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ABSTRACT

The diagram algebra introduced by Brauer that describes the centralizer

algebra of the n-fold tensor product of the natural representation of an

orthogonal Lie group has a presentation by generators and relations that

only depends on the path graph An−1 on n − 1 nodes. Here we describe

an algebra depending on an arbitrary graph Q, called the Brauer algebra

of type Q, and study its structure in the cases where Q is a Coxeter

graph of simply laced spherical type (so its connected components are

of type An−1, Dn, E6, E7, E8). We find its irreducible representations

and its dimension, and show that the algebra is cellular. The algebra

is generically semisimple and contains the group algebra of the Coxeter

group of type Q as a subalgebra. It is a ring homomorphic image of the

Birman–Murakami–Wenzl algebra of type Q; this fact will be used in later

work determining the structure of the Birman–Murakami–Wenzl algebras

of simply laced spherical type.
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1. Introduction

Let Q be a graph. We define the Brauer monoid BrM(Q) to be the monoid

generated by the symbols ri and ei for i a node of Q and δ, δ−1 subject to the

relations of Table 1, where ∼ denotes adjacency between nodes of Q. The Brauer

algebra Br(Q) of type Q is the monoid algebra Z[BrM(Q)]. As δ is in the center

of BrM(Q), it is also an algebra over Z[δ±1] and will often be regarded as such.

For Q = An−1, this algebra was introduced not by generators and relations but

in terms of diagrams by Brauer [3]. It was related to the centralizer algebra of

the n-th tensor power of the natural representation of a classical group where

δ is the dimension of the representation. The BMW algebras, introduced by

Birman & Wenzl [1] and Murakami [12], are deformations which play a similar

role for quantum groups and are also a useful tool for introducing Kauffman

polynomials, known from knot theory. In [4], we introduced BMW algebras of

type Q for arbitrary Q. The results of the present paper will be of use in our

determination of the structure of BMW algebras of type Dn [7, 6] in much the

same way the Brauer algebra of type An was of use for Morton & Wasserman

[11] in the structure determination of the BMW algebra of type An.

label relation label relation

(δ) δ is central (δ−1) δδ−1 = 1

for i for i

(RSrr) r2
i = 1 (RSer) eiri = ei

(RSre) riei = ei (HSee) e2
i = δei

for i 6∼ j for i 6∼ j

(HCrr) rirj = rjri (HCer) eirj = rjei

(HCee) eiej = ejei

for i ∼ j for i ∼ j

(HNrrr) rirjri = rjrirj (HNrer) rjeirj = riejri

(RNrre) rjriej = eiej

Table 1. Brauer relations

A look at (RSrr), (HCrr), and (HNrrr) makes it clear that products of the ri

belong to a subgroup of the monoid BrM(Q) isomorphic to a quotient of W (Q),

the Coxeter group of type Q. Modding out the ideal generated by all ei, we see

that the subgroup itself is in fact isomorphic to W (Q) and that the ri form a set
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of simple reflections. In particular, the rank of Br(Q) as a module over Z[δ±1]

is infinite if Q is not spherical in the sense of [2]. This means that, if Br(Q) is

finite-dimensional, its connected components are isomorphic to Coxeter graphs

of type An (n ≥ 1), Dn (n ≥ 4), or En (n = 6, 7, 8), which we abbreviate to

ADE. Also, if Q is disconnected, then Br(Q) is a direct sum of its connected

components. This explains why we are interested in the cases where Q ∈ ADE.

Our main result reads as follows and is proved in Section 5.

Theorem 1.1: The Brauer algebra of type Q ∈ ADE over Z[δ±1] is free of di-

mension as given in Table 2. When tensored with Q(δ), the algebra is semisim-

ple.

Q dim(Br(Q))

An (n + 1)!!

Dn (2n + 1)n!! − (2n−1 + 1)n!

E6 1, 440, 585

E7 139, 613, 625

E8 53, 328, 069, 225

Table 2. Brauer algebra dimensions

Here k!! = 1 · 3 · · · (2k − 1), the product of the first k odd natural numbers.

As the submonoid 〈δ±1〉 of BrM(Q) generated by δ and its inverse is a central

subgroup of BrM(Q), the dimension given by the theorem is equal to the

cardinality of the quotient monoid BrM(Q)/〈δ±1〉.

These assertions, with the precise dimensions for the series An and Dn, were

conjectured before, cf. [4]. The algebra presented by similar generators and

relations for An was treated by Birman and Wenzl in [1]. The Brauer diagram

algebra for An has the stated dimension by [3]. A similar approach for Q = Dn

(n ≥ 4) using diagrams appears in [6].

We also prove that these algebras are cellular in the sense of [10]; cf. Section

6.

Theorem 1.2: Let Q ∈ ADE and let S be an integral domain that is a com-

mutative algebra over Z[δ±] in which 2 is invertible if Q 6= An, the number 3 is

invertible if Q 6= An, Dn, and 5 is invertible if Q = E8. Then the Brauer algebra

BrM(Q) ⊗R S of type Q over S is cellular.
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This is an extension of the result in [10] that the ordinary Brauer algebras of

type An−1 are cellular. We need the additional assumptions on the coefficient

ring S as we apply [9], where Geck proved that these conditions suffice to

conclude that the Hecke algebras of the corresponding types over S are cellular.

Cellularity is of importance in studying representations and semisimplicity.

In this paper, independent arguments are given that use rewrites of monomials

to a certain standard form for upper bounding the dimensions and constructions

of irreducible representations for lower bounding the dimensions.

We analyze the structure of Br(Q) in great detail. In order to describe

the results, we recall some notions from [5]. Our standard reference for Coxeter

groups and root systems is [2]. Corresponding to each root α (always normalized

so that (α, α) = 2), there is a unique reflection rα ∈ W , and, conversely, each

reflection r in W has a unique positive root β such that r = rβ . A set of

mutually orthogonal positive roots corresponds bijectively to a set of commuting

reflections in W . The group W acts on the sets of mutually orthogonal positive

roots in a unique way corresponding to conjugation on the sets of reflections. We

consider W -orbits under this action. A set B of mutually orthogonal positive

roots of W (Q) is called admissible if, whenever β1, β2, β3 are distinct roots in

B and there exists a root α for which |(α, βi)| = 1 for all i, the positive root

of ±rαrβ1
rβ2

rβ3
α is also in B; cf. Lemma 2.1 below. In [5], a partial ordering

was defined on the W -orbit of an admissible set of mutually orthogonal positive

roots. Each such W -orbit has a unique maximal element B0 in this ordering,

called the highest element; see [5, Corollary 3.6]. The set of nodes i of Q with

αi orthogonal to each element of B0 (notation αi ⊥ B0) is denoted CB. A basis

for the Brauer algebras of type ADE will be found that is parametrized by triples

consisting of an ordered pair of admissible sets of mutually orthogonal positive

roots from the same W -orbit B and an element of W (CB); see Proposition 4.9

and Corollary 5.5 below. In this light, Theorem 1.1 can be clarified as follows.

Lemma 1.3: The dimensions of Table 2 are equal to
∑

B |B|2|W (CB)|, where

the summation is over all W -orbits B of admissible sets of mutually orthogonal

positive roots. All orbits B of nonempty admissible sets are listed in Table 3.

Proof. See [5] for the second statement (in [loc. cit.], the type of CB for Q = E7

and |B0| = 2 is incorrect).
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Q |X | X⊥ ∩ Φ CB NW (X)/CW (X)

An t An−2t An−2t Σt

Dn t At
1Dn−2t A1Dn−2t Σt

Dn 2t Dn−2t An−2t−1 W (Bt)
∗

E6 1 A5 A5 Σ1

E6 2 A3 A2 Σ2

E6 4 ∅ ∅ Σ4

E7 1 D6 D6 Σ1

E7 2 A1D4 A1A3 Σ2

E7 3 D4 A2 Σ3

E7 4 A3
1 A1 Σ4

E7 7 ∅ ∅ L(3, 2)

E8 1 E7 E7 Σ1

E8 2 D6 A5 Σ2

E8 4 D4 A2 Σ4

E8 8 ∅ ∅ 23L(3, 2)

Table 3. Nonempty admissible sets X of mutually orthogonal positive roots.

Each line corresponds to the W -orbit of a single X for each possible choice of

|X | indicated in the second column except for the first line for Dn when n = 2t,

in which case there are two W -orbits with |X | = n/2 conjugate by an outer

automorphism. For D4, these are conjugate by an outer automorphism to the

entry in the second row for D4 with t = 1. The values of t lie in Z∩ [1, n/2]. The

third column lists the Cartan type of the root system on the roots orthogonal to

X . The centralizer CW (X) is the semi-direct product of the elementary abelian

group of order 2|X| generated by the reflections in W with roots in X and the

subgroup W (X⊥∩Φ) of W generated by reflections with roots in X⊥∩Φ. The

fourth column lists CB for B = WX , the W -orbit of X , and the last column

lists the structure of NW (X)/CW (X). Here W (Bt)
∗ is understood to be W (Bt)

if t < n/2 and W (Dt) if t = n/2. Here and in the third column, D0 and D1 are

empty, D2 = A1A1, and D3 = A3, in the rows for Q = Dn.

As for the first statement, the size of the W -orbit B of an element X from

Table 3 is equal to

|W (Q)|

|NW (X)|
=

|W (Q)|

2|X||W (X⊥ ∩ Φ)| · |NW (X)/CW (X)|
.
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All factors occurring in the last expression can be determined by means of

Table 3 and the knowledge of orders of Coxeter groups of type ADE. The

statement now follows from the following expressions of the relevant numbers

for the individual types. For Q = An−1 (n ≥ 2), the summation gives

bn/2c
∑

t=0

( n!

2tt!(n − 2t)!

)2

(n − 2t)!

which adds up to n!!. The equality between this summation and the expression

of Table 2 can be proved directly as in [13, p. 113], or by counting Brauer

diagrams in two different ways, as is clear from [3]. For Q = Dn, the summation

is

2n−1n! +

bn/2c
∑

t=1

( n!

t!(n − 2t)!

)2

2n−2t(n − 2t)! +

bn/2c
∑

t=1

( n!

2tt!(n − 2t)!

)2

(n − 2t)!

which, by the formula for An−1, is easily seen to be

2n−1n! + 2n(n!! − n!) + (n!! − n!);

hence it coincides with the expression for Dn in Table 2. Here the expression

in the first sum over t for t = n/2 is in fact a sum over the two orbits. It is

2
(

n!
2(n/2)!

)2
2, where the leftmost 2 occurs because there are two orbits and the

rightmost 2 accounts for the A1 component in CB. Therefore, the summand

becomes
(

n!
(n/2)!

)2
, and so the expression

(

n!
t!(n−2t)!

)2
2n−2t(n − 2t)! is valid for

all t ≤ n/2. In the second sum, the summand for t = n/2 also gives the

expected answer by a deviation from the usual pattern: the group CW (X) has

order 2n−1(n − 2t)! and NW (X)/CW (X) has order 2tt! for t < n/2, but the

respective orders are 2n(n − 2t)! and 2t−1t! if n = 2t (as the type of the latter

is Dn/2 rather than Bn/2), so |NW (X)| = 2n+t−1(n − 2t)!t! in all cases. An

interpretation in terms of numbers of certain diagrams of type Dn will be given

in [6]. For Q = E6, the summation is

|W (E6)| + 362|W (A5)| + 2702|W (A2)| + 1352,

for Q = E7,

|W (E7)|+ 632|W (D6)|+ 9452|W (A1A3)|+ 3152|W (A2)|+ 9452|W (A1)|+ 1352,

and for Q = E8,

|W (E8)| + 1202|W (E7)| + 37802|W (A5)| + 94502|W (A2)| + 20252.
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After some preliminaries on admissibility in Section 2 and the construction of

a presentation as maps and a linear representation of the monoid BrM(Q) in

Section 3, we prove the upper bound of dim(Br(Q)) in Section 4 and the lower

bound in Section 5. At the very end we describe how the Brauer diagrams

for type An−1 can be extended to a ‘geometric’ picture involving roots for

other types in ADE. These are in terms of the triples described above Lemma

1.3. For those familiar with Brauer diagrams, the triples may be interpreted as

knowledge of the horizontal lines on the top, the horizontal lines on the bottom,

and the permutation of the remaining lines; see Remarks 4.10 and 5.7 below.

As mentioned before, in Section 6 we show that the algebras are cellular.

Some of the work reported here grew out of the Master’s thesis of one of

us, [8]. The other two authors wish to acknowledge Caltech and Technische

Universiteit Eindhoven for enabling mutual visits.

2. Admissibility

In this section we mention some basic properties of Brauer algebras related to

admissible sets of mutually orthogonal positive roots that are useful for the

proof of Theorem 1.1.

For Q ∈ ADE, we need the notions of a root system Φ and a set of positive

roots Φ+. These can be found in [2], but for the convenience of the reader,

we give their definitions here. The Coxeter group W (Q) has a faithful linear

representation on the real vector space
⊕

i Rαi with formal basis αi for i running

over the nodes of Q. Let (·, ·) denote the symmetric bilinear form on this vector

space determined by

(αi, αj) =















2 if i = j,

−1 if i ∼ j,

0 if i 6∼ j,

for i, j nodes of Q. Then (·, ·) is positive definite and the faithful linear repre-

sentation is determined by riαj = αj − (αj , αi)αi for i and j nodes of Q. Now

Φ =
⋃

i Wαi and Φ+ = Φ∩ (
⊕

i R≥0αi). It is well known that Φ is the disjoint

union of Φ+ and −Φ+.

For α, β ∈ Φ, we write α ∼ β to denote |(α, β)| = 1. Thus, for i and j nodes

of Q, we have αi ∼ αj if and only if i ∼ j.
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Lemma 2.1: Let Q ∈ ADE and let β1, β2, β3 be three mutually orthogonal

roots of W (Q). Then, up to sign, there is at most one 〈rβ1
, rβ2

, rβ3
〉-orbit of

roots γ with γ ∼ βi for i = 1, 2, 3. Moreover, there is a unique fourth positive

root β4 orthogonal to β1, β2, β3 such that, for each such γ, we have β4 ∼ γ.

This root satisfies β4 = ±rγrβ1
rβ2

rβ3
γ.

Proof. Suppose that γ and γ′ are roots with γ ∼ βi ∼ γ′ for i = 1, 2, 3. After

replacing each βi by its negative if needed, we may assume (γ, βi) = −1 for

i = 1, 2, 3. Now β4 = rγrβ1
rβ2

rβ3
γ = 2γ +β1 +β2 +β3 ∈ Φ is a root orthogonal

to β1, β2, β3 with (β4, γ) = 1. Also, ε = rγβ4 = γ + β1 + β2 + β3 is a root.

Replacing γ′ by rβi
γ′ if needed for successive values of i, we can arrange for

(γ′, βi) = −1 if i ∈ {1, 2, 3}. If γ′ does not coincide with γ, then (γ′, γ) ≤ 1, so

(γ′, ε) = (γ′, γ + β1 + β2 + β3) = (γ′, γ) − 3 ≤ −2.

The only possibility of this being an integer with norm at most 2 occurs when

(γ′, ε) = −2, that is, γ′ = −ε = −rβ1
rβ2

rβ3
γ, which, up to sign, belongs to the

〈rβ1
, rβ2

, rβ3
〉-orbit of γ.

As for uniqueness of β4, observe that the linear span of β1, β2, β3, and γ

does not depend on the choice of γ and contains β4. But in that 4-dimensional

space, β4 or −β4 is the unique positive root orthogonal to β1, β2, and β3.

Let X be a set of mutually orthogonal positive roots. Then, by the lemma,

for each triple of elements in X for which there exists a root γ non-orthogonal

to each of the triple, there is a unique element of Φ+ distinct from γ, non-

orthogonal to γ, and orthogonal to each root from the triple. Therefore, the

intersection of any collection of admissible sets of mutually orthogonal positive

roots is again admissible. Consequently, the following notion is well defined as

the intersection of all admissible sets containing X .

Definition 2.2: Given a set X of mutually orthogonal positive roots, the unique

smallest admissible set containing X is called the admissible closure of X ,

and denoted Xcl.

In view of Lemma 2.1, the closure of X can be constructed by iteratively

finding all β1, β2, β3 ∈ X for which there is a root γ with βi ∼ γ for all i, and

adjoining the positive root of ±rγrβ1
rβ2

rβ3
γ to X .
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The significance of the admissible closure for Brauer algebras will become

clear in Lemma 4.4. According to Lemma 1.3, a representative of each W -orbit

of nonempty admissible sets is in Table 3.

3. Representations of the Brauer monoid

Throughout this section, we assume that Q is of type ADE. Set W = W (Q).

As mentioned before the statement of Theorem 1.1, W occurs as a subgroup

of BrM(Q). The elements ri of BrM(Q), for i nodes of Q, are a set of simple

reflections of W , cf. [2]. It will be convenient to have more relations for Br(Q)

at our disposal than those given in Table 1.

label relation

for i ∼ j

(RNerr) eirjri = eiej

(HNree) rjeiej = riej

(RNere) eirjei = ei

(HNeer) ejeirj = ejri

(HNeee) eiejei = ei

for i ∼ j ∼ k

(HTeere) ejeirkej = ejriekej

(RTerre) ejrirkej = ejeiekej

Table 4. Additional relations

It may be worthy of mention that the labels of the relations are mnemonics

as follows. The first capital is either H or R, depending on whether there is an

equal number of rl at both sides of the equality sign; if so, this is indicated by

the letter H for homogeneous; otherwise, replacing the left hand side by the right

hand side yields a smaller number of rl and we use the letter R for reduction.

The second letter is S, for self, C for commuting, or N for non-commuting,

referring to the occurrence of a single node i, a pair of non-adjacent nodes i,

j, and a pair of adjacent nodes i, j, in the respective cases. Finally, the small

letters remind us of the pattern of the ek and the rl occurring at the left hand

side.

Lemma 3.1: The relations in Table 4 also hold in Br(Q).
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Proof. For (RNerr), we apply (HNrre), (RSrr), (HNrer), and (RSrr), respec-

tively, to obtain eiej = rjriej = rjriejriri = rjrjeirjri = eirjri. For (HNeee)

multiply eirjri = eiej, from (RNerr), by rirj and use (RSrr) and (RNerr),

respectively, to get ei = eiejrirj = eiejei. For (HNree), use (RNrre) and

(RSrr) to derive rjeiej = rjrjriej = riej . For (RNere), use (RSrr), (RSer),

(RNrre), and (HNeee) to compute eirjei = eiririrjei = eiejei = ei. For

(HNeer), use the reversed words of (HNree) and notice (RNerr) holds. For

(HTeere), use (RNerr) and (RNrre) to find ejeirkej = ejrirjrkej = ejriekej.

Finally, for (RTerre), use (RSrr), (RNerr), and (RNrre) to compute ejrirkej =

ejrirjrjrkej = ejeiekej .

By A we denote the collection of admissible sets of mutually orthogonal posi-

tive roots. Let B be a W -orbit in A. Denote B0 its highest element with respect

to the partial order defined on B; see [5] for this partial order and the proof of

existence of B0. The set of nodes i of Q for which αi ⊥ B0 plays an important

role in [5]; here it will be denoted CB or, if no confusion is imminent, just C. It

is well known, [2], that the subgroup W (C) of W generated by the ri for i ∈ C

is a Coxeter group whose type is the restriction of Q to C.

We present a useful representation of the Brauer monoid as a set of maps

from A to itself. At the same time, for each W -orbit B within A, we construct

a linear representation of the Brauer algebra with basis indexed by B and with

coefficients from the group ring of W (CB) over Z[δ±1]. We begin with the action

on A.

Definition 3.2: Let A be the disjoint union of all admissible W -orbits (so the

empty set is a member of A). The action of W on A is already given and

corresponds to conjugation on sets of reflections. The action of δ is taken to be

trivial, that is δ(X) = X for X ∈ A. This action extends to an action of the

generators ei of the Brauer monoid in the following way, for i ∈ Q and B ∈ A:

(1) eiB =















B if αi ∈ B,

(B ∪ {αi})
cl

if αi ⊥ B,

rβriB if β ∈ B \ α⊥
i .

Lemma 3.3: For each admissible set B, set X of mutually orthogonal positive

roots (not-necessarily admissibly closed), node i of Q, and positive root γ, the

following properties hold.
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(i) αi ∈ eiB.

(ii) If γ ⊥ X , then γ ⊥ Xcl or γ ∈ Xcl.

(iii) If (αi, γ) = 0 and γ ⊥ B, then γ ⊥ eiB or γ ∈ eiB.

(iv) If w ∈ W , then wXcl = (wX)
cl
.

(v) The element eiB is well defined.

Proof. (i) is direct from the definition of the action of ei. (Observe that αi =

±rβriβ if β ∼ αi.)

(ii) Suppose that γ1, γ2, γ3 are roots in X and α ∈ Φ has inner products −1

with each of these. The admissible closure of X will then contain the positive

root ζ of ±(γ1 + γ2 + γ3 + 2α); see Lemma 2.1. If γ is not orthogonal to ζ,

then, by the assumption γ ⊥ X , we must have 0 6= (γ, ζ) = 2(γ, α). Therefore,

(γ, α) = ±1 and (γ, ζ) = ±2, which means γ = ±ζ. As both γ and ζ are

positive, we find γ = ζ ∈ Xcl.

(iii) If αi ∈ B, then eiB = B, and so the conclusion holds by the hypothesis

γ ⊥ B. If there is β ∈ B \ α⊥
i , then eiB = rβriB, which consists fully of roots

orthogonal to γ.

Finally, suppose αi ⊥ B. Then eiB = (B ∪ {αi})
cl and so the assertion

follows from (ii).

(iv) If α, β, γ are mutually orthogonal roots joined to ζ, the same is true for

the w images.

(v) Ambiguity arises if there are two choices, say β and γ, of roots in B \α⊥
i .

We need to show that then rβriB = rγriB. Clearly, rβri(B ∩ α⊥
i ) = B ∩ α⊥

i =

rγri(B ∩ α⊥
i ). For simplicity choose β and γ so that the inner product with

αi is −1. Then rβriγ = rβ(αi + γ) = αi + β + γ = rγriβ. Now rβri{β, γ} =

{αi, αi + β + γ} = rγri{β, γ}.

Suppose that η is another root in B \ α⊥
i . Then, as B is admissibly closed,

there will be a fourth root ζ in B\α⊥
i . In fact, the fourth is ζ = ±(β+γ+η+2αi).

Using this observation it is easily checked that both rβri and rγri leave the set

{ζ, η} invariant.

We now define a linear representation of the Brauer algebra. In [5] simple

reflections hB,i of W (CB) were defined for nodes i of Q and members B of B

with αi ⊥ B. Extend this definition to all pairs (B, i) by hB,i = 1 if αi 6⊥ B.

Let VB be the free right Z[δ±1][W (CB)]-module with basis ξB for B ∈ B. For
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B ∈ B and i a node of Q, set

(2) riξB = ξriBhB,i.

Lemma 3.4: There is a unique linear representation ρB : W → GL(VB) deter-

mined by (2) on the generators of W .

Proof. It is shown in [5] that a similar map is a monoid representation. The

value of m there can be taken to be 0 here, which simplifies some of the expres-

sions. The only difference is that in [5] if αi ∈ B, the image under ri on ξB in

our set-up is 0. Here we have riξB = ξB. Thus, we only treat the cases where

this rule applies.

We first discuss the case where αi ∈ B. Here we have riξB = ξB. It is

immediate that in this case r2
i ξB = ξB as needed. Suppose i 6∼ j and so ri

and rj commute. We must show rirjξB = rjriξB. Clearly rjriξB = rjξB . But

this is ξrjBhB,j by definition. As αi ∈ B, also αi ∈ rjB, for rjαi = αi when

i 6∼ j. This means rirjξB = riξrjBhB,j = ξrjBhB,j = rjξB = rjriξB and we are

done. Suppose i ∼ j. We need to show rirjriξB = rjrirjξB. Now by definition

rirjriξB = rirjξB. As αj = rirjαi ∈ rirjB, we also have rjrirjξB = rirjξB and

we are done.

The only other possibility is that in acting by ri in the case i 6∼ j or by rirj

in the case i ∼ j we would have αj ∈ riB in the first case, or αi ∈ rjB or

αj ∈ rirjB in the second case. If i 6∼ j and αi ∈ rjB, then αi ∈ B and we

are back in the previous case. Suppose therefore i ∼ j. As αj ∈ rirjB implies

αi ∈ B, it suffices to consider the case where αi ∈ rjB. Now αi + αj ∈ B, so

αi ∈ rjB. Moreover, rjrirjξB = rjriξrjB = rjξrjB = ξB. This is symmetric in

i and j and we are done.

The map ρB extends to a representation of BrM(Q). The action of δ is by

homothety (so δv = vδ for v ∈ VB). Furthermore, the action of ei is defined as

follows:

(3) eiξB =















ξBδ if αi ∈ B,

0 if αi ⊥ B,

rβriξB where β ∈ B and β ∼ αi.

Before establishing that this is indeed a representation, we prove that the

action of ei on ξB is well defined. If B ∈ B, we will write KB for the subgroup

{w ∈ W | wξB = ξB} of W . Clearly, vKBv−1 = KvB whenever v ∈ W .
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Lemma 3.5: If i is a node of Q and B ∈ B has elements β and γ with

β ∼ αi ∼ γ,

then rirβrγri ∈ KB.

Proof. Take w ∈ W with wαk = β and wαl = γ for nodes k and l of Q. Such

a w always exists. Now, as ri moves B, we have rβriξB = rγriξB if and only

if rβξriB = rγξriB, which holds if and only if wrkw−1ξriB = wrlw
−1ξriB. This

is in turn equivalent to rkw−1ξriB = rlw
−1ξriB, and hence to rkξw−1riBc =

rlξw−1riBc for some c ∈ W (CB), which is obviously equivalent to rkξw−1riB =

rlξw−1riB. Set B′ = w−1riB. Observe that w−1riβ, and w−1riγ belong to B′

and are moved by rk and rl. Therefore, rk and rl move B′, and so rkξB′ =

ξrkB′ and rlξB′ = ξrlB′ . But rkB′ = rkw−1riB = w−1rβriB = w−1rγriB =

rlw
−1riB = rlB

′, whence rkξw−1riB = rlξw−1riB. Therefore rβriξB = rγriξB,

as required.

Consequently, if αi ∼ β, γ ∈ B, the two definitions rβriξB and rγriξB of eiξB

coincide, so eiξB is well defined.

For a set Y , we write F(Y ) to denote the monoid of all maps from Y to itself.

Theorem 3.6: For each Q ∈ ADE, corresponding Coxeter group W = W (Q),

and W -orbit B in A, the following holds.

(i) There is a unique homomorphim σ : BrM(Q) → F(A) of monoids

determined by the usual action of the generators ri and the ei action of

(1) on A. If Y , X ∈ A and a ∈ BrM(Q) satisfy Y ⊆ X , then aY ⊆ aX .

(ii) There is a unique linear representation, also denoted ρB, of the Brauer

algebra Br(Q) on VB extending the map ρB of Lemma 3.4 with ei acting

according to (3).

Proof. In order to show that σ and ρB are homomorphisms, we need to show

that they respect the defining relations of BrM(Q). For σ, as the action by W

is a group action, and for ρB, as the restriction to W is a group representation

by Lemma 3.4, we only need check the relations for BrM(Q) involving ei’s. We

check both parts at the same time for each of these relations in Table 1.

We abbreviate CB to C. On several occasions, we will use the observation

that, if eiξB 6= 0, then eiξB ∈ ξB′W (C) for B′ ∈ B with αi ∈ B′. We will then

write eiξB = ξB′h with h ∈ W (C).
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(RSer). For (i) we need to verify eiriB = eiB. If αi ∈ B or αi ⊥ B, then

riB = B, so we are done. Suppose, therefore, that there is β ∈ B \ α⊥
i . Then

riβ ∈ ri(B\α⊥
i ) and αi ∈ eiB. This implies rieiB = eiB. Now eiB = ri(eiB) =

rirβriB = rriβri(riB) = eiriB, as required.

For (ii), the representation, we must show eiriξB = eiξB . If αi ∈ B, then

riξB = ξB , so we are done. If αi ⊥ B then riξB = ξBhB,i. But eiξB = 0,

so both sides are 0. Suppose, therefore, that there is β ∈ B \ α⊥
i . Then

eiξB = rβriξB = rβξriB. Now riB contains riβ which is not perpendicular

to αi. Hence eiriξB = eiξriB = rriβriξriB = rirβξriB = rirβriξB . Notice

that αi ∈ rβriB, and so there is h ∈ W (C) such that eiriξB = rirβriξB =

riξrβriBh = ξrβriBh = rβriξB = eiξB , as required.

(RSre). Here, for (i), we need to show rieiB = eiB. As αi ∈ eiB, this is

immediate.

For (ii) we need to show rieiξB = eiξB . If αi ∈ B, both sides are equal to ξB,

and if αi ⊥ B, both sides are equal to 0. Suppose β ∈ B is not perpendicular

and not equal to αi. Now eiξB = rβriξB = ξrβriBh for some h ∈ W (C). As

αi ∈ rβriB, the reflection ri fixes ξrβriB and so rieiξB = riξrβriBh = ξrβriBh =

eiξB, as required.

(HSee). For (i) we need to derive eieiB = eiB. As αi ∈ eiB, this is immedi-

ate.

For (ii) we need eieiξB = δeiξB. If αi ∈ B or αi ⊥ B, this is immediate.

Otherwise eiξB = ξB′h with h ∈ W (C) and B′ ∈ B containing αi, and so the

equality follows from eiξB′ = δξB′ .

(HCer). Here i 6∼ j. For (i) we need to show eirjB = rjeiB. If αi ∈ B⊥, then

αi is also in (rjB)⊥ and so the result in both cases is the closure of rjB ∪{αi}.

If αi ∈ B, then rjαi = αi and so αi ∈ rjB. Now eirjB = rjB and rjeiB = rjB.

Now suppose there is β ∈ B with (αi, β) 6= 0. Then rjeiB = rjrβriB. Also

(αi, rjβ) 6= 0 and so eirjB = rrjβrirjB. Now again rrjβ = rjrβrj giving the

last term rjrβrjrirjB = rjrβriB as ri and rj commute and are of order two.

For (ii) we need to show eirjξB = rjeiξB. If αi ∈ B⊥, then αi is also in

(rjB)⊥ and so the result is 0 in both cases. If αi ∈ B, then rjαi = αi and so

αi ∈ rjB. Now eirjξB = eiξrjBhB,j = δξrjBhB,j = rjξBδ = rjeiξB. Suppose

there is β ∈ B with αi ∼ β. Then also αi ∼ rjβ and so rjeiξB = rjrβriξB =

rrjβrirjξB = eiξrjBhB,j = eirjξB.

(HCee). Here i 6∼ j. We need to show eiejB = ejeiB and eiejξB = ejeiξB.

Suppose αi ∈ B. Then ejeiB = ejB. Note αi ∈ ejB in all cases and so also



Vol. 173, 2009 BRAUER ALGEBRAS OF SIMPLY LACED TYPE 349

eiejB = ejB, so they are the same. For the linear representation, ejeiξB =

ejξBδ. If ejξB = 0 we are done as both sides of the required equality are

0. Otherwise, ejξB = ξB′h with h ∈ W (C) and αi ∈ B′ ∈ B and so also

eiejξB = ejξBδ, as required. By symmetry of the argument in i and j, we may,

and will, assume from now on that αi, αj 6∈ B.

Suppose next αi ⊥ B. Then eiB = (B ∪ {αi})
cl
. We will use the observa-

tion that, for X ∈ A, we have ekX = (X ∪ {αk})
cl

whenever αk ∈ X ∪ X⊥.

Suppose first αj ⊥ B. Then, by Lemma 3.3(iii), αj ∈ eiB ∪ (eiB)
⊥

, so

ejeiB = ej(B ∪ {αi})
cl

= ((B ∪ {αi})
cl ∪ {αj})

cl
= (B ∪ {αi, αj})

cl
is sym-

metric in i and j, so we are done.

If αj 6⊥ B, then there is β ∈ B with β ∼ αj . As β ⊥ αi ⊥ αj , us-

ing Lemma 3.3 (iv), we find ejeiB = rβrj(B ∪ {αi})
cl

= (rβrjB ∪ {αi})
cl

=

eirβrjB = eiejB, as required. For the representation, the arguments above for

all cases where αi ⊥ B give 0 here and there is nothing to prove. By symmetry,

we can suppose, for the remainder of the proof of (HCee), that neither αi nor

αj is in B ∪ B⊥.

This means there are β and β′ in B with αi ∼ β and αj ∼ β′. Suppose

αj 6∼ β and αi 6∼ β′ and β 6= β′. Then eiejB = eirβ′rjB = rβrirβ′rjB as we

may use β to give the action of ri (here we use that rβ′rjβ = β). Similarly

ejeiB = rβ′rjrβriB. By orthogonality of the roots involved in commutation,

rβrirβ′rj = rβ′rjrβri and so eiejB = rβrirβ′rjB = rβ′rjrβriB = ejeiB, as

required. For the representation replace each B by ξB and the result follows.

We are done if such a choice of β and β′ is possible. Assume for the remainder

of the proof of (HCee) that such a choice is not possible. During these arguments

it will be useful to have a term for this. We say i and j satisfy condition (∗)

if

i 6∼ j, there is a β ∈ B with αi ∼ β ∼ αj , and B has no pairs γ, γ′ for

which αi ∼ γ, αj ∼ γ′, αi 6∼ γ′, and αj 6∼ γ.

We suppose from now on in proving (HCee) that i and j satisfy condition

(∗). Suppose β is the only element of B joined to αi or αj . Then eiB =

{αi} ∪ B \ {β} and ejeiB = ({αj , αi} ∪ B \ {β})cl. This is symmetric in i

and j and we are done for the poset part. For the representation, as above,

eiξB = rβriξB = ξ{αi}∪B\{β} = ξeiB . Now αi is orthogonal to all elements in

eiB and so ejeiξB = 0. This is symmetric in i and j and we are done.
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The most difficult condition is when there is a second root γ in B also joined

to both αi and αj . We assume for the moment there is no such γ. This means

up to interchanging i and j there are γ in B with γ ∼ αi and αj is not joined

to any of them. In fact now as i and j satisy (∗), αj is joined only to β. Now

ejB = {αj}∪B \{β} and eiejB = rγri({αj}∪B \{β}). Notice αj is in this set,

so eiejB = rγrirβrjB. Now consider eiB = rγriB. The only element of rγriB

not perpendicular to αj is rγriβ and so ejeiB = (rγrirβrirγ)rjrγriB. But

(rγrirβrirγ)rjrγri = rγrirβrirjri = rγrirβrj ,

whence eiejB = ejeiB. The same computations work for ρB.

Suppose now that B has roots β and γ, both joined to αi and to αj . There are

two cases to be considered. Since the roots in elements of A are all supposed

to be positive, we will take the liberty of indicating the positive root by its

negative whenever convenient. Since confusion is minimal, we shall write {α}

rather than {±α}∩Φ+. By changing positive roots to negatives we can assume

that the inner products of αj with β and γ are negative and that the inner

product of αi with γ is negative. There are now two choices ±1 for (αi, β).

If (αi, β) = −1, the Gram matrix has determinant 0 and an easy check shows

−αi = αj + β + γ. In this case the roots involved generate a root system of

type A3; an example of the configuration occurs for αi = α1, γ = α2, αj = α3

and β = −(α1 + α2 + α3) with α1, α2, α3 the simple roots of A3.

If (αi, β) = 1, the roots involved generate a root system of type D4. An

example of the configuration occurs for αi = α1, γ = α2, αj = α3 and β =

α2 + α3 + α4 where α1, α2, α3, α4 are the simple roots of D4 with 2 the triple

node.

We suppose first that all roots β′ of B other than β and γ are orthogonal to

αi and αj . In the A3 case we have γ + αj + β = −αi and so

ejB = rβ({β + αj , γ + αj} ∪ B \ {β, γ}) = {αj, αi} ∪ B \ {β, γ},

whence eiejB = {αj, αi} ∪ (B \ {β, γ}). The other order gives the same result

and so eiejB = ejeiB. For the representation, ejξB = rβrjξB. We have

just seen ejB = {αj, αi} ∪ (B \ {β, γ}). This means ejξB = ξrβrjB and so

eiejξB = rβrjξBδ. Similarly, ejeiB = rβriξBδ. For these to be equal we would

need riξB = rjξB . From the definition this is ξriB = ξrjB and so is equivalent

to riB = rjB. As, up to the signs of roots, ri{β, γ} = {β + αi, γ + αi} =

{β + αj , γ + αj} = rj{β, γ}, this is indeed the case.
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There is one other case in which all roots of B other than β and γ are

orthogonal to αi and to αj , viz., (αi, β) = 1 and αi, αj , β, γ generate a root

system of type D4. Now ejB = rβrjB = {αj , γ + αj +β}∪ (B \ {β, γ}). Notice

(αi, γ + αj + β) = 0 and so

ei({αj , γ + αj + β} ∪ B \ {β, γ}) = ({αi, αj , γ + αj + β} ∪ B \ {β, γ})cl.

Also

ejeiB = ej({αi, β−αi−γ}∪(B\{β, γ})) = ({αj , αi, β−αi−γ}∪(B\{β, γ}))cl.

Now (γ, β − αi − γ) = −1 and so in the closure of

{αj, αi, β − αi − γ} ∪ (B \ {β, γ})

there is αi + αj + β − γ − αi + 2γ = αj + β + γ. This means

({αj , αi, β − αi − γ} ∪ (B \ {β, γ}))cl

= ({αi, αj , γ + αj + β, β − γ − αi} ∪ (B \ {β, γ}))cl

and so ejeiB = eiejB. For the representation, the actions are all the 0 action

and so the required equality is trivially satisfied.

This concludes the cases where αi and αj are joined only to β and γ. In the

remaining cases, we may assume αj is not orthogonal to at least three roots in

B and so, because B is admissible, αj is orthogonal to four roots of B. This

means there is ε ∈ B with (αj , ε) = −1 and η = β + γ + ε + 2αj is also in B.

If αi were not joined to all the roots {β, γ, ε, η} but joined to another we would

contradict condition (∗). If it were joined to three it would be joined to four by

the admissibility.

If αi were joined to all four of them consider the 4-dimensional linear subspace

of Rn spanned by the roots β, γ, ε, η. Both αi and αj lie in this space and so

the six roots generate a root system of type D4. An easy check shows that

ri and rj act the same on β, γ, ε, η, and fix the remaining roots of B. This

means that the actions of ri and rj on B are the same and so the actions of

ei and ej on B are the same. In particular eiejB = e2
i B = e2

jB = ejeiB.

Also, for the representation the actions of ri and rj must be the same and

eiejξB = e2
i ξB = ejeiξB .

The only remaining case occurs when αi is joined to just β and γ as discussed.

Now αi, αj , β, γ, ε, and η generate a root system of type D5. In computing

ejeiB we can use β first and then η to get ejeiB = rηrjrβriB. In the other order
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we can use η first and then β + αj + η to compute eiejB = rβ+αj+ηrirηrjB.

Now we use rβ+αj+η = rβrηrjrβrη and derive

rβ+αj+ηrirηrj = rβrηrjrβrηrirηrj = rηrβrjrβrirj = rηrβrjrβrjri = rηrjrβri.

Thus, ejeiB = rηrjrβriB = rβ+αj+ηrirηrjB = eiejB, as required. The same

computations work for ρB, which finishes the proof of (HCee).

(HNrer). Here i ∼ j. We need to show riejriB = rjeirjB and riejriξB =

rjeirjξB. Suppose first that there is β ∈ B with riβ 6⊥ αj . Then riejriB =

rirriβrjriB = rβrjrirjB and riejriξB = rirriβrjriξB = rβrjrirjξB. On the

other hand, also (αi, rjβ) = (rjαi, β) = (riαj , β) = (αj , riβ) 6= 0, so β 6⊥ αi and

so rjeirjB = rjrjβrirjB = rβrirjriB and rjeirjξB = rjrjβrirjξB = rβrirjriξB.

In view of the braid relation rjrirj = rirjri, both sides are equal.

Next suppose that αj ⊥ riB. Then riejriB = ri(riB∪{αj})cl = (B∪ri{αj})cl

and ejriξB = ejξriB or 0 if αi ⊥ B. Also, αi = rjriαj ⊥ rjririB = rjB and

so rjeirjB = (B ∪ rj{αi})cl and eirjξB = 0. As riαj = rjαi, the two sides are

equal.

Finally, suppose that αj ∈ riB. This means αi + αj ∈ B. Now riejriB =

ririB = B. Moreover, αi = rjriαj ∈ rjB and so rjeirjB = rjrjB = B, as

required. For the representation, this means riejriξB = rjrirriαj
riξB . However

rjrirjrirjri = 1 and so both sides are the same.

(HNrre). Here i ∼ j. For (i), we need to show rjriejB = eiejB. As αj is in

ej(B \ α⊥
i ), we have eiejB = rjriejB, and we are done.

For (ii) we need to show rjriejξB = eiejξB. We may assume that ejξB is not

0. If αj ∈ B, then eiejξB = δeiξB = δrjriξB. As ejξB = δξB we are done. If

there is β ∈ B not perpendicular to αj , then ejξB = rβrjξB = ξrβrjBh. Notice

rβrjB contains αj . Now eiejξB = rjriejξB, and we are done.

There is one more property we need to show: if Y ⊆ X , then aY ⊆ aX . The

action by ri is just the group action which preserves inclusion, so we need only

check the actions by ei. Let Y ⊆ X .

Suppose αi ∈ X . Then eiX = X . If αi ∈ Y then eiY = Y and we are done.

If αi 6∈ Y then αi ⊥ Y as αi ∈ X and elements in X are mutually orthogonal.

Consequently, eiY = ({αi} ∪ Y )cl ⊆ X = eiX , as required.

For the remainder of the proof, we may assume αi 6∈ X . If αi ⊥ X then

αi ⊥ Y . This means eiY = ({αi} ∪ Y )cl and eiX = ({αi} ∪X)cl so Y ∪ {αi} ⊆

X ∪ {αi}, and hence eiY ⊆ eiX , as required.
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Suppose that there is β ∈ Y with αi ∼ β. Then eiY = rβriY and eiX =

rβriX while rβriY ⊆ rβriX . The only case left is αi ⊥ Y but there is β in X

with (αi, β) 6= 0. Clearly β 6∈ Y . Now eiY = ({αi} ∪ Y )cl and eiX = rβriX .

By Lemma 3.3(ii), αi ∈ eiX . As rβriY = Y , we find

eiY = ({αi} ∪ Y )cl = ({αi} ∪ rβriY )cl ⊆ (eiX)
cl

= eiX.

so the assertion holds.

Corollary 3.7: For X the highest element of B, the permutation stabilizer

NW (X) of X in W is the semi-direct product of KX and W (CB).

Proof. From (ii) of the theorem we see NW (X) = {w ∈ W | wξX ∈ ξXW (CB)}.

As hX,i = ri for i a node of CB, the subgroup W (CB) of NW (X) satisfies

W (CB)ξX = ξXW (CB) and so is a complement to KX in NW (X).

4. Rewriting elements and upper bounding the dimension

The main goal of this section is to prove that every element of BrM(Q) can

be written in a certain standard form, which corresponds to the well-known

Brauer diagrams if Q = An−1. This will lead to the following upper bound

of the dimension of Br(Q). Recall that CB is the set of nodes of Q whose

corresponding roots are orthogonal to the highest element of B.

Proposition 4.1: The dimension of the Brauer algebra of type Q is at most
∑

B

|B|2|W (CB)|.

This will be proved in a series of lemmas and propositions and completed at

the end of this section.

Lemma 4.2: Let i and j be nodes of Q. If w ∈ W satisfies wαi = αj , then

weiw
−1 = ej.

Proof. By [4, Proposition 3.2], there is a unique element wij of minimal length

such that wijαi = αj . This can be proved exactly as in [4, Lemma 3.1(iv)], by

use of (HNree) and (HNeer). It remains to verify that CW (αi) centralizes ei.

This is proved as in [4, Lemma 3.9], where it was shown sisβ = sβsi for any root

β of W orthogonal or equal to αi, where sβ is the product in the Artin group

of the simple generators corresponding to a minimal length word for rβ ∈ W .
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Here we replace si by ei and use (HNree) and (HNeer) appropriately. Since

CW (αi) is generated by such reflections rβ , this establishes the lemma.

Consider a positive root β and a node i of Q. There exists w ∈ W such that

β = wαi. Define the element eβ of Br(Q) by

(4) eβ = weiw
−1.

Lemma 4.2 implies that eβ is well defined. The relations in Br(Q) involving

the elements eβ extend the relations already described for fundamental elements

ei.

Lemma 4.3: Let β and γ be positive roots of W .

(i) eβrβ = rβeβ = eβ and e2
β = δeβ .

(ii) If (β, γ) = ±1 then

(a) eβrγeβ = eβ,

(b) rβrγeβ = eγrβrγ = eγeβ ,

(c) eβeγeβ = eβ .

(iii) If (β, γ) = 0, then eβrγ = rγeβ and eβeγ = eγeβ.

Proof. If β and γ are simple roots, this is direct from the defining relations of

BrM(Q). Otherwise, there are w ∈ W and nodes i, j of Q such that wαi = β

and wαj = γ, and the result follows from (4) by conjugation.

We next extend the definition of eβ to arbitrary sets of mutually orthogonal

positive roots. For such a set B, we define the element eB of Br(Q) by

(5) eB =
∏

β∈B

eβ .

This definition is unambiguous as eβ and eγ commute whenever β and γ are

orthogonal (cf. Lemma 4.3(iii)). Clearly, eB behaves well under conjugation by

W in the sense that ueBu−1 = euB.

An important difference between Br(An) and the Brauer algebras of other

types is the fact that the orbit of B under the action of W need not correspond

bijectively with the orbit of eB under W by conjugation. For example, when

Q = D4, with the labeling of the nodes as in [2], the set B = {α1, α3, α4} is

distinct from wB, where w = r2r1r3r2, but weBw−1 = eB. For this reason,

we need compare the action of W on eB with the conjugation action on its
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admissible closure Bcl rather than B. The necessary transition from B to Bcl

is expressed in the next lemma.

Lemma 4.4: If X is a set of mutually orthogonal positive roots of W , then

eXcl = eXδ|X
cl|−|X|.

Proof. Suppose that α ∈ Φ+ \X is non-orthogonal to the pair β2, β3 in X . By

Lemma 4.3,

rαrβ2
rβ3

rαeβ2
eβ3

= rαrβ2
rβ3

rαeβ3
eβ2

= rαrβ2
eαeβ3

eβ2
= eβ2

eαeβ3
eβ2

= eβ2
eαeβ2

eβ3

= eβ2
eβ3

,

whence rαrβ2
rβ3

rαeX = eX .

Suppose now that β1 is a third root of X that is not orthogonal to α. Let γ be

the unique positive root in X non-orthogonal to α and orthogonal to β1, β2, and

β3; cf. Lemma 2.1. Then γ = rαrβ2
rβ3

rαβ1. As rαrβ2
rβ3

rαrβ1
= rγrαrβ2

rβ3
rα,

using Lemma 4.2 we find

rαrβ2
rβ3

rαeXδ = rαrβ2
rβ3

rαeβ1
eX = eγrαrβ2

rβ3
rαeX = eγeX = e{γ}∪X .

This procedure can be repeated until we have reached Xcl. The lemma

follows.

Proposition 4.5: Let X be an admissible set and let Y be a set of mutually

orthogonal positive roots (not necessarily admissible). Then

eY ξX ∈ ξZW (C)δk ∪ {0},

for some k ∈ N with k ≤ |Y | and Z ∈ WX with Y ⊆ Z. Moreover, eY ξX 6= 0

with k = |Y | if and only if Y ⊆ X , in which case eY ξX = ξXδ|Y |.

Proof. The proof of the first assertion is by induction on the size of Y .

Suppose that |Y | = 1. There exists a positive root α such that Y = {α}

and eY = eα. If α is not a simple root, choose w ∈ W for which wαi = α

where αi is simple. Then eα = weiw
−1 and wξX = ξwXh with h ∈ W (C). The

conditions on subsets are preserved. Therefore, we may, and shall, assume that

α is simple. There are three cases to consider.

α ∈ X . Then eY ξX = eαξX = ξXδ. Now, for k = 1 and Z = X we have

Y ⊆ Z and k = |Y |, as required.

α ⊥ X . Then eY ξX = eαξX = 0 and the assertions hold.
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α ∼ β ∈ X . Then eY ξX = eαξX = rβrαξX ∈ ξrβrαXW (C). Moreover,

α = rβrαβ ∈ rβrαX , so the assertions hold with Z = rβrαX and k = 0.

Next, assume |Y | > 1. Take α ∈ Y and set Y0 = Y \{α}. We compute

eY ξX = eαeY0
ξX . If eY0

ξX = 0, then clearly eY ξX = 0. Assume therefore

eY0
ξX 6= 0. By the induction hypothesis, eY0

ξX = ξZvδk with Y0 ⊆ Z, v ∈

W (C), and k ≤ |Y0|. Now

(6) eY ξX = eαξZvδk.

Put Z0 = Z \ Y0. We have α ∈ Y ⊥
0 . Moreover, every element of Z0 commutes

with every element of Y0. Again, there are three cases to consider,

α ∈ Z0. Then eY ξX = eαξZvδk = ξZvδk+1 and Y = Y0 ∪ {α} ⊆ Z. Further-

more, k ≤ |Y0| = |Y | − 1, so k + 1 ≤ |Y |. This proves the proposition in this

case.

α ⊥ Z. Then eαξZ = 0, so eY ξX = eαξZvδk = 0 by (6).

α ∼ β ∈ Z. Then

eY ξX = eαξZvδk = rβrαξZvδk.

Now rβrαZ = rβrαZ0 ∪ rβrαY0. As α, β ⊥ Y0, we have rβrαY0 = Y0. Hence

rβrαZ = rβrαZ0 ∪ Y0. As before, α ∈ rβrαZ0. Hence Y = Y0 ∪ {α} ⊆ rβrαZ.

Furthermore, k ≤ |Y0| < |Y |, as required for the proof of the first assertion.

In order to settle the second assertion, suppose that k = |Y | and eY ξX 6= 0.

If Y = ∅ the assertions Y ⊆ X and eY ξX = ξXδ|Y | hold trivially. Let k > 0

and proceed by induction on k. Take β ∈ Y and set Y ′ = Y \ {β}. Clearly

eY ′ξX 6= 0 and k − 1 = |Y ′|, so, by the induction hypothesis, Y ′ ⊆ X and

eY ′ξX = ξXδk−1, whence eY ξX = eβξXδk−1. If β ⊥ X , then eY ξX = 0,

a contradiction. If β ∼ γ ∈ X , then eY ξX = rγrβξXδk−1 ∈ ξXW (C)δk−1

contradicting the assumption eY ξX ∈ ξXW (C)δk, so we must have β ∈ X . It

follows that Y = Y ′ ∪ {β} ⊆ X and eY ξX = ξXδk as required for the only if

part. For the converse use the case |Y | = 1 above repeatedly. This establishes

the second assertion.

Corollary 4.6: Let B be an admissible W -orbit and X, Y ∈ B. Then

eY ξX ∈ ξY W (C)δk ∪ {0},

where k ≤ |Y |. Moreover, if k = |Y | and eY ξX 6= 0, then Y = X and eXξX =

ξXδk.
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Proof. Suppose that eY ξX 6= 0. By Proposition 4.5 there are Z ∈ W X , w ∈

W (C), and k ∈ N such that eY ξX = wξZδk. Moreover, Y ⊆ Z and k ≤ |Y |.

Since Z ∈ B we know that |Y | = |X | = |Z|. Thus Y = Z.

Suppose that k = |Y |. Then Y ⊆ X by Proposition 4.5. Since |Y | = |X | we

conclude Y = X .

For X a set of mutually orthogonal positive roots, define the annihilator of

eX , denoted AX , to be

(7) AX = {w ∈ W | weX = eX}.

and the centralizer of eX , denoted NX , to be

(8) NX = {w ∈ W | eXw = weX}.

In view of Lemmas 3.3(iv) and 4.4, NW (X) ≤ NW (Xcl) ≤ NX . Also, by

Proposition 4.5, AX ≤ AXcl C NX . Some further properties of these subgroups

are listed in the next proposition, the second item of which we could only prove

by means of a case by case verification.

Before Lemma 3.5 we introduced the notation KX for the kernel of the re-

striction of ρB to NX on ξXZ[W (C), δ±1].

Proposition 4.7: Let X be the highest element in its W -orbit and put C =

CWX .

(i) NX = NW (X).

(ii) The normal subgroup AX of NX coincides with KX . It is generated by

{rβ , rαrβrγrα | α ∈ Φ+, β, γ ∈ X, β ∼ α ∼ γ}.

(iii) NX is the semi-direct product of AX and W (C).

Proof. (i) Above, we observed that NW (X) ≤ NX . By Proposition 4.5, weX =

eXw for w ∈ W implies ξwX ∈ ξXW (C)δZ. Therefore, NX leaves invariant the

1-dimensional subspace ξXZ[W (C), δ±1] of VB. This proves NX ≤ NW (X).

(ii) If w ∈ W satisfies weX = eX , then there is h ∈ W (C) such that ξwXhδZ =

wξXδZ = weXξXδZ = eXξXδZ = ξXδZ. But then wX = X , so w ∈ NW (X) =

NX by (i), and h = 1. This proves that AX is contained in KX .

Let LX be the subgroup of W with the generators specified in the assertion. If

β ∈ X then, by Lemma 4.3, rβeX = rβeβeXδ−1 = eβeXδ−1 = eX , so rb ∈ AX .

Let α ∈ Φ+ and assume β and γ in X are as stated. Then rαrβrγrα ∈ AX

by the first paragraph of the proof of Lemma 4.4. Hence LX is contained in



358 A. M. COHEN, B. FRENK AND D. B. WALES Isr. J. Math.

AX . Now LX is a normal subgroup of NW (X) contained in KX , so the product

LXW (C) is a subgroup of NX . A case by case analysis shows that the action

of LX induced on X coincides with the action of NX . Also, by inspection of

cases, for every root of β ∈ Φ orthogonal to X there is an element u ∈ LX with

urβ ∈ W (C). This implies that LX coincides with KX and hence with AX .

(iii) By (i) and (ii), this is a restatement of Corollary 3.7.

Lemma 4.8: Let X be a set of mutually orthogonal positive roots, w ∈ W , and

β ∈ Φ+.

(i) If X ∈ A and w ∈ W is of minimal length in its coset wNX , then

wξX = ξwX .

(ii) The product eβeX can be expanded as follows:

eβeX =















eXδ if β ∈ Xcl,

eX∪{β} if β ⊥ X ,

rγrβeX where γ ∈ X , if β ∼ γ ∈ X.

Proof. (i) In a minimal expression s1 · · · sq of w as a product of simple reflec-

tions, each si will move si+1 · · · sqX . Then siξsi+1···sqX = ξsi···sqX .

(ii) If β ∈ Xcl, the result follows from Lemma 4.4. If β ⊥ X , the assertion

is immediate from the definition of e{β}∪X . Finally, suppose that there is some

γ ∈ X with β ∼ γ. Then the assertion follows from Lemma 4.3(ii)(b).

Let A0 be the set of highest elements from the W -orbits in A. For X ∈ A0,

let DX be a set of right coset representatives for NX = NW (X) in W . By

convention, if X = ∅ we take e∅ to be the identity, NW∅ to be W , and CW∅ also

to be W .

Proposition 4.9: Each element of the Brauer monoid BrM(Q) can be written

in the form ueXzvδk, where X ∈ A0, u, v−1 ∈ DX , z ∈ W (CWX), and k ∈ Z.

Proof. By Lemma 4.8(ii), any expression of the form eβweX′ with β ∈ Φ+,

w ∈ W and X ′ a set of mutually orthogonal positive roots, can be rewritten

in the form veY δk with v ∈ W , Y ∈ A and k ∈ Z. Consequently, up to a

power of δ, every element of BrM(Q) is equal to w1eXw−1
2 for some X ∈ A0

and w1, w2 ∈ W . Now, using Proposition 4.7(iii), write w1 = uy1z1 and w2 =

vy2z2 with u, v ∈ DX , y1, y2 ∈ AX , and z1, z2 ∈ W (C). Then w1eXw−1
2 =
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uy1eXz1z
−1
2 y−1

2 v−1 = ueXz1z
−1
2 y−1

2 v−1 = uz1z
−1
2 eXy−1

2 v−1 = uz1z
−1
2 eXv−1 =

ueXz1z
−1
2 v−1. Taking z = z1z

−1
2 , we find an expression as required.

Proof of Proposition 4.1. The dimension of Br(Q) is equal to the size of the

quotient monoid BrM(Q)〈δ±1〉, which, by Proposition 4.9, is at most

∑

X∈A0

|DX |2 · |W (CWX)|.

The proposition follows as |DX | = |WX |.

Remark 4.10: To finish this section, we describe the usual Brauer diagram on

n strands corresponding to ueXzvδk for k ∈ N when Q = An−1. It contains k

circles. The horizontal strands at the top are determined by uX in the following

way: each root in uX is of the form εi−εj in the standard representation of Φ+,

where each εt denotes the t-th standard basis vector of Rn; in the diagram there

is a corresponding horizontal strand from i to j. The bottom of the diagram is

obtained by the same interpretation of v−1X . Finally, the element z determines

the vertical strands in terms of a permutation on the remaining nodes up to a

translation from the highest root to X . See Remark 5.7 below on how to obtain

it.

5. Irreducibility of representations and lower bounding the dimension

Corollary 4.6 allows us to find irreducible representations of the Brauer algebra

Br(Q): in fact, one for each pair of a W -orbit B inside A and an irreducible

representation of W (CB). This will enable us to find a lower bound for the

dimension of Br(Q), which together with Proposition 4.1 gives the exact di-

mension. Fix a W -orbit B inside A and recall the notation ρB from Theorem

3.6(ii). We shall often abbreviate VB and CB to V and C, respectively, where

VB was defined just above Lemma 3.4.

Proposition 5.1: Suppose that v =
∑

ξBwλB,w is a nonzero element of V

where the sum is over all w ∈ W (C) and over all B ∈ B. Then there is some

Y ∈ B for which eY v 6= 0.
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Proof. Suppose that eY v = 0 for all Y ∈ B. By Proposition 4.5 there are

coefficients TY,u;B,w ∈ {0} ∪ δZ, where Y, B ∈ B and u, w ∈ W (C), such that

eY ξBw =
∑

u∈W (C)

ξY uTY,u;B,w.

After an ordering of B×W (C), the coefficients TY,u;B,w can be considered entries

of a square matrix, T , over Q(δ) whose rows and columns are both indexed by

the pairs in B × W (C).

Let λ be the column vector with entries λB,w indexed in the same order as

used for T . Now

0 = eY v =
∑

eY ξBwλB,w =
∑

u∈W (C)

∑

B,w

ξY uTY,u;B,wλB,w

=
∑

u∈W (C)

ξY u(Tλ)Y,u.

As this equality holds for all (Y, u) ∈ B×W , we find Tλ = 0. By Corollary 4.6,

the exponent of δ in an entry TY,u;B,w of T is |B| on the diagonal as eBξBw =

δ|B|w, whereas, at nonzero off-diagonal entries, only lower powers of δ occur.

Consequently, det(T ) is a nonzero element of Q[δ±1]. This means that T is

nonsingular over the field Q(δ), and so Tλ = 0 implies λ = 0, that is, v = 0, a

contradiction. Hence the proposition.

Proposition 5.2: Suppose that U is the regular representation space of W (C)

over Q(δ) and U1 is an invariant subspace of U for W (C). Then
∑

B∈B ξBU1 is

an invariant subspace of V ⊗Z[δ±1] Q(δ) for Br(Q).

Proof. This follows from the actions of ri and ei on ξBu for u ∈ U . In each case

the result is of the form 0 or ξY wu with w ∈ W (CB), and so if u ∈ U1 then so

is wu1.

Proposition 5.3: If U1 is an irreducible invariant subspace of the regular

W (C)-representation space U over Q(δ), then the representation over Q(δ) of

Br(Q) on V1 =
∑

B∈B ξBU1 of Proposition 5.2 is irreducible. Moreover, if U1

is absolutely irreducible, then so is V1.

Proof. Let v be a nonzero vector in V1 =
∑

B∈B ξBU1. We know from Proposi-

tion 5.1 that there is a B ∈ B for which eBv 6= 0. Suppose that v is a nonzero

element of an invariant subspace of V1. Then this subspace also contains eBv,
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which, by Corollary 4.6, is equal to ξBu1 for some nonzero u1 ∈ U1. If the rep-

resentation is irreducible, then, by letting W (CB) act, we can obtain all of ξBU1

in U1. As W is transitive on ξY for Y ∈ B, the invariant subspace U1 contains

V1 and so coincides with V1. Therefore, the representation is irreducible.

Since the above argument works for any extension field of Q(δ), the second

assertion of the theorem also follows.

Proposition 5.4: The irreducible representations obtained in Proposition 5.3

are not equivalent.

Proof. Suppose that U1 and U2 are inequivalent irreducibles of W (CB). These

occur as subspaces of the regular representation space U of Proposition 5.3.

Consider now the irreducible representations of Br(Q) obtained in Proposi-

tion 5.3 for U1 and U2, respectively. When restricted to W (CB), these repre-

sentations are |B|U1 and |B|U2, which are inequivalent. Therefore, they cannot

be equivalent.

Proof of Theorem 1.1. The above shows that, for each irreducible representa-

tion τ of W (CB), there is an irreducible representation ρB ⊗ τ of

Br(Q) ⊗Z[δ±1] Q(δ)[W (CB)].

In particular, the algebra Br(Q) ⊗Z[δ±1] Q(δ) maps homomorphically onto a

direct sum of matrix algebras of dimensions |B|τ(1) over Q(δ) for B running

over the admissible W -orbits in A and τ over the irreducible representations

of W (CB). Therefore, dim(Br(Q)) ≥
∑

B,τ |B|
2τ(1)2 =

∑

B |B|2|W (CB)|. In

Proposition 4.1, this number was proved to be an upper bound for dim(Br(Q)),

so, in view of Lemma 1.3, the homomorphism onto a direct sum of matrix alge-

bras is an isomorphism and Br(Q)⊗Z[δ±1] Q(δ) is split semisimple, so Theorem

1.1 is proved.

With the notation of Proposition 4.9 and as an immediate consequence of

this proposition and the theorem, we have the following two corollaries.

Corollary 5.5: For Q ∈ ADE, the Brauer algebra Br(Q) over Z[δ±1] has a

basis of the form ueXzv for X ∈ A0, u, v−1 ∈ DX , and z ∈ W (CWX).

Corollary 5.6: For Q ∈ ADE, the Brauer algebra Br(Q) ⊗Z[δ±1] Q(δ) over

Q(δ) is a direct sum of matrix algebras of size |B| · τ(1) for (B, τ) running over
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all pairs of a W -orbit B inside A and an irreducible representation τ of W (CB).

The irreducibles are indexed by the irreducibles of W (CB) over all B.

Remark 5.7: We finish this section by describing how to compute from a Brauer

monomial a ∈ BrM(Q) the triple (L, R, z) consisting of two elements L, R of

the same W -orbit B = WX inside A, where X ∈ A0, and of the element

z ∈ W (CB) for which a = ueXzvδk as in Proposition 4.9 with L = uX and

Y = vX . First compute L = a(∅) and R = aop(∅), where aop is the element

of BrM(Q) obtained by reading backwards an expression of a as a word in

the generators (this element is well defined as the operation ·op is an anti-

involution; see [4] or note that the set of relations shown in Tables 1 and 4

is invariant under opposition). As a consequence of Proposition 4.9, L and R

belong to the same W -orbit inside A. Let X ∈ A0 be the highest element

of this orbit. Pick u, v−1 ∈ DX such that L = uX and R = v−1X . Now

compute u−1av−1ξX . The result will be an element of the form ξXzδs for some

s ∈ Z and z ∈ W (CWX). Then a = ueXzvδk with k = s − |X |, as required.

As discussed in Remark 4.10, for Q = An−1, the sets L and R determine the

horizontal strands at the top and bottom, respectively, of the corresponding

Brauer diagram, whereas z determines the permutation corresponding to the

vertical strands of the diagram. In view of Corollary 5.5, these triples may be

thought of as the abstract Brauer diagrams for any Q ∈ ADE. For Q = Dn,

there is a diagrammatic description of BrM(Dn) in [6].

6. Cellularity

In this section we prove Theorem 1.2, which states that Br(Q)⊗Z[δ±1]S is cellu-

lar in the sense of Graham–Lehrer in [10, Definition 1.1] provided the coefficient

ring S is as specified in the theorem. Recall from [10] that an associative alge-

bra A over a commutative ring S is cellular if there is a quadruple (Λ, T, C, ∗)

satisfying the following three conditions.

(C1) Λ is a finite partially ordered set. Associated to each λ ∈ Λ, there is a

finite set T (λ). Also, C is a map from T (λ) × T (λ) to A. It satisfies

C :
∐

λ∈Λ

T (λ) × T (λ) → A

is an injective map whose image is an S-basis of A.
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(C2) If λ ∈ Λ and s′, t′ ∈ T (λ), write C(s′, t′) = Cλ
s′,t′ ∈ A. Then ∗ : A → A

is an S-linear anti-involution such that (Cλ
s′,t′)

∗ = Cλ
t′,s′ .

(C3) If λ ∈ Λ and s′, t′ ∈ T (λ), then, for any element a ∈ A, we have

aCλ
s′,t′ ≡

∑

u′∈T (λ)

ra(u′, s′)Cλ
u′,t′ mod A(< λ),

where ra(u′, s′) ∈ S is independent of t′ and where A(< λ) is the S-

submodule of A spanned by {Cµ
s′′,t′′ | µ < λ ; s′′, t′′ ∈ T (µ)}.

Such a quadruple will be called a cell datum for A. Now let Q be a fixed

diagram of type ADE and consider A = Br(Q) ⊗Z[δ±1] S. We introduce a

quadruple (Λ, T, C, ∗) and prove that it is a cell datum for A. The map ∗ on A

will be the opposition map ·op on A that linearly extends the opposition map

of Remark 5.7. As discussed in Section 5, it is an anti-automorphism of A as it

preserves the defining relations.

By Corollary 5.5, the Brauer algebra A over S has a basis of the form ueXzv

for X ∈ A0, u, v−1 ∈ DX , and z ∈ W (CWX). Recall A0 is the set of highest

elements from the W -orbits in the admissible sets, A. Also, DX is a set of right

coset representatives for NX = NW (X) in W .

The groups W (CWX) are all Weyl groups of type ADE or direct products.

For X = ∅ this is the Weyl group of type Q. For the others they are the Weyl

groups of types CB appearing in the fouth column of Table 3. As the coefficient

ring S satisfies the conditions of [9, Theorem 1.1], this implies by [9, Corollary

3.2] that the group rings S[W (CWX)] are all cellular. Each is a subalgebra of

A.

Let (ΛX , TX , CX , ∗X) be a cell datum for S[W (CWX)]. Note that by [9,

Section 3], ∗X is the map ·op on S[W (CWX)] and so ∗X is the restriction of

∗ = ·op to S[W (CWX)].

We now define a cell datum, (Λ, T, C, ∗), for A. The underlying set of the

poset Λ will be the disjoint union of all ΛX over all admissible sets X ∈ A0. We

make Λ into a poset as follows. For a fixed X , we keep the partial order within

ΛX . If X , Y are two admissible sets, we say X > Y if and only if some element

in WX is properly contained in some element of WY . If X > Y we order all

elements of ΛX greater than all elements of ΛY . In particular, the elements of

Λ∅ are greater than the elements of ΛX for any X 6= ∅. No further pairs of Λ

are ordered.
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The set T (X) is the set of pairs (u, s) for u ∈ DX and s ∈ TX . The map C

is given by C((u, s), (v, t)) = uCX(s, t)v−1. The union of these over all u ∈ DX

and all s ∈ TX is a basis by Corollary 5.5 and the fact that the set C(s, t) over

all s, t in TX is a basis for S[W (CWX)] by (C1) of the cellularity of S[W (CWX)].

This is (C1) for (Λ, T, C, ∗).

For (C2) notice
(

uCX(s, t)v−1
)op

= v(CX(s, t))opu−1. Now (CX(s, t))op =

CX(t, s) by the cellularity condition (C2) for S[W (CWX)] and so (C2) holds for

the cell datum (Λ, T, C, ∗).

We have now only to check condition (C3) for (Λ, T, C, ∗). For this we need to

consider riueXCX(s, t)v−1 and eiueXCX(s, t)v−1, where u, v ∈ DX and s, t ∈

TX . It follows from Section 4 that riueX = u′eXz for some z ∈ W (CWX)

and u′ ∈ DX and that eiueX = u′eXδkz or u′eX′δkzv′ for some k ∈ N, z ∈

W (CWX), X ′ < X , and u′, v′ ∈ DX′ . In the latter case the expression does not

depend on the pair (v, t) and is equal to 0 modulo lower terms in

{CX′

s′′,t′′ | X ′ < X ; s′′, t′′ ∈ T (X ′)}.

We need then just check the (C3) condition for u′eXz. But by the (C3) condition

for the cellularity of S[W (CWX)] we get

zCX
s,t ≡

∑

u′∈T (X)

rz(u
′, s)CX

u′,t mod A(< X),

where rz(u
′, s) ∈ S is independent of t. Hence the condition (C3) holds for

(Λ, T, C, ∗).

This establishes that (Λ, T, C, ∗) is a cell datum for A and so completes the

proof of Theorem 1.2.
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