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ABSTRACT

Let G be a finite group and V be a finite G-module. We present upper

bounds for the cardinalities of certain subsets of Irr(GV ), such as the set

of those χ ∈ Irr(GV ) such that, for a fixed v ∈ V , the restriction of χ to

〈v〉 is not a multiple of the regular character of 〈v〉. These results might

be useful in attacking the noncoprime k(GV )-problem.

1. Introduction

Let G be a finite group and V be a finite G-module of characteristic p. R. Knörr

presented a beautiful argument, for (|G|, |V |) = 1, in [4, Theorem 2.2] showing

how to obtain strong upper bounds for k(GV ) (the number of conjugacy classes

of GV ) by using only information on CG(v) for a fixed v ∈ V . Note that his

result immediately implies the important special case that if G has a regular

orbit on V (i.e., there is a v ∈ V with CG(v) = 1), then k(GV ) ≤ |V |, which

was a crucial result in the solution of the k(GV )-problem. In this note we give

a much shorter proof of this result (see 3.1 below).

The main objective of the paper, however, is to modify and generalize Knörr’s

argument in various directions to include noncoprime situations. This way we

obtain a number of bounds on certain subsets of Irr(GV ), such as the following:

Theorem A: Let G be a finite group and let V be a finite G-module of char-

acteristic p. Let v ∈ V and C = CG(v) and suppose that (|C|, |V |) = 1. Then
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the number of irreducible characters of GV whose restriction to 〈v〉 is not a

multiple of the regular character of 〈v〉 is bounded above by

k(C)
∑

i=1

|CV (ci)|,

where the ci are representatives of the conjugacy classes of C.

Theorem B: Let G be a finite group and V be a finite G-module. Let g ∈ G

be of prime order not dividing |V |. Then the number of irreducible characters

of GV whose restriction to A = 〈g〉 is not a multiple of the regular character of

〈g〉 is bounded above by

|CG(g)| n(CG(g), CV (g)),

where n(CG(g), CV (g)) denotes the number of orbits of CG(g) on CV (g).

Stronger versions and refinements of these results are proved in the paper.

It is hoped that these results will be useful in solving the noncoprime k(GV )-

problem, as discussed, for instance, in [3] and [1]. Theorems A and B will be

proved in Sections 3 and 4 below respectively. In Section 2, we will generalize

a recent result of P. Schmid [6, Theorem 2(a)] stating that in the situation of

the k(GV )-problem, if G has a regular orbit on V , then k(GV ) = |V | can only

hold if G is abelian. We prove

Theorem C: Let G be a finite group and V a finite faithful G-module with

(|G|, |V |) = 1. Suppose that G has a regular orbit on V . Then

k(GV ) ≤ |V | − |G| + k(G).

Our proof is different from the approach taken in [6], and we actually prove

a slightly stronger result including some non-coprime actions.

Notation: If the group A acts on the set B, we write n(A,B) for the number

of orbits of A on B. All other notation is standard or explained along the way.

2. k(GV) = |V| and regular orbits

In this paper we often work under the hypothesis of the k(GV )-problem which

is the following.
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2.1 Hypothesis: Let G be a finite group and let V be a finite faithful G-module

such that (|G|, |V |) = 1. Write p for the characteristic of V .

In [6, Theorem 2(a)], P. Schmid proved that under 2.1, if G has a regular

orbit on V , V is irreducible, and k(GV ) = |V |, then G is abelian, and from this

it follows easily that either |G| = 1 and |V | = p, or G is cyclic of order |V | − 1.

The proof in [6] is somewhat technical.

The goal of this section is to give a short proof of a generalization of Schmid’s

result based on a beautiful argument of Knörr [4]. We word it in such a way

that we do not even need the coprime hypothesis, so that the result may even

be useful to study the noncoprime k(GV )-problem. To do this, for any group

X and x ∈ X we introduce the set

Irr(X,x) = {χ ∈ Irr(X) : χ|〈x〉is not an integer multiple

of the regular character of 〈x〉}

and write

k(X,x) = |Irr(X,x)|.

2.2 Theorem: Let G be a finite group and let V be a finite G-module such

that G possesses a regular orbit on V . Let v ∈ V be a representative of such

an orbit. Then

k(GV, v) ≤ |V | − |G| + k(G).

Proof. Let p be the characteristic if V . Let A = 〈v〉 and put η = p1A−ρA, where

ρA is the regular character of A. Then η(1) = 0 and η(a) = p for 1 6= a ∈ A.

So for 1 6= a ∈ A we have

ηGV (a) =
1

p

∑

g∈G
u∈V

η̇(agu) =
1

p

∑

g∈NG(A)
u∈V

η̇(ag) =
|V |

p

∑

g∈NG(A)

p = |V ||NG(A)|.

Now let xi (i = 1, . . . , k(GV )) be a set of representatives of the conjugacy

classes of GV . As ηGV obviously vanishes on all conjuagacy classes of GV which

intersect A−1 trivially, and there are precisely p−1
|NG(A)| conjugacy classes of GV
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which intersect A− 1 nontrivially, we obtain

(p− 1)|V | =
p− 1

|NG(A)|
|NG(A)||V | =

k(GV )
∑

i=1

ηGV (xi) =
∑

τ∈Irr(GV )

[τηGV , τ ](1)

=
∑

τ∈Irr(GV )

[τAη, τA].

Now for any τ ∈ Irr(GV ) we have

[τAη, τA] =
1

|A|

∑

a∈A

τ(a)(p− ρA(a))τ(a)(2)

=
∑

16=a∈A

|τ(a)|2







= 0 if τA is an integer multiple of ρA

≥ p− 1 otherwise,

where the last step follows from [2, Lemma (3.14)] (note that if τA is not a

multiple of ρA, then τ(a) 6= 0 for all 1 6= a ∈ A, as all these τ(a) are Galois

conjugate). Next, observe that if τ ∈ Irr(GV ) with V ≤ ker τ , then τ ∈ Irr(G)

and clearly τA is not a multiple of ρA, then clearly

(3) [τAη, τA] =
∑

16=a∈A

|τ(a)|2 =
∑

16=a∈A

τ(1)2 = (p− 1)τ(1)2.

Thus with (1), (2), and (3) we get

(p− 1)|V | =
∑

τ∈Irr(G)

[τAη, τA] +
∑

τ∈Irr(GV ),
V 6≤ker τ

[τAη, τA]

≥
∑

τ∈Irr(G)

(p− 1)τ(1)2 + (k(GV, v) − k(G))(p − 1)

which yields

|V | ≥
∑

τ∈Irr(G)

τ(1)2 + k(GV, v) − k(G) = |G| + k(GV, v) − k(G).

This implies the assertion of the theorem, and we are done.

The following consequence implies Schmid’s result [6, Theorem 2(a)].

2.3 Corollary: Assume 2.1 and that G has a regular orbit on V . Then

k(GV ) ≤ |V | − |G| + k(G).

In particular, if k(GV ) = |V |, then G is abelian.
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Proof. By Ito’s theorem and as (|G|, |V |) = 1, we know that χ(1) divides |G|

for every χ ∈ Irr(GV ), so in particular p does not divide χ(1). Thus, for any

v ∈ V #, we see that χ|〈v〉 cannot be an integer multiple of ρ〈v〉. Therefore,

k(GV, v) = k(GV ). Now the assertion follows from 2.2.

After seeing a preprint of this paper, P. Schmid informed me that he inde-

pendently had obtained 2.3. This appeared, with a different proof, in his recent

book on the k(GV )-problem (see Theorem 1.5d in [7]).

3. Bounds for k(GV)

In this section we study more variations of Knörr’s argument [4, Theorem 2.2]

and generalize it to some noncoprime situations.

We begin, however, by looking at a classical application of it. An important

and immediate consequence of Knörr’s result is that if under 2.1 G has a regular

orbit on V , then k(GV ) ≤ |V |. This important result can be obtained in the

following shorter way.

3.1 Proposition: Let G be a finite group and let V be a finite faithful G-

module. Let v ∈ V . Then

k(GV, v) ≤ |CG(v)||V |,

in particular, if (|G|, |V |) = 1 and G has a regular orbit on V , then k(GV ) ≤ |V |.

Proof. Put A = 〈v〉. If τ ∈ Irr(GV, v), then by [2, Lemma (3.14)] we know that
∑

16=a∈A |τ(a)|2 ≥ p− 1. With this and well-known character theory we get

(p− 1)k(GV, v) ≤ k(GV, v) min
τ∈Irr(GV,v)

(

∑

16=a∈A

|τ(a)|2
)

≤
∑

τ∈Irr(GV )

∑

16=a∈A

|τ(a)|2

=
∑

16=a∈A

∑

τ∈Irr(GV )

τ(a)τ(a)

=
∑

16=a∈A

|CGV (a)|

=
∑

16=a∈A

|CG(v)||V |

= (p− 1)|CG(v)||V |.
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This implies the first result. If (|G|, |V |) = 1, then by Ito’s result τ(1) divides

|G| for all τ ∈ Irr(GV ), so p cannot divide τ(1), and thus k(GV, v) = k(GV ),

and the second result now follows by choosing v to be in a regular orbit of G

on V .

Now we turn to generalizing Knörr’s argument. We discuss various ways to

do so.

3.2 Remark: Let G be a finite group and let V be a finite faithful G-module of

characteristic p. Let v ∈ V and put C = CG(v) and A = 〈v〉. Let

Irr(GV,C, v)

:= Irr0(GV )

:= Irr(GV ) − {χ ∈ Irr(GV ) : χ|C×〈v〉 = τ × ρA for a character τ of C}

and

Irrp′(GV ) = {χ ∈ Irr(GV ) : p does not divide χ(1)},

so that clearly Irrp′(GV ) ⊆ Irr0(GV ).

Note that if (|G|, |V |) = 1, then by Ito Irr(GV ) = Irrp′(GV ).

To work towards our next result, we again proceed somewhat similarly as

in [4, Theorem 2.2], but we keep the presentation here self-contained. In the

following, we work under the hypothesis that (|C|, |V |) = 1. Let N = NG(A).

Then |N : C| divides p−1. Moreover, it is easy to see that for c ∈ C, 1 6= a ∈ A,

g ∈ G, u ∈ V we know that

(ca)gu ∈ C ×A if and only if g ∈ N and u ∈ CV (cg).

With this, one can readily verify that if ci (i = 1, . . . , k(C)) with c1 = 1 are

representatives of the conjugacy classes of C and aj (j = 1, . . . , p−1
|N :C|) are repre-

sentatives of the N–conjugacy classes of A−1 then, the ciaj are representatives

of those conjugacy classes of GV which intersect C × (A− 1) nontrivially.

Now define a character η on C ×A by η = 1C × (p1A − ρA). Then for c ∈ C,

a ∈ A we have

η(ca) =







p, if a 6= 1

0, if a = 1.
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Therefore ηGV vanishes on all conjugacy classes ofGV which intersectC×(A−1)

trivially, whereas for c ∈ C, 1 6= a ∈ A we have that

ηGV (ca) =
1

|C ×A|

∑

g∈G
u∈V

η̇((ca)gu) =
1

p|C|

∑

g∈N

∑

u∈CV (cg)

η(cgag)

=
1

p|C|

∑

g∈N

|CV (cg)|p

=
1

|C|

∑

g∈N

|CV (c)|

= |N : C| |CV (c)|.

Thus if xi (i = 1, . . . , k(GV )) are representatives of the conjugacy classes of

GV , then we get

k(GV )
∑

i=1

ηGV (xi) =

k(C)
∑

i=1

p−1

|N :C|
∑

j=1

ηGV (ciaj) =

k(C)
∑

i=1

p−1

|N :C|
∑

j=1

|N : C| |CV (ci)|

=
p− 1

|N : C|
|N : C|

k(C)
∑

i=1

|CV (ci)|

= (p− 1)

k(C)
∑

i=1

|CV (ci)|,

and thus

(p− 1)

k(C)
∑

i=1

|CV (ci)| =

k(GV )
∑

i=1

ηGV (xi) =
∑

τ∈Irr(GV )

[τηGV , τ ]

=
∑

τ∈Irr(GV )

[τC×Aη, τC×A].(1)

Now if τ ∈ Irr(GV ), we can write

(2) τ |C×A =
∑

λ∈Irr(A)

τλ × λ
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where τλ is a character of C or τλ = 0. Then we see that

[τC×Aη, τC×A] =
1

|C ×A|

∑

c∈C
a∈A

τ(ca)η(ca)τ(ca)

=
1

|C|

∑

c∈C
16=a∈A

τ(ca)τ(ca)

=
1

|C|

∑

λ,µ∈Irr(A)
c∈C

τλ(c)τµ(c)
∑

16=a∈A

λ(a)µ(a).

Since
∑

16=a∈A λ(a)µ(a) equals p−1 if λ = µ and -1 if λ 6= µ, we further conclude

that

[τC×Aη, τC×A] = p
∑

λ∈Irr(A)

[τλ, τλ] −
∑

λ,µ∈Irr(A)

[τλ, τµ]

=
∑

λ<µ

[τλ − τµ, τλ − τµ],(3)

where ”≤” is some arbitrary ordering on Irr(A).

Now if τλ − τµ is a nonzero multiple of ρC , then

(4) [τλ − τµ, τλ − τµ] ≥ |C|

and thus

[τC×Aη, τC×A] ≥ |C|.

Moreover, note that if τ ∈ Irr0(GV ), then not all τλ − τµ can be equal to

0 since otherwise we see from (2) that τC×A would be equal to τλ × ρA for

any λ. So we can partition the set Irr(A) into two disjoint nonempty subsets

Λ1 = {λ ∈ Irr(A) : τλ = τ1} and Λ2 = {λ ∈ Irr(A) : τλ 6= τ1}, and thus as

0 ≤ (|Λ1| − 1)(|Λ2| − 1) = |Λ1||Λ2| − |Λ1| − |Λ2|+ 1 = |Λ1||Λ2| − (p− 1), we see

that |Λ1| |Λ2| ≥ p− 1, so there are at least p − 1 pairs λ, µ ∈ Irr(A) such that

τλ − τµ 6= 0. Thus

(5) [τC×Aη, τC×A] ≥ p− 1 for all τ ∈ Irr0(GV ).
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Therefore, by (1) and (5) we get that

(p− 1)

k(C)
∑

i=1

|CV (ci)| =
∑

τ∈Irr(GV )

[τC×Aη, τC×A]

≥
∑

τ∈Irr0(GV )

[τC×Aη, τC×A] ≥ (p− 1)|Irr0(GV )|

and thus

(6) |Irr0(GV )| ≤

k(C)
∑

i=1

|CV (ci)|.

From now on we assume that C > 1.

Now we repeat the arguments of this proof, but replace η by

η1 = (|C|1C − ρC) × (p1A − ρA),

so for c ∈ C and a ∈ A we have

η1(ca) =







|C|p, if c 6= 1 and a 6= 1

0, if c = 1 or a = 1.

Now from the above we know that the ciaj (i = 2, . . . , k(C), j = 1, . . . , p−1
|N :C|)

are representatives of those conjugacy classes which intersect (C − 1)× (A− 1)

nontrivially. Clearly ηGV
1 vanishes on all conjugacy classes ofGV which intersect

(C − 1) × (A − 1) trivially, whereas for 1 6= c ∈ C, 1 6= a ∈ A, if (|C|, |V |) = 1,

we have that

ηGV
1 (ca) =

1

|C ×A|

∑

g∈G
u∈V

η̇1((ca)
gu) =

1

p|C|

∑

g∈N

∑

u∈CV (cg)

η1(c
gag)

= |N | |CV (c)|.

Next we conclude that

k(GV )
∑

i=1

ηGV
1 (xi) =

k(C)
∑

i=2

p−1

|N :C|
∑

j=1

ηGV
1 (ciaj) = (p− 1)|C|

k(C)
∑

i=2

|CV (ci)|,

and so as in (1) we see that

(7) (p− 1)|C|

k(C)
∑

i=2

|CV (ci)| =
∑

τ∈Irr(GV )

[τC×Aη1, τC×A]
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Now with (2), similarly as in our earlier calculation leading to (3), we see that

(8)

=
1

|C ×A|

∑

c∈C
a∈A

τ(ca)η1(ca)τ(ca) =
∑

16=c∈C
16=a∈A

τ(ca)τ(ca)

=
∑

16=c∈C
16=a∈A

∑

λ∈Irr(A)

τλ(c)λ(a)
∑

µ∈Irr(A)

τµ(c)µ(a)

=
∑

λ,µ∈Irr(A)

∑

16=c∈C

τλ(c)τµ(c)
∑

16=a∈A

λ(a)µ(a)

= (p− 1)
∑

λ∈Irr(A)

∑

16=c∈C

τλ(c)τλ(c) −
∑

λ,µ∈Irr(A)
λ6=µ

∑

16=c∈C

τλ(c)τµ(c)

=
∑

λ∈Irr(A)

∑

16=c∈C

τλ(c)τλ(c) −
∑

λ,µ∈Irr(A)

∑

16=c∈C

τλ(c)τµ(c)

=
∑

λ<µ

∑

16=c∈C

(τλ(c) − τµ(c))(τλ(c) − τµ(c))

= sumλ<µ

∑

16=c∈C

|τλ(c) − τµ(c)|2

for some arbitrary ordering ≤ on Irr(A).

Now recall that if τ ∈ Irr0(GV ), then not all of the τλ − τµ are 0. So

choose λ, µ ∈ Irr(C) such that τλ − τµ 6= 0. If all the τµ (µ ∈ Irr(A)) are

integer multiples of ρC then put Λ1 = {φ ∈ Irr(A) : τφ = τλ} and Λ2 = {φ ∈

Irr(A) : τφ 6= τλ}, so Λ1 6= ∅ and Λ2 6= ∅ and from 0 ≤ (|Λ1| − 1)(|Λ2| − 1) we

clearly deduce that |Λ1||Λ2| ≥ p− 1, so there are at least p− 1 pairs (φ1, φ2) ∈

Irr(A) × Irr(A) such that τφ1
− τφ2

is a nonzero multiple of ρC .

So next we assume that τλ is not a multiple of ρC . Put

Γ1 = {φ ∈ Irr(A) : τλ − τφ is a multiple of ρC}

and

Γ2 = {φ ∈ Irr(A) : τλ − τφ is not a multiple of ρC}.

Clearly λ ∈ Γ1, so Γ1 6= ∅. If Γ2 = ∅, then Irr(A) = Γ1, and if we define Λ1,

Λ2 as in the previous argument, we see that there are at least (p − 1) pairs

(φ1, φ2) ∈ Irr(A) × Irr(A) such that τφ1
− τφ2

is a nonzero multiple of ρC .

So now suppose Γ2 6= ∅. Then |Γ1| + |Γ2| = p, and if φ1 ∈ Γ1 and φ2 ∈ Γ2,

then τφ1
− τφ2

= (τφ1
− τλ) + (τλ − τφ2

) clearly is not a multiple of ρC , and by

the same argument as used before we see that |Γ1||Γ2| ≥ p− 1, so there are at
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least (p−1) pairs (φ1, φ2) ∈ Irr(A)× Irr(A) such that τφ1
−τφ2

is not a multiple

of ρC .

Altogether we have shown that for any τ ∈ Irr0(GV ) one of the following

holds:

(A) There are at least (p− 1) pairs (φ1, φ2) ∈ Irr(A) × Irr(A) such that

τφ1
− τφ2

is a nonzero multiple of ρC , or

(B) there are at least (p− 1) pairs (φ1, φ2) ∈ Irr(A) × Irr(A) such that

τφ1
− τφ2

is not a multiple of ρC .

Now it remains to consider two cases:

Case 1: At least half of the τ ∈ Irr0(GV ) satisfy (A). Then for any of these τ

by (3) and (4) we have

[τC×Aη, τC×A] =
∑

λ<µ

[τλ − τµ, τλ − τµ] ≥ (p− 1)|C|

and so by (1) we see that

(p− 1)

k(C)
∑

i=1

|CV (ci)| ≥
∑

τ∈Irr0(GV )

[τC×Aη, τC×A] ≥
1

2
|Irr0(GV )|(p− 1)|C|

which implies

(9) |Irr0(GV )| ≤
2

|C|

k(C)
∑

ı=1

|CV (ci)|.

Case 2: At least half of the τ ∈ Irr0(GV ) satisfy (B).

Then for any of these τ by (8) and [5, Corollary 4] we have

[τC×Aη1, τC×A] ≥ (p− 1)(k(C) − 1).

Thus by (7) we have that

(p− 1)|C|

k(C)
∑

i=2

|CV (ci)| ≥
∑

τ∈Irr0(GV )

[τC×Aη1, τC×A]

≥
1

2
|Irr0(GV )|(p− 1) · (k(C) − 1)
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whence

(10) |Irr0(GV )| ≤
2|C|

k(C) − 1

k(C)
∑

i=2

|CV (ci)|.

Now we drop the assumption (|C|, |V |) = 1 and work towards a general bound

for |Irr0(GV )|.

For this, fix g0 ∈ C such that g0 is of prime order q and put C0 = 〈g0〉 and

N0 = NG(C0). Trivially there are at most |C0|(p − 1) = q(p − 1) conjugacy

classes of GV that intersect C0 × (A − 1) nontrivially, and given 1 6= c ∈ C0,

1 6= a ∈ A, we see that for g ∈ G, u ∈ V

(ca)gu = cg[cg, u]ag ∈ C0 ×A first implies cg ∈ C0, i.e., g ∈ N0

and each fixed g ∈ N0, the equation [cg, u]ag ∈ A implies [cg, u] ∈ Aa−g which

has at most |CV (cg)| |Ag−1| = p|CV (g0)| solutions u. Moreover, if c = 1, then

(ca)gu = agu = ag implies g ∈ NG(A) = N and u ∈ V.

Now we define the character η2 on C0 ×A by η2 = 1C0
× (p1A− ρA). Thus ηGV

2

vanishes on all conjugacy classes of GV which intersect C0 × (A − 1) trivially,

whereas for 1 6= c ∈ C0, 1 6= a ∈ A we get

ηGV
2 (ca) =

1

|C0 ×A|

∑

g∈G
u∈V

η̇ ((ca)gu) ≤
1

qp

∑

g∈N0

p|CV (g0)|p =
p

q
|N0||CV (g0)|,

and for c = 1, 1 6= a ∈ A we get

ηGV
2 (ca) = ηGV

2 (a) =
1

qp

∑

q∈N

|V |p =
1

q
|N ||V |.

Thus if xi (i = 1, . . . , k(GV )) are representatives of the conjugacy classes of

GV , then

k(GV )
∑

i=1

ηGV
2 (xi) ≤ (p− 1)

1

q
|N ||V | + (q − 1)(p− 1)

p

q
|N0||CV (g0)|

and as in (1) we see that

k(GV )
∑

i=1

ηGV
2 (xi) =

∑

τ∈Irr(GV )

[τC0×Aη2, τC0×A].
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Now arguing as in (2), (3), (5) and (6) above yields

|Irrp′(GV )| ≤ k(GV, v) ≤ |Irr(GV,C0, v)| ≤
1

q
(|N ||V | + (q − 1)p|N0||CV (g0)|),

where Irr(GV,C0, v) is as defined at the beginning of 3.2. Putting the main

results together, we have proved the following:

3.3 Theorem: Let G be a finite group and let V be a finite faithful G-module

of characteristic p. Let v ∈ V and put C = CG(v). If ci, i = 1, . . . , k(C), are

representatives of the conjugacy classes of C, then the following hold:

(a) If (|C|, |V |) = 1, then

|Irr0(GV )| ≤

k(C)
∑

i=1

|CV (ci)|

and if C > 1, then

|Irr0(GV )| ≤ max

{

2

|C|

k(C)
∑

i=1

|CV (ci)|,
2|C|

k(C) − 1

k(C)
∑

i=2

|CV (ci)|

}

.

(b) If (|G|, |V |) = 1, then

Irr0(GV ) = Irr(G), so k(GV ) = |Irr0(GV )|

and the bounds in (a) hold true for k(GV ) instead of |Irr0(GV )|.

(c) In general, if g ∈ C such that o(g) = q is a prime, then

|Irrp′(GV )| ≤ k(GV, v) ≤
1

q

(

|NG(〈v〉)||V | + (q − 1)p|NG(〈g〉)||CV (g)|
)

.

4. The dual approach

In the previous section, we always fixed v ∈ V and obtained bounds on the size

of suitable subsets of Irr(GV ) in terms of properties of the action of CG(v) on

V . In this section we consider a “dual” approach:

We fix g ∈ G and find bounds in terms of the action of CG(g) on CV (g). For

this, put

Irrg(GV ) = {χ ∈ Irr(G) :χ|〈g〉×CV (g) cannot be written as

ρ〈g〉 × ψ for a character ψ of CV (g)}.

In particular, Irr(GV, g) ⊆ Irrg(GV ).
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4.1 Theorem: Let G be a finite group and V be a finite G–module. Let g ∈ G

such that (o(g), |V |) = 1. Write A = 〈g〉, N = NG(A) and C = CV (g). Then

(a) |Irrg(GV )| ≤ (n(N,A)−1)n(CG(A),C)
(|A|−1)|C| max16=a∈A(|NG(〈a〉)||CV (a)|);

(b) if g is of prime order, then

|Irrg(GV )| ≤ |CG(A)|n(CG(A), C);

(c) there are X,Y ⊆ Irrg(GV ) such that Irrg(GV ) is a disjoint union of

X and Y , and

|X | ≤
(n(N,A) − 1)n(CG(A), C)

(|A| − 1)|C|2
max

16=a∈A
(|NG(〈a〉)||CV (a)|) and

|Y | ≤
(n(N,A) − 1)(n(CG(A), C) − 1)

(|A| − 1)|C|
max

16=a∈A
(|NG(〈a〉)||CV (a)|);

(d) if g is of prime order and X,Y are as in (c), then

|X | ≤
|CG(A)|n(CG(A), C)

|C|
and |Y | ≤ |CG(A)|(n(CG(A), C) − 1).

Proof. If a1, a2 ∈ A and c1, c2 ∈ C − {1}, then it is straightforward to see

that (a1, c1)
GV = (a2, c2)

GV implies that aG
1 = aG

2 . Hence, if T is a set of

representatives of the orbits of N on A − {1}, then every conjugacy class of

GV that intersects nontrivially with (A − {1}) × C has a representative ac

for some a ∈ T and c ∈ C. Moreover, for each a ∈ T we have that if c3,

c4 ∈ C are CG(A)-conjugate, then ac3 and ac4 are CG(A)-conjugate and thus

(ac3)
G = (ac4)

G.

This shows that for each a ∈ T there are at most n(CG(A), C) conjugacy

classes of GV intersecting nontrivially with {a} × C. Hence, altogether we see

that there are at most

(1) |T |n(CG(A), C) = (n(N,A) − 1)n(CG(A), C)

conjugacy classes of GV which intersect (A− {1})× C nontrivially.

Moreover, observe that for 1 6= a ∈ A, c ∈ C, h ∈ G and u ∈ V we have

(ac)hu ∈ A× C if and only if h ∈ NG(〈a〉), ch ∈ C and u ∈ CV (a)

because the condition (ac)hu = ah[ah, u]ch ∈ A × C first forces ah ∈ A which

implies (as A is cyclic) ah ∈ 〈a〉, so h ∈ NG(〈a〉), and then as c ∈ C ≤ CV (〈a〉),

it follows that ch ∈ CV (〈a〉) and [ah, u] ∈ [〈a〉, V ]. Now, by our hypothesis, we

have V = CV (〈a〉) × [〈a〉, V ], we see that (ac)hu ∈ A×C now forces [ah, u] = 1

and ch ∈ C. Hence u ∈ CV (ah) = CV (a).
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Note that the direct product A × C is a subgroup of GV . We now define a

generalized character η on A× C by

η = (|A| · 1A − ρA) × 1C ,

where ρA is the regular character of A. So for a ∈ A, c ∈ C we have

η(ac) =







0, a = 1

|A|, a 6= 1.

Therefore, ηGV vanishes on all conjugacy classes of GV which intersect

(A− {1}) × C trivially, whereas for c ∈ C and 1 6= a ∈ A we have

(2)

ηGV (ac) =
1

|A× C|

∑

h∈G
u∈V

η̇((ac)hu) =
1

|A||C|

∑

h∈NG(〈a〉)

with ch∈C

∑

u∈CV (a)

η((ac)hu)

=
1

|A||C|

∑

h∈NG(〈a〉)

with ch∈C

∑

u∈CV (a)

η(ahch)

=
|CV (a)|

|A||C|

∑

lh∈NG(〈a〉)

with ch∈C

|A|

≤ (|NG(〈a〉)||CV (a)|)/|C|.

Thus if {xi | i = 1, . . . , k(GV )} is a set of representatives for the conjugacy

classes of GV , then by (1) and (2) we see that

(3)

(n(N,A) − 1)n(CG(A), C) ·
1

|C|
max

16=a∈A
(|NG(〈a〉)||CV (a)|)

≥

k(GV )
∑

i=1

ηGV (xi)

=
∑

τ∈Irr(GV )

[τηGV , τ ]

=
∑

τ∈Irr(GV )

[τA×Cη, τA×C ].

Observe that in case that A is of prime order, then

n(N,A) − 1 =
|A| − 1

|N : CG(A)|
=

(|A| − 1)|CG(A)|

|N |
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and max16=a∈A(|NG(〈a〉)||CV (a)|) = |N ||C|, so that (3) becomes

(3a) |CG(A)|(|A| − 1)n(CG(A), C) ≥
∑

τ∈Irr(GV )

[τA×Cη, τA×C ].

Since A× C is a direct product, we can write

τA×C =
∑

λ∈Irr(C)

(τλ × λ),

where τλ is a character of A or τλ = 0. Then

[τA×Cη, τA×C ] =
1

|A× C|

∑

a∈A
c∈C

τ(ac)η(ac)τ(ac) =
1

|A||C|

∑

16=a∈A
c∈C

τ(ac)|A|τ(ac)

=
1

|C|

∑

16=a∈A
c∈C

∑

λ∈Irr(C)

τλ(a)λ(c)
∑

µ∈Irr(C)

τµ(a)µ(c)

=
∑

16=a∈A

∑

λ,µ∈Irr(C)

τλ(a)τµ(a)
1

|C|

∑

c∈C

λ(c)µ(c)

=
∑

16=a∈A

∑

λ,µ∈Irr(C)

τλ(a)τµ(a)[λ, µ].

As [λ, µ] =







1, λ = µ

0, λ 6= µ
, we further obtain

(4)

[τA×Cη, τA×C ] =
∑

16=a∈A

∑

λ∈Irr(C)

τλ(a)τλ(a)

=
∑

λ∈Irr(C)

∑

16=a∈A

|τλ(a)|2.

Now observe that τ(1) =
∑

λ∈Irr(C) τλ(1).

If all the τλ are multiples of ρA, then clearly τ1 6∈ Irrg(GV ), and so if τ ∈

Irrg(GV ), then by [5, Corollary 4] with (4) we see that

(5) [τA×Cη, τA×C ] ≥ |A| − 1.

So (3) and (5) yield

(6) |Irrg(GV )| ≤
(n(N,A) − 1)n(CG(A), C)

(|A| − 1)|C|
max

16=a∈A
(|NG(〈a〉)||CV (a)|),

and if g is of prime order, then (3a) and (5) yield

(6a) |Irrg(GV )| ≤ |CG(A)|n(CG(A), C).
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Now as in Section 3, we repeat the same arguments, but use

η1 = (|A|1A − ρA) × (|C|1C − ρC)

instead of η.

One can then easily check that

(3b) (n(N,A) − 1)(n(CG(A), C) − 1) ·
1

|C|
max

16=a∈A
(|NG(〈a〉)||CV (a)|)

≥
∑

τ∈Irr(GV )

[τA×Cη1, τA×C ]

and if g is of prime order, then

(3c) |CG(A)|(|A| − 1)(n(CG(A), C) − 1) ≥
∑

τ∈Irr(GV )

[τA×Cη1, τA×C ].

Moreover it is easily seen that

[τA×Cη1, τA×C ] =
∑

16=a∈A
16=c∈C

τ(ac)τ(ac)

=
∑

16=a∈A

∑

λ,µ∈Irr(C)

τλ(a)τµ(a)
∑

16=c∈C

λ(c)µ(c),

and as
∑

16=c∈C λ(c)µ(c) =







−1, if λ 6= µ

|C| − 1, if λ = µ
, it follows that

(7) [τA×Cη1, τA×C ] =
∑

λ<µ

∑

16=a∈A

|τλ(a) − τµ(a)|2,

where “≤” is an arbitrary ordering on Irr(C).

Next, suppose that there are exactly a characters τ ∈ Irrg(GV ) such that

there is a character ψ of A (depending on τ) and there are aλ ∈ ZZ (λ ∈ Irr(C))

such that τλ = ψ+ aλρA for all λ ∈ Irr(C) and ψ is not a multiple of ρA. Then

by (4) and [5, Corollary 4] we know that

[τA×Cη, τA×C ] =
∑

λ∈Irr(C)

∑

16=a∈A

|ψ(a)|2 ≥ |C|(|A| − 1)

and hence by (3) we get

(8) a ≤
(n(N,A) − 1)n(CG(A), C)

(|A| − 1)|C|2
max

16=a∈A
(|NG(〈a〉)||CV (a)|),
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and if g is of prime order, then by (3a) even

(8a) a ≤
|CG(A)|n(CG(A), C)

|C|
.

Now let b be the number of τ ∈ Irrg(GV ) such that there is no such ψ. Then

there exist λ, µ ∈ Irr(C) with
∑

16=a∈A

|τλ(a) − τµ(a)|2 6= 0,

and thus by [5, Corollary 4] we have

(9) [τA×Cη1, τA×C ] ≥ |A| − 1.

So (3b) and (9) yield

(10) b ≤
(n(N,A) − 1)(n(CG(A), C) − 1)

|C|(|A| − 1)
max

16=a∈A
(|NG(〈a〉)||CV (a)|)

and, if g is of prime order, then by (3c)

(10b) b ≤ |CG(A)|(n(CG(A), C) − 1),

and clearly a + b = |Irrg(GV )|, and all the assertions follow and we are

done.
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