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ABSTRACT

The diagram algebra introduced by Brauer that describes the centralizer
algebra of the n-fold tensor product of the natural representation of an
orthogonal Lie group has a presentation by generators and relations that
only depends on the path graph A,,_1 on n — 1 nodes. Here we describe
an algebra depending on an arbitrary graph @, called the Brauer algebra
of type Q, and study its structure in the cases where @ is a Coxeter
graph of simply laced spherical type (so its connected components are
of type Ap—1, Dn, Es, E7, Eg). We find its irreducible representations
and its dimension, and show that the algebra is cellular. The algebra
is generically semisimple and contains the group algebra of the Coxeter
group of type @) as a subalgebra. It is a ring homomorphic image of the
Birman—Murakami—Wenzl algebra of type Q; this fact will be used in later
work determining the structure of the Birman—Murakami—Wenzl algebras
of simply laced spherical type.
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1. Introduction

Let @ be a graph. We define the Brauer monoid BrM(Q) to be the monoid
generated by the symbols r; and e; for i a node of @ and 6, 6! subject to the
relations of Table 1, where ~ denotes adjacency between nodes of (). The Brauer
algebra Br(Q) of type @ is the monoid algebra Z[BrM(Q)]. As § is in the center
of BrM(Q), it is also an algebra over Z[§71] and will often be regarded as such.
For @ = A,,_1, this algebra was introduced not by generators and relations but
in terms of diagrams by Brauer [3]. It was related to the centralizer algebra of
the n-th tensor power of the natural representation of a classical group where
0 is the dimension of the representation. The BMW algebras, introduced by
Birman & Wenzl [1] and Murakami [12], are deformations which play a similar
role for quantum groups and are also a useful tool for introducing Kauffman
polynomials, known from knot theory. In [4], we introduced BMW algebras of
type @ for arbitrary . The results of the present paper will be of use in our
determination of the structure of BMW algebras of type D,, [7, 6] in much the
same way the Brauer algebra of type A, was of use for Morton & Wasserman
[11] in the structure determination of the BMW algebra of type A,,.

label relation label relation
() J is central (! 56 t=1

for ¢ for i
(RSrr) r2=1 (RSer) e;ri =€
(RSre) Ti€; =€ (HSee) e? = e;

for i £ j for i o4 j
(HCrr) T =TT (HCer) eir; =rje;
(HCee) eiej = €5e;

for i ~j for i ~j
(HNrrr) rirjr; =rirr;  (HNrer) Tieir; = Tie;T;
(RNrre) TiTie; = eje;

Table 1. Brauer relations

A look at (RSrr), (HCrr), and (HNrrr) makes it clear that products of the r;
belong to a subgroup of the monoid BrM(Q) isomorphic to a quotient of W(Q),
the Coxeter group of type Q. Modding out the ideal generated by all e;, we see
that the subgroup itself is in fact isomorphic to W(Q) and that the r; form a set
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of simple reflections. In particular, the rank of Br(Q) as a module over Z[6*!]
is infinite if @) is not spherical in the sense of [2]. This means that, if Br(Q) is
finite-dimensional, its connected components are isomorphic to Coxeter graphs
of type A, (n > 1), D,, (n > 4), or E,, (n = 6,7,8), which we abbreviate to
ADE. Also, if @ is disconnected, then Br(Q) is a direct sum of its connected
components. This explains why we are interested in the cases where @@ € ADE.
Our main result reads as follows and is proved in Section 5.

THEOREM 1.1: The Brauer algebra of type Q € ADE over Z[§%1] is free of di-
mension as given in Table 2. When tensored with Q(4), the algebra is semisim-

ple.
Q dim(Br(Q))
A, (n+ 1)
D, (2" + n!l — (271 + 1)n!
E¢ 1,440, 585
E; 139,613,625
Es 53,328,069, 225

Table 2. Brauer algebra dimensions

Here k! = 1-3---(2k — 1), the product of the first k£ odd natural numbers.
As the submonoid (6%1) of BrM(Q) generated by § and its inverse is a central
subgroup of BrM(Q), the dimension given by the theorem is equal to the
cardinality of the quotient monoid BrM(Q)/(§*1).

These assertions, with the precise dimensions for the series A,, and D,,, were
conjectured before, cf. [4]. The algebra presented by similar generators and
relations for A, was treated by Birman and Wenzl in [1]. The Brauer diagram
algebra for A,, has the stated dimension by [3]. A similar approach for @ = D,,
(n > 4) using diagrams appears in [6].

We also prove that these algebras are cellular in the sense of [10]; cf. Section
6.

THEOREM 1.2: Let Q € ADE and let S be an integral domain that is a com-
mutative algebra over Z[0*] in which 2 is invertible if Q # A, the number 3 is
invertible if Q # A,,,D,,, and 5 is invertible if Q = Eg. Then the Brauer algebra
BrM(Q) ®g S of type Q over S is cellular.
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This is an extension of the result in [10] that the ordinary Brauer algebras of
type A,_1 are cellular. We need the additional assumptions on the coefficient
ring S as we apply [9], where Geck proved that these conditions suffice to
conclude that the Hecke algebras of the corresponding types over S are cellular.
Cellularity is of importance in studying representations and semisimplicity.

In this paper, independent arguments are given that use rewrites of monomials
to a certain standard form for upper bounding the dimensions and constructions
of irreducible representations for lower bounding the dimensions.

We analyze the structure of Br(Q) in great detail. In order to describe
the results, we recall some notions from [5]. Our standard reference for Coxeter
groups and root systems is [2]. Corresponding to each root a (always normalized
so that (o, @) = 2), there is a unique reflection r, € W, and, conversely, each
reflection r in W has a unique positive root [ such that » = rg. A set of
mutually orthogonal positive roots corresponds bijectively to a set of commuting
reflections in W. The group W acts on the sets of mutually orthogonal positive
roots in a unique way corresponding to conjugation on the sets of reflections. We
consider W-orbits under this action. A set B of mutually orthogonal positive
roots of W(Q) is called admissible if, whenever /31, 82, 33 are distinct roots in
B and there exists a root « for which |(«, 3;)] = 1 for all 4, the positive root
of £ryrg,ra,g,c is also in B; cf. Lemma 2.1 below. In [5], a partial ordering
was defined on the W-orbit of an admissible set of mutually orthogonal positive
roots. Each such W-orbit has a unique maximal element By in this ordering,
called the highest element; see [5, Corollary 3.6]. The set of nodes i of @ with
«a; orthogonal to each element of By (notation a; L By) is denoted Cg. A basis
for the Brauer algebras of type ADE will be found that is parametrized by triples
consisting of an ordered pair of admissible sets of mutually orthogonal positive
roots from the same W-orbit B and an element of W (Cg); see Proposition 4.9
and Corollary 5.5 below. In this light, Theorem 1.1 can be clarified as follows.

LEMMA 1.3: The dimensions of Table 2 are equal to Y. 5 |B|*|W(Cg)|, where
the summation is over all W-orbits B of admissible sets of mutually orthogonal
positive roots. All orbits B of nonempty admissible sets are listed in Table 3.

Proof. See [5] for the second statement (in [loc. cit.], the type of C for Q = E
and |Bp| = 2 is incorrect).
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Q |X| xtneo Cs Nw (X)/Cw (X)

A, ot Ap_oy Ap_oy X
D, t AlD, o AiD, o hIN
D, 2t D, ot Ap o1 W (B)*
Eg 1 As As ¥
Eg 2 As A, Yo
E¢ 4 0 ) X4
E- 1 D¢ Dg ¥
E7 2 A1D4 A1A3 E2
E7 3 D4 AQ E3
E, 4 A3 Aq Y,
E, 7 0 0 L(3,2)
Es 1 E- E; ¥
Eg 2 Dg As Yo
Eg 4 Dy A, Y4
Es 8 0 0 231.(3,2)

Table 3. Nonempty admissible sets X of mutually orthogonal positive roots.
Each line corresponds to the W-orbit of a single X for each possible choice of
| X| indicated in the second column except for the first line for D,, when n = 2¢,
in which case there are two W-orbits with |X| = n/2 conjugate by an outer
automorphism. For Dy, these are conjugate by an outer automorphism to the
entry in the second row for Dy with ¢t = 1. The values of ¢ lie in ZN[1,n/2]. The
third column lists the Cartan type of the root system on the roots orthogonal to
X. The centralizer Cyy (X) is the semi-direct product of the elementary abelian
group of order 2/X| generated by the reflections in W with roots in X and the
subgroup W (X+N®) of W generated by reflections with roots in X+ N®. The
fourth column lists Cz for B = WX, the W-orbit of X, and the last column
lists the structure of Ny (X)/Cw (X). Here W (B,)* is understood to be W(B,)
if t <n/2 and W(D,) if t = n/2. Here and in the third column, Dy and D; are
empty, Do = A1A1, and D3 = Ag, in the rows for Q = D,,.

As for the first statement, the size of the W-orbit B of an element X from
Table 3 is equal to

wQ)I _ Q)
[Now ()] ~ 20X W (X4 1 ®)] - [Now (X)/Cow (X)]
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All factors occurring in the last expression can be determined by means of
Table 3 and the knowledge of orders of Coxeter groups of type ADE. The
statement now follows from the following expressions of the relevant numbers
for the individual types. For Q = A,,_1 (n > 2), the summation gives

[n/2] | )
Z (Qtﬁ!(nn_ Qﬁ)!) (n —2t)!
=0

which adds up to n!l. The equality between this summation and the expression
of Table 2 can be proved directly as in [13, p. 113], or by counting Brauer
diagrams in two different ways, as is clear from [3]. For @Q = D,,, the summation
is
. (/2] nl 2 ' [n/2] ol 9 '
20t t; (t!(n - 2t)!) 277 (n -2+ t; (ztt!(n - 2t)!) (n —28)!

which, by the formula for A, _1, is easily seen to be
2" Inl + 2" (n!! — n!) + (n!! — n!);

hence it coincides with the expression for D,, in Table 2. Here the expression
in the first sum over ¢ for ¢ = n/2 is in fact a sum over the two orbits. It is
2(2(7?/!2)!)22, where the leftmost 2 occurs because there are two orbits and the
rightmost 2 accounts for the A; component in Ci. Therefore, the summand
becomes ((n7!2)!)2, and so the expression (t!(n’ﬁm!)22"_2t(n — 2t)! is valid for
all t < n/2. In the second sum, the summand for ¢ = n/2 also gives the
expected answer by a deviation from the usual pattern: the group Cy (X) has
order 2"~ }(n — 2t)! and Nw (X)/Cw (X) has order 2'¢! for t < n/2, but the
respective orders are 2"(n — 2t)! and 271! if n = 2t (as the type of the latter
is D,/ rather than B, /5), so [Ny (X)| = 2”71 (n — 2t)1t! in all cases. An
interpretation in terms of numbers of certain diagrams of type D,, will be given
in [6]. For @Q = Eg, the summation is

|W (Eg)| + 36%|W (As)| + 270%|W (Ag)| 4 1352,
for Q = Er,
|W (E7)| + 63%W (Dg)| + 945%|W (A1 Ag)| 4 3152 |W (Ao)| + 9452 |W (A4)| + 1352,
and for QQ = Eg,
|W (Eg)| + 120%|W (E7)| + 3780%|W (A5)| + 9450%|W (A)| + 20252
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After some preliminaries on admissibility in Section 2 and the construction of
a presentation as maps and a linear representation of the monoid BrM(Q) in
Section 3, we prove the upper bound of dim(Br(Q)) in Section 4 and the lower
bound in Section 5. At the very end we describe how the Brauer diagrams
for type A, _1 can be extended to a ‘geometric’ picture involving roots for
other types in ADE. These are in terms of the triples described above Lemma
1.3. For those familiar with Brauer diagrams, the triples may be interpreted as
knowledge of the horizontal lines on the top, the horizontal lines on the bottom,
and the permutation of the remaining lines; see Remarks 4.10 and 5.7 below.
As mentioned before, in Section 6 we show that the algebras are cellular.

Some of the work reported here grew out of the Master’s thesis of one of
us, [8]. The other two authors wish to acknowledge Caltech and Technische
Universiteit Eindhoven for enabling mutual visits.

2. Admissibility

In this section we mention some basic properties of Brauer algebras related to
admissible sets of mutually orthogonal positive roots that are useful for the
proof of Theorem 1.1.

For @Q € ADE, we need the notions of a root system ® and a set of positive
roots ®T. These can be found in [2], but for the convenience of the reader,
we give their definitions here. The Coxeter group W(Q) has a faithful linear
representation on the real vector space @, Ra; with formal basis a; for i running
over the nodes of Q. Let (-, -) denote the symmetric bilinear form on this vector
space determined by

2 ifi=j,
(ai,05) = ¢ =1 ifin~j,
0 ifioty,

for 4, j nodes of ). Then (,-) is positive definite and the faithful linear repre-
sentation is determined by 7;o; = o — (o, o)y for i and j nodes of Q. Now
¢ =J, Wa; and &+ = &N (P, R>00;). It is well known that @ is the disjoint
union of ®t and —®7.

For a, 8 € ®, we write a ~ 3 to denote |(a, §)] = 1. Thus, for ¢ and j nodes
of @, we have o; ~ «; if and only if i ~ j.
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LEMMA 2.1: Let Q € ADE and let 81, B2, B3 be three mutually orthogonal
roots of W(Q). Then, up to sign, there is at most one (rg,,rs,,rg,)-orbit of
roots vy with v ~ f3; for i = 1,2,3. Moreover, there is a unique fourth positive
root (B4 orthogonal to (31, B2, (3 such that, for each such v, we have (B34 ~ 7.
This root satisfies 34 = £r 73,783,737

Proof. Suppose that v and + are roots with v ~ 3; ~ +/ for i = 1,2,3. After
replacing each (; by its negative if needed, we may assume (v, ;) = —1 for
1=1,2,3. Now B4 = ry73,78,73,Y = 27+ 1+ P2+ B3 € @ is a root orthogonal
to B1, B2, B3 with (B4,7) = 1. Also, € = ryfs = v+ 01 + B2 + B3 is a root.
Replacing 4’ by rg,7" if needed for successive values of i, we can arrange for
(v, 6:;) =—-11ifi € {1,2,3}. If 4/ does not coincide with ~, then (v',v) <1, so

(Yie)=(v+B1+B2+8)=(,7)—3< -2

The only possibility of this being an integer with norm at most 2 occurs when
(v',e) = =2, that is, v/ = —e = —rg, rg,7r3,7, which, up to sign, belongs to the
(rg,,r3,, 78, )-0rbit of 7.

As for uniqueness of (4, observe that the linear span of 8y, B2, B3, and ¥
does not depend on the choice of v and contains (4. But in that 4-dimensional
space, B4 or —f, is the unique positive root orthogonal to (1, (2, and 3.

Let X be a set of mutually orthogonal positive roots. Then, by the lemma,
for each triple of elements in X for which there exists a root v non-orthogonal
to each of the triple, there is a unique element of ®* distinct from ~y, non-
orthogonal to 7, and orthogonal to each root from the triple. Therefore, the
intersection of any collection of admissible sets of mutually orthogonal positive
roots is again admissible. Consequently, the following notion is well defined as
the intersection of all admissible sets containing X.

Definition 2.2: Given a set X of mutually orthogonal positive roots, the unique
smallest admissible set containing X is called the admissible closure of X,
and denoted X¢.

In view of Lemma 2.1, the closure of X can be constructed by iteratively
finding all (81, 82,83 € X for which there is a root v with §; ~ v for all 4, and
adjoining the positive root of £ryrg,rg,73,7 to X.
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The significance of the admissible closure for Brauer algebras will become
clear in Lemma 4.4. According to Lemma 1.3, a representative of each W-orbit
of nonempty admissible sets is in Table 3.

3. Representations of the Brauer monoid

Throughout this section, we assume that @ is of type ADE. Set W = W(Q).
As mentioned before the statement of Theorem 1.1, W occurs as a subgroup
of BrM(Q). The elements r; of BrM(Q), for ¢ nodes of @, are a set of simple
reflections of W, cf. [2]. It will be convenient to have more relations for Br(Q)
at our disposal than those given in Table 1.

label relation
for i ~ j
(RNerr) eir;Ti = eje;
(HNree) rie;e; = Tie;
(RNere) eirje; = e;
(HNeer) eje;r; = e;r;
(HNeee) eieje; = €;
fori~j~k
(HTeere) eje;rpe; = €;TieLe;
(RTerre) ejriTLe; = €;€;€LE;

Table 4. Additional relations

It may be worthy of mention that the labels of the relations are mnemonics
as follows. The first capital is either H or R, depending on whether there is an
equal number of r; at both sides of the equality sign; if so, this is indicated by
the letter H for homogeneous; otherwise, replacing the left hand side by the right
hand side yields a smaller number of r; and we use the letter R for reduction.
The second letter is S, for self, C for commuting, or N for non-commuting,
referring to the occurrence of a single node ¢, a pair of non-adjacent nodes i,
7, and a pair of adjacent nodes i, j, in the respective cases. Finally, the small
letters remind us of the pattern of the e; and the r; occurring at the left hand
side.

LEMMA 3.1: The relations in Table 4 also hold in Br(Q).



344 A. M. COHEN, B. FRENK AND D. B. WALES Isr. J. Math.

Proof. For (RNerr), we apply (HNrre), (RSrr), (HNrer), and (RSrr), respec-
tively, to obtain €i€5 = TjTi€5 = TjTi€57T = TjTj€;T;7 = €;T5T5. For (HNeee)

multiply e;r;jr; = e;ej, from (RNerr), by r;7; and use (RSrr) and (RNerr),

respectively, to get e; = e;e;rir; = ezeje;. For (HNree), use (RNrre) and
(RSrr) to derive rje;e; = rjrjrie; = rie;. For (RNere), use (RSrr), (RSer),
(RNrre), and (HNeee) to compute e;rje; = e;mrrje; = eeje; = e;. For

(HNeer), use the reversed words of (HNree) and notice (RNerr) holds. For
(HTeere), use (RNerr) and (RNrre) to find eje;rre; = e;rirjrie; = e;riexe;.
Finally, for (RTerre), use (RSrr), (RNerr), and (RNrre) to compute e;r;rie; =

ejTiTjTkaej = ejeiekej .

By A we denote the collection of admissible sets of mutually orthogonal posi-
tive roots. Let B be a W-orbit in A. Denote By its highest element with respect
to the partial order defined on B; see [5] for this partial order and the proof of
existence of By. The set of nodes ¢ of @@ for which «; 1. By plays an important
role in [5]; here it will be denoted Cj or, if no confusion is imminent, just C. It
is well known, [2], that the subgroup W(C') of W generated by the r; for i € C
is a Coxeter group whose type is the restriction of @ to C.

We present a useful representation of the Brauer monoid as a set of maps
from A to itself. At the same time, for each W-orbit B within A, we construct
a linear representation of the Brauer algebra with basis indexed by B and with
coefficients from the group ring of W (Cj) over Z[§*1]. We begin with the action
on A.

Definition 3.2: Let A be the disjoint union of all admissible W-orbits (so the
empty set is a member of A). The action of W on A is already given and
corresponds to conjugation on sets of reflections. The action of ¢§ is taken to be
trivial, that is 6(X) = X for X € A. This action extends to an action of the
generators e; of the Brauer monoid in the following way, for ¢ € Q and B € A:

B if a; € B,
(1) eiB=<{(BU{x})" ifa; LB,
rgr;B if € B\ ai.

LEMMA 3.3: For each admissible set B, set X of mutually orthogonal positive
roots (not-necessarily admissibly closed), node i of ), and positive root v, the
following properties hold.
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(i) a; € e;B
(i) Ify L X, theny L X ory € X°.
(iii) If (oviyy) =0 and vy L B, theny L e;B or ~y € ¢;B.
(iv) Ifw € W, then wX® = (wX)C1
(v)
Proof. (i) is direct from the definition of the action of e;. (Observe that a; =

trarifif B~ «;.)
(ii) Suppose that v1,72, 3 are roots in X and « € ® has inner products —1

The element e; B is well defined.

with each of these. The admissible closure of X will then contain the positive
root ¢ of £(v1 + 72 + 73 + 2a); see Lemma 2.1. If ~ is not orthogonal to (,
then, by the assumption v L X, we must have 0 # (7, () = 2(v, «). Therefore,
(v,a) = £1 and (v,¢) = £2, which means v = £(. As both v and ¢ are
positive, we find v = ¢ € XL

(iii) If o; € B, then e;B = B, and so the conclusion holds by the hypothesis
v L B. If there is 3 € B\ o;, then e; B = r37; B, which consists fully of roots
orthogonal to 7.

Finally, suppose a; L B. Then ¢;B = (BU{a;})® and so the assertion
follows from (ii).

(iv) If «, 8,7 are mutually orthogonal roots joined to ¢, the same is true for
the w images.

(v) Ambiguity arises if there are two choices, say 3 and 7, of roots in B\ a;t.
We need to show that then rgr; B = r.,r; B. Clearly, rgri(BNaj) = BNaj =
r,7:(B N ;). For simplicity choose 3 and + so that the inner product with
a; is —1. Then rgriy = rg(ay +7) = o + 8+ v = ryri8. Now rgri{3,7} =
{ai,ai + B+ v} =ryri{ 8,7}

Suppose that n is another root in B\ ail. Then, as B is admissibly closed,
there will be a fourth root ¢ in B\ ;. In fact, the fourth is ¢ = +(3+y+n+2a;).
Using this observation it is easily checked that both rgr; and r,r; leave the set
{¢,n} invariant.

We now define a linear representation of the Brauer algebra. In [5] simple
reflections hp; of W(Cp) were defined for nodes i of @ and members B of B
with «; L B. Extend this definition to all pairs (B,i) by hp,;, =1 if a; L B.
Let Vi be the free right Z[§*!][W (Cp)]-module with basis g for B € B. For
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B € B and i a node of @), set
(2) riéB = &rBNB -

LEMMA 3.4: There is a unique linear representation pg : W — GL(V3) deter-
mined by (2) on the generators of W.

Proof. Tt is shown in [5] that a similar map is a monoid representation. The
value of m there can be taken to be 0 here, which simplifies some of the expres-
sions. The only difference is that in [5] if o; € B, the image under r; on {p in
our set-up is 0. Here we have r;ég = £p. Thus, we only treat the cases where
this rule applies.

We first discuss the case where o; € B. Here we have r;ég = &p. It is
immediate that in this case r?¢g = £p as needed. Suppose i 7 j and so r;
and r; commute. We must show r;7;{g = r;7:§p. Clearly r;r;{p = r;{p. But
this is -, ghp,; by definition. As o; € B, also a; € r;B, for rja; = a; when
i # j. This means r;r;ép = &, shp,j = §;Bhp j = 168 = ;7B and we are
done. Suppose i ~ j. We need to show r;r;r;{p = r;7;7;£p. Now by definition
ririri€p = riri€p. As aj = rirjou € vy B, we also have rrir;€p = rir;{p and
we are done.

The only other possibility is that in acting by ; in the case i ¢ j or by r;r;
in the case ¢ ~ j we would have o; € r;B in the first case, or a; € ;B or
a; € 7B in the second case. If i o j and o; € r; B, then o; € B and we
are back in the previous case. Suppose therefore i ~ j. As a; € r;7; B implies
a; € B, it suffices to consider the case where a; € r;B. Now «; + o5 € B, so
a; € rjB. Moreover, rjrim;{p = 1;7:§r; B = 7;&, 5 = . This is symmetric in
i and j and we are done.

The map pp extends to a representation of BrM(Q). The action of § is by
homothety (so dv = vd for v € V). Furthermore, the action of e; is defined as
follows:

§B5 if ; € B,
(3) el =140 if ; L B,
rgr;ép where f € B and 8 ~ .
Before establishing that this is indeed a representation, we prove that the

action of e; on &g is well defined. If B € B, we will write Kp for the subgroup
{we W |wég = €} of W. Clearly, vKpv~! = K,p whenever v € W.
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LEMMA 3.5: Ifi is a node of @ and B € B has elements  and v with

ﬁ ~ QY
then rirgryr; € Kp.

Proof. Take w € W with way = 0 and wa; = 7y for nodes k and [ of (). Such
a w always exists. Now, as r; moves B, we have rgr;{p = r,r;{p if and only
if rg&,B = 74&r; B, which holds if and only if wrkwflfng = wnw’lérig. This
is in turn equivalent to rpw='&., g = mw ™', g, and hence to rié, -1, pc =
r1&w-1,, g¢ for some ¢ € W(Cp), which is obviously equivalent to r4§,-1,.5 =
réw-1r,5. Set B’ = w™'r;B. Observe that w™'r;3, and w™'r;y belong to B’
and are moved by 7 and r;. Therefore, r, and r; move B’, and so ryép =
&ropr and 1&g = &, p. But rB' = rew tr;B = w_lrgriB = w_lrvriB =
rw~tr;B = 1 B’, whence ri&,-1,,5 = 11&y-1,,5. Therefore rgr;{p = ryr:lp,
as required.

Consequently, if o; ~ 3,7 € B, the two definitions rgr;§p and ryr;{p of e;{p
coincide, so €;£p is well defined.
For a set Y, we write F(Y") to denote the monoid of all maps from Y to itself.

THEOREM 3.6: For each Q € ADE, corresponding Coxeter group W = W(Q),
and W-orbit B in A, the following holds.

(i) There is a unique homomorphim o : BrM(Q) — F(A) of monoids
determined by the usual action of the generators r; and the e; action of
() on A. If Y, X € Aand a € BrM(Q) satisfy Y C X, then aY C aX.

(ii) There is a unique linear representation, also denoted pg, of the Brauer
algebra Br(Q) on Vi extending the map pg of Lemma 3.4 with e; acting
according to (3).

Proof. In order to show that ¢ and pg are homomorphisms, we need to show
that they respect the defining relations of BrM(Q). For o, as the action by W
is a group action, and for pg, as the restriction to W is a group representation
by Lemma 3.4, we only need check the relations for BrM(Q) involving e;’s. We
check both parts at the same time for each of these relations in Table 1.

We abbreviate Cz to C. On several occasions, we will use the observation
that, if e;¢p # 0, then e, € {p W (C) for B’ € B with a; € B’. We will then
write e;ép = Ep/h with h € W(C)
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(RSer). For (i) we need to verify e;r;B = ¢;B. If a; € B or a; L B, then
r;B = B, so we are done. Suppose, therefore, that there is 3 € B\ a;-. Then
73 € ri(B\aj) and a; € e;B. This implies r;e; B = ¢;B. Now ¢; B = r;(e;B) =
rirgriB = rp,gri(r; B) = e;r; B, as required.

For (ii), the representation, we must show e;r;,{p = e¢;{p. If a; € B, then
riép = &p, so we are done. If o; L B then ri{p = {php;. But e;{p = 0,
so both sides are 0. Suppose, therefore, that there is 3 € B\ aj. Then
eiép = rgri€p = 1€, B. Now r; B contains r;3 which is not perpendicular
to ;. Hence e;1¢p = €, = rr,87&r,B = TiT3&,B = 1irgri&p. Notice
that a; € rgr;B, and so there is h € W(C) such that e;r;ép = rirgriép =
Ti&ryr; B = &rgr.gh = Tg7i€B = €§B, as required.

(RSre). Here, for (i), we need to show r;e;B = ¢;B. As «; € ¢;B, this is
immediate.

For (ii) we need to show r;e,5 = e;£p. If a; € B, both sides are equal to ¢p,
and if «; L B, both sides are equal to 0. Suppose 3 € B is not perpendicular
and not equal to a;. Now e;ép = 737p = &ryr,gh for some h € W(C). As
a; € rgr; B, the reflection r; fixes &, ,,,p and so r;e;{p = &30, BN = §ryr,h =
e;&p, as required.

(HSee). For (i) we need to derive e;e; B = e¢;B. As «; € ¢; B, this is immedi-
ate.

For (ii) we need e;e;ép = de;ép. If a; € B or y; L B, this is immediate.
Otherwise e;£g = £p/h with h € W(C') and B’ € B containing «;, and so the
equality follows from e;{p = 0ép:.

(HCer). Here i o j. For (i) we need to show e;r; B = rje;B. If a; € B+, then
a; is also in (r; B)* and so the result in both cases is the closure of 7; BU {a;}.
If a; € B, then rjo; = a; and so o; € 7;B. Now e;r; B =r; B and rje; B = r;B.
Now suppose there is § € B with (a;, 5) # 0. Then r;e;B = rjrgr; B. Also
(as,riB) # 0 and so e;rjB = rp,griyr;B. Now again 1,3 = 7,757, giving the
last term 7jrgr;rir; B = r;781; B as r; and r; commute and are of order two.

For (ii) we need to show e;rjép = rje;{p. If a; € B*, then «; is also in
(er)J- and so the result is 0 in both cases. If o; € B, then rja; = o; and so
a; € rjB. Now e;rj{p = €&, shpj = 6§;;Bhp; = rjépd = rje;{p. Suppose
there is # € B with a; ~ 3. Then also o;; ~ ;3 and so rje;{p = r;787:éB =
T, 877568 = €i&r;BhB,j = €;T;8B.

(HCee). Here i o j. We need to show e;e;B = e;je; B and e;e;&p = e;jeilp.
Suppose o; € B. Then eje; B = e;B. Note a; € e;B in all cases and so also
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e;e;B = e;B, so they are the same. For the linear representation, e;e;{p =
ejépd. If ejép = 0 we are done as both sides of the required equality are
0. Otherwise, ejép = £p'h with h € W(C) and o; € B’ € B and so also
eiejép = €;€p0, as required. By symmetry of the argument in ¢ and j, we may,
and will, assume from now on that oy, o; & B.

Suppose next o; L B. Then ;B = (BU {a;})". We will use the observa-
tion that, for X € A, we have e;X = (X U {ax})® whenever aj, € X U X+
Suppose first a; L B. Then, by Lemma 3.3(iii), o; € ¢;B U (eiB)L, S0
¢jeiB = e;(BU{a )" = (BU{a})" U{a;))” = (BU{as,a;}) is sym-
metric in ¢ and 7, so we are done.

If aj £ B, then there is 8 € B with § ~ a;. As § L o L «j, us-
ing Lemma 3.3 (iv), we find eje;B = rgr;(BU{a;})" = (rgr;BU{a;}) =
e;rgr; B = e;e; B, as required. For the representation, the arguments above for
all cases where o; 1. B give 0 here and there is nothing to prove. By symmetry,
we can suppose, for the remainder of the proof of (HCee), that neither «; nor
o is in BU Bt

This means there are § and (' in B with a; ~ 3 and a; ~ (. Suppose
a; & [ and «; # ' and B # 3'. Then e;e;B = e;rgr;B = rgrirgr;B as we
may use (3 to give the action of r; (here we use that rgr;8 = ). Similarly
eje;B = rgrjrgr;B. By orthogonality of the roots involved in commutation,
rgrirgr; = rgrirgr; and so e;e;B = rgrirgr;B = rgrjrgriB = e;je; B, as
required. For the representation replace each B by &g and the result follows.

We are done if such a choice of 5 and 3’ is possible. Assume for the remainder
of the proof of (HCee) that such a choice is not possible. During these arguments
it will be useful to have a term for this. We say ¢ and j satisfy condition (x)
if

i 7 j, there is a 3 € B with a; ~ 8 ~ «;, and B has no pairs v, 7/ for
which a; ~ 7, o ~ v, g o+, and ag .

We suppose from now on in proving (HCee) that i and j satisfy condition
(). Suppose § is the only element of B joined to «; or «;. Then ¢;B =
{a;} UB\ {8} and eje;B = ({oj,0;} UB\ {})”. This is symmetric in i
and j and we are done for the poset part. For the representation, as above,
eifp = rgrilB = {{a;3uB\{8} = Se;B- Now «; is orthogonal to all elements in
e; B and so eje;£p = 0. This is symmetric in ¢ and j and we are done.
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The most difficult condition is when there is a second root 7 in B also joined
to both a; and a;. We assume for the moment there is no such . This means
up to interchanging ¢ and j there are y in B with v ~ a; and o; is not joined
to any of them. In fact now as ¢ and j satisy (x), a; is joined only to 5. Now
e;B ={a;}UB\ {5} and e;e;B = ryr;({a;} UB\{8}). Notice ¢; is in this set,
so e;e; B = ryr;rgr; B. Now consider e;B = ryr; B. The only element of r,7; B
not perpendicular to «; is ryr;8 and so eje; B = (r,rirgrity vy B. But

(P 1T BT )T T Ty = T Tl TiT 15 = T 7T a7,

whence e;e; B = eje; B. The same computations work for pg.

Suppose now that B has roots 3 and «, both joined to o; and to ;. There are
two cases to be considered. Since the roots in elements of A are all supposed
to be positive, we will take the liberty of indicating the positive root by its
negative whenever convenient. Since confusion is minimal, we shall write {a}
rather than {«a} N®*. By changing positive roots to negatives we can assume
that the inner products of a; with 3 and v are negative and that the inner
product of a; with v is negative. There are now two choices +1 for (ay, ).

If (o, ) = —1, the Gram matrix has determinant 0 and an easy check shows
—a; = a5 + [+ . In this case the roots involved generate a root system of
type As; an example of the configuration occurs for a; = a1, v = oo, 5 = a3
and = —(a1 + az + a3) with a1, as, ag the simple roots of As.

If (a;,3) = 1, the roots involved generate a root system of type Dsy. An
example of the configuration occurs for a; = a1, v = a2, o = a3 and § =
s + asg + a4 where ay, asg, asz, ay are the simple roots of Dy with 2 the triple
node.

We suppose first that all roots 8’ of B other than 3 and ~ are orthogonal to
a; and a;. In the Az case we have v+ o; + 8 = —o; and so

ejB =rs({8+ 5,7+ a;} UB\{f,7}) = {a;, @i} UB\ {3,7},

whence e;e;B = {aj,a;} U (B\ {3,7}). The other order gives the same result
and so e;e;B = eje;B. For the representation, e;ép = r3r;ép. We have
just seen e;B = {ay,a;} U (B\ {3,7}). This means e;{p = & ,r;p and so
e;e;ép = rar;&épd. Similarly, e;e; B = rgr;épd. For these to be equal we would
need 7§ = r;{p. From the definition this is &, p = &, p and so is equivalent
to ;B = r;B. As, up to the signs of roots, r{8,7} = {8 + ai,7 + a;} =
{8+ aj,v+a;} =r;j{0,7}, this is indeed the case.
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There is one other case in which all roots of B other than 8 and 7 are
orthogonal to «; and to «j, viz., (o, 3) = 1 and a;, a;, 5, generate a root
system of type D4. Now e;B =rgr;B = {o;, v+ o; + 5 U(B\{8,7}). Notice
(ai,y+a; + ) =0 and so

ei({aj,y+a; + BYUB\{B,7}) = ({as, a5, v+ a; + B U B\ {B,7})°.
Also

ejeiB = ej({ai, B—ai=7}U(B\{8,7})) = ({a, 0, B~ =y }U(B\{B,7}))".
Now (7,8 — a; —) = —1 and so in the closure of

{ajaaiaﬁ_ai _’Y}U(B\{ﬁafy})
there is o; + a; + 8 — v — a + 2y = a; + 4+ 7. This means

({ag, 0,8 — ai =y} U (B\ {B,7})"
= ({aiaaj77+aj +6;6777Qi}u (B\{ﬂaf}/}))d

and so eje; B = e;e;B. For the representation, the actions are all the 0 action
and so the required equality is trivially satisfied.

This concludes the cases where «; and «; are joined only to 3 and v. In the
remaining cases, we may assume o is not orthogonal to at least three roots in
B and so, because B is admissible, «; is orthogonal to four roots of B. This
means there is € € B with (aj,e) = =1 and n = 8+ v+ ¢ + 2¢; is also in B.
If o; were not joined to all the roots {3,~, €,n} but joined to another we would
contradict condition (x). If it were joined to three it would be joined to four by
the admissibility.

If a; were joined to all four of them consider the 4-dimensional linear subspace
of R™ spanned by the roots 3,7,€,m. Both a; and «; lie in this space and so
the six roots generate a root system of type D4s. An easy check shows that
r; and r; act the same on (3, v, €, 1, and fix the remaining roots of B. This
means that the actions of r; and 7; on B are the same and so the actions of
e; and e; on B are the same. In particular e;e; B = e?B = e?B = eje;B.
Also, for the representation the actions of r; and r; must be the same and
eie;lp = eXlp = ejeilp.

The only remaining case occurs when «; is joined to just 8 and ~y as discussed.
Now aj, aj, 3, 7, €, and 1 generate a root system of type Ds. In computing
eje; B we can use 3 first and then 7 to get eje; B = r,r;rgr; B. In the other order
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we can use 7 first and then 3 + a; + 1 to compute e;e; B = rgya,+47iTy7;B.

Now we use 7g1a;4+ny = rgryrjTgry and derive
TﬁJrajJrnTiTnTj = TﬂTnTjTngTiTnTj = TnTgTjTgTiTj = TnTgTjTﬂTjTZ‘ = Tyrirgri.

Thus, eje;B = ryrjrgriB = r7g1a;4+y7iTyTjB = e;e; B, as required. The same
computations work for pg, which finishes the proof of (HCee).

(HNrer). Here i ~ j. We need to show rje;jr; B = rje;r; B and rie;jriép =
rje;r;€p. Suppose first that there is 8 € B with ;8 £ «;. Then rje;rmB =
rirr, 877 B = rgryryr; B and riejri{p = riry,griTi€p = raryrir;€ép. On the
other hand, also (a;,7;8) = (104, 8) = (15, B) = (aj,7:8) # 0, s0 8 L a; and
sorje;r; B =r;rigrir; B = rgriryri B and rye;r;Ep = ryrigriri€ = 1T miéB-
In view of the braid relation r;r;r; = r;r;7;, both sides are equal.

Next suppose that a; L r; B. Then r;e;7;B = ri(r; BU{a; })' = (BUri{a; })9
and e;riép = e;&,p or 0 if oy L B. Also, oy = rjrj0; L rj7y7;B = r; B and
so rjeir;B = (BUr;{a;})¥ and e;r;ép = 0. As r;a; = rja, the two sides are
equal.

Finally, suppose that a; € m;B. This means «; + o; € B. Now rie;m;B =
r;r; B = B. Moreover, a; = rjr;a; € v;B and so rje;r; B = rjr;B = B, as
required. For the representation, this means r;e;r;§p = 777, 0,7:§8. However
r;r;r73757; = 1 and so both sides are the same.

(HNrre). Here ¢ ~ j. For (i), we need to show r;r;e;B = e;e;B. As «;  is in
e;(B\ aj), we have e;e; B = r;r;e; B, and we are done.

For (ii) we need to show r;re;€p = e;e;Ep. We may assume that e;{p is not
0. If a; € B, then e;jej{p = de;€p = 0r;7:€p. As e;€p = 0{p we are done. If
there is 3 € B not perpendicular to «;, then e;{p = r57;{p = &4, . Notice
rgr; B contains ;. Now e;e;€p = r;r;e;€p, and we are done.

There is one more property we need to show: if Y C X, then aY C aX. The
action by r; is just the group action which preserves inclusion, so we need only
check the actions by e;. Let Y C X.

Suppose a; € X. Then ¢, X = X. If a; € Y then ¢;Y =Y and we are done.
If j € Y then o; L Y as a; € X and elements in X are mutually orthogonal.
Consequently, ;Y = ({a;} UY)! C X = ¢, X, as required.

For the remainder of the proof, we may assume «; ¢ X. If a; L X then
a; L Y. This means ¢;Y = ({o;} UY) and ;X = ({a;} UX) s0 Y U {a;} C
X U{a;}, and hence ;Y C e; X, as required.
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Suppose that there is f € Y with o; ~ 8. Then ;Y = rgr;Y and ;X =
rgr;X while rgr;Y C rgr; X. The only case left is o; L Y but there is 5 in X
with (a;,3) # 0. Clearly 8 € Y. Now ¢;Y = ({a;} UY) and ;X = rgr; X.
By Lemma 3.3(ii), o; € ¢,X. As rgr;Y =Y, we find

&Y = ({a} UY)! = ({ou} Urpr V) C (e, X)) = e, X.
so the assertion holds.

COROLLARY 3.7: For X the highest element of B, the permutation stabilizer
Nw (X) of X in W is the semi-direct product of Kx and W (Cp).

Proof. From (ii) of the theorem we see Ny (X) = {w € W | wéx € ExW(Cg)}.
As hx,; = r; for i a node of Cp, the subgroup W(Cp) of Nw (X) satisfies
W(Cp)éx = ExW(Cp) and so is a complement to Kx in Ny (X).

4. Rewriting elements and upper bounding the dimension

The main goal of this section is to prove that every element of BrM(Q) can
be written in a certain standard form, which corresponds to the well-known
Brauer diagrams if Q = A, 1. This will lead to the following upper bound
of the dimension of Br(Q). Recall that Cp is the set of nodes of @ whose
corresponding roots are orthogonal to the highest element of B.

PROPOSITION 4.1: The dimension of the Brauer algebra of type ) is at most

2
> IBIP[W(Cp)l-
B
This will be proved in a series of lemmas and propositions and completed at
the end of this section.

LEMMA 4.2: Let i and j be nodes of Q. If w € W satisfies wa; = a, then

weiw’l =e€;.

Proof. By [4, Proposition 3.2], there is a unique element w;; of minimal length
such that w;;co; = aj. This can be proved exactly as in [4, Lemma 3.1(iv)], by
use of (HNree) and (HNeer). It remains to verify that Cy («;) centralizes e;.
This is proved as in [4, Lemma 3.9], where it was shown s;s3 = sgs; for any root
B of W orthogonal or equal to o, where sg is the product in the Artin group
of the simple generators corresponding to a minimal length word for g € W.
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Here we replace s; by e; and use (HNree) and (HNeer) appropriately. Since
Cw () is generated by such reflections rg, this establishes the lemma.

Consider a positive root 3 and a node i of (). There exists w € W such that
B = way. Define the element eg of Br(Q) by

(4) ep = we;w .

Lemma 4.2 implies that eg is well defined. The relations in Br(Q) involving
the elements eg extend the relations already described for fundamental elements
€.

LEMMA 4.3: Let 8 and v be positive roots of W.
(i) eprs =rpes = ep and e = deg.
(i1) If (8,7) = £1 then
(a) egryep = ep,
(b) raryes = eyrary = eyep,

(c) egeep = eg.
(iii) If (B,7) = 0, then egr., = ryeg and ege, = e eg.

Proof. If 3 and ~ are simple roots, this is direct from the defining relations of
BrM(Q). Otherwise, there are w € W and nodes i, j of Q such that wa; = 8
and wa; = vy, and the result follows from (4) by conjugation.

We next extend the definition of eg to arbitrary sets of mutually orthogonal
positive roots. For such a set B, we define the element ep of Br(Q) by

(5) ep = H €3.

BEB

This definition is unambiguous as eg and e, commute whenever § and «y are
orthogonal (cf. Lemma 4.3(iii)). Clearly, eg behaves well under conjugation by
W in the sense that uegu™"' = e, 5.

An important difference between Br(A,,) and the Brauer algebras of other
types is the fact that the orbit of B under the action of W need not correspond
bijectively with the orbit of e under W by conjugation. For example, when
Q = Dy, with the labeling of the nodes as in [2], the set B = {a1,a3,a4} is

1

distinct from wB, where w = rorirsre, but wegw™" = ep. For this reason,

we need compare the action of W on ep with the conjugation action on its
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admissible closure B rather than B. The necessary transition from B to B¢
is expressed in the next lemma.

LEMMA 4.4: If X is a set of mutually orthogonal positive roots of W, then
exa = exd‘XdHX‘.

Proof. Suppose that a € ®*\ X is non-orthogonal to the pair 8, 83 in X. By

Lemma 4.3,

TaTBTB3TaCB26B8s = TalBaTBsTalBsCB; = TalB,€aCB3EB; = €3,€aCB360,;
= €3,€a€3,€3;
= €53,€83,
whence r,78,78,Tax = €Xx.

Suppose now that (; is a third root of X that is not orthogonal to «. Let v be
the unique positive root in X non-orthogonal to o and orthogonal to (1, G2, and
B3; cf. Lemma 2.1. Then v = ror3,78,7aB1. AS 7aT8,78;TaT8 = T4Tal8,785 )
using Lemma 4.2 we find

Ta’l“527“537“a€x(5 =TalpaTB3Ta€B€X = E4TalB,TE3Ta€X = E4EX = e{v}ux.

This procedure can be repeated until we have reached X°. The lemma
follows.

PROPOSITION 4.5: Let X be an admissible set and let Y be a set of mutually
orthogonal positive roots (not necessarily admissible). Then

evéx € &W(C)5F U {0},

for some k € N with k < |Y| and Z € WX with Y C Z. Moreover, ey{x # 0
with k = |Y| if and only if Y C X, in which case ey{x = ExolYl

Proof. The proof of the first assertion is by induction on the size of Y.

Suppose that |Y| = 1. There exists a positive root a such that Y = {a}
and ey = e,. If a is not a simple root, choose w € W for which wa; = «
where «; is simple. Then e, = we;w™! and wéx = &, xh with h € W(C). The
conditions on subsets are preserved. Therefore, we may, and shall, assume that
« is simple. There are three cases to consider.

a € X. Then eyéx = e éx = {xd. Now, for k = 1 and Z = X we have
Y C Z and k = |Y|, as required.

a L X. Then ey€x = exéx = 0 and the assertions hold.
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a ~ f € X. Then eyéx = ealx = 787aéx € &uroxW(C). Moreover,
o =1grof3 € rgre X, so the assertions hold with Z = rgr, X and k = 0.

Next, assume |Y| > 1. Take a € Y and set Yo = Y\{a}. We compute
evéx = eqev,éx. If ey,éx = 0, then clearly eyéx = 0. Assume therefore
eyv,éx # 0. By the induction hypothesis, ey,éx = zv6F with Yy C Z, v €
W(C), and k < |Yp|. Now

(6) eyfx = eafzvcsk.

Put Zy = Z\ Y. We have a € YOL. Moreover, every element of Z; commutes
with every element of Y. Again, there are three cases to consider,

a € Zy. Then eyfx = ealzv6F = 7068 and Y = Yy U {a} C Z. Further-
more, k < |Yy| =|Y|—1,s0 k+ 1 < |Y|. This proves the proposition in this
case.

a L Z. Then enéz =0, 50 ey&x = eazv8% = 0 by (6).

a~ [ € Z. Then

eyéx = eabzvd" = rgrozvdt.

Now 1rgroZ = 1870 Zo U rgraYo. As o, 3 L Yy, we have rgr Yy = Yy. Hence
raraZ = rgraZo U Yy. As before, o € rgroZy. Hence Y =Yy U {a} C rgroZ.
Furthermore, k < |Yp| < |Y|, as required for the proof of the first assertion.

In order to settle the second assertion, suppose that k = |Y| and ey&x # 0.
If Y = 0 the assertions Y C X and eyfx = §X5‘Y| hold trivially. Let & > 0
and proceed by induction on k. Take § € Y and set Y’ = Y \ {8}. Clearly
ey'éx # 0 and k — 1 = |Y’|, so, by the induction hypothesis, Y/ C X and
ey Ex = Ex0F 1, whence eyéx = eggxék_l. If 3 L X, then eyéx = 0,
a contradiction. If B ~ v € X, then eyfx = r,15&x0% 1 € ExW(C)5F1
contradicting the assumption ey&x € §XW(C)5k, so we must have 8 € X. It
follows that Y = Y’ U {8} C X and ey&x = {x0* as required for the only if
part. For the converse use the case |Y| = 1 above repeatedly. This establishes
the second assertion.

COROLLARY 4.6: Let B be an admissible W-orbit and X,Y € B. Then
eyéx € &W(C)" U{0},

where k < |Y|. Moreover, if k = |Y| and eyéx # 0, then Y = X and ex{x =
Ex o,



Vol. 173, 2009 BRAUER ALGEBRAS OF SIMPLY LACED TYPE 357

Proof. Suppose that ey&éx # 0. By Proposition 4.5 there are Z €¢ W X, w €
W(C), and k € N such that ey&éx = wézd*. Moreover, Y C Z and k < |Y].
Since Z € B we know that |Y| =|X]| =1|Z|. ThusY = Z.

Suppose that k = |Y|. Then Y C X by Proposition 4.5. Since Y| = |X| we
conclude Y = X.

For X a set of mutually orthogonal positive roots, define the annihilator of

ex, denoted Ax, to be

(7) Ax ={w e W |wex =ex}.
and the centralizer of ex, denoted Nx, to be

(8) Nx ={weW |exw = wex}.

In view of Lemmas 3.3(iv) and 4.4, Ny (X) < Nw (X)) < Nx. Also, by
Proposition 4.5, Ax < Axa < Nx. Some further properties of these subgroups
are listed in the next proposition, the second item of which we could only prove
by means of a case by case verification.

Before Lemma 3.5 we introduced the notation Kx for the kernel of the re-
striction of ps to Nx on ExZ[W(C), 5.

PROPOSITION 4.7: Let X be the highest element in its W-orbit and put C =
Cwx.

(i) Nx = Nw(X).

(ii) The normal subgroup Ax of Nx coincides with Kx. It is generated by

{rg.rarpryra @ € ®F, By € X, B~ o~}
(iii) Nx is the semi-direct product of Ax and W(C).

Proof. (i) Above, we observed that Ny (X) < Nx. By Proposition 4.5, wex =
exw for w € W implies &, x € ExW(C)d%. Therefore, Nx leaves invariant the
1-dimensional subspace {xZ[W (C), 1] of V. This proves Nx < Ny (X).

(ii) If w € W satisfies wex = ex, then there is h € W (C') such that &, x hd? =
ngéz = weXSX(SZ = exfx(sz = fx(SZ. But then wX = X, so w € Nw(X) =
Nx by (i), and h = 1. This proves that Ax is contained in Kx.

Let Lx be the subgroup of W with the generators specified in the assertion. If
B € X then, by Lemma 4.3, rgex = rgegexé_l = egexé_l =ex,s07m, € Ax.
Let o € &1 and assume 8 and v in X are as stated. Then rorgryr, € Ax
by the first paragraph of the proof of Lemma 4.4. Hence Lx is contained in
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Ax. Now Lx is a normal subgroup of Ny (X) contained in K, so the product

LxW(C) is a subgroup of Nx. A case by case analysis shows that the action

of Lx induced on X coincides with the action of Nx. Also, by inspection of

cases, for every root of 8 € ® orthogonal to X there is an element u € Lx with

urg € W(C). This implies that Lx coincides with Kx and hence with Ax.
(iii) By (i) and (ii), this is a restatement of Corollary 3.7.

LEMMA 4.8: Let X be a set of mutually orthogonal positive roots, w € W, and
Bedt,

(i) If X € A and w € W is of minimal length in its coset wNx, then
wéx = fwx-
(ii) The product egex can be expanded as follows:

exd ifﬂEXd,
egex = exuqpy I8 L X,
ryrgex wherey € X, if B~y € X.

Proof. (i) In a minimal expression s - -- s, of w as a product of simple reflec-
tions, each s; will move s;11---5,X. Then 8;8s,,,...s,x = &Es;-m5,X -

(ii) If B € X!, the result follows from Lemma 4.4. If 3 1 X, the assertion
is immediate from the definition of efgyx. Finally, suppose that there is some
v € X with 8 ~ 5. Then the assertion follows from Lemma 4.3(ii)(b).

Let Ag be the set of highest elements from the W-orbits in A. For X € Ay,
let Dx be a set of right coset representatives for Nx = Ny (X) in W. By
convention, if X = () we take ey to be the identity, Ny-¢ to be W, and Cyy also
to be W.

PROPOSITION 4.9: Each element of the Brauer monoid BrM(Q) can be written
in the form uex zvé*, where X € Ay, u,v~' € Dx, 2 € W(Cwx), and k € Z.

Proof. By Lemma 4.8(ii), any expression of the form egweyx: with 3 € &t
w € W and X’ a set of mutually orthogonal positive roots, can be rewritten
in the form veyé® with v € W, Y € A and k € Z. Consequently, up to a
power of §, every element of BrM(Q) is equal to wlexwgl for some X € Ay
and wy,ws € W. Now, using Proposition 4.7(iii), write w; = uy121 and wy =
vyozo With w,v € Dx, y1,y2 € Ax, and 21,20 € W(C). Then wlexwgl =
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1 1 1 1

uylelezglyglv_ = uelezglyglv_ = uzlzglexyglv_ = uzlzglexv_ =

uelezglvfl. Taking z = zlzgl, we find an expression as required.

Proof of Proposition 4.1. The dimension of Br(Q) is equal to the size of the
quotient monoid BrM(Q)(5*!), which, by Proposition 4.9, is at most

> IDx? - W(Cwx)l.
XeAp

The proposition follows as |Dx| = [WX]|.

Remark 4.10: To finish this section, we describe the usual Brauer diagram on
n strands corresponding to uexzvd* for k € N when Q = A,,_;. It contains k
circles. The horizontal strands at the top are determined by u.X in the following
way: each root in uX is of the form ; —e; in the standard representation of &+,
where each €, denotes the ¢t-th standard basis vector of R™; in the diagram there
is a corresponding horizontal strand from ¢ to j. The bottom of the diagram is
obtained by the same interpretation of v~'X. Finally, the element z determines
the vertical strands in terms of a permutation on the remaining nodes up to a
translation from the highest root to X. See Remark 5.7 below on how to obtain
it.

5. Irreducibility of representations and lower bounding the dimension

Corollary 4.6 allows us to find irreducible representations of the Brauer algebra
Br(Q): in fact, one for each pair of a W-orbit B inside .4 and an irreducible
representation of W(Cpg). This will enable us to find a lower bound for the
dimension of Br(@), which together with Proposition 4.1 gives the exact di-
mension. Fix a W-orbit B inside A and recall the notation pg from Theorem
3.6(il). We shall often abbreviate Vg and Ci to V and C, respectively, where
Vi was defined just above Lemma 3.4.

PROPOSITION 5.1: Suppose that v = Y {gwAp,, is a nonzero element of V
where the sum is over all w € W(C) and over all B € B. Then there is some
Y € B for which eyv # 0.
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Proof. Suppose that eyv = 0 for all Y € B. By Proposition 4.5 there are
coefficients Ty .5 € {0} U 8%, where Y, B € B and u,w € W(C), such that

eyépw = Z &y uly u;B w-
ueW(C)

After an ordering of Bx W (C'), the coefficients Ty . . can be considered entries
of a square matrix, T', over Q(d) whose rows and columns are both indexed by
the pairs in B x W (C).

Let A be the column vector with entries Ap ,, indexed in the same order as
used for T'. Now

0=eyv= Z eyEBWAB,w = Z nyuTy,u;B,w)\B,w

uweW (C) B,w

= Z §yu(T)\)y7u.
weW (C)
As this equality holds for all (Y,u) € Bx W, we find TA = 0. By Corollary 4.6,
the exponent of ¢ in an entry Ty ., of T is |B| on the diagonal as eg{pw =
§!Blw, whereas, at nonzero off-diagonal entries, only lower powers of § occur.
Consequently, det(T') is a nonzero element of Q[§*!]. This means that T is
nonsingular over the field Q(9), and so TA = 0 implies A = 0, that is, v =0, a
contradiction. Hence the proposition.

PROPOSITION 5.2: Suppose that U is the regular representation space of W(C')
over Q(0) and Uy is an invariant subspace of U for W (C'). Then ) g p&pU, is
an invariant subspace of V ®z5+1) Q(0) for Br(Q).

Proof. This follows from the actions of 7; and e; on {gu for w € U. In each case
the result is of the form 0 or {ywu with w € W(Cp), and so if u € Uy then so

is wuq.

ProposiTIiON 5.3: If U; is an irreducible invariant subspace of the regular
W (C)-representation space U over Q(¢), then the representation over Q(d) of
Br(Q) on Vi = ) 5.3 &BU1 of Proposition 5.2 is irreducible. Moreover, if Uy
is absolutely irreducible, then so is V.

Proof. Let v be a nonzero vector in V3 = 3 e §BU1. We know from Proposi-
tion 5.1 that there is a B € B for which egv # 0. Suppose that v is a nonzero
element of an invariant subspace of V;. Then this subspace also contains egwv,
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which, by Corollary 4.6, is equal to {gu; for some nonzero u; € Uy. If the rep-
resentation is irreducible, then, by letting W (Cg) act, we can obtain all of EgUs
in U;. As W is transitive on &y for Y € B, the invariant subspace U; contains
V1 and so coincides with Vj. Therefore, the representation is irreducible.

Since the above argument works for any extension field of Q(¢), the second
assertion of the theorem also follows.

PROPOSITION 5.4: The irreducible representations obtained in Proposition 5.3
are not equivalent.

Proof. Suppose that U; and U are inequivalent irreducibles of W(Cg). These
occur as subspaces of the regular representation space U of Proposition 5.3.
Consider now the irreducible representations of Br(Q)) obtained in Proposi-
tion 5.3 for Uy and Us, respectively. When restricted to W(C3), these repre-
sentations are |B|U; and |B|Uz, which are inequivalent. Therefore, they cannot
be equivalent.

Proof of Theorem 1.1. The above shows that, for each irreducible representa-
tion 7 of W(Cjp), there is an irreducible representation pg ® 7 of

Br(Q) ®zj5+1) Q(0)[W(Cs)].

In particular, the algebra Br(Q) ®z;5+1) Q(0) maps homomorphically onto a
direct sum of matrix algebras of dimensions |B|7(1) over Q(d) for B running
over the admissible W-orbits in A and 7 over the irreducible representations
of W(Cp). Therefore, dim(Br(Q)) > > 45 . IB|?7(1)* = Y5 |B|*IW(Cp)|. In
Proposition 4.1, this number was proved to be an upper bound for dim(Br(Q)),
S0, in view of Lemma 1.3, the homomorphism onto a direct sum of matrix alge-
bras is an isomorphism and Br(Q) ®z5+1) Q(d) is split semisimple, so Theorem
1.1 is proved.

With the notation of Proposition 4.9 and as an immediate consequence of
this proposition and the theorem, we have the following two corollaries.

COROLLARY 5.5: For Q € ADE, the Brauer algebra Br(Q) over Z[6*!] has a
basis of the form uexzv for X € Ag, u,v~! € Dx, and z € W(Cwx).

COROLLARY 5.6: For Q € ADE, the Brauer algebra Br(Q) ®z5+1] Q(0) over
Q(9) is a direct sum of matrix algebras of size |B| - 7(1) for (B, ) running over
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all pairs of a W-orbit B inside A and an irreducible representation 7 of W(Cp).
The irreducibles are indexed by the irreducibles of W(Cp) over all B.

Remark 5.7: We finish this section by describing how to compute from a Brauer
monomial a € BrM(Q) the triple (L, R, z) consisting of two elements L, R of
the same W-orbit B = WX inside A, where X € Ap, and of the element
z € W(Cp) for which a = uexzvd® as in Proposition 4.9 with L = X and
Y = vX. First compute L = a()) and R = a°P(}), where a°P is the element
of BrM(Q) obtained by reading backwards an expression of a as a word in
the generators (this element is well defined as the operation -°P is an anti-
involution; see [4] or note that the set of relations shown in Tables 1 and 4
is invariant under opposition). As a consequence of Proposition 4.9, L and R
belong to the same W-orbit inside A. Let X € Ay be the highest element
of this orbit. Pick u,v™! € Dx such that L = uX and R = v"'X. Now

Lav=¢x. The result will be an element of the form ¢y z6° for some

compute u—
s € Z and z € W(Cwx). Then a = uexzvd® with k = s — | X|, as required.
As discussed in Remark 4.10, for Q@ = A, _1, the sets L and R determine the
horizontal strands at the top and bottom, respectively, of the corresponding
Brauer diagram, whereas z determines the permutation corresponding to the
vertical strands of the diagram. In view of Corollary 5.5, these triples may be
thought of as the abstract Brauer diagrams for any Q € ADE. For Q = D,

there is a diagrammatic description of BrM(D,,) in [6].

6. Cellularity

In this section we prove Theorem 1.2, which states that Br(Q) ®gs+1) S is cellu-
lar in the sense of Graham-Lehrer in [10, Definition 1.1] provided the coefficient
ring S is as specified in the theorem. Recall from [10] that an associative alge-
bra A over a commutative ring S is cellular if there is a quadruple (A, T, C, x)
satisfying the following three conditions.

(C1) A is a finite partially ordered set. Associated to each A € A, there is a
finite set T'(A\). Also, C' is a map from T'(X) x T'(A\) to A. It satisfies
c: [T xT() — A
AEA

is an injective map whose image is an S-basis of A.
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(C2) If A € A and ¢/, t' € T(X), write C(s',') =C2,,, € A. Then x: A — A
is an S-linear anti-involution such that (CJ ,,)* = C} ...

(C3) If A € A and ¢, ¢ € T()), then, for any element a € A, we have

aCy = Z ro(u,s")Co ;o mod A(< N),
u' €T (X)

where 7,(u’,s’) € S is independent of ¥ and where A(< X) is the S-
submodule of A spanned by {CY, ., | p < X5 8", " € T(p)}.

Such a quadruple will be called a cell datum for A. Now let @ be a fixed
diagram of type ADE and consider A = Br(Q) ®z;s+1] S. We introduce a
quadruple (A, T, C, ) and prove that it is a cell datum for A. The map * on A
will be the opposition map -°P on A that linearly extends the opposition map
of Remark 5.7. As discussed in Section 5, it is an anti-automorphism of A as it
preserves the defining relations.

By Corollary 5.5, the Brauer algebra A over S has a basis of the form uexzv
for X € Ag, u,v"! € Dx, and z € W(Cwx). Recall Ag is the set of highest
elements from the W-orbits in the admissible sets, A. Also, Dx is a set of right
coset representatives for Nx = Ny (X) in W.

The groups W(Cwx) are all Weyl groups of type ADE or direct products.
For X = () this is the Weyl group of type Q. For the others they are the Weyl
groups of types Cg appearing in the fouth column of Table 3. As the coefficient
ring S satisfies the conditions of [9, Theorem 1.1], this implies by [9, Corollary
3.2] that the group rings S[W(Cwx)] are all cellular. Each is a subalgebra of
A.

Let (Ax,Tx,Cx,*x) be a cell datum for S[W(Cwx)]. Note that by [9,
Section 3], *x is the map -°P on S[W(Cwx)] and so xx is the restriction of
* = °P to S[W(Cwx)].

We now define a cell datum, (A, T, C, ), for A. The underlying set of the
poset A will be the disjoint union of all Ax over all admissible sets X € Ay. We
make A into a poset as follows. For a fixed X, we keep the partial order within
Ax. If X, Y are two admissible sets, we say X > Y if and only if some element
in WX is properly contained in some element of WY. If X > Y we order all
elements of Ax greater than all elements of Ay. In particular, the elements of
Ay are greater than the elements of Ay for any X # (. No further pairs of A
are ordered.
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The set T'(X) is the set of pairs (u,s) for u € Dx and s € Tx. The map C
is given by C((u, s), (v,t)) = uCx(s,t)v~!. The union of these over all u € Dx
and all s € Ty is a basis by Corollary 5.5 and the fact that the set C(s,t) over
all s,t in T'x is a basis for S[W(Cw x )] by (C1) of the cellularity of S[W (Cwx)].
This is (C1) for (A, T, C, ).

For (C2) notice (uCx (s,t)v™1)" = v(Cx(s,1))Pu~t. Now (Cx(s,1))P =
Cx (t, s) by the cellularity condition (C2) for S[W (Cwx)] and so (C2) holds for
the cell datum (A, T, C, *).

We have now only to check condition (C3) for (A, T, C, ). For this we need to
consider r;uexCx (s, t)v~! and e;uexCx(s,t)v~!, where u,v € Dx and s,t €
Tx. It follows from Section 4 that rjuex = w'exz for some z € W(Cwx)
and ' € Dx and that ejuex = w'exd*z or w'ex/6%zv’ for some k € N, z €
W(Cwx), X' < X, and v/,v" € Dx/. In the latter case the expression does not
depend on the pair (v,t) and is equal to 0 modulo lower terms in

(X, | X' <X ; 8"t e T(X)}.

We need then just check the (C3) condition for u’'exz. But by the (C3) condition
for the cellularity of S[W(Cwx)] we get

20 = Z r.(u,s)Cor , mod A(< X),
weT(X)
where r,(u’,s) € S is independent of ¢. Hence the condition (C3) holds for
(A, T, C, %).
This establishes that (A, T, C,*) is a cell datum for A and so completes the
proof of Theorem 1.2.
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