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ABSTRACT

We study some properties of sets of differences of dense sets in Z
2 and Z

3

and their interplay with Bohr neighbourhoods in Z. We obtain, inter alia,

the following results.

(i) If E ⊂ Z
2, d(E) > 0 and pi, qi ∈ Z[x], i = 1, . . . , m satisfy pi(0) =

qi(0) = 0, then there exists B ⊂ Z such that d(B) > 0 and

E − E ⊃

m
⋃

i=1

(

pi(B) × qi(B)
)

.

(ii) If A ⊂ Z with d(A) > 0, then for any r, s, t such that r + s + t = 0

the set rA + sA + tA is a Bohr neighbourhood of 0.

(iii) For any 0 < α < 1/2 there exists a set E ⊂ Z
3 with d(E) > 0 such

that E − E does not contain a set of the form B × B × B, where B ⊂ Z

and d(B) > 0.
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1. Introduction

In this paper, we consider some additive properties of dense sets of integers and

lattice points in dimensions 2 and 3.

We define the upper asymptotic density of a set E ⊂ Z
d by the formula

d(E) = lim sup
n→∞

|E ∩ [−n, n]d|

(2n + 1)d
.

By taking the lower limit instead we obtain the concept of lower density d(E),

and if d(E) = d(E), we call this value the asymptotic density d(E).

We define the upper Banach density by

d∗(E) = lim
n→∞

max
t∈Zd

|(E − t) ∩ [1, n]d|

nd
.

The first author proved the following results ([1, Corollaries 3.1.1 and 3.1.2]).

Statement 1.1: Let E ⊂ Z
2 and suppose that d∗(E) > 0. Then there exists

B ⊂ Z such that d(B) > 0 and

E − E ⊃ B × B.

Statement 1.2: Let A ⊂ Z and suppose that d∗(A) > 0. Then there exists

B ⊂ Z such that d(B) > 0 and

A − A ⊃ B + B.

In the same paper the following questions are raised.

– Given a set E ⊂ Z
3 with d(E) > 0, can one find B ⊂ Z, d(B) > 0 such that

(1.1) E − E ⊃ B × B × B?

– Given a set A ⊂ Z with d(A) > 0, can one find B ⊂ Z, d(B) > 0 such that

(1.2) A − A ⊃ B + B + B?

In this paper, we answer the first problem in the negative, present some

results related to the second problem and improve upon Statements 1.1 and 1.2

in different directions. These improvements are as follows.

Theorem 1.3: Let A ⊂ Z and suppose that d∗(A) > 0. Then there exists

B ⊂ Z such that B = −B, 0 ∈ B, B has asymptotic density, d(B) > 0 and

A − A ⊃ B + B.
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Theorem 1.4: Let E ⊂ Z
2 and suppose that d(E) > 0. Let pi, qi ∈ Z[x],

i = 1, . . . , m satisfy pi(0) = qi(0) = 0 for all i. Then there exists B ⊂ Z such

that d(B) > 0 and

E − E ⊃
m
⋃

i=1

(

pi(B) × qi(B)
)

.

Here for a polynomial p and a set B ⊆ Z, we write p(B) = {p(n) : n ∈ B}.

The proofs, based on some results in ergodic theory, are given in Sections

2–3.

Concerning the first question we show the following.

Theorem 1.5: For every 0 < α < 1/2 there is a set E ⊂ Z
3 with d(E) > α

such that there is no B ⊂ Z, d(B) > 0 satisfying (1.1).

The results concerning the second question will be explained in Section 4 and

proved in Sections 5–8.

2. Two summands with a density

In this section, we prove Theorem 1.3. It will be derived from the following

result about dynamical systems.

Theorem 2.1: Let (X,B, µ, T ) be a probability space with a measure-preser-

ving transformation. For every Y ∈ B with µ(Y ) > 0 there exists a sequence

B ⊂ N of positive density such that

(2.1) µ
(

Y ∩ T b1Y ∩ T−b1Y ∩ · · · ∩ T bkY ∩ T−bkY
)

> 0

for every b1, . . . , bk ∈ B.

For the proof we need the following result of Bourgain [6].

Lemma 2.2: Let T be an ergodic measure-preserving transformation on a prob-

ability space, f, g bounded measurable functions. The sequence

N−1
N

∑

n=1

f(T n
1 x)g(T n

2 x),

where T1, T2 are powers of T , converges almost everywhere.
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Proof of Theorem 2.1. Removing, if necessary, a subset of measure 0 from Y

we may assume that every set of the form

(2.2) Y ∩ T n1Y ∩ T−n1Y ∩ · · · ∩ T nkY ∩ T−nkY

is either empty, or has positive measure.

From Bourgain’s aforementioned theorem we know that

f(x) = lim
N→∞

1

N

N
∑

n=1

IY (x)IT−nY (x)IT nY (x)

exists almost everywhere. Clearly f(x) ≥ 0. We are going to show that that

J =
∫

f dµ > 0.

By boundedness we can exchange limit and integration. Hence

J = lim
N→∞

1

N

N
∑

n=1

∫

IY IT−nY IT nY dµ = lim
N→∞

1

N

N
∑

n=1

∫

IY IT−nY IT−2nY dµ

and the positivity is implied by the ergodic Roth Theorem (see Theorem 4.27

in [8], also Section 4.2 in [2]).

Take an x0 such that f(x0) > 0. Then the sequence

B =
{

b : x0 ∈ Y ∩ T−bY ∩ T bY
}

has positive density (exactly f(x0)). Thus every set of type (2.2) with ni ∈

B is non-empty (contains x0), consequently of positive measure by the above

assumption.

To deduce Theorem 1.3, we will use a variant of Furstenberg’s correspondence

principle. For a proof of the particular version that we are giving here see

Bergelson and McCutcheon [4], Proposition 7.2. See also Furstenberg [8, p. 152].

Lemma 2.3: Let E ⊂ Z
r be a set satisfying d∗(E) > 0. Then there exists

a probability measure preserving system (X,B, µ, {T n}n∈Zr) and a set Y with

µ(Y ) > 0 such that for all k ∈ N and n1, . . . ,nk ∈ Z
r one has

(2.3) d∗
(

E ∩ (E − n1) ∩ · · · ∩ (E − nk)
)

≥ µ
(

Y ∩ Tn1Y ∩ · · · ∩ TnkY
)

.

Proof of Theorem 1.3. Apply Lemma 2.3 with r = 1 and A in the place of E.

Then apply Theorem 2.1 for this system; let B0 be the set obtained. Our set

will be

B = B0 ∪ (−B0) ∪ {0}.
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Inequalities (2.1) and (2.3) together mean that for every finite B′ ⊂ B we have

d∗{a ∈ A : a + B′ ⊂ A} > 0.

In particular, for b1, b2 ∈ B we find (lots of) a ∈ A such that a + b1 = a1 ∈ A

and a − b2 = a2 ∈ A, whence b1 + b2 = a1 − a2 ∈ A − A.

With some modifications in the proof one can establish the following slightly

more general result.

Theorem 2.4: Let A ⊂ Z and suppose that d(E) > 0. Let r, s be given non-

zero integers. Then there exists B ⊂ Z such that B = −B, B has asymptotic

density, d(B) > 0 and

A − A ⊃ rB + sB.

Here we write

rB = {rb : b ∈ B}.

In the proof we apply Bourgain’s theorem for T1 = T r, T2 = T−s rather than

T and T−1.

3. Polynomials

In this section we prove Theorem 1.4. It will be a consequence of the following

result.

Theorem 3.1: Let E ⊂ Z
2 and suppose that d(E) > 0. Let pi, qi ∈ Z[x],

i = 1, . . . , m satisfy pi(0) = qi(0) = 0 for all i. Then there exists B ⊂ Z such

that d(B) > 0 and

(3.1) d

( m
⋂

i=1

n
⋂

j=1

(

E −
(

pi(bj), qi(bj)
))

)

> 0

for every b1, . . . , bn ∈ B.

Corollary 3.2: Under the same assumptions we have

E − E ⊃
m
⋃

i=1

(

pi(B) × qi(B)
)

.

To prove the Corollary, we apply the previous theorem with a system of

polynomials containing the original ones and identically 0 polynomials.
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Proof of Theorem 3.1. We use Furstenberg’s correspondence principle (Lemma

2.3) for r = 2 to find a “model” (X,B, µ, T, U), where T, U are commuting

measure-preserving transformations on X , and a set Y ⊂ X with µ(Y ) = d∗(E)

satisfying

d∗
( k

⋂

i=1

(E − (mi, ni))

)

≥ µ

( k
⋂

i=1

T miUniY

)

for any m1, . . . , mk, n1, . . . , nk ∈ Z.

Like in the previous section, we may assume that any intersection of sets of

the form T mUnY is either empty, or has positive measure.

Put

fN (x) =
1

N

N−1
∑

n=0

IY

(

T p1(n)U q1(n)x
)

· · · IY

(

T pm(n)U qm(n)x
)

.

By the polynomial Szemerédi theorem proved by Bergelson and Leibman ([3,

Theorem A]) we know that

lim sup
N→∞

∫

fN dµ = lim sup
N→∞

1

N

∑

n<N

µ

( m
⋂

i=1

T pi(n)U qi(n)Y

)

= c > 0.

Clearly 0 ≤ f(x) ≤ 1 for all x ∈ X . Let f(x) = lim supN→∞
f(x). By Fatou’s

lemma we have
∫

f dµ ≥

∫

lim sup fN dµ ≥ lim sup

∫

fN dµ ≥ c > 0.

Hence for some x0 we have

f(x0) = lim sup
1

N

N−1
∑

n=0

IY

(

T p1(n)U q1(n)x
)

· · · IY

(

T pm(n)U qm(n)x
)

≥ c > 0.

This implies that the set

B =
{

b : x0 ∈ T p1(b)U q1(b)Y
}

has positive upper density, even

(3.2) d

( m
⋂

i=1

n
⋂

j=1

(

E −
(

pi(bj), qi(bj)
)

)

)

≥ µ

( m
⋂

i=1

n
⋂

j=1

T p1(bj)U q1(bj)Y

)

> 0

whenever b1, . . . , bn ∈ B.
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4. Differences and triple sums

To formulate our results concerning the second question we introduce certain

parametric statements (that may hold for some values of the parameters and

fail for others). We will consider the more general inclusion

(4.1) A − A ⊃ rB + sB + tB

with r, s, t ∈ Z. We will consider three variants, the density version, the effective

density version and the finite version.

Density version. For integers r, s, t and α ∈ (0, 1), D(r, s, t, α) means that

for every set A ⊂ Z with d(A) = α one can find B ⊂ Z, d(B) > 0 satisfying

(4.1).

Effective density version. For integers r, s, t and α, β ∈ (0, 1),

E(r, s, t, α, β) means that for every set A ⊂ Z with d(A) > α one can find

B ⊂ Z, d(B) > β satisfying (4.1).

Finite version. For integers r, s, t, real α, β ∈ (0, 1), and positive integer n,

F (r, s, t, α, β, n) means that for every set A ⊂ {1, 2, . . . , n} with |A| > αn one

can find B ⊂ Z, |B| > βn satisfying (4.1).

Concerning the (most interesting) density case we have only a partial answer.

Theorem 4.1: Let r, s, t be non-zero integers such that r + s + t = 0 and let

α ∈ (0, 1/2). The statement D(r, s, t, α) is false.

The proof will consist of showing that rB +sB + tB is a Bohr neighbourhood

of 0 (the main result of this part), while A − A may not be one. The proof is

given in Sections 4–6.

If r+s+ t 6= 0, then rB +sB + tB may not be a Bohr neighbourhood of 0 for

obvious reasons. For certain triplets, namely when r + s = 0, one can show the

weaker property that it is a Bohr neighbourhood of some integer. If we could

establish the existence of an A such that A − A is nowhere dense in the Bohr

topology, this would disprove the density version for some further values. We

do not even have a conditional argument for the case r = s = t = 1, though the

results below suggest a negative answer.

Theorem 4.2: Let r, s, t be non-zero integers, α ∈ (0, 1/2) and β ∈ (0, 1). The

statement E(r, s, t, α, β) is false.
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Theorem 4.3: Let r, s, t be non-zero integers, α ∈ (0, 1/2) and β ∈ (0, 1).

There is an n0 = n0(r, s, t, α, β) such that F (r, s, t, α, β, n) is false for n > n0.

Observe that the bound 1/2 in these theorems is best possible. For instance,

if d(A) > 1/2, then the sets A and A + x cannot be disjoint, thus A − A = Z.

This simple observation does not immediately resolve the case α = 1/2. If

d(A) = 1/2, then easy arguments show that there is an integer m such that all

integers n not contained in A − A satisfy n ≡ m (mod 2m). One can see that

E(r, s, t, 1/2, β) is true with β = 1/
(

2(|r| + |s| + |t|)
)

; we do not know whether

it holds with an absolute constant β. To clarify the transition of behaviour in

the finite case around α = 1/2 may not be easy (but does not seem to be very

important).

These results will be easy consequences of some known results about the

length of arithmetical progessions in sumsets. Details are given in Section 8.

5. The number of solutions of a linear equation

In this section we prove an auxiliary result.

Lemma 5.1: Let r, s, t be non-zero integers satisfying a + b + c = 0. For every

positive ε there exists a δ > 0 and an N0 with the following property. Whenever

we take a set X ⊂ [1, N ] of integers such that |X | ≥ εN and N > N0, there

are at least δN2 triplets of distinct integers x, y, z ∈ X satisfying the equation

rx + sy + tz = 0.

For the particular equation x+y = 2z, that is, three integers in an arithmetic

progression, this is a result of Varnavides [12]. Our proof essentially follows his

argument with small changes.

Proof. Take an integer l with the following property: whenever we take a set

Y ⊂ [1, l] of integers such that |Y | ≥ (ε/2)l, the equation rx + sy + sz = 0

has at least one solution in distinct integers x, y, z ∈ Y . The existence of

such an integer follows immediately from Szemerédi’s theorem on arithmetic

progressions, or one can adapt any method used to prove Roth’s theorem on

three-term arithmetic progressions.

First, we show that for every set Y ⊂ [1, l] of integers the equation

rx + sy + sz = 0 has at least |Y |− (ε/2)l solutions in Y . This is an easy induc-

tion on m = |Y |. For m < (ε/2)l the claim is empty, for m = 1 + [(ε/2)l] it is
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the assumption. If we know the statement for m, to establish it for m + 1 we

take an m + 1 element set Y , select a solution x, y, z, and apply the induction

hypothesis for the m-th element set Y \{x}.

Since our equation is invariant under linear transformations, the same in-

equality applies for any set Y contained in an arithmetic progression of length

l.

Next, consider all arithmetic progressions of length l and difference ≤ D (D

will be specified later) which have at least one common element with X ; let them

be P1, . . . , Pk. Since the starting point must lie in the interval [1− (l−1)D, N ],

there are < N + lD possibilites for it; combined with the D possible differences,

we see that

(5.1) k < D(N + lD).

Write Yi = Pi ∩ X . Each Yi contains at least |Yi| − (ε/2)l solutions of the

equation; this makes altogether
∑

(

|Yi| −
ε

2
l
)

=
∑

|Yi| − εkl/2

solutions. Here a solution may be counted multiply. A solution (x, y, z) is

counted as many times as the number of l-term arithmetic progressions con-

taining it. This multiplicity is less than l2. Indeed, if we fix that x is the i-th

term and y is the j-th, where 1 ≤ i < j ≤ l, this determines the progression

uniquely. Hence, the total number, say R, of solutions satisfies

(5.2) R ≥
1

l2

(

∑

|Yi| −
εkl

2

)

.

We have
∑

|Yi| = lD|X |,

since each element of X is contained in exactly lD arithmetic progressions of

the prescribed kind; we can arbitrarily fix the difference d ≤ D and the position

1 ≤ i ≤ l of an element in the progression. By substituing this into equation

(5.2) we obtain

R ≥
1

l

(

D|X | − (εk)/2
)

.

On substituting (5.1) we arrive at

(5.3) R ≥
D

l

(

|X | −
ε

2
(N + lD)

)

.
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Now put D = [N/(2l)]. If N > 6l, then this yields D ≥ N/(3l) and (5.3)

implies

R ≥
ε

12l2
N2,

thus the lemma is proved with N0 = 6l and δ = ε/(12l2).

6. Bohr neighbourhoods in a triple sum

In the Bohr topology on Z, a basic neighbourhood of 0 is a set of the form

(6.1) U(u1, . . . , uk, ε) = {n ∈ Z : ‖nui‖ < ε for i = 1, . . . , k.}

Here ε is an arbitrary positive number, u1, . . . , uk are arbitrary reals and ‖x‖

denotes the distance of x from the nearest integer. (Neighbourhoods of other

integers are defined by translation.)

Here we prove the main result of this part.

Theorem 6.1: Let r, s, t be non-zero integers satisfying r+s+t = 0. Let B be a

set of integers having positive upper Banach density and put S = rB+sB+ tB.

The set S is a Bohr neighbourhood of 0.

The proof is similar to Bogolyubov’s [5] for the analogous statement for the

set A + A − A − A. Similarly to the proof in [5], we will use exponential

sums, and consider first sets of residues, then dense finite sets, finally infinite

sets of positive density. The main difference is that the symmetry of the set

A + A − A − A makes the exponential sum easy to estimate at 0, and in lack

of this symmetry we need some extra arguments; here we will use the lemma

from the previous section.

First we consider residues. We use Zm = Z/mZ to denote the set of residues

modulo m. We cannot define topology here, but we will need sets whose defi-

nition is similar to definition (6.1) of a Bohr neighbourhood.

Definition 6.2: A Bohr k, η-subset of Zm is a set defined by

(6.2) V (v1, . . . , vk, η) =
{

n ∈ Zm :
∥

∥

∥

nvi

m

∥

∥

∥
< η for i = 1, . . . , k.

}

.

Here η is a positive number and v1, . . . , vk ∈ Zm.

Theorem 6.3: Let r, s, t be non-zero integers satisfying r + s + t = 0, and let

m be a positive integer satisfying (m, rst) = 1. Let X ⊂ Zm be a set satisfying

|X | ≥ εm with some ε > 0. Put S = rX + sX + tX . The set S contains a Bohr
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k, η-set with an integer k and a positive η that depend on r, s, t, ε but not on

m.

Proof. For x ∈ Zm write

f(x) =
∑

n∈X

e(nx/m),

where, as usual, e(t) = e2πit. Clearly n ∈ S holds if and only if

(6.3) R(n) =
1

m

∑

x∈Zm

f(rx)f(sx)f(tx)e(−nx/m) > 0,

and furthermore, R(n) is exactly the number of triplets x, y, z ∈ X such that

n = rx+sy+tz. In particular, R(0) counts the triplets satisfying rx+sy+tz = 0.

By representing each element of X by an integer in [1, m] and applying Lemma

5.1 we see that R(0) ≥ R > δm2 for m > N0(ε). For m ≤ N0 we can assert

that R(0) ≥ |X |, as R(0) counts also the trivial solutions. Hence we always

have R(0) ≥ δ′m2 with, say, δ′ = min(δ, ε/N0). Consequently for a general n

we have

R(n) = R(0) −
1

m

∑

x∈Zm

f(rx)f(sx)f(tx)
(

1 − e(−nx/m)
)

≥ δ′m2 −
1

m

∑

x∈Zm

f(rx)f(sx)f(tx)|1 − e(−nx/m)|.

(6.4)

To estimate this sum, observe first that by Plancherel’s formula we have

(6.5)
∑

|f(x)|2 = m|X | ≤ m2,

hence the Cauchy-Schwarz inequality yields

∑

x∈Zm

|f(sx)f(tx)| ≤

(

∑

|f(sx)|2
∑

|f(tx)|2
)1/2

=
∑

|f(x)|2 ≤ m2.

(Here we use the assumption (s, m) = (t, m) = 1, though we would not lose

much by dropping it.) By comparing this to (6.4) we see that n ∈ S for every

n which has the following property:

(6.6) |f(rx)||1 − e(−nx/m)| < δ′m

for all x.

To find such values of n, observe first that |1 − e(−nx/m)| ≤ 2 always, so

(6.6) automatically holds for those values of x for which |f(rx)| < δ′m/2. Now
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consider those for which |f(rx)| ≥ δ′m/2. By (6.5), the number of such values

of x is at most (2/δ′)2; denote them by u1, . . . , uk. We have a bound k ≤ (2/δ′)2

for this number, and this bound is independent of m.

For these values we shall require that

|1 − e(nuj/m)| < δ′/2.

Since |1 − e(y)| ≤ 2π‖y‖ for every real y, it suffices to assume that ‖nuj/m‖ <

η = δ′/(4π) for all j = 1, . . . , k. This number η is also independent of m and

this concludes the proof.

Our calculations were far from optimal at several places. Since we did not

give any estimate for δ, and if we did, it would be of the form e−ε−c

with some

constant c, the possible savings, which are powers of ε, would not matter much.

Lemma 6.4: Let r, s, t be non-zero integers satisfying r + s + t = 0, and let

X ⊂ [−N, N ] be a set of integers satisfying |X | ≥ εN with some ε > 0. Put

S = rX + sX + tX . There are real numbers u1, . . . , uk and η > 0 such that the

set S contains a set of the form

(6.7) U(u1, . . . , uk, η) ∩ [−N, N ].

Here k and η depend on r, s, t, δ only.

Proof. Take an integer m satisfying

m > (|r| + |s| + |t| + 1)N, (m, rst) = 1.

We can find such an m below (|r|+ |s|+ |t|+1)N + |rst|, so we have |X | > ε′m

with ε′ = ε/(|r|+ |s|+ |t|+1+ |rst|). We apply the previous theorem to this set

X , now regarded as a set of residues modulo m, with ε′ in the place of ε. We

get a k and an η, and residues v1, . . . , vk such that for every integer n satisfying

‖nvi/m‖ < η for all i there are x, y, z ∈ X such that

n ≡ rx + sy + tz (mod m).

If |n| < N , then |n− (rx+sy+ tz)| < m, thus the congruence becomes equality.

Thus we proved the theorem with ui = vi/m.

Proof of Theorem 6.1. As d∗(A) > 0, there is a constant ε > 0 and a sequence

of integers zN such that the sets

XN = (A − zN ) ∩ [1, N ]
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satisfy |XN | > εN . An application of the preceeding lemma yields the existence

of real numbers u
(i)
1 , . . . , u

(i)
k and an η > 0 such that every integer n satisfying

|n| ≤ N, ‖nu
(i)
j ‖ < η for j = 1, . . . , k

belongs to S. (Here we use r+ s+ t = 0, so that the translations by zN cancel.)

By periodicity of the fractional part we can assume that u
(i)
j ∈ [0, 1] for all i, j.

Now define WN ⊂ [0, 1]k as the set of vectors (u1, . . . , uk) which have the

following property: every integer n satisfying |n| ≤ N and ‖nui‖ ≤ η/2 for

i = 1, . . . , k belongs to S. This defines a closed set. Clearly WN ⊃ WN ′ for

N > N ′, so we have a decreasing sequence of closed sets. We also know that

WNi
6= ∅, hence

W =

∞
⋂

N=1

WN 6= ∅.

Let (u1, . . . , uk) be any element of W . Then we have

B(u1, . . . , uk, η/2) ⊂ S

as wanted.

7. Proof of Theorems 4.1 and 1.5.

Proof of Theorem 4.1. Theorem 4.1 asserts, for any given α < 1/2, the exis-

tence of a set A such that d(A) > α and A − A contains no subset of the form

S = rB + sB + tB with d(B) > 0. We will find actually a set A with d(A) > α

(though this is not really stronger, see Section 8).

By Theorem 6.1 we know that S is a Bohr neighbourhood of 0. Thus it is

sufficient to find a set A for which A − A is not. The existence of such a set is

implied by the following theorem of Kř́ıž ([9, Theorem 3.1]).

Lemma 7.1: For every ε > 0 there is a shift-invariant graph on Z with chromatic

number ∞ and containing an independent set of density > 1/2 − ε.

We denote this set by A; thus we can achieve d(A) > α. The assumptions

that this is an independent set and the graph is shift-invariant mean that two

integers x, y are not connected if x − y ∈ A − A. Hence the property that the

chromatic number is infinite yields that there is no partition of the integers into

finitely many subsets, say Z = Z1 ∪ · · · ∪Zl such that Zi −Zi ⊂ A−A for all i.
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This implies that A − A is not a Bohr neighbourhood of 0. Indeed, if it were,

say we had

A − A ⊃ U = U(u1, . . . , uk, η),

then we could find a partition (Zi) in the following way. Cover the unit cube

[0, 1]k by cubes of side < ε, say T1, . . . , Tl. Define Zi by

Zi = {n : ({u1n}, {u2n}, . . . , {ukn}) ∈ Ti}.

Clearly
⋃

Zi = Z and Zi − Zi ⊂ U for all i.

Proof of Theorem 1.5. Theorem 1.5 asserts the existence of a set E ⊂ Z
3 with

d(E) > α such that E−E contains no subset of the form B×B×B, d(B) > 0.

We will actually find a set with d(E) > α.

To see this, take a set A of Theorem 4.1, with any choice of r, s, t, say r =

s = 1, t = −2. Define

E = {(x, y, z) : rx + sy + tz ∈ A}.

It is easy to see that d(E) = d(A), and the inclusion E −E ⊃ B×B×B would

immediately yield A − A ⊃ rB + sB + tB, which we have excluded.

8. The effective and finite versions

In this section we prove Theorems 4.2 and 4.3.

The proof will be based on two results concerning arithmetic progressions in

sumsets. The first one is from Ruzsa [11].

Lemma 8.1: Let ε be a positive number. For every prime p > p0(ε) there is

a symmetric set X of residues mod p such that |X | > (1/2 − ε)p and X + X

contains no arithmetical progression of length

(8.1) exp(log p)2/3+ε.

The other is a result of Freiman, Halberstam and Ruzsa [7]. We quote a

(slightly weakened) version of Theorem 3, with some change in the notation.

Lemma 8.2: Let p be a prime, Z a set of residues modulo p, |Z| ≥ γp with

0 < γ < 1. The set Z + Z + Z contains an arithmetic progression of length at

least pδ, with δ depending only on γ.
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(The theorem gives an explicit value of δ and an estimate for the number of

progressions, which we do not need.)

First we deduce a slight generalization.

Lemma 8.3: Let p be a prime, Y1, Y2, Y3 sets of residues modulo p, |Yi| ≥ βp

with 0 < β < 1. The set S = Y1 + Y2 + Y3 contains an arithmetic progression

of length at least pδ, with δ > 0 depending only on γ .

Proof. By a standard averaging argument we find x, y ∈ Zp such that

Z = Y1 ∩ (Y2 + x) ∩ (Y3 + y) has at least β3p elements. We apply the pre-

vious lemma to this set with γ = β3. The arithmetic progression found in this

way gives our arithmetic progression by a shift, since clearly Y1 + Y2 + Y3 ⊃

Z + Z + Z − (x + y).

The proof of [7] could also be modified to directly handle the case of different

summands.

We now give a modular analogue to Theorems 4.2 and 4.3.

Lemma 8.4: Let r, s, t be non-zero integers, α ∈ (0, 1/2) and β ∈ (0, 1). There is

a p1 = p1(r, s, t, α, β) such that for every prime p > p1 there is a set X ⊂ Zp such

that |X | > βp and there is no Y ⊂ Zp satisfying |Y | > βp, rY +sY +tY ⊂ X−X .

Proof. If p > max(|r|, |s|, |t|), then Y1 = rY , Y2 = sY , Y3 = tY all have > βp

elements. Thus S = rY +sY +tY contains an arithmetical progression of length

pδ with some δ = δ(β). If p > p1(1/2 − α), then we can find X such that the

length of any arithmetic progression in X +X = X−X is less than the quantity

in (8.1). So this set X is good as soon as p1 is large enough to guarantee

exp(log p)2/3+ε < pδ

for p > p1.

Proof of Theorem 4.2. We have to construct, for given r, s, t, α, β, a set A with

d(A) > α such that A − A does not contain any set of the form rB + sB + tB

with d(B) > β.

To this end take a set X produced by the previous lemma and let A be the set

of those integers whose residue modulo p lies in X . Clearly d(A) = |X |/p > α.

Take any set B such that rB + sB + tB ⊂ A− A. Let Y be the set of residues

modulo p of elements of B. Then clearly rY + sY + tY ⊂ X −X , thus |Y | < βp

and hence d(B) ≤ |Y |/p < β.
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Proof of Theorem 4.3. We have to construct, for given r, s, t, α, β and n > n0,

a set A ⊂ [1, N ] with |A| > αN such that A−A does not contain any set of the

form rB + sB + tB with |B| > βN .

To this end take a number α′ ∈ (α, 1/2), and apply the lemma above with α′

in the place of α for the largest prime p < N . For sufficiently large N we have

α′p > αN , thus the set X obtained satisfies |X | > αN . Let A be the set of those

integers in [1, p] whose residue modulo p lies in X . Clearly |A| = |X | > αN .

Take any set B such that rB + sB + tB ⊂ A − A. Let Y be the set of

residues modulo p of elements of B. Then clearly rY + sY + tY ⊂ X −X , thus

|Y | < βp < βN .

Take any two elements of B, say x, y. Since both rx+sx+ tx and ry+sx+ tx

belong to A, their difference is at most p−1. Thus |x−y| ≤ |rx−ry| ≤ p−1, that

is, the elements of B are pairwise incongruent modulo p, hence |B| = |Y | < βN

as desired.

9. Concluding remarks and open problems

1. Density. For uniformity, we formulated our results with upper density.

However, as far as difference sets are concerned, it does not matter what concept

of density we use. Given a set A with upper Banach density α, one can find

another set A′ with asymptotic density α, which has the following property: for

any finite F ⊂ A′ there is an x such that F + x ⊂ A. In particular, this implies

that A′−A′ ⊂ A−A. This can be found for the case of sets of positive integers

(where the definition of density is modified in the natural way) in Ruzsa [10];

the case of Z or Z
d can be handled similarly. It can also be found (for Z) in

Furstenberg’s book [8], Theorem 3.20 or in [1], Theorem 2.2.

2. Bohr neighbourhoods. The proof in Section 6 worked through

deciding whether a sumset of a certain type is or is not a Bohr neighbourhood

of 0. The proofs in Section 7 were seemingly different. However, the proof of

Lemma 7.2 actually works through finding a shifted Bohr k, η-set in the sumset.

A long arithmetic progression is then easily found by Dirichlet’s approximation

method. So there is a closer connection with the proof in section 6 than the

wording shows.

The unsolved cases of the density case are closely connected with the following

unsolved question. If A ⊂ Z, d(A) > 0, must A−A be a neighbourhood of some

number in the Bohr topology? By Kř́ıž’ theorem we know it is not necessarily
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a neigbourhood of 0, and 0 is the “most natural difference”. We also know that

the difference set of a large set in Zp may not contain a Bohr k, η-set. These

results suggest a negative answer. However, so far we could not find a way to

connect the finite and infinite cases.

If the answer to this question is positive, that is, A − A is always a Bohr

neigbourhood, then one can easily deduce that it contains sets of the form

rB + sB + tB with d(B) > 0 for arbitrary prescribed r, s, t. If the answer is

negative, we are confident that the answer to the inclusion question is negative

as well. We remark that (in the case r+s+t 6= 0) the condition d(B) > 0, or even

the stronger condition d(B) > 0 does not imply that rB + sB + tB is a Bohr

neighbourhood; indeed, it may have large gaps, while a Bohr neighbourhood

always has bounded gaps. We do not know whether the assumption d(B) > 0

suffices.
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