)

(with R replaced by X).

Theorem 9 (Multifractal analysis): For a function φ ∈ RX with P (φ) = 0 the

following properties hold:
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1. If qc = ∞, then E is strictly convex and real analytic.

2. If qc < ∞, then E is strictly convex and real analytic on the interval

(m,A), and linear with slope qc on the interval (A,M), where

A := lim
q→q−c

∂P (qφ)

∂q
.

Proof. The proof can be obtained from work of Takens and Verbitskiy combined

with Theorem 6. Namely, it is shown in [28, Theorem 6.2] that

E(α) = inf{P (qφ)− qα : q ∈ R},
for systems with the specification property (that we have for free because we

assume the dynamics to be topologically conjugated to the full-shift), and for

which the metric entropy is upper semi-continuous (that is also satisfied in

our setting since our maps are expansive). Therefore, the result follows from

the description of the function q �→ P (qφ) in Theorem 6. In particular, when

qc < ∞ the behavior of E changes at q = A: the result is clear for the interval

(m,A) (see [1]), and for α ∈ (A,M) we prove the following statement.

Lemma 2: For qc <∞ and α ∈ (A,M) we have

(13) inf {P (qφ)− qα : q ∈ R} = P (qcφ)− qcα.

Proof. Let α ∈ (A,M). Assume first that q > qc. We have

−q(α−M) > −qc(α−M), that is, qM − qα > qcM − qcα.

Therefore,

P (qφ)− qα > P (qcφ)− qcα,

and

inf {P (qφ)− qα : q ≥ qc} = P (qcφ)− qcα.

It remains to prove that

inf {P (qφ)− qα : q ≤ qc} ≥ P (qcφ)− qcα.

Let q < qc and note that P (qcφ)− qcα ≤ P (qφ) − qα is equivalent to

P (qcφ)− P (qφ)

qc − q
≤ α.

Assume by way of contradiction that

(14) β :=
P (qcφ)− P (qφ)

qc − q
> α.
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Since the pressure function q �→ P (qφ) is analytic on (q, qc), by the mean value

theorem there exists q∗ ∈ (q, qc) such that ∂P (q∗φ)/∂q = β. It follows from

(14) that

A = lim
q→q−c

∂P (qφ)

∂q
< α < β =

∂P (q∗φ)
∂q

.

On the other hand, the pressure function is convex, and q �→ ∂P (qφ)/∂q is an

increasing function (strictly increasing on the interval (0, qc)), that is,

∂P (q∗φ)
∂q

< lim
q→q−c

∂P (qφ)

∂q
.

This contradiction establishes the identity in (13).

This completes the proof of the theorem.

We recall that for any (uniformly) hyperbolic dynamical system and any

Hölder potential, the entropy spectrum is strictly convex and real analytic.

Theorem 9 shows that the behavior of the entropy spectrum can be very different

in our setting.

We note that it is possible to have qc <∞ with A =M . This happens when

the pressure function q �→ P (qφ) is differentiable (see Theorem 7). In this case

the interval [A,M ] is degenerate and consists of a single point. On the other

hand, if the pressure function is not differentiable at qc, then the interval (A,M)

is nondegenerate.

We now consider the irregular set J ′ in (11).

Theorem 10: The set J ′ has full topological entropy, i.e., h(f |J ′) = h(f).

Proof. For each n ∈ N, set

Δn = {(xi)i≥0 ∈ ΣR : xi ∈ {0, . . . , n}} .
Then σ|Δn is a finite Markov shift. Setting Λn = χ(Δn), by the approximation

property of the topological entropy (see [26]) we obtain

h(f) = lim
n→∞h(f |Λn).

It follows from work of Barreira and Schmeling in [3] that each set J ′ ∩ Λn

carries full topological entropy, i.e.,

h(f |(J ′ ∩ Λn)) = h(f |Λn).
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Therefore,

h(f |J ′) ≥ lim
n→∞ h(f |(J ′ ∩ Λn)) = lim

n→∞ h(f |Λn) = h(f),

and the desired result follows.

A measure μ ∈ MX is called a full measure for the level set Jα if μ(Jα) = 1

and E(α) = hμ(f).

Theorem 11 (Full measures): Let φ ∈ RX be such that P (φ) = 0.

1. If qc = ∞, then for each α ∈ (m,M) there exists a full measure for Jα.

2. If qc <∞, then for each α ∈ (m,A) there exist a full measure for Jα and

for each α ∈ (A,M) there are no full measures for Jα.

Proof. Assume first that qc = ∞ and α ∈ (m,M). In this case the result

follows from classical techniques in multifractal analysis (see [17]) together with

the conditional variational principle established in [28] (with a mistake corrected

in [21]), i.e., the identity

E(α) = sup

{
hμ(f) : μ ∈ MX and

∫
X

φdμ = α

}
.

Indeed, denote by μα the equilibrium measure of qφ where q ∈ R is chosen in

such a way that ∂P (qφ)/∂q = α. Then E(α) = hμα(f) (see [28] and [11]), and

since the measure μα is ergodic we have μα(Jα) = 1. The same argument can

be used when qc <∞ and α ∈ (m,A).

Assume now that qc <∞ and α ∈ (A,M). We have

E(α) = sup

{
hμ(f) : μ ∈ MX and

∫
X

φdμ = α

}
= inf {P (qφ)− qα : q ∈ R} = P (qcφ) − qcα.

The first two identities follow again from [28]. The last identity was established

in Lemma 2.

Assume now that there exists a measure μα ∈ MX such that E(α) = hμα(f)

and
∫
X φdμα = α. Then

hμα(f) + qc

∫
X

φdμα = P (qcφ)− qcα+ qcα = P (qcφ),

and μα is an equilibrium measure for qcφ. Note that qcφ has at most two ergodic

equilibrium measures: δp and possibly another measure, say μ, corresponding

to the projection of the (unique) equilibrium measure of qc(φ◦χ) on the renewal
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shift (note that it might happen that in the renewal shift there is no equilibrium

measure). We have
∫
X φdδp = M (see Theorem 6) and

∫
X φdμ = A (see

Corollary 8). This implies that μα = cδp+(1−c)μ for some c ∈ (0, 1). Therefore,

μα(Jα) = 0, and μα is not a full measure. This means that there are no full

measures for Jα.

4.3. Ergodic optimization. We continue to consider f : X → X as above,

and let φ ∈ RX with q−c = −∞. Set

α(φ) = sup

{∫
X

φdμ : μ ∈ MX

}
.

A measure m ∈ MX is said to be φ-optimal if
∫
X φdm = α(φ). A basic

problem in ergodic optimization is to prove the existence of optimal measures

and to describe their properties. This study has been carried out for Markov

shifts of renewal type in [10]. Applying these results to our setting we obtain

the following.

Theorem 12 (Ergodic optimization): Let φ ∈ RX .

1. If qc = ∞, then any accumulation point of {μq}q≥0 as q → ∞, where μq

denotes the equilibrium measure for qφ, is a φ-optimal measure.

2. If qc <∞, then α(φ) =M , where q �→ P (qφ) =Mq for q > qc. Moreover,

δp is a φ-optimal measure.

Proof. Note that the space MX is compact and hence every function φ ∈ RX

has optimal measures. The first statement follows directly from Theorem 1.1

in [10] and from the symbolic model for f in terms of the renewal shift.

For the second statement recall that there exists a bijection between the

spaces MR and MX \ {δp}. Furthermore, for the symbolic representation of

f : X \{p} → X \{p} there are no φ-optimal measures (see [10]). Together with

the fact that MX is compact, this readily implies the desired result.

5. Parabolic horseshoes

In this section we study parabolic horseshoes and show that the corresponding

versions of Theorems 6, 9 and 12, respectively concerning the thermodynamic

formalism, multifractal analysis, and ergodic optimization, hold for this class

of dynamical systems. The statements are obtained directly from the above

theorems after an appropriate preparation.
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Let S ⊂ R
2 be a closed topological disk with smooth boundary and let

f : S → R
2 be a C1+ε diffeomorphism. We assume that:

1. f(S) ∩ S consists of two disjoint topological disks R0 and R1;

2. f(S) \ S consists of three disjoint topological disks R2, R3, R4.

We also assume that there exist one-dimensional transverse foliations Wu and

W s of f(S) ∪ S with connected smooth leaves such that:

3. if x ∈ Ri then the sets Wu(x) ∩Ri and W
s(x) ∩Ri are connected;

4. for each x, y ∈ Ri the set Wu(x) ∩W s(y) is a singleton, denoted [x, y];

5. for every x ∈ Ri the map (W s(x) ∩Ri)× (Wu(x) ∩Ri) → Ri defined by

(y, z) �→ [y, z] is a homeomorphism;

6. for every x ∈ Ri we have

f(W s(x) ∩Ri) ⊂W s(fx) and f−1(Wu(x) ∩Ri) ⊂Wu(f−1x).

We denote by duxf and dsxf , respectively, the derivatives

duxf : TxW
u(x) → TfxW

u(fx) and dsxf : TxW
s(x) → TfxW

s(fx),

and we assume that there exists a fixed point p ∈ S such that:

7. |dsxf | ≤ 1 for x ∈ S, and |dsxf | < 1 for x ∈ S \Wu(p);

8. |duxf | ≥ 1 for x ∈ S, and |duxf | > 1 for x ∈ S \W s(p).

We note that Urbański and Wolf in [30] considered a related class of para-

bolic horseshoes although with very different purposes in mind. Conditions 1–6

are the same as those considered by them, while our Conditions 7–8 are more

general. More precisely, we allow the fixed point p to have derivative equal to 1

simultaneously in the stable and unstable directions, and we make no assump-

tion on the type of parabolic point: it is required in [30] that

f−1(x) = x− sgn(x)a|x|c+1 + o(|x|c+1)

for some constants a, c > 0, with x in some parametrization of Wu(p).

Let X be the maximal invariant set of f contained in S. Note that the

parabolic horseshoe (f,X) can be coded by a two-sided full-shift on two symbols

(Σ2, σ). Indeed, if (xn)n∈Z ∈ Σ2 then the set⋂
n∈Z

f−n(Rxn)
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is a singleton. We now translate the problems for the two-sided full-shift into

corresponding ones for the one-sided full-shift. Fortunately, there exists a stan-

dard procedure for this (see for example [1, Appendix A]). Two continuous

functions φ, γ ∈ C(Σ2) are said to be cohomologous if there exists a continu-

ous function ψ ∈ C(Σ2) such that φ = γ + ψ ◦ σ − ψ. The following statement

is due to Sinai (see [16, Proposition 1.2]) for Hölder continuous functions and

to Coelho and Quas [7] for functions of summable variation.

Proposition 13: If φ ∈ C(Σ2) has summable variation, then there exists

γ ∈ C(Σ2) cohomologous to φ such that γ(x) = γ(y) whenever xi = yi for all

i ≥ 0 (that is, γ depends only on the future coordinates).

Furthermore, if the function φ has summable variation, then the same hap-

pens with γ. We note that γ can be canonically identified with a function

ϕ : Σ+
2 → R, and PΣ2(φ) = PΣ+

2
(ϕ). Therefore, the results obtained for the

renewal shift can be translated to the two-sided shift, and thus also to the

parabolic horseshoes. Indeed, the class of potentials that we consider are the

functions in C(Λ) whose lift φ ∈ C(Σ2) to the two-sided full-shift on two symbols

is cohomologous to a function in RX . We note that from the above discussion

the regularity assumptions are the same as those in the one-sided situation.

For completeness we formulate the statements. Let f : X → X be a parabolic

horseshoe as above

Theorem 14 (Thermodynamic formalism): For each function φ ∈ RX there

exists qc ∈ (0,∞] such that:

1. The pressure function q �→ P (qφ) is strictly convex and real analytic

on (−∞, qc). Moreover, for each q ∈ (−∞, qc) there exists a unique

equilibrium measure μq for qφ (different from the atomic measure δp).

2. The pressure function is linear on (qc,∞), with P (qφ) =Mq. Moreover,

δp is the equilibrium measure for qφ for each q > qc.

Theorem 15 (Multifractal analysis): Let φ ∈ RX be such that P (φ) = 0.

1. If qc = ∞, then E is strictly convex and real analytic.

2. If qc < ∞, then E is strictly convex and real analytic on the interval

(m,A), and linear with slope qc on the interval (A,M), where A =

limq→q−c ∂P (qφ)/∂q.

Theorem 16 (Ergodic optimization): Let φ ∈ RX .
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1. If qc = ∞, then any accumulation point of {μq}q≥0 as q → ∞, where μq

denotes the equilibrium measure for qφ, is a φ-optimal measure.

2. If qc <∞, then α(φ) =M , where P (qφ) =Mq for q > qc. Moreover, δp

is a φ-optimal measure.

6. Further applications

We discuss here other classes of dynamical systems to which the results in

Section 2 can also be applied. This also allows us to recover in a unified manner

several results scattered in the literature.

6.1. Parabolic expanding maps. The Manneville–Pomeau map [23] is the

interval map T : [0, 1] → [0, 1] defined by T (x) = x + x1+α (mod 1), for some

α > 0. It has two branches and 0 is a parabolic fixed point. Furthermore, T can

be modeled by the full-shift on two symbols, and removing 0 and its preimages

the map can be modeled by the renewal shift. The description of the ther-

modynamic formalism for this map (the corresponding version of Theorem 6),

was established by Sarig in [27]. The particular case when φ = − log |f ′| was
considered earlier in [14, 24].

Theorem 17: For the Manneville–Pomeau map, let φ(x) = − log |f ′(x)|. Then
qc = 1 and:

1. For q ∈ (0, 1) the pressure function q �→ P (qφ) is strictly convex and

real analytic, and there exists a unique equilibrium measure μq for qφ

(different from the atomic measure δ0 supported at 0).

2. For q > 1 the pressure function is identically zero, and δ0 is the equilib-

rium measure for every qφ.

The multifractal analysis of the Lyapunov exponents (which corresponds to

Theorem 9 for the potential φ = − log |f ′|) was considered by Pollicott and

Weiss [22] and later by Takens and Verbitskiy [28]. For each α ∈ R, set

Jα =

{
x ∈ [0, 1] : lim

n→∞
1

n

n−1∑
i=0

log |f ′(f ix)| = α

}
,

and consider the entropy spectrum E in (12). We also set

A = lim
q→1−

∂P (−q log |f ′|)
∂q

.
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The following is a combination of work in [22] and [28].

Theorem 18: For the Manneville–Pomeau map, the entropy spectrum E is

strictly convex and real analytic on the interval (m,A), and linear with slope

−1 on the interval (A, 0).

We emphasize that Theorems 17 and 18 are also consequences of our work

(by obtaining corresponding versions respectively of Theorems 6 and 9 in the

present setting, simply by repeating the proofs of these theorems). On the

other hand, the corresponding version of Theorem 12 concerning the ergodic

optimization problem is new.

6.2. Uniformly expanding maps. Set I = [0, 1] and let I1, I2 be closed in-

tervals such that I = I1 ∪ I2 and int I1 ∩ int I2 = ∅. In [20], Pesin and Zhang

considered a map f : I → I such that f : Ii → I is a C1 diffeomorphism with

|f ′| > 1, for i ∈ {1, 2}. In particular, they proved a version of Theorem 6.

In this setting, the corresponding version of Theorem 9 is new, although it

also follows from work in [28]. The ergodic optimization problem for this type

of dynamics has been studied, for example, by Bousch [4] and Jenkinson [11].

Nevertheless, the class of potentials that we consider is larger than the one con-

sidered by them. In particular, for the class RX the ergodic optimization result

corresponding to Theorem 12 is new.

6.3. Hyperbolic horseshoes. Let S ⊂ R
2 be a closed topological disk with

smooth boundary and let f : S → R
2 be a C1+ε diffeomorphism. We assume

that f satisfies Conditions 1–6 for the parabolic horseshoes (see Section 5), and

we replace Conditions 7–8 by the following:

7. there exists λ < 1 such that |dsxf | ≤ λ for every x ∈ S;

8. there exists μ > 1 such that |duxf | ≥ μ for every x ∈ S.

Let X be the maximal invariant set of f . The pair (f,X) is called a hyperbolic

horseshoe. Clearly, the dynamics is conjugated to the two-sided full-shift on

two symbols. In particular, the statement in Theorem 6 holds for any hyper-

bolic horseshoe. Recall that the class of potentials considered here is larger

than the Hölder class and thus, in particular, uniqueness of equilibrium states

together with phase transitions are new phenomena in this setting (as in the

case of uniformly expanding maps, the thermodynamic formalism for hyperbolic
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horseshoes is well-known in the case of Hölder continuous potentials). Further-

more, the statements in Theorems 9 and 12 hold for any hyperbolic horseshoe.

The multifractal analysis for hyperbolic horseshoes was studied in [1], but again

only for Hölder continuous potentials.

7. Dimension spectra for hyperbolic horseshoes

This section is dedicated to the study of dimension spectra for hyperbolic horse-

shoes. We consider dimension spectra of equilibrium measures of a class of

potentials that are not necessarily regular.

Let again f : S → R
2 be a C1+ε diffeomorphism on a closed topological disk

S ⊂ R
2 with smooth boundary, and consider a fixed point p ∈ S. Let also

X ⊂ S be a hyperbolic horseshoe (see Section 6.3 for the definition).

Let now μ be a Borel probability measure on X . The pointwise dimension

of μ at the point x ∈ X is defined by

dμ(x) = lim
r→0

logμ(B(x, r))

log r
,

whenever the limit exists, where B(x, r) denotes the ball of radius r centered

at x. It was shown in [2] that if μ is a hyperbolic f -invariant measure, then the

pointwise dimension exists μ-almost everywhere. For each α ∈ R we consider

the level set

Kα = {x ∈ X : dμ(x) = α} ,
and the irregular set

K ′ =
{
x ∈ X : the limit lim

r→0

logμ(B(x, r))

log r
does not exist

}
.

The dimension spectrum of μ is defined by

Dμ(α) = dimHKα,

where dimH denotes the Hausdorff dimension. We shall consider equilibrium

measures of certain potentials in RX . Namely, we call the function logφ ∈ RX

parabolic if:

1. logφ ◦ χ is weakly Hölder continuous;

2. logφ(p) = 0 and logφ(x) < 0 for every x ∈ X \ {p};
3. logφ has a unique equilibrium measure μ with positive entropy;

4. q �→ P (q logφ) is C1 in (−∞, 1);
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5. P (q logφ) = 0 for each q ≥ 1.

The following is a multifractal analysis of the dimension spectra for equilib-

rium measures of parabolic functions.

Theorem 19: If logφ ∈ RX is parabolic, then there exist B,U > 0 with B < U

such that:

1. For each α ∈ (0, B) we have Dμ(α) = α, and there are no full measures

for Kα.

2. The dimension spectrum is C1 in (B,U), and for each α ∈ (B,U) there

is a (noninvariant) full measure for Kα.

3. The irregular set has full Hausdorff dimension.

Proof. For each q ∈ R we define

T u(q) = inf {t : P (−t log |duxf |+ q logφ) ≤ 0} ,
T s(q) = inf {t : P (t log |dsxf |+ q logφ) ≤ 0} .

We set

T (q) = T u(q) + T s(q).

We note that parabolic functions are not Hölder continuous on X , and thus in

general T u(q) and T s(q) are not the unique numbers such that

P (−T u(q) log |duxf |+ q logφ) = P (T s(q) log |dsxf |+ q logφ) = 0.

We also consider the family

H = {Λ ⊂ X : Λ hyperbolic horseshoe with logφ|Λ Hölder continuous}.
It is well-known in the theory of multifractal analysis (see for example [17] for

details) that for each Λ ∈ H and q ∈ R there is a unique number T u
Λ(q) such

that

PΛ(−T u
Λ(q) log |duxf |+ q log φ) = 0,

where PΛ denotes the topological pressure computed with respect to Λ.

Lemma 3: For each q ∈ R we have

T u(q) = sup {T u
Λ(q) : Λ ∈ H} and T s(q) = sup {T s

Λ(q) : Λ ∈ H} .
Proof. Since

⋃
Λ∈H Λ = X \ {p}, we can show that for every q, t ∈ R,

(15) P (−t log |duxf |+ q logφ) = sup {PΛ(−t log |duxf |+ q logφ) : Λ ∈ H} .
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This is a consequence of Theorem 5 with the family of measures

MH = {μ ∈ M : suppμ ⊂ Λ for some Λ ∈ H},

proceeding as in the proof of Theorem 6 to show that Property H holds. There-

fore,

S := sup {T u
Λ(q) : Λ ∈ H} ≤ T u(q).

We claim that equality holds. Assume on the contrary that S < T u(q) and let

a ∈ (S, T u(q)). Since the function

t �→ P (−t log |duxf |+ q logφ)

is decreasing we find that

P (−a log |duxf |+ q logφ) > 0.

On the other hand, for every Λ ∈ H we have

PΛ(−a log |duxf |+ q logφ) < 0.

This contradicts (15), and thus S = T u(q). A similar argument establishes the

identity for T s(q).

Lemma 4: The functions T u(q) and T s(q) are convex and decreasing.

Proof. It was shown by Pesin and Weiss in [19] that for Λ ∈ H the functions

q �→ T u
Λ(q) and q �→ T s

Λ(q) are real analytic, strictly decreasing, and strictly

convex. The desired result thus follows immediately from Lemma 3.

Lemma 5: For q ≥ 1 we have T u(q) = 0.

Proof. Fix q > 1. Since P (q logφ) = 0 we have

T u(q) = inf {t : P (−t log |duxf |+ q logφ) ≤ 0} ≤ 0.

Assume by way of contradiction that T u(q) < 0. This implies the existence of

t ∈ (T u(q), 0) such that

(16) P (−t log |duxf |+ q logφ) = 0.

Since P (q logφ) = 0 and the function

t �→ P (−t log |duxf |+ q logφ)
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is decreasing and convex, we conclude that in fact the identity (16) holds for

every t ≥ T u(q). Let now t∗ > tu, where tu is the unique root of the equation

P (−t log |duxf |) = 0. Since P (χ+ ψ) ≤ P (χ) + P (ψ), we obtain

P (−t∗ log |duxf |+ q log φ) ≤ P (−t∗ log |duxf |) + P (q logφ)

= P (−t∗ log |duxf |) < 0.

This contradiction establishes the desired statement.

A similar result holds for T s(q). Thus, for every q ≥ 1 we have

T (q) = T u(q) + T s(q) = 0.

We now consider the function

Qq(t) = P (−t log |duxf |+ q logφ).

Lemma 6: For q ≤ 1, the function T u(q) is strictly decreasing, of class C1, and

there is a unique nonatomic equilibrium measure for

−T u(q) log |duxf |+ q logφ.

Proof. We note that the function T u(q) is convex, with T u(0) > 0 and T u(1) =

0. Therefore, T u(q) can fail to be strictly decreasing for q < 1 only in an interval

of the form (q∗, 1) for some q∗ > 0. If this happens, then for every q ∈ (q∗, 1)
we have

T u(q) = inf{t : Qq(t) = 0} = 0.

Furthermore, it follows from the hypotheses on φ that Aq := P (q logφ) > 0

for q ∈ (q∗, 1). This implies that if q ∈ (q∗, 1), then Qq(t) ∈ (Aq,+∞) for

t ≤ 0, and Qq(t) ≤ 0 for t > 0. But then the pressure function Qq would be

neither convex nor continuous. This contradiction shows that T u(q) is strictly

decreasing for q ≤ 1.

To show that there is a unique root of the equation Qq(t) = 0, which then

must be T u(q), we note that

Qq(t) ≤ P (−t log |duxf |) + P (q logφ).

Since P (−t log |duxf |) → −∞ as t→ +∞, there exists t1 > 0 such that Qq(t1) <

0. Furthermore, since Qq(0) > 0, together with the fact that the pressure is

decreasing and convex this implies the existence of a unique root.

Let now

tqc = inf {t : (−t log |duxf |+ q logφ) ◦ χ has no equilibrium measure}.
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The nonexistence of an equilibrium measure includes both the transient case

(with no conformal measure), and the null recurrent case (with an infinite

“equilibrium measure”). Note that tqc > 0. Indeed, when t = 0 the poten-

tial q logφ ◦ χ is “well-behaved” for q < 1. On the other hand, if t1 > 0 is such

that (−t1 log |duxf |+ q logφ) ◦ χ has no equilibrium measure, then

Qq(t1) = P (−t1 log |duxf |+ q log)

= −t1
∫
X

log |duxf | dδp + q

∫
X

logφdδp

= −t1 log |dupf | = −t1M < 0.

Note that the constantM is independent of q. Since q < 1 we have P (q logφ) >

0 (φ is a parabolic function), and thus T u(q) ∈ (0, tqc). In particular, there is a

nonatomic equilibrium measure for −T u(q) log |duxf |+ q logφ.

To show that the function T u(q) is of class C1 we start by considering the

function Qq. Note that Qq is differentiable in the interval (0, tqc). Indeed, assume

by way of contradiction that there exists t1 ∈ (0, tqc) for which

(17) d− := lim
t→t−1

Q′
q(t) < lim

t→t+1

Q′
q(t) =: d+.

Recall that for each t ∈ (0, tqc) the function (−t log |duxf | + q logφ) ◦ χ defined

in ΣR has a unique equilibrium measure. It follows from (17) that the function

−t1 log |duxf | + q logφ defined in X has two equilibrium measures. One is the

projection of the measure for (−t log |duxf | + q logφ) ◦ χ, and the other is δp

(which is the only measure that does not belong to the projection of MR). But

if δp is an equilibrium measure for −t1 log |duxf | + q logφ, then tqc < t1. This

contradiction shows that Qq is differentiable on (−∞, 1). This implies that Qq

is in fact of class C1 (see Theorem 4.2.11 and Remark 4.3.4 in [13]).

Note that if q1 < q2 then tq2c ≤ tq1c . This is a consequence of the monotonicity

of the pressure together with the identity Qq(t) = Mt for tqc < t. Indeed, if

q1 < q2 then P (q2 logφ) < P (q1 log φ), and

(18) P (−t log |duxf |+ q2 logφ) ≤ P (−t log |duxf |+ q1 logφ).

If t ≥ max{tq2c , tq1c }, then

P (−t log |duxf |+ q2 log φ) = P (−t log |duxf |+ q1 logφ) =Mt.
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The result thus follows immediately from (18). Fix now q1 < 1. Since the

function

q �→ P (−tq1c log |duxf |+ q logφ)

is continuous, there exists q2 < q1 such that

P (−tq1c log |duxf |+ q2 logφ) ≤ 0.

Since tq2c ≤ tq1c we conclude that T u(q2) ∈ (0, tq1c ), and since the function

(t, q) �→ P (−t log |duxf |+ q logφ)

is C1 for t ∈ (0, tq1c ) and q ∈ (q2, q1), it follows from the implicit function

theorem that q �→ T u(q) is of class C1. This completes the proof.

Therefore,

T (q) =

⎧⎨
⎩C

1 and strictly decreasing for q ≤ 1,

0 for q > 1.

Set B = limq→1− T
′(q). The following is a consequence of the classical theory

of multifractal analysis and of the approximation property.

Lemma 7: Given α ∈ (B, 0), there exists a sequence qn ∈ R with qn → 1 such

that −T ′
Λn

(qn) = α, where Λn ∈ H is a hyperbolic horseshoe for each n.

Let

Kn,α :=

{
x ∈ Λn : lim

m→∞

∑m−1
i=0 logφ(f ix)∑m−1
i=0 log |duxf i| = α

}
⊂ Kα.

Lemma 8: If α ∈ (0, B) then dimHKα = α.

Proof. With a sequence qn → 1 as in Lemma 7, standard arguments of multi-

fractal analysis yield

lim
n→∞ dimHKn,α = lim

n→∞(TΛn(qn) + qnα)

= T (1) + α = α ≤ dimHKα.

We recall that if ν is a finite Borel measure with lower pointwise dimension

dν(x) ≤ d, for some d > 0 and every x ∈ Z, then dimHZ ≤ d (see for example

Theorem 7.2 in [17]). In particular, for every x ∈ Kα we have dμ(x) = dμ(x) =

α, and hence

Dμ(α) = dimHKα ≤ α.

This yields the desired result.
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Lemma 9: The dimension spectrum is C1 in (B,U), and for each α ∈ (B,U)

there is a full measure for Kα.

Proof. This follows from the “classical” multifractal analysis (see for example

[17] for an exposition). Since T (q) is of class C1 for q < 1, it is possible to prove

that T and Dμ form a Legendre pair in this range, satisfying

Dμ(−T ′(q)) = T (q)− qT ′(q).

Furthermore, we can obtain a (noninvariant) full measure μq for each Kα in the

following manner. Given α ∈ (B,U), take q < 1 such that α = −T ′(q). Let μu
q

be the equilibrium measure for

−T u(q) log |duxf |+ q logφ

on the symbolic dynamics represented by one-sided sequences indexed by the

nonnegative integers. Similarly, let μs
q be the equilibrium measure for

T s(q) log |dsxf |+ q logφ

also on the symbolic dynamics but now represented by one-sided sequences in-

dexed by the nonpositive integers. Then the product measure μs
q × μu

q (defined

on the two-sided sequences indexed by all integers) induces a noninvariant mea-

sure μq on the horseshoe. One can easily verify that μq is a full measure for Kα

(see [17] for details). This completes the proof.

Lemma 10: The irregular set has full Hausdorff measure.

Proof. This follows from work of Barreira and Schmeling in [3], together with

the fact that dimHX = sup {dimHΛ : Λ ∈ H}.
This completes the proof of the theorem.
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