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ABSTRACT

Let f and g be nonconstant polynomials over a field K. In this paper

we study the pairs (f, g) for which the intersection K[f ] ∩ K[g] is larger

than K. We describe all such pairs in case K has characteristic zero, as

a consequence of classical results due to Ritt. For fields K of positive

characteristic we present various results, examples, and algorithms.
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1. Introduction

Let f1 and f2 be nonconstant polynomials over a field K of characteristic p ≥ 0.

In this paper we examine whether f1 and f2 have a common composite, i.e.,

whether there are nonconstant u, v ∈ K[x] such that u(f1(x)) = v(f2(x)). Any

such polynomial u(f1(x)) is a common composite.

It turns out that there are very precise results about common composites

whose degree is not divisible by p. Namely, if f1 and f2 have such a common

composite, then they have a common composite of degree lcm(deg(f1), deg(f2)).

Also, under the same hypotheses, there are g1, g2, r ∈ K[x] with deg(r) =

gcd(deg(f1), deg(f2)) such that f1 = g1 ◦ r and f2 = g2 ◦ r. Further, in Theo-

rem 5.1 we describe all possibilities for g1 and g2.

For common composites of degree divisible by p, the situation is much more

complicated. In particular, we present counterexamples to the gcd and lcm

results, as well as a sequence of examples of pairs of bounded-degree polynomials

whose least-degree common composites have degrees growing without bound.

As a substitute, we give an algorithm which quickly determines whether there is

a common composite of degree less than any fixed bound. Further, we prove the

following result describing necessary and sufficient criteria for two polynomials

to have a common composite. In this result, mi(a) denotes the multiplicity of

x = a as a root of fi(x) − fi(a), and K denotes an algebraic closure of K.

Theorem 1.1: Polynomials f1, f2 ∈ K[x] \ K have a common composite if

and only if there is a nonempty finite subset A of K which admits a function

` : A→ Z such that

• for a ∈ A and i ∈ {1, 2}, `(a)/mi(a) is a positive integer; and

• for i ∈ {1, 2}, a ∈ A, and b ∈ K, if fi(a) = fi(b) then b ∈ A and

`(a)/mi(a) = `(b)/mi(b).

We suspect that ‘most’ pairs of polynomials (f1, f2) have no common com-

posite. In characteristic zero, this follows from Ritt’s 1922 results [10]; see also

Theorem 5.1. However, in positive characteristic it is difficult to produce a pair

of polynomials which one can prove do not have a common composite; in fact,

it has even been conjectured that no such polynomials exist over finite fields

[8]. This conjecture was disproved in the 1970’s via clever examples in [2], [3]

and [1]. However, the arguments in those papers seem to apply only to very

carefully chosen polynomials. We give some general methods for proving two
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polynomials have no common composite. A special case of our results is as

follows:

Theorem 1.2: Suppose f1, f2 ∈ K[x]\K[xp] and α, β ∈ K satisfy fi(α) = fi(β)

for both i = 1 and i = 2. Then f1 and f2 have no common composite if either

of the following hold:

• m1(α)m2(β) 6= m1(β)m2(α); or

• f ′
1(α)f ′

2(β) 6= f ′
1(β)f ′

2(α), and [K(α) :K] is divisible by a prime greater

than max(deg(f1), deg(f2)).

For instance, one can check that the first condition implies that x2 + x and

x3 + x2 have no common composite over F2, and the second condition implies

that x4 + x3 and x6 + x2 + x have no common composite over F2. In fact,

we expect that our most general version of the second condition will apply to

‘most’ pairs of polynomials over a finite field.

The existence of a common composite can be reformulated in several different

ways. It is clearly equivalent to saying the intersection of the polynomial rings

K[f1] and K[f2] is strictly bigger than K. We show, moreover, that it is also

equivalent to saying the intersection K(f1) ∩ K(f2) is strictly bigger than K,

i.e., it is equivalent to f1 and f2 having a common rational function composite.

Finally, we mention an application of the results in this paper. Suppose f1

and f2 have no common composite, and assume further that f1 and f2 are not

both functions of any polynomial of degree more than 1. Then the x-resultant

of f1(x) − u and f2(x) − v is an irreducible polynomial in K[u, v] which is

not a factor of any nonzero ‘variables separated’ polynomial r(u) − s(v) with

r, s ∈ K[x]. We know no other way to produce such irreducibles.

Various authors have considered common composites from different perspec-

tives, using methods involving Riemann surfaces, power series, curves and dif-

ferentials, and group theory, among others. Of special importance is Schinzel’s

book [12], which contains beautiful proofs using (in most cases) only basic prop-

erties of polynomials. In the first few sections of this paper, we include new

proofs of some known results. Also, we include multiple proofs of some results,

and numerous examples illustrating the different types of phenomena that can

occur. We hope that this will lead to future work providing more insight into

the mysteries surrounding common composites of polynomials.
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We now describe the organization of this paper. In the next section we

show that if two polynomials have a common composite over an extension of

K, then they have a common composite over K. Then in Section 3 we show

that existence of a common rational function composite implies existence of

a common polynomial composite. In Section 4 we give results and examples

addressing the degrees of common composites. In the next section we use these

results to describe all polynomials which have a common composite of degree

not divisible by char(K). In Section 6 we give an algorithm which quickly

determines whether there is a common composite of degree less than some

bound. In the final three sections we give criteria for existence or nonexistence of

common composites, and in particular we prove generalizations of Theorems 1.1

and 1.2.

2. Reduction to the case of algebraically closed fields

Theorem 2.1: If f1, f2 ∈ K[x] have a common composite over the algebraic

closure K of K, then they have a common composite over K. Moreover, the

minimal degree of any common composite over K equals the minimal degree of

any common composite over K.

Proof. Let n be the minimal degree of any common composite over K. Then

there are polynomials g1, g2, h in K[x] with

(1) h = g1 ◦ f1 = g2 ◦ f2

such that h has degree n. Let di be the degree of gi. Equation (1) expresses a

K-linear dependence of the polynomials

1, f1, f
2
1 , . . . , f

d1
1 , f2, f

2
2 , . . . , f

d2
2 .

Letting V be the K-vector space spanned by these polynomials, we see that the

K-vector space K ⊗K V has the same dimension as V . Thus the polynomials

are linearly independent over K if and only if they are linearly dependent over

K.

Corollary 2.2: If f1, f2 ∈ K[x] \K[xp] have a common composite, then they

have a common composite which is not in K[xp].

Proof. Let h ∈ K[x] be a minimal-degree common composite of f1 and f2,

and assume h ∈ K[xp]. Write h = g1 ◦ f1 = g2 ◦ f2 with g1, g2 ∈ K[x].
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Since an element of K[x] lies in K[xp] if and only if its derivative is zero,

our hypotheses imply gi ∈ K[xp]. Thus gi = ĝi(x)
p for some ĝi ∈ K[x], so

h = xp ◦ ĝ1 ◦ f1 = xp ◦ ĝ2 ◦ f2, whence ĝ1 ◦ f1 = ĝ2 ◦ f2. In particular, f1 and f2

have a common composite in K[x] of degree less than deg(h), which contradicts

Theorem 2.1.

Remark: Theorem 2.1 was first proved by McConnell [8] in case K is infinite,

and by Bremner and Morton [3] in general. Corollary 2.2 is due to Alexandru

and Popescu [1].

3. Rational composites and polynomial composites

Theorem 3.1: If f1, f2 ∈ K[x] satisfy K(f1)∩K(f2) 6= K, then f1 and f2 have

a common composite, and moreover any minimal-degree common composite h

satisfies K(f1) ∩K(f2) = K(h) and K[f1] ∩K[f2] = K[h].

Proof. We use Lüroth’s theorem [12, Thm. 2], which asserts that any subfield

of K(x) which properly contains K must have the form K(s). Thus, K(f1) ∩

K(f2) = K(ĥ) for some ĥ ∈ K(x). Write ĥ = g1◦f1 = g2◦f2 with g1, g2 ∈ K(x),

and write gi = ai/bi with ai, bi ∈ K[x] and gcd(ai, bi) = 1. By inverting ĥ, g1, g2

if necessary, we may assume deg(a1) ≥ deg(b1). Then

a1(f1(x)) · b2(f2(x)) = a2(f2(x)) · b1(f1(x)).

In particular, a1(f1(x)) must divide the right-hand side. Since gcd(a1, b1) = 1,

some K[x]-linear combination of a1 and b1 equals 1; substituting f1(x) for x

in this expression, it follows that 1 is a K[x]-linear combination of a1 ◦ f1 and

b1 ◦ f1, so gcd(a1 ◦ f1, b1 ◦ f1) = 1. Thus, a1(f1(x)) divides a2(f2(x)). By

symmetry, they must divide each other, so there is a constant c such that

a1(f1(x)) = c · a2(f2(x)).

In particular, h0 := a1◦f1 is in K(f1)∩K(f2) = K(ĥ). But deg(h0) = deg(ĥ) =

[K(x) :K(ĥ)], so in fact K(h0) = K(ĥ).

Now let s be any common composite of f1 and f2. Then s ∈ K(f1)∩K(f2) =

K(h0), so s = r ◦ h0 with r ∈ K(x). It follows as above that r ∈ K[x]: write

r = a/b with a, b ∈ K[x] and gcd(a, b) = 1, so gcd(a ◦ h, b ◦ h) = 1, and since

b ◦ h divides a ◦ h we must have deg(b ◦ h) = 0, whence b is constant. Thus

K[f1] ∩K[f2] = K[h0]. In particular, the minimal-degree common composites



98 R. M. BEALS, J. L. WETHERELL AND M. E. ZIEVE Isr. J. Math.

of f1 and f2 are precisely the polynomials ` ◦ h0 with ` ∈ K[x] of degree one.

The result follows.

We can use this result to sharpen the conclusion of Theorem 2.1:

Corollary 3.2: If h ∈ K[x] is a minimal-degree common composite of f1 and

f2 over K, then ` ◦ h ∈ K[x] for some degree-one ` ∈ K[x]. In particular, if h

is monic and has no constant term then h ∈ K[x].

Remark: The anonymous referee informed us that, with some effort, one can

prove Corollary 3.2 via the linear algebra approach used to prove Theorem 2.1.

Another consequence of Theorem 3.1 is that the study of common composites

can be reduced to the case where both polynomials have nonzero derivative:

Corollary 3.3: For any f1, f2 ∈ K[x], write fi = f̂i ◦ x
pni

with ni ≥ 0 and

f̂i ∈ K[x] \ K[xp], and suppose n1 ≥ n2. For any perfect field L between K

and K, there exists f̃1 ∈ L[x] \ L[xp] such that f̂1 ◦ xpn1−n2
= xpn1−n2

◦ f̃1.

Then f1 and f2 have a common composite over K if and only if f̃1 and f̂2 have

a common composite over L. Moreover, the common composites of f1 and f2

over L are precisely the polynomials of the form xpn1−n2
◦ h ◦ xpn2

, where h

varies over the common composites of f̃1 and f̂2 over L.

Proof. From the equation defining f̃1, we see that f̃1 is gotten from f̂1 by

replacing each coefficient by its pn1−n2-th root. Thus f̃1 /∈ K[xp]. Next, since

f1 = xpn1−n2
◦ f̃1 ◦ x

pn2
and f2 = f̂2 ◦ x

pn2
, the common composites of f1 and

f2 over L are gotten by substituting xpn2
into the common composites (over L)

of f̂2 and f1 := xpn1−n2
◦ f̃1. Write q := pn1−n2 . If f̃1 and f̂2 have a common

composite, then its q-th power is a composite of f1; thus f1 and f̂2 have a

common composite if and only if f̃1 and f̂2 do. Hence f1 and f2 have a common

composite over L if and only if f̃1 and f̂2 do, and by Theorem 2.1 the former

condition is equivalent to f1 and f2 having a common composite over K. So

suppose f̃1 and f̂2 have a common composite (over L), and let ĥ be a common

composite of minimal degree. By Theorem 3.1, the common composites of f̃1

and f̂2 are precisely the polynomials ψ ◦ ĥ with ψ ∈ L[x]. Corollary 2.2 implies

that ĥ /∈ L[xp]. Thus, ψ ◦ ĥ is in L[xq] if and only if ψ ∈ L[xq], or equivalently

ψ ◦ ĥ ∈ L[f1]. Hence the common composites of f1 and f̂2 are the polynomials

ϕ◦xq ◦ ĥ with ϕ ∈ L[x]. Since L is perfect, the set of q-th powers in L[x] equals

L[xq], and the result follows.
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Remark: The first two parts of Theorem 3.1 were proved by Noether [9] in the

case of characteristic zero, and by McConnell [8] in general. The third part of

Theorem 3.1 was proved by Schinzel [12, Lemma 1, p. 18].

We now give another proof of Theorem 3.1 with a different flavor.

Second proof of Theorem 3.1. First assume K(x) is a separable extension of

K(f1)∩K(f2). By Lüroth’s theorem, K(f1)∩K(f2) = K(h) for some h ∈ K(x).

By making a linear fractional change to h, we may assume that the infinite

place of K(x) lies over the infinite place of K(h). Let N be the Galois closure

of K(x)/K(h), and let G, H , A, B be the subgroups of Gal(N/K(h)) fixing

K(h), K(x), K(f1), and K(f2). Let I be the inertia group in N/K(h) of a place

lying over the infinite place of K(h). Then the corresponding inertia groups in

N/K(f1) and N/K(f2) are I ∩A and I ∩B. Since f1 and f2 are polynomials,

we have A = H(I ∩A) and B = H(I ∩B). For any subgroup C of G, write CI

for I ∩ C.

Thus H〈AI , BI〉 = 〈AI , BI〉H , so H〈AI , BI〉 is a group and thus equals

〈A,B〉 = G. Hence HI = G, so the infinite place of K(x) is the unique place of

K(x) lying over the infinite place of K(h), whence h ∈ K[x]. Moreover, since

the infinite place of K(fi) is the unique place of K(fi) lying over the infinite

place of K(h), it follows that h is a common composite of f1 and f2.

Now assume K(x) is an inseparable extension of K(f1)∩K(f2). By Lüroth’s

theorem, K(f1) ∩ K(f2) = K(h) for some h ∈ K(x). Write f1 = xpA

◦ f̂1

and f2 = xpB

◦ f̂2 where f̂i ∈ K[x] \ K[xp]. Then there are gi ∈ K(x) with

h = gi ◦ f̂i. Write g1 = xpC

◦ ĝ1 and g2 = xpD

◦ ĝ2 with ĝi ∈ K(x)\K(xp). Then

K(x)/K(ĝi ◦ f̂i) is separable but K(ĝi ◦ f̂i)/K(h) is purely inseparable, so the

latter extension is the maximal purely inseparable subextension of K(x)/K(h);

in particular, K(ĝ1 ◦ f̂1) = K(ĝ2 ◦ f̂2). Thus K(x) is a separable extension of

K(f̂1) ∩ K(f̂2), so the result proved in the previous paragraphs implies that

K(f̂1) ∩K(f̂2) = K(r) for some r ∈ K[x] which is a common composite of f̂1

and f̂2. It follows easily that K(f1)∩K(f2) = K(rpmax(A,B)

). Now Theorem 2.1

implies that f1 and f2 have a common composite r̂ ∈ K[x] with deg(r̂) =

deg(rpmax(A,B)

), and since [K(x) :K(f1) ∩ K(f2)] ≥ [K(x) :K(f1) ∩ K(f2)], it

follows that K(f1) ∩K(f2) = K(r̂) as desired.

We have shown that K(f1) ∩ K(f2) = K(h) where h ∈ K[x] is a common

composite of f1 and f2. For any common composite ĥ of f1 and f2, we have
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K(ĥ) ⊆ K(h), and moreover the infinite place of K(h) is the unique place of

K(h) lying over the infinite place ofK(ĥ); thus ĥ = r(h) for some r ∈ K[x].

This second proof generalizes at once to intersections of higher-genus function

fields:

Proposition 3.4: Let F be a finite extension of K(x), and let F1 and F2 be

subfields of F which contain K. Suppose F is a finite separable extension of

F0 := F1 ∩ F2. If a place P of F is totally ramified in both F/F1 and F/F2,

then P is totally ramified in F/F0.

In Section 7 (following Theorem 7.4) we give a third proof of Theorem 3.1,

which is a different type of constructive proof.

4. Degree constraints

In this section we examine the possible degrees of common composites of f1 and

f2. By Theorem 3.1, the set of degrees of common composites equals the set

of multiples of some integer n, so it suffices to analyze n, which is the minimal

degree of any common composite. Clearly, any common composite has degree

divisible by lcm(deg(f1), deg(f2)). Conversely, in characteristic zero we now

show that if there is a common composite then there is one of this minimal

degree. More generally, this holds if there is a common composite of degree not

divisible by p := char(K):

Theorem 4.1: If f1, f2 ∈ K[x] have a common composite, then they have a

common composite of degree lcm(deg(f1), deg(f2))p
s for some s ≥ 0. (Here we

use the convention 00 = 1.)

Proof. First assume f1, f2 /∈ K[xp]. Let h(x) be a common composite of mini-

mal degree. Corollary 2.2 and Theorem 3.1 imply that K(x)/K(h(x)) is sepa-

rable and K(h) = K(f1)∩K(f2). Let L be the Galois closure of K(x)/K(h(x)),

and letG,A,B,H be the subgroups of Gal(L/K(h(x))) fixing h(x), f1(x), f2(x),

and x. Then G = 〈A,B〉. Let P be a place of L lying over the infinite place

of K(h(x)), and let I be the inertia group of P in L/K(h(x)). Since h is a

polynomial, G = HI.

For any group C with H ≤ C ≤ G, let CI := C ∩ I. Clearly C contains

HCI , and since G = HI we have C = HCI . Moreover, [C :H ] = [CI :HI ].
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Since H〈AI , BI〉 = 〈AI , BI〉H , the set H〈AI , BI〉 is a group and thus equals

〈A,B〉 = G. Hence I = GI = 〈AI , BI〉. Recall the structure of inertia groups

(cf., e.g., [13, Cor. 4 to Prop. 7, § IV.2]): I is the semidirect product V o D

where V is a normal p-subgroup and D is cyclic of order not divisible by p.

Since I = 〈V AI , V BI〉, we have I/V HI = 〈V AI/V HI , V BI/V HI〉, and since

these are cyclic groups we see that [I :V HI ] is the least common multiple

of [V AI :V HI ] and [V BI :V HI ]. Finally, deg(h) = [I :HI ] and deg(f1) =

[AI :HI ], so [V :V HI ] and [V AI :V HI ] are the maximal divisors of deg(h) and

deg(f1) which are not divisible by p, whence deg(h) = lcm(deg(f1), deg(f2))p
t

with t ≥ 0.

Now for arbitrary f1, f2 ∈ K[x] having a common composite, Corollary 3.3

implies that the minimal degree of any common composite of f1 and f2 over

K is a power of p times the minimal degree of any common composite of

two related polynomials f̃1, f̂2 ∈ K[x] \ K[xp], where both deg(f1)/ deg(f̃1)

and deg(f2)/ deg(f̂2) are powers of p. Since f̃1, f̂2 /∈ K[xp], it follows from

above that the minimal degree of any common composite of f̃1 and f̂2 is

lcm(deg(f̃1), deg(f̂2))p
s for some s ≥ 0, so the minimal degree of any com-

mon composite of f1 and f2 over K is lcm(deg(f1), deg(f2))p
t with t ≥ 0. The

result now follows from Theorem 2.1.

Remark: Theorem 4.1 was proved by Engstrom [5] in the case of characteristic

zero, and his proof extends at once to the case where f1 and f2 have a com-

mon composite of degree not divisible by p (cf. [12, Thm. 5]). This elegant

proof is completely different from ours (for instance, it depends on nothing

beyond the division algorithm in K[x]), and it would be interesting to try to

extend Engstrom’s argument to prove our full result. In case f1 and f2 have

a common composite of degree not divisible by p, our proof is essentially a

modernized account of an argument due to Ritt [10]; an alternate treatment

of Ritt’s proof in this case, using fields and power series instead of groups and

inertia groups, is in [8]. The basic ideas in [8] can be discerned by scrutiniz-

ing the proof of [6, Thm. 3.6], though significant effort is required since the

latter proof contains errors in nearly every line. An incorrect generalization of

Theorem 4.1 is given as [1, Thm. 2.1]; specifically, they assert that the result

for degrees also holds for the ramification indices under any prescribed place

of K(x). A counterexample is f1 = x2 and f2 = x3 − x over K = C at the

place x = 1, since x = 1 is unramified in K(x)/K(f1) and K(x)/K(f2) but
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ramifies in K(x)/(K(f1) ∩K(f2)) = K(x)/K((x3 − x)2). The mistake in the

proof of [1, Thm. 2.1] is the assertion that the completions of K(f1) and K(f2)

(at places under the prescribed place of K(x)) intersect in the completion of

K(f1) ∩K(f2), which is not generally true.

It is not possible to remove the power of p from the conclusion of Theorem 4.1.

For example, there are polynomials over F2 of degrees 11 and 13 whose least-

degree common composite has degree 143 · 260, and there are polynomials over

F2 of degrees 1447 and 1451 whose least-degree common composite has degree

1447 · 1451 · 21048350. These are special cases of the following result.

Proposition 4.2: Suppose p := char(K) is nonzero. If p - n then a minimal-

degree common composite of xn and xpr

− x is (xprd

− x)n, where d is the

multiplicative order of pr mod n. If p - nm and n,m > 1 then a minimal-degree

common composite of xn and (x − 1)m is (xpd

− x)lcm(m,n), where d is the

multiplicative order of p mod lcm(m,n).

Proof. Let K be an algebraic closure of K, and let ζ be a primitive n-th root of

unity in K. Then K(x)/K(xn) is Galois with group generated by σ : x 7→ ζx,

and K(x)/K(xpr

− x) is Galois with group H consisting of the various maps

x 7→ x + α with α ∈ Fpr . The subgroup G of Aut
K
K(x) generated by σ and

H consists of the maps x 7→ µx + ν where µ ∈ 〈ζ〉 and ν ∈ Fpr (ζ). Here

#G = nprd, where d := [Fpr (ζ) : Fpr ] is the multiplicative order of pr mod n.

The group G fixes h(x) := (xprd

− x)n, so since deg h = #G we see that K(h)

is the subfield of K(x) fixed by G, whence K(h) is the intersection of K(xn)

and K(xpr

− x). This shows that h is a minimal-degree common composite of

xn and xpr

− x over K. Since h ∈ K[x], it is also a minimal-degree common

composite over K.

Now let η be a primitive m-th root of unity in K. Then the extension

K(x)/K((x − 1)m) is Galois with group generated by γ : x 7→ 1 + η(x − 1).

Let H be the subgroup of Aut
K
K(x) generated by σ and γ. Then H contains

the commutator γ−1σ−1γσ : x 7→ x− (η − 1)(ζ − 1). One easily checks that H

consists of the maps x 7→ µx + ν where µ ∈ 〈ζ, η〉 and ν ∈ Fp(ζ, η). Moreover,

H fixes j(x) := (xpd

− x)lcm(m,n), where d is the multiplicative order of p mod

lcm(m,n). Since deg(j) = #H , it follows as above that j is a minimal-degree

common composite of xn and (x− 1)m over K, and hence over K.
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Remark: The second part of Proposition 4.2 was first proved by Bremner and

Morton [3].

In case char(K) = 0, Theorem 4.1 says that if f1, f2 ∈ K[x] have a common

composite then they have one of degree lcm(deg(f1), deg(f2)). Proposition 4.2

shows that this is no longer true when char(K) > 0. Specifically, for any prime

p, the least-degree common composite of x2 and x2 − x over Fp is (xp − x)2.

Thus, two degree-2 polynomials can have lowest-degree common composite of

arbitrarily large degree. We make the following definition to give a framework

for recovering some analogue of the characteristic zero result, by restricting to

polynomials over a fixed field, or polynomials over fields of a fixed characteristic.

Definition: Given integers n1, n2 > 1 and a field K, let N(n1, n2,K) be the

supremum of the integers r(f1, f2,K), where

• f1, f2 ∈ K[x] have a common composite and satisfy deg(f1) = n1 and

deg(f2) = n2, and

• r(f1, f2,K) is the lowest degree of any common composite of f1 and f2.

For any prime number p (and for p = 0), let N(n1, n2, p) be the supremum of

the values N(n1, n2,K), where K varies over all fields of characteristic p.

Theorem 4.1 implies that N(n1, n2, 0) = lcm(n1, n2), and more generally

that r(f1, f2,K) = lcm(n1, n2) char(K)s. However, Proposition 4.2 shows that

in positive characteristic there are examples with arbitrarily large s. But our

examples have n1 + n2 → ∞, and we do not know whether one can bound s

in terms of n1, n2 and K, or even just in terms of n1 and n2. In fact, every

example we know (when p = char(K) > 0) satisfies s ≤ lcm(n1, n2). We now

prove that, when n1 = n2 = 2, we can actually take s ≤ 1:

Proposition 4.3: Any two degree-2 polynomials over a field of characteris-

tic p > 0 have a common composite of degree 2p.

Proof. Let K be a field of characteristic p, and let f1 and f2 be degree-2 poly-

nomials in K[x]. If K(x)/K(f1) is not separable, then p = 2 and f1 = ax2 + b,

so f2
2 is a common composite of f1 and f2 of degree 2p. Henceforth assume

K(x)/K(f1) and K(x)/K(f2) are separable. Thus these extensions are Galois.

Moreover, writing f1 = ax2 − bx + c, the Galois group of K(x)/K(f1) is gen-

erated by x 7→ b/a − x. Thus, Gal(K(x)/K(f1)) and Gal(K(x)/K(f2)) are

generated by σ1 : x 7→ α1 − x and σ2 : x 7→ α2 − x, for some α1, α2 ∈ K. Now,
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K(f1) ∩ K(f2) is the subfield of K(x) fixed by H := 〈σ1, σ2〉. Since σ1 and

σ2 have order 2, they generate a dihedral group of order twice the order of the

composite map σ1σ2 : x 7→ (α1 − x) ◦ (α2 − x) = α1 − α2 + x. Since the latter

map has order 1 or p, it follows that #H | 2p. Now the result follows from

Theorem 3.1.

The anonymous referee suggested the following alternate proof:

Second proof of Proposition 4.3. Let K be a field of characteristic p, and let f1

and f2 be degree-2 polynomials in K[x]. By replacing fi with `i◦fi for a suitable

degree-1 polyomial `i ∈ K[x], we may assume f1 = x2 +ax and f2 = x2 + bx. If

a = b then f1 is already a common composite; hence we assume a 6= b. Then f1

and f2 have a common composite of degree at most 2n if and only if the polyno-

mials 1, f1, f2, f
2
1 , f

2
2 , . . . , f

n
1 , f

n
2 are linearly dependent. These polynomials span

the same space as the polynomials 1, f1 − f2, f2, f
2
1 − f2

2 , f
2
2 , . . . , f

n
1 − fn

2 , f
n
2 .

Since the leading term of f i
2 is x2i, and the leading term of f i

1−f
i
2 is i(a−b)x2i−1,

the matrix of coefficients of these polynomials is triangular, and it has no zero

entries on the main diagonal if and only if n < p. Thus f1 and f2 have a common

composite of degree 2p, and no common composite of lower degree.

It would be interesting to determine further values of N(n1, n2, p), or even

to determine whether these values are finite. One can attempt to produce

infinite values of N(n1, n2, p) by modifying the proof of Theorem 4.1. Below

is a group-theoretic example satisfying the conditions used in that proof, such

that HI , AI , BI , I have orders 1, 2, 3, 2 · 32n+1, respectively, where n can be any

positive integer. If this group-theoretic setup could be realized by polynomials

f1 and f2 in characteristic 3, then there would be polynomials of degrees 2 and 3

whose lowest-degree common composite has degree 2 · 32n+1.

Example 4.4: Let I be the group generated by a, b, c subject to the relations

b3
n

= c3
n

= a6 = 1, bc = cb, a−1ba = c−1, a−1ca = bc. One can check that

I = V C where V = 〈b, c, a2〉 has order 32n+1 and C = 〈a3〉 has order 2. Now

〈a3b, a2b〉 contains a and b and thus contains c = a−1b−1a. Hence I = 〈AI , BI〉

where AI := 〈a3b〉 and BI := 〈a2b〉. Finally, one can check that #AI = 2 and

#BI = 3.

In a subsequent paper we will show that the above configuration does not

happen, and in fact we will compute N(2, 3, p). However, our proof uses a
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different framework, and does not give a simple explanation why the above

configuration doesn’t occur. It would be interesting to know a general constraint

on the Galois groups associated to a polynomial which would preclude this setup

from being realizable.

Theorem 4.1 is a ‘least common multiple’ result. We now give a companion

‘greatest common divisor’ result.

Theorem 4.5: If f1, f2 ∈ K[x] have a common composite of degree not divisible

by p, then there are g1, g2, r ∈ K[x] with deg(r) = gcd(deg(f1), deg(f2)) such

that f1 = g1 ◦ r and f2 = g2 ◦ r.

Proof. We use the notation from the proof of Theorem 4.1. Thus

H(AI ∩BI) = (AI ∩BI)H,

so H(AI ∩BI) is a group, and equals A∩B. By Lüroth’s theorem, the subfield

of L fixed by H(AI ∩ BI) has the form K(r(x)) for some rational function

r(x). By making a linear fractional change to r(x) if necessary, we may assume

that the infinite place of K(r(x)) lies under the infinite place of K(x). Since

the latter place is totally ramified in K(x)/K(r(x)), it follows that r(x) is a

polynomial. Moreover, the infinite place of K(r(x)) is the unique place lying

over the infinite place of K(f(x)), so f1 = g1 ◦ r for some polynomial g1, and

likewise f2 = g2 ◦ r.

It remains only to determine the degree of r, which equals

[H(AI ∩BI) :H ] = #(AI ∩BI).

Since AI and BI are subgroups of the cyclic group I, we have #(AI ∩ BI) =

gcd(#AI ,#BI). Thus the degree of r is

gcd([A :H ], [B :H ]) = gcd(deg(f1), deg(f2)).

Remark: Theorem 4.5 was proved by Engstrom [5] in the case of characteristic

zero, and his proof extends at once to the general case (cf. [12, Thm. 5]). The

situation is the same as for Theorem 4.1: Engstrom’s argument (as simplified

by Schinzel) uses just polynomials, and no Galois theory. Our Galois-theoretic

proof is a modernized version of an argument of Ritt’s [10], and a complicated

field-theoretic version of Ritt’s argument (with numerous errors) is in [6].

Note that the hypothesis on the degree in Theorem 4.5 is necessary—for

instance, if f1 = x2 + ax and f2 = x2 + bx with a 6= b, then certainly there is
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no r satisfying the conclusion of Theorem 4.5, but Proposition 4.3 says that f1

and f2 have a common composite over any field of positive characteristic.

Theorems 4.1 and 4.5 show that the existence of a common composite of de-

gree not divisible by p is a very unusual occurrence. For instance, if polynomials

f1 and f2 of the same degree have such a common composite, then f1 = ` ◦ f2

for some degree-1 polynomial `.

5. The tame case

In this section we describe all pairs of polynomials f1, f2 ∈ K[x] which have a

common composite of degree not divisible by char(K). The statement of the

result involves the Dickson polynomials, which are defined as follows. For any

α ∈ K and n > 0, define Dn(x, α) ∈ K[x] by

Dn(x, α) =

bn/2c∑

i=0

n

n− i

(
n− i

i

)
(−α)ixn−2i.

The key property of Dickson polynomials is that Dn(x+α/x, α) = xn +(α/x)n.

Theorem 5.1: Suppose f1, f2 ∈ K[x] satisfy deg(f1) ≥ deg(f2) > 1 and

char(K) - deg(f1) deg(f2). Then f1 and f2 have a common composite of de-

gree not divisible by char(K) if and only if there are degree-1 polynomials

`1, `2 ∈ K[x] and a polynomial h(x) ∈ K[x] of degree gcd(deg(f1), deg(f2))

such that either

1. f1 = `1 ◦ xrP (xn) ◦ h(x) and f2 = `2 ◦ xn ◦ h(x), where r, n > 0 and

P ∈ K[x]; or

2. f1 = `1 ◦Dm(x, α) ◦ h(x) and f2 = `2 ◦Dn(x, α) ◦ h(x), where α ∈ K

and m,n > 0.

Proof. Suppose f1 and f2 have a common composite of degree not divisible

by p := char(K). By Theorem 4.5, there are g1, g2, h ∈ K[x] such that fi =

gi ◦ h and deg(h) = gcd(deg(f1), deg(f2)). By Theorem 4.1, g1 and g2 have a

common composite of degree lcm(deg(g1), deg(g2)). Now the result follows from

Theorem 5.2 below.

In the following result, if ` is a degree-1 polynomial over a field K, we write

`〈−1〉 to denote the functional inverse of `; thus `〈−1〉 is the unique degree-1

polynomial over K for which `〈−1〉(`(x)) = x, or equivalently `(`〈−1〉(x)) = x.
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Theorem 5.2 (Zannier): Suppose a, b, c, d ∈ K[x] satisfy deg(a) = deg(d) =

m > 1 and deg(b) = deg(c) = n > 1, where gcd(m,n) = 1 and m > n and

a′c′ 6= 0. Then a(b) = c(d) holds if and only if there are degree-1 polynomials

`1, `2, `3, `4 ∈ K[x] such that either

1. `1 ◦ a ◦ `
〈−1〉
3 = xrP (x)n and `3 ◦ b ◦ `2 = xn and `1 ◦ c ◦ `

〈−1〉
4 = xn and

`4 ◦ d ◦ `2 = xrP (xn), where P ∈ K[x] and r = m− n deg(P ) > 0; or

2. `1 ◦ a ◦ `
〈−1〉
3 = Dm(x, αn) and `3 ◦ b ◦ `2 = Dn(x, α) and `1 ◦ c ◦ `

〈−1〉
4 =

Dn(x, αm) and `4 ◦ d ◦ `2 = Dm(x, α), where α ∈ K.

Remark: Theorem 5.2 was proved by Zannier [15]; an alternate exposition of his

proof is in [12, Thm. 8]. Previously special cases had been proved by Ritt [10],

Levi [7], Dorey and Whaples [4], Schinzel [11], and Tortrat [14].

Theorem 5.1 shows in a strong sense that, when char(K) = 0, very few pairs

of polynomials (f1, f2) have a common composite. We suspect that the same

qualitative behavior occurs in positive characteristic, but it is difficult to prove

significant results in this direction.

6. Fiber-finding

In this section we give two algorithms which produce either a common composite

or a proof that there is no such of degree less than a prescribed bound. The

idea of the first algorithm is simple: if f1 and f2 have a common composite h,

then any α, β ∈ K with f1(α) = f1(β) also satisfy h(α) = h(β). Thus, starting

with some α ∈ K, we compute all β ∈ K with f1(α) = f1(β). Then for each

β we compute all γ ∈ K with f2(β) = f2(γ). Note that h(γ) = h(β) = h(α).

Continuing this process, we find more and more elements of K which have the

same h-value. This gives a lower bound on the degree of h; conversely, we show

in Section 7 that, if this process produces only finitely many elements of K,

then we can determine whether f1 and f2 have a common composite.

In the second algorithm we work with polynomials over K rather than ele-

ments of K. In this case it is convenient to assume the fi are monic. Suppose we

have a nonconstant r ∈ K[x] which divides our hypothesized (minimal degree)

common composite h. Let m be the minimal polynomial of fi mod r, i.e., m

is the minimal degree monic polynomial in K[x] such that m ◦ fi is divisible

by r. Then m ◦ fi divides h. By iterating this process, we can quickly build

up large-degree factors of h. We can start this process with r0 = x. After one
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step, we have r1 = (x − f1(0)) ◦ f1 = f1 − f1(0). The polynomials rj alternate

between composites of f1 and composites of f2. Therefore, if this process ever

stabilizes (by giving rj = rj+1 for some j > 0), then the final rj is a minimal

degree common composite of f1 and f2.

Example 6.1: Let f1 = x2 and f2 = x3 + x2 + x, where char(K) = 3. Then we

start with r1 := f1 = x2. The minimal polynomial of f2 mod r1 is x2, so we

put r2 := x2 ◦ f2 = x6 − x5 − x3 + x2. The minimal polynomial of f1 mod r2 is

x5 − x4 − x2 + x, so we put r3 := (x5 − x4 − x2 + x) ◦ f1 = x10 − x8 − x4 + x2.

The minimal polynomial of f2 mod r3 is m := x6 + x5 + x3 + x2, so we put

r4 := m ◦ f2 = x18 − x14 − x6 + x2. Finally, the minimal polynomial of f1 mod

r4 is x9−x7−x3 +x, and r4 = (x9 −x7−x3 +x)◦ f1, so r4 is a minimal-degree

common composite.

The above algorithms are actually two incarnations of the same idea. In the

first algorithm we explore the fiber {ζ : h(ζ) = h(α)}. Letting Z be the set

of ζ’s seen up to a given step, we can put r :=
∏

ζ∈Z(x − ζ). We know r(x)

divides h(x)−h(α); we may assume h(α) = 0, so r divides h. Suppose the next

step involves equating values of fi, and let Ẑ be the next set of ζ’s. Let v(x)

be obtained by eliminating z from the system:

r(z) = 0,

fi(z) = fi(x)

(i.e., v(x) generates the intersection of the ideal (r(z), fi(z)−fi(x)) with K[x]).

Then every root of v lies in Ẑ, and every element of Ẑ is a root of v. It

turns out that v = m ◦ fi, where m is the minimal polynomial of fi mod r.

Thus, both our algorithms produce the same set of elements of K at each step;

the main difference between them is that the second algorithm keeps track of

multiplicities, while the first does not.

Here is an example where the second algorithm can be used to prove that two

polynomials have no common composite.

Example 6.2: Let f1 = x2 − x and f2 = x3 − x2. We start with r1 := f1.

Inductively, we show that r2j+1 = f2j

1 and r2j+2 = f2j

2 . Indeed, if r2j+1 = f2j

1

then its roots x = 0 and x = 1 each have multiplicity 2j ; since x = 0 and x = 1

are roots of f2 of multiplicities 2 and 1, it follows that r2j+2 = f2j

2 . Thus the

roots of r2j+2 are again x = 0 and x = 1, this time with multiplicities 2j+1 and
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2j ; since x = 0 and x = 1 are simple roots of f1, it follows that r2j+3 = f2j+1

1 .

Since the degrees of the rj grow without bound, f1 and f2 have no common

composite.

If we apply the first algorithm with α = 0 to the polynomials in the above

example, we quickly find a stable set Z = {0, 1}. This example is better under-

stood in the context of the next two sections: the first algorithm terminates with

Z = {0, 1} because that set is compatible (see Section 7). The second algorithm

fails to terminate because the set Z is inconsistent (see Example 8.1).

While we suspect that the above example illustrates a rare situation, it is

worth modifying the second algorithm so that, if the set Z of roots of r stabilizes,

we check Z for consistency.

7. Compatible consistent sets

Let f1 and f2 be nonconstant polynomials over K. If f1 and f2 have a common

composite h then, for any α ∈ K, the h-fiber {β ∈ K : h(β) = h(α)} is a

finite subset of K which is simultaneously a union of f1-fibers and a union of

f2-fibers. We generalize this to arbitrary f1 and f2 (which might not have a

common composite) as follows:

Definition 7.1: A nonempty finite subset of K is compatible if it is simultane-

ously a union of f1-fibers and a union of f2-fibers.

We will show that, if there is a compatible set, then there is a common com-

posite precisely when a certain easily checkable condition is met. To motivate

this extra condition, assume again that f1 and f2 have a common composite

h. For each a ∈ K, let `(a) be the ramification index of x = a in the exten-

sion K(x)/K(h(x)); in other words, `(a) is the multiplicity of x = a as a root

of h(x) − h(a). Likewise, let mi(a) be the ramification index of x = a in the

extension K(x)/K(fi(x)). Then mi(a) divides `(a), and moreover, if a, b ∈ K

satisfy fi(a) = fi(b) for some i then the ramification index of fi(x) = fi(a) in

K(fi(x))/K(h(x)) is
`(a)

mi(a)
=

`(b)

mi(b)
.

In general, when f1 and f2 are not assumed to have a common composite, we

make the following definition. Again, mi(a) is the ramification index of x = a

in the extension K(x)/K(fi(x)).
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Definition 7.2: A subset A ⊆ K is consistent if there is a function ` on A such

that

(1) for each a ∈ A, `(a) is a positive integer multiple of both m1(a) and

m2(a); and

(2) for a, b ∈ A and i ∈ {1, 2}, if fi(a) = fi(b) then `(a)/mi(a) = `(b)/mi(b).

The above discussion implies

Proposition 7.3: If f1 and f2 have a common composite of degree n, then

every element of K is contained in a compatible set of size at most n, and every

subset of K is consistent via the labeling defined by the ramification index in

K(x)/(K(f1) ∩K(f2)).

We now prove a converse result, which implies Theorem 1.1:

Theorem 7.4: If there is a compatible consistent set A, then f1 and f2 have a

common composite over K. Explicitly, if ` : A → Z is a consistent labeling on

A, then h :=
∏

a∈A(x− a)`(a) is a common composite over K.

Proof. We may assume f1 and f2 are monic. Let B1 = {f1(a) : a ∈ A}, and for

each b ∈ B1 pick an element ab ∈ A with f1(ab) = b. Let A1 = {ab : b ∈ B1}.

Now we compute

∏

a∈A

(x− a)`(a) =
∏

â∈A1

∏

a∈A
f1(a)=f1(â)

(x− a)`(a)

=
∏

â∈A1

( ∏

a∈A
f1(a)=f1(â)

(x − a)m1(a)
)`(â)/m1(â)

=
∏

â∈A1

(f1(x) − f1(â))
`(â)/m1(â)

=
( ∏

â∈A1

(x− f1(â))
`(â)/m1(â)

)
◦ f1(x),

where the two middle equalities hold because A is consistent and compatible,

respectively. Thus, the polynomial h :=
∏

a∈A(x − a)`(a) is a composite of f1

over K; but likewise it is a composite of f2 over K, so it is a common composite

over K. It follows by Theorem 2.1 that f1 and f2 have a common composite

over K.
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This result has several consequences. For one thing, it gives yet another proof

of the first part of Theorem 3.1, namely that K(f1)∩K(f2) 6= K implies f1 and

f2 have a common composite: for in this case K(f1)∩K(f2) = K(h) 6= K, and

the proof of Proposition 7.3 shows there are compatible consistent subsets of K.

More importantly, in Theorem 7.4 we exhibited a specific common composite h

over K. The shape of this polynomial h enables us to control the ramification

in a minimal-degree common composite in terms of the ramification in f1 and

f2; in a subsequent paper we will show how this can be used to prove that two

polynomials have no common composite.

Corollary 7.5: If f1, f2 ∈ K[x] have a common composite, then the rami-

fication index of x = a in K(x)/(K(f1) ∩ K(f2)) is a divisor of `(a), for any

consistent labeling ` on any compatible set containing a.

Another consequence of Theorem 7.4 is a description of the minimal compat-

ible sets, in case there is a common composite. We need a lemma before stating

the result:

Lemma 7.6: If f1 and f2 have a common composite, and A ⊂ K is a minimal

compatible set, then there is a consistent labeling `0 : A → Z such that every

consistent labeling ` : A→ Z has the form ` = n`0 with n a positive integer.

Proof. Pick some a ∈ A and some consistent labeling ` : A → Z. Since A is a

minimal compatible set, for any b ∈ A there is a finite sequence a1, . . . , ar of

elements of A, where a = a1 and b = ar, such that (for each j) aj and aj+1 have

the same image under either f1 or f2. If fi(aj) = fi(aj+1) then `(aj)/mi(aj) =

`(aj+1)/mi(aj+1), so `(aj+1) = `(aj)mi(aj+1)/mi(aj). Thus, we can express

`(b) as `(a) times a rational number whose numerator and denominator are

products of values of m1 and m2. It follows that any other compatible labeling

must be a rational number times `. Conversely, a rational multiple of ` is a

consistent labeling if and only `(b)/mi(b) ∈ Z for every b ∈ A and i ∈ {1, 2}.

The result follows.

Corollary 7.7: Suppose f1 and f2 have a common composite, and let h be

a common composite of minimal degree. Then the minimal compatible sets

A ⊂ K are precisely the sets {b ∈ K : h(b) = h(a)} with a ∈ K. Moreover, if `0

is the minimal consistent labeling on A, then `0(a) is the multiplicity of x = a

as a root of h(x)−h(a), and furthermore
∑

a∈A `0(a) = deg(h). Finally, writing
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ĥ :=
∏

a∈A(x − a)`0(a), we have ĥ(x) − ĥ(0) ∈ K[x], and there is a degree-one

µ ∈ K[x] such that ĥ(x) = ĥ(0) + µ(h(x)).

Proof. For any a ∈ K, let `(a) denote the ramification index of x = a in

K(x)/K(h(x)). The fiber S = {b ∈ K : h(b) = h(a)} is compatible, and `

is a consistent labeling on S. Note that
∑

b∈S `(b) = deg(h). Let A be a

minimal compatible set contained in S. Then Theorem 7.4 implies that ĥ :=∏
b∈A(x − b)`(b) is a common composite over K. By minimality of deg(h), we

must have deg(h) ≤ deg(ĥ), so A = S and deg(h) = deg(ĥ). Likewise, ` must be

the minimal consistent labeling on A, since otherwise using a smaller labeling in

Theorem 7.4 would produce a common composite of degree lower than deg(h).

Now ĥ(x) = ĥ(0)+µ(h(x)) for some degree-one µ ∈ K[x]. Since ĥ is monic and

h ∈ K[x], the leading coefficient of µ must be in K. Since the constant terms

of both h and (ĥ(x) − ĥ(0)) are in K, we have µ(0) ∈ K. This completes the

proof.

8. Inconsistent sets

In this section we give examples of f1, f2 ∈ K[x] for which there is an in-

consistent subset of K. By Proposition 7.3, this implies there is no common

composite. We begin by reworking Example 6.2.

Example 8.1: Consider f1 = x2 − x and f2 = x3 − x2 over any field K. We

claim that {0, 1} is inconsistent. For, suppose there were a function ` on {0, 1}

satisfying the properties of Definition 7.2. Since f1(0) = f1(1) and f2(0) =

f2(1), we would have

`(0)

m1(0)
=

`(1)

m1(1)
and

`(0)

m2(0)
=

`(1)

m2(1)
,

so
m1(0)

m1(1)
=
`(0)

`(1)
=
m2(0)

m2(1)
.

But m1(0) = m1(1) = m2(1) = 1 and m2(0) = 2, contradiction.

In the above example the set {0, 1} is compatible, but this property is not

used in proving there is no common composite. (By contrast, we crucially

used this property when we treated these polynomials in Example 6.2.) It is

not difficult to construct similar examples involving noncompatible inconsistent

sets—for instance, one could replace f1 by (x2 − x)(x2 − x− 1).



Vol. 174, 2009 POLYNOMIALS WITH A COMMON COMPOSITE 113

Our next example involves a larger inconsistent set.

Example 8.2: Consider f1 = x3 + x+ 1 and f2 = x4 + x+ 1 in F3[x]. We claim

that A := {0,−1, i, i − 1} is inconsistent. For, suppose there is a consistent

labeling ` on A. Since f1(i) = f1(0) = 1 and m1(i) = m1(0) = 1, we have

`(i) = `(0). Since f2(0) = f2(−1) = 1 and m2(0) = 1 and m2(−1) = 3, we have

`(−1) = 3`(0). Since f1(−1) = f1(i− 1) = −1 and m1(−1) = m1(i− 1) = 1, we

have `(i−1) = `(−1). Since f2(i−1) = f2(i) = i−1 and m2(i−1) = m2(i) = 1,

we have `(i) = `(i− 1). Thus

`(i) = `(i− 1) = `(−1) = 3`(0) = 3`(i),

contradicting the fact that `(i) is nonzero.

These two examples generalize as follows:

Theorem 8.3: Suppose c1, . . . , c2d ∈ K satisfy f1(ci) = f1(ci+1) for odd i and

f2(ci) = f2(ci+1) for even i (where c2d+1 := c1). If f1 and f2 have a common

composite then

(2) 1 =

d∏

i=1

m1(c2i−1)

m2(c2i−1)

m2(c2i)

m1(c2i)
.

Proof. Suppose f1 and f2 have a common composite, and let ` be a consistent

labeling on K. Then `(ci)/`(ci+1) equals m1(ci)/m1(ci+1) if i odd, and equals

m2(ci)/m2(ci+1) otherwise. The desired formula follows by is computing the

product of all 2d terms `(ci)/`(ci+1).

We do not know how often one can satisfy the criteria of this Proposition.

Namely, if one begins with a value c1 such that m1(c1) > 1 (i.e., f ′
1(c1) = 0),

then how likely is it that there exist c2, . . . , c2d such that f1(ci) = f1(ci+1) for

odd i and f2(ci) = f2(ci+1) for even i? If such ci do exist, one would expect

that ‘usually’ Equation (2) is not satisfied. However, we suspect that it is rare

for such ci to exist.

As an extreme example in this direction, we note that there are polynomials

fi for which K is consistent, even though the fi have no common composite:

Example 8.4: Let f1 = x2 and f2 = (x − 1)2 be polynomials over Q. Then

mi(α) = 1 for all α ∈ Q and i ∈ {1, 2}, except that m1(0) = 2 and m2(1) = 2.

Thus, the constant function ` = 2 is a consistent labeling on Q. However, any

compatible subset S of Q would have to be closed under the map x 7→ −x (since
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−x and x are in the same fiber of f1), and likewise S would be closed under

x 7→ 2 − x. But then S would be closed under the composite map x 7→ 2 + x,

contradicting finiteness of S. Hence there is no compatible subset of Q, so f1

and f2 have no common composite.

9. Derivatives

In the previous section we gave a method which, in certain special cases, enables

one to prove that two polynomials f1 and f2 have no common composite. In

this section we give a more robust method for this.

Proposition 9.1: Suppose that f1, f2 ∈ K[x] have a common composite h,

and suppose α, β ∈ K satisfy h′(α)h′(β) 6= 0 and fi(α) = fi(β) for both i = 1

and i = 2. Then f ′
1(α)f ′

2(β) = f ′
1(β)f ′

2(α).

Proof. Writing h = Fi ◦ fi with Fi ∈ K[x], we have

h′(α) = F ′
i (fi(α)) · f ′

i(α),

h′(β) = F ′
i (fi(β)) · f ′

i(β) = F ′
i (fi(α)) · f ′

i(β).

Since h′(β) 6= 0, this implies

h′(α)

h′(β)
=
f ′

i(α)

f ′
i(β)

.

Since the left side of this equation does not depend on i, the result follows.

Example 9.2: Consider f1 = x3 and f2 = x2 + x over K = F2. Letting ω be a

primitive cube root of unity in K, we see that fi(ω
j) = 1 for each i, j ∈ {1, 2}.

Since f ′
1(ω)f ′

2(ω
2) 6= f ′

1(ω
2)f ′

2(ω), Proposition 9.1 implies that every common

composite h of f1 and f2 must satisfy h′(ω)h′(ω2) = 0. In this instance, we

know by Proposition 4.2 that f1 and f2 have a common composite, and that

a minimal-degree common composite is ĥ := (x4 + x)3. And indeed, ĥ′(ω) =

ĥ′(ω2) = 0.

This example illustrates how to use Proposition 9.1 to prove a property of

common composites, assuming such composites exist. We now build this into

a criterion enabling us to prove nonexistence of a common composite in some

cases.
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Lemma 9.3: Suppose f1, f2 ∈ K[x] \K[xp] have a common composite, and let

h be a minimal-degree common composite. For any α ∈ K such that [K(α) :K]

is divisible by a prime greater than max(deg(f1), deg(f2)), we have h′(α) 6= 0.

Proof. By Proposition 7.3, there is a compatible consistent set A ⊂ K contain-

ing α. Assume A is the minimal such set; then A consists of all β ∈ K for

which there is a finite sequence of elements of K, starting with α and ending

with β, such that consecutive members of the sequence have the same image

under either f1 or f2. Our condition on the degrees implies that the large

prime dividing [K(α) :K] also divides [K(γ) :K] for each γ in the sequence, so

this prime divides [K(β) :K], whence f ′
i(β) 6= 0. Thus ` = 1 is the minimal

consistent labeling on A, so Corollary 7.7 implies that ĥ(x) :=
∏

a∈A(x − a)

satisfies ĥ(x) − ĥ(0) = µ(h(x)) for some degree-one µ ∈ K[x]. In particular,

since ĥ′(α) 6= 0, we must have h′(α) 6= 0.

Combining the previous two results gives our desired criterion:

Corollary 9.4: Suppose f1, f2 ∈ K[x] \K[xp] and α, β ∈ K satisfy fi(α) =

fi(β) for both i = 1 and i = 2, and also [K(α) :K] is divisible by a prime greater

than max(deg(f1), deg(f2)). If f ′
1(α)f ′

2(β) 6= f ′
1(β)f ′

2(α) then f1 and f2 have

no common composite.

Example 9.5: Consider f1 = x4 + x3 and f2 = x6 + x2 + x over F2. One can

check that ψ(x) := x14 + x10 + x9 + x8 + x7 + x6 + x4 + x + 1 is irreducible

over F2. For any root α of ψ, let β = α128. Then fi(α) = fi(β) for each i,

but f ′
1(α)f ′

2(β) 6= f ′
1(β)f ′

2(α), so Corollary 9.4 implies the fi have no common

composite.

Our proof of Corollary 9.4 generalizes at once to prove the following:

Theorem 9.6: For f1, f2 ∈ K[x] \ K[xp], suppose c1, . . . , c2d ∈ K satisfy

f1(ci) = f1(ci+1) for odd i and f2(ci) = f2(ci+1) for even i (where we define

c2d+1 := c1). Suppose further that [K(c1) :K] is divisible by a prime greater

than max(deg(f1), deg(f2)). If

d∏

i=1

(f ′
1(c2i−1)f

′
2(c2i)) 6=

d∏

i=1

(f ′
2(c2i−1)f

′
1(c2i))

then f1 and f2 have no common composite.
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One can check that there is no loss in only applying this result when the ci

are distinct.

Example 9.7: Consider f1 = x2 + x and f2 = x4 + x3 + x over F2. The two

primitive cube roots of unity have the same image as one another under both f1

and f2, but they have degree 2 over F2 so the above result does not apply. For

d < 5, this is the only choice of distinct ci’s such that f1(ci) = f1(ci+1) for odd

i and f2(ci) = f2(ci+1) for even i. But for d = 5 we can choose (c1, . . . , c10) :=

(w,w268, w4, w49, w16, w196, w64, w784, w256, w67) where w10 +w9 +w4 +w2 = 1.

Since [F2(w) : F2] = 10, these ci satisfy all the hypotheses of Theorem 9.6, so f1

and f2 have no common composite.

We suspect that Theorem 9.6 applies to ‘most’ pairs of polynomials over a

finite field. This intuition has been reinforced by various examples we have

computed. Our intuition is based on the following reasoning: the ci are defined

by 2d equations in 2d variables, so ‘at random’ we expect to find solutions.

Specifically, we can apply the fiber-finding algorithm to the indeterminate α =

t in K[t]. This gives a polynomial r2d ∈ K[t, x] such that r2d(c1, c1) = 0,

narrowing the choices for c1 to a finite set. It may happen that no such choice

for c1 leads to a solution for c2, . . . , c2d with the ci distinct, but this seems

unlikely to happen except in unusual circumstances. Finally, as we vary d, it

seems there should be some d for which a corresponding c1 is defined over an

extension ofK of degree divisible by a large prime, and moreover ‘at random’ the

products of derivatives expressed in Theorem 9.6 are almost certainly distinct.

Unfortunately, there are cases where two polynomials have no common com-

posite, but this nonexistence cannot be proved with Theorem 9.6.

Example 9.8: Consider f1 = x2 + x and f2 = x6 + x over F2. Since f ′
i(x) = 1,

there are no cj ’s satisfying the hypotheses of Theorem 9.6.

In a subsequent paper we will develop further methods for proving nonexis-

tence of a common composite, and in particular we will show that the polyno-

mials in the above example have no common composite.
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