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ABSTRACT

We construct (α, β) and α-winning sets in the sense of Schmidt’s game,

played on the support of certain measures (absolutely friendly) and show

how to compute the Hausdorff dimension for some.

In particular, we prove that if K is the attractor of an irreducible

finite family of contracting similarity maps of RN satisfying the open set

condition, (the Cantor’s ternary set, Koch’s curve and Sierpinski’s gasket

to name a few known examples), then for any countable collection of non-

singular affine transformations, Λi : RN
→ RN ,

dimK = dimK ∩

( ∞
⋂

i=1

(Λi(BA))

)

where BA is the set of badly approximable vectors in R
N .

0. Introduction

We shall be using Schmidt’s game first introduced by W. M. Schmidt [S1] for

estimating the Hausdorff dimension of certain sets. Let us first define the set of

badly approximable vectors. A vector x ∈ RN is said to be badly approximable

if there exists δ > 0 such that for any p ∈ ZN , q ∈ N+

(0.1) d
(

x,
p

q

)

≥ δq−
N+1

N ,

where d is the Euclidean distance function between points. We denote the set

of all badly approximable vectors by BA. The above mentioned game was used

Received August 24, 2006 and in revised form October 24, 2007

77



78 LIOR FISHMAN Isr. J. Math.

by Schmidt, among other things, to tackle the following questions concerning

BA:

(1) If {Λi}∞i=0 is a countable collection of non-singular affine transforma-

tions

Λi : RN → RN , is
⋂∞

i=1(Λi(BA)) 6= ∅?
(2) If

⋂∞
i=1(Λi(BA)) 6= ∅, what is dim

⋂∞
i=1(Λi(BA))?

Schmidt proved not only that the intersection is non-empty, but is, in fact,

“large” dimensionwise, i.e., is of dimension N .

In recent years similar questions have been posed regarding the intersection

of BA with certain subsets of RN . For example, let K be any of the following

sets: Cantor’s ternary set, Koch’s curve, Sierpinski’s gasket, or in general, an

attractor of an irreducible finite family of contracting similarity maps of RN

satisfying the open set condition. (This condition, due to J. E. Hutchinson [H],

is discussed in Section 5). One may ask the following questions:

(1) Is K ∩ BA 6= ∅?
(2) If K ∩ BA 6= ∅, what is dimK ∩ BA?

Answers to both of these questions have been independently given in [KW] and

[KTV] proving that dimK∩BA=dimK for a large family of sets including those

mentioned above.

This paper’s aim is to extend these results, utilizing Schmidt’s game, by

answering the following question: If {Λi}∞i=0 is a countable collection of non-

singular affine transformations Λi : RN → RN , then what is

dimK ∩
( ∞

⋂

i=1

(Λi(BA))

)

?

It turns out that for a large family of sets the answer is analogous to Schmidt’s

result in RN , namely, we prove in Section 5

Corolarry 5.4: Let {φ1, ..., φk) be a finite irreducible family of contracting

similarity maps of RN satisfying the open set condition and let K be its attrac-

tor. Then for any countable collection of non-singular affine transformations

{Λi}∞i=0, Λi : RN → RN the set

S = K ∩
( ∞

⋂

i=1

(Λi(BA))

)

is a winning set on K. Furthermore, dimS=dimK.
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Our research follows closely in the footsteps of [KLW], [KW] and, conse-

quently, [PV] and [KTV]. The definitions of measures given in the first and

third of the above mentioned papers were not originally intended for creating

a “friendly” environment for Schmidt’s game on their support. It turns out

however that in a sense to be made clearer later, these measures indeed provide

an hospitable playground for this game.

Section 1 is devoted to establishing the link between the definitions given in

[KLW], the stronger assumptions in [PV] and our work, exhibiting a geometric

feature material for later discussion.

In Section 2, we follow the general setup introduced in [KTV] proving as a

consequence of Corollary 2.1 and Theorem 2.2 that if a measure µ is absolutely

friendly (see definition in Section 1) then under certain conditions

BA ∩ supp(µ) is an (α, β) − winning set on supp(µ).

In Section 3, we formulate a sufficient condition for establishing a lower bound

of a winning set’s Hausdorff dimension, where the winning set is a subset of the

support of an absolutely friendly measure.

In Section 4, we prove an analogue to the simplex lemma in [S1].

Section 5 is our main example, an application to the Hutchinson construction.

As should be obvious from the discussion above, our conclusions strengthen

results in [KW] and [KTV] regarding the Hausdorff dimension of the intersection

of BA with certain sets. (See Corollary 1.2 in [KW] and conclusions from

Theorem 1 in [KTV]). We should note however that in proving our theorems

we are in fact using stronger assumptions on our measures in order to make sure

that our target set—the set of badly approximable vectors, is indeed a winning

set on the support of these measures.

Notation. R, Q and N denote the set of real, rational and natural numbers

respectively.

R+ is the set of non-negative real numbers and N+ denotes the set of strictly

positive integers.

Boldface lower case letters (x, y,. . . etc.) denote points in RN .
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The function d is the Euclidean distance function between points. If A and

B are any two subsets of RN , d(A, B) = inf {d(x,y) : x ∈ A,y ∈ B}.
λN denotes the Lebesgue measure in RN .

In the metric space (RN , d), B(x, r) denotes a closed ball of radius r

centered at x, i.e., B(x, r) = {z : d(x, z) ≤ r}, ∂B(x, r) the boundary of

B(x, r), i.e., {z : d(z, x) = r} and intB(x, r) denotes the interior of B(x, r) i.e.

{z : d(x, z) < r}.
An affine hyperplane of RN will be denoted by L while L(ε) is defined to

be the ε neighborhood of L, i.e. L(ε) = {x ∈ RN : d(x,L) ≤ ε} where ε is a

non-negative, possibly zero, real number.

Unless otherwise stated, constants are real, strictly positive numbers.

Throughout the paper, µ will denote a Borel, locally finite measure on RN .

Whenever discussing a measure we denote its support by supp(µ).

In order to avoid unnecessary repetitions, all affine transformations referred

to in this paper are assumed to be non-singular.

Following conventional notation, for every U ⊂ RN let

|U | = sup {d(x,y) : x, y ∈ U} .

If F ⊂ RN , δ > 0 and {Ui} is a countable or finite collection of sets we say that

{Ui} is a δ-cover of F if

F ⊂
∞
⋃

i=1

Ui and for every i 0 ≤ |Ui| ≤ δ.

If F ⊂ RN and s ≥ 0, then for every δ > 0 we define

Hs
δ (F ) = inf

{

∞
∑

i=1

|Ui|s : {Ui} is a δ-cover of F

}

and

Hs(F ) = limδ→0H
s
δ (F )

is the s-Hausdorff measure.

The Hausdorff dimension of a set F ⊂ RN is defined by

dimF = inf {s : Hs(F ) = 0} = sup {s : Hs(F ) = ∞} .
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1. Absolutely friendly measures

We first define absolutely friendly measures and show how it provides the right

setting for our work and results. The class of friendly measures was first intro-

duced in [KLW], followed by the more restrictive α-absolutely friendly measures

in [PV]. The definition of absolutely friendly coincides with that of α-absolutely

friendly, but as the constant α does not seem to have any special status in any

of the formulas we use, we decided to use the term absolutely friendly instead.

Definition 1: Call a measure µ on RN absolutely friendly if the following

conditions are satisfied:

There exist constants r0, C, D and a such that for every 0 < r ≤ r0 and for

every x ∈ supp(µ):

(i) for any 0 ≤ ε ≤ r, and any affine hyperplane L,

µ(B(x, r) ∩ L(ε)) < C(ε/r)
a

µ(B(x, r)).

(ii) µ(B(x, 5
6r)) > Dµ(B(x, r)).

Two remarks are in order.

Remark 1: Notice that part (ii) of the above definition is equivalent (up to a

change of the constant D) to the so called “Federer doubling property” with

1/2 replacing 5/6.

Remark 2: The reader should compare (i) with the following more general def-

inition (Definition 2.5 in [KLW]), namely, given C, a > 0 and an open subset

U of RN we say that µ is absolutely (C, a) -decaying on U if for any non-

empty open ball B ⊂ U centered in supp(µ), any affine hyperplane L ⊂ RN

and any ε > 0 one has

(1.2) µ(B ∩ L(ε)) ≤ C (ε/r)
a
µ(B)
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where r is the radius of B.

As a consequence of Definition 1 we prove the following

Lemma 1.1: Suppose µ is absolutely friendly with constants as in Definition

1. Define (D/C)
1/a

= α
′

and let L be any affine hyperplane. Then for every

0 < r ≤ r0, if 0 < α < 1
12α

′

and 0 ≤ ε0 < 1
12α

′

r, we have that for every

x ∈ supp(µ) there exists x0 ∈ supp(µ) such that

1. B(x0, αr) ⊂ B(x, r).

2. d(B(x0, αr),L(ε0)

) > αr.

3. d(B(x0, αr), ∂B(x, r)) > αr.

Proof. If d(x,L(ε0)

) > 2αr the first two conditions are evidently satisfied by

choosing x0 = x while for the third notice that r − αr > 11
12r > 2αr.

Otherwise let d(x,L(ε0)

) ≤ 2αr.

Let δ = 1 − α, ε = 5αr + 2ε0 and denote by Lx an affine hyperplane parallel

to L passing through x. We observe that

(1.3) δr − ε = (1 − 6α)r − 2ε0 >
(

1 − 5

6
α

′
)

r − 1

6
α

′

r = (1 − α
′

)r ≥ 0

(1.4) µ(B(x, δr)) = µ(B(x, (1 − α)r)) ≥ µ
(

B
(

x,
5

6
r
))

≥ Dµ(B(x, r))

(1.5)

µ(L(ε)
x

∩ B(x, r)) ≤ C
( ε

r

)
a

µ(B(x, r)) = C
(

5α +
2ε0
r

)a

µ(B(x, r))

< C(
31

36
α

′

)aµ(B(x, r)) < C(α
′

)aµ(B(x, r)) ≤ Dµ(B(x, r)).

Consequently, denoting by Ξ = B(x, δr)−L(ε)
x , we have µ(Ξ∩B(x, r)) > 0 and

we may choose x0 to be any point in Ξ ∩ supp(µ).

The first condition is fulfilled by our choice of δ. As for the second condition

notice that for any y ∈ Ξ we have d(y,L(ε0)

) ≥ ε − (2αr + 2ε0) ≥ 3αr. As

d(Ξ, ∂B(x, r)) = 1
6r > 2αr the third condition is satisfied as well.
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2. Friendly Schmidt’s game

Let (X, d) be a complete metric space and let S ⊂ X be a given set (a target set).

Schmidt’s game [S1] is played by two players A and B, each equipped with

parameters α and β respectively, 0 < α, β < 1. The game starts with player B

choosing y0 ∈ X and r > 0 hence specifying a closed ball B0 = B(y0, r). Player

A may now choose any point x0 ∈ X provided that A0 = B(x0, αr) ⊂ B0.

Next, player B chooses a point y1 ∈ X such that B1 = B(y1, (αβ)r) ⊂ A0.

Continuing in the same manner we have a nested sequence of non-empty closed

sets B0 ⊃ A0 ⊃ B1 ⊃ A1 ⊃ · · · ⊃ Bk ⊃ Ak ⊃ · · · with diameters tending

to zero as k → ∞. As the game is played on a complete metric space, the

intersection of these balls is a point z ∈ X . Call player A the winner if z ∈ S.

Otherwise, player B is declared winner. A strategy consists of specifications

for a player’s choices of centers for his balls as a consequence of his opponent’s

previous moves. If for certain α and β player A has a winning strategy, i.e.,

a strategy for winning the game regardless of how well player B plays, we say

that S is an (α, β)-winning set. If it so happens that α is such that S is an

(α, β)-winning set for all 0 < β < 1, we say that S is an α-winning set. Call

a set winning if such an α exists.

We define the following (target) set. This definition is a modification of the

one given in [KTV].

Definition 2: Suppose Ω ⊂ RN and let U = {Uj ⊂ RN : j ∈ N} be a family

of subsets of RN . If I : N → R+ is an increasing function tending to infinity

as j tends to infinity and ρ : R+ → R+ is such that ρ(r) → 0 as r → ∞ and

decreasing for large enough r, let

Bad∗(U , I, ρ, Ω) = {x ∈ Ω : ∃δ > 0 such that d(x, Uj) ≥ δρ(I(j)) ∀j ∈ N} .

As an immediate consequence of the above definition we get:

Corollary 2.1: For Ω ⊂ RN , and j ∈ N+ defining Uj =
{

p/j : p ∈ ZN
}

,

I(j) = j and ρ(I(j)) = j−(N+1)/N , we have

BA ∩ Ω = Bad
∗(U , I, ρ, Ω)

In the following theorem we shall show that under certain assumptions,

Bad∗(U , I, ρ, Ω) is an (α, β)-winning set.
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Theorem 2.2: Suppose µ is absolutely friendly (with constants as in Definition

1) and (D/C)
1/a

= α
′

. Let Ω = supp(µ) and suppose F : N → R+ is an

increasing function, with F (k) → ∞ as k → ∞. Define F 0 = [0, F (0)) and

F k = [F (k − 1), F (k)) for any k > 0. Let U = {Uj ⊂ RN : j ∈ N} be a family

of subsets of RN .

Suppose 0 < β < 1 and 0 < α < 1
12α

′

satisfy:

(1) for every k, l ∈ N, for every x ∈ supp(µ) and for every r ≤ r0,

if I(j1), . . . , I(jl) ∈ F k then
(

⋃l
i=1 Uji

)

⋂

B(x, (αβ)kr) ⊂ L for some

affine hyperplane L,

(2) for every k, (αβ)k ≥ ρ(F (k)).

Then Bad
∗(U , I, ρ, Ω) is an (α, β)-winning set on Ω.

Proof. Player A’s strategy is to play in an arbitrary manner until the the first

ball of radius rI ≤ r0 is chosen by player B. Let k0 ∈ N be such that βk0+1r0 <

rI ≤ βk0r0. Set δ = (αβ)k0+1βk0r0 and let r′ = (αβ)k0rI .

We “reset” our counter and specify player A’s strategy from this point on.

At his k-th move player A has to choose a point x ∈ supp(µ) such that Ak =

B(x, α(αβ)kr′) ⊂ Bk = B(y, (αβ)kr′) where y ∈ supp(µ) is player B’s k-th

choice. Let Uj =
⋃l

i=1 Uji where I(j1), . . . , I(jl) ∈ F k.

(a) If Uj ∩ B(y, (αβ)kr′) = ∅, player A may choose x = y.

By Lemma 1.1(3)

d (Uj , Ak) > α(αβ)kr′ ≥ δ(αβ)k ≥ δρ(F (k)) > δρ(I(j).

(b) Otherwise, suppose Uj ∩ B(y, (αβ)kr′) 6= ∅. by Lemma 1.1(2) player A

can pick a point x = xk such that

d
(

Uj ∩ B(y, (αβ)kr′), Ak

)

> α(αβ)kr′ > δρ(I(i)).

Furthermore, if Uj − B(y, (αβ)kr′) 6= ∅ then by Lemma 1.1(3)

d
(

Uj − B
(

y, (αβ)kr′
)

, Ak

)

> α(αβ)kr′ > δρ(I(i)).

The following proposition, due to W. M. Schmidt [S1, Theorem 2], is material

for later considerations.

Proposition 2.3: The intersection of countably many α-winning sets is α-

winning.
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3. Full Hausdorff dimension

We are now in position to formulate a sufficient condition for establishing a

lower bound of a winning set’s Hausdorff dimension, where the winning set is a

subset of the support of an absolutely friendly measure.

The main ideas in this section are due to W. M. Schmidt [S1]. We have

decided nonetheless to include the definitions, results and proofs for the sake of

a clearer understanding of the connection to the previous definitions and results.

Definition 3: For a metric space (X, d), given x ∈ X , and real numbers r > 0,

0 < β < 1, denote by NX(β, x, r) the maximum number of disjoint balls of

radius βr contained in B(x, r).

Theorem 3.1: Let µ be absolutely friendly and denote X = supp(µ). Suppose

the following condition is satisfied:

There exists constants r1 ≤ 1, M and δ such that for every 0 < r ≤ r1,

0 < β < 1 and x ∈ X ,

(3.6) NX(β,x, r) ≥ Mβ−δ.

Then if S is a winning set on (X, d) then dimS ≥ δ.

In the course of the proof we shall use the following auxiliary lemma. (Lemma

20 in [S1]).

Proposition 3.2: Let H be a Hilbert space and let w0 = 2
√

3 − 1. For any

r ∈ R+ let M be any collection of balls {B(xi, r) : i ∈ N, xi ∈ H} such that

intB(xi, r) ∩ intB(xj , r) = ∅ for every i 6= j.

Then for any r0 < w0r and x ∈ H the ball B(x, r0) has a non empty intersection

with at most two balls from M.

Proof of Theorem 3.1. Let µ be an absolutely friendly measure satisfying con-

dition (3.6) and β ≤ (M/2)1/δ. Thus NX(β,x, r) ≥ 2 for every x ∈ supp(µ). In

order to estimate the Hausdorff dimension of a winning set S assume player A

is playing to win the game using some strategy. This means that given choices

of balls B0 ⊃ A0 ⊃ · · ·Ak−1 ⊃ Bk, played by the two players prior to player

A’s k-th turn, the strategy of player A applies his strategy and chooses a ball

Ak ⊂ Bk. Since the strategy is winning,
⋂

Ak =
⋂

Bk will be in S regardless
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of player B’s choices. Here we will describe many possible strategies for player

B, resulting in many points in S.

We consider the game from the loser’s point of view, player B. Fix β such

that

2 ≤ N(β) = min {NX(β,x, r) : x ∈ X, 0 < r ≤ r1} .

At each stage of the game player B may direct the game to N(β) disjoint balls

and we restrict his moves to these N(β) choices. Thus, for each sequence of

choices made by player B with the restriction above, we obtain a parametriza-

tion of the sequence of balls chosen by him. Let B0 be his initially chosen ball,

and for k ∈ N+, corresponding to his k-th move, let Bk = Bk(j1, . . . , jk), with

ji ∈ {0, . . . , N(β) − 1} i = 1, 2, . . . , k. Notice also that given a sequence of

positive integers i1,i2,. . . there is a unique point x = x(i1, i2, . . .) contained in

all balls Bk = Bk(j1, . . . , jk). By considering the N(β) ways in which player B

may direct the game we consider the function

f : {0, ..., N(β) − 1}N → S, (tk)k∈N 7→
⋂

k∈N

Bk(t1, . . . , tk) = {x(t)} .

As every number in the closed unit interval has at least one expansion in base

N(β) we map the image of f , S∗ ⊂ S onto [0, 1] by

g : S∗ → [0, 1], x(t) 7→ 0.t1t2 . . . .

In view of Proposition 3.2, for 0 < w < w0 and 0 < α < 1 any ball of radius

w(αβ)k intersects at most two of the balls Bk(j1, . . . , jk). Let C = {Cl}l∈N
be

a cover of S ∩ K of balls with radius ρ(Cl) = ρl. As C covers S∗ we have that

g(C) covers [0, 1]. Let λ denote the outer Lebesgue measure. We have

(3.7)

∞
∑

l=1

λ(g(Cl)) ≥ λ

( ∞
⋃

l=1

g(Cl)

)

≥ 1.

Define integers

kl = [k∗
l ] where k∗

l = logαβ(2w−1ρl).

Notice that, (2w−1ρl)
logN(β)
|log(αβ)| = N(β)−k∗

l , and since k∗
l < kl + 1 we get

(3.8) N(β)−kl < N(β)N(β)−k∗
l = N(β)(2w−1ρl)

logN(β)
|log(αβ)| .

Assuming, without loss of generality, that for every l, ρl ≤ w/2, there exists

n0 ∈ N such that w
2 (αβ)n0+1 < ρl ≤ w

2 (αβ)n0 . It follows that kl = n0 and so

(3.9) ρl < w(αβ)kl .
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This implies that the ball Cl intersects at most two of the balls Bl(j1, . . . , jkl
).

As the length of the interval g(Bl(j1, . . . , jl)) is N(β)−kl we have λ(g(Cl)) ≤
2N(β)−kl . Combining with 3.7,

1 ≤
∞
∑

l=1

λ(g(Cl)) ≤
∞
∑

l=1

2N(β)−kl < 2N(β)(2w−1)
log(N(β))
|log(αβ)|

∞
∑

l=1

ρ
log(N(β))
|log(αβ)|

l .

By definition, dimS ≥ log(N(β))
|log(αβ)| ≥ δ|logC0β|

|logα|+|logβ| → δ as β → 0.

Remark 3: If it so happens that δ=dim(supp(µ)) then obviously

dimS = δ.

4. Simplex lemma

Before giving our main example in the following section, we prove a version

of the simplex lemma following ideas credited by W. M. Schmidt in [S1] to

Davenport.

Theorem 4.1: Let Λ : RN → RN be an affine map and denote by A the N ×N

matrix associated with the linear part of Λ. For every θ ∈ (0, 1) let R = θ
−N
N+1

and for every k ∈ N+ let

Uk =

{

Λ(
p

q
) : q ∈ N+,p ∈ ZN and Rk−1 ≤ q < Rk

}

.

Denote by VN the volume of the N -dimensional unit ball. Then for every r > 0

such that rN < |detA| (N !)−1V −1
N θN and for every x there exists an affine

hyperplane L such that

Uk ∩ B(x, θk−1r) ⊂ L.

Proof. Assume the contrary and let {Vi}N
i=0, Vi = (v1

i , ..., vN
i ) be N + 1 in-

dependent points in Uk ∩ B(x, θk−1r), i.e., not belonging to any single affine

hyperplane. Denote by ∆ the N -dimensional simplex subtended by them. By

a well-known result from calculus we have

λN (∆) = (N !)−1
∣

∣

∣detL
′
∣

∣

∣ > 0, where L
′

=















v1
1 − v1

0 . . . vN
1 − vN

0

. . . . .

. . . . .

. . . . .

v1
N − v1

0 . . . vN
N − vN

0















.
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As λN (∆) > 0 we have detL
′ 6= 0.

Consider now the (N + 1 × N + 1) matrix

L =















1 v1
0 . . vN

0

. . . . .

. . . . .

. . . . .

1 v1
N . . vN

N















.

By repeatedly subtracting the first row from all others we get detL = detL
′′

where

L
′′

=















1 v1
0 . . vN

0

0 v1
1 − v1

0 . . vN
1 − vN

0

. . . . .

. . . . .

0 v1
N − v1

0 . . vN
N − vN

0















and so detL = detL
′

.

Hence, λN (∆) = |detA| (N !)−1 |detL| where

L =

















1
p1
0

q0
. .

p1
N

q0

. . . . .

. . . . .

. . . . .

1
pN
0

qN
. .

pN
N

qN

















and detL 6= 0 by our assumption.

Notice also that

q0 · q1 · · · · · qN · L =















q0 p1
0 . . p1

N

. . . . .

. . . . .

. . . . .

qN pN
0 . . pN

N















,

and as all entries in q0 · q1 · · · · · qN · L are integers it follows that

q0q1 · · · · · qN · |detL| ≥ 1.
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And so,

(4.10)

λN (∆) = (N !)−1 |detA| |detL| ≥ (N !)−1 |detA|
q0 · · · · · qN

> (N !)−1 |detA|R−k(N+1).

But,

(4.11) λN (B(x, θk−1r)) = (θk−1r)NVN = θ(k−1)NrNVN < |detA| θkN (N !)−1,

(4.12) θkN = (θ
−N
N+1 )−k(N+1) = R−k(N+1),

and so

(4.13) λN (B(x, θk−1r)) ≤ |detA| (N !)−1R−k(N+1).

by our assumption on Uk.

As ∆ ⊂ B(x, θk−1r), (4.10) contradicts (4.13).

5. Application to Hutchinson’s construction

Before turning our attention to our main example we state and prove the fol-

lowing theorem which is material for what follows.

Definition 4: Say that µ satisfies the power law if there exist real numbers

a, b, δ > 0 such for every x ∈ supp(µ), 0 < r ≤ 1

arδ ≤ µ(B(x, r)) ≤ brδ.

Theorem 5.1: Let µ satisfy the power law. Then µ satisfies condition (3.6).

Proof. Let r ≤ 1, 0 < β < 1 and consider a ball B(x, r) with x ∈ K. Denote

by {xi}, i ∈ {0, . . . , NX(β,x, r)} the centers of the NX(β,x, r) balls under

consideration. Then, for every i, xi ∈ B(x, (1 − β)r) ∩ K.

By a simple geometric argument we see that the collection of balls B(xi, 3βr)

cover B(x, (1 − β)r). For, otherwise, there exists y ∈ B(x, (1 − β)r) such that

d(y,xi) ≥ 3βr for every i. It follows that B(y, βr) could be added to the original

collection of balls, which is a contradiction to the maximality assumption on

NX(β,x, r). We may assume that β ≤ 1/2 with no loss of generality, as for

1/2 < β < 1 we may choose M ≤ 2−δ ⇒ Mβ−δ ≤ 1. Notice also that δ ≤ N .
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And so,

a(1 − β)δrδ ≤ µ(B(x, (1 − β)r) ≤ NX(β,x, r)µ(B(xi, 3βr))

≤ NX(β,x, r)b3δβδrδ.

(5.14) NX(β,x, r) ≥ ab−13−1(1 − β)δβ−δ ≥ ab−13−12−Nβ−δ.

Thus condition (3.6) is satisfied with r1 = 1 and M = ab−13−12−N .

A map φ : RN → RN is a similarity if it can be written as

φ(x) = ρΘ(x) + y,

where ρ ∈ R+, Θ ∈ O(N, R) and y ∈ RN . It is said to be contracting if ρ < 1.

It is known (see [Hu] for a more general statement) that for any finite family

φ1, . . . , φm of contracting similarities there exists a unique non-empty compact

set K, called the attractor or limit set of the family, such that

K =

m
⋃

i=1

φi(K).

Say that φ1, . . . , φm as above satisfy the open set condition if there exists an

open subset U ⊂ RN such that

φi(U) ⊂ U for all i = 1, . . . , m ,

and

i 6= j =⇒ φi(U) ∩ φj(U) = ∅ .

The family {φi} is called irreducible if there is no finite collection of proper

affine subspaces which is invariant under each φi. Well-known self-similar sets,

like Cantor’s ternary set, Koch’s curve or Sierpinski’s gasket, are all examples of

attractors of irreducible families of contracting similarities satisfying the open

set condition.

Suppose {φi}m
i=1 is a family of contracting similarities of RN satisfying the

open set condition, let K be its attractor, δ the Hausdorff dimension of K, and

µ the restriction of the δ-dimensional Hausdorff measure to K.

J. Hutchinson [H] gave a simple formula for calculating δ and proved that

µ(K) is positive and finite. Furthermore,

Proposition 5.2: µ satisfies the power law with δ=dimK.

As a consequence of Proposition 5.2 and Theorem 5.1 we prove the following.
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Corollary 5.3: Let {φ1, . . . , φk) be a finite irreducible family of contracting

similarity maps of RN satisfying the open set condition. Let K be its attractor.

Let µ be the restriction of Hδ to K. Then µ is absolutely friendly satisfying

condition (3.6) with dimK = δ.

Proof. By Theorem 5.1, Condition (3.6) is satisfied.

Set r0 = 1. It is easily seen that the power law implies that condition (ii) of

Definition 1 is satisfied with D = a/b(5/6)δ.

Following [KLW](Theorem 2.3, Lemmas 8.2 and 8.3), there exist C and a

such that µ is absolutely (C, a)-decaying (see Remark 2) on any ball of radius

r = 1 centered in supp(µ).

Using the notation of Definition 1, µ is absolutely friendly with r0 = 1.

We are now ready to prove our main example.

Corollary 5.4: Let {φ1, . . . , φk) be a finite irreducible family of contracting

similarity maps of RN satisfying the open set condition. Let K be its attractor

and α
′

as in Lemma 1.1. Then for any countable collection of affine transfor-

mations {Λi}∞i=0, with Λi : RN → RN the set

S = K ∩ (
⋂∞

i=1(Λi(BA)))

is an α-winning set on K for any 0 < α < 1
12α

′

. Furthermore, dimS=dimK.

Proof. In view of Proposition 2.3 it suffices to prove that for each i, K∩Λi(BA)

is α-winning. Given an affine transformation Λ and following Corollary 2.1 we

prove that Bad∗(U , I, ρ, Ω) is an α winning set on Ω = K where for every

q ∈ N+

(5.15) Uq =
{

Λ
(p

q

)

: p ∈ ZN
}

,

I(q) = q and ρ(I(q)) = ρ(q) = q
−N+1

N . Following the notation of Theorem 2.2

and Theorem 4.1 let θ = αβ and for every k ∈ N+ let F (k) = Rk = (αβ)
−Nk
N+1 .

Define

(5.16) Uk =
{

Λ
(p

q

)

: q ∈ N+,p ∈ ZN and Rk−1 ≤ q < Rk
}

.

By Theorem 4.1 we get that the first condition of Theorem 2.2 is satisfied by

any β. As by our definition ρ(F (k)) = (αβ)k, the second condition is satisfied

as well. Thus K ∩ Ti(BA) is an (α, β)-winning set for every β, rendering it an

α-winning set.
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Furthermore, as µ is absolutely friendly satisfying condition (3.6) with the

exponent of the condition being δ=dimK, by Theorem 3.1, followed by Remark

3 we are done.
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