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ABSTRACT

We consider the pseudo-Euclidean space (Rn, g), with n ≥ 3 and gij =

δijεi, εi = ±1, where at least one εi = 1 and nondiagonal tensors of

the form T =
∑

ij fijdxidxj such that, for i 6= j, fij(xi, xj) depends

on xi and xj . We provide necessary and sufficient conditions for such a

tensor to admit a metric ḡ, conformal to g, that solves the Ricci tensor

equation or the Einstein equation. Similar problems are considered for

locally conformally flat manifolds. Examples are provided of complete

metrics on Rn, on the n-dimensional torus T n and on cylinders T k×Rn−k ,

that solve the Ricci equation or the Einstein equation.

1. Introduction

In the last two decades, different aspects of the following two problems have

been considered by several authors.
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Given a symmetric tensor T , of order two, defined on a manifold Mn,

n ≥ 3, does there exist a Riemannian metric g such that Ric g = T ?

Find necessary and sufficient conditions on a symmetric tensor T , so

that one can find a metric g satisfying Ric g − K
2 g = T , where K is

the scalar curvature of g.

Both problems correspond to solving nonlinear second order differential equa-

tion. We call the first one the Ricci tensor equation. The second equation is

called the Einstein field equation, when g is a Lorentzian metric on a four di-

mensional manifold.

When T is nonsingular, i.e. its determinant does not vanish, a local solution

of the Ricci equation always exists, as it was shown by DeTurck [D1]. When T is

singular, but still has constant rank and satisfies certain appropriate conditions,

then the Ricci equation also admits local solutions [DG]. Rotationally symmetric

nonsingular tensors were considered in [CD]. Other results can be found in [D2],

[DK], [L], [H] and [DG].

As for the Einstein field equation, when n = 4, DeTurck [D3] considered the

Cauchy problem for nonsingular tensors. Moreover, for tensors T that represent

several physical situations, the equation has been studied by several authors (see

[SKMHH] and its references).

In this paper, we consider a certain class of nondiagonal symmetric tensors

T on a pseudo-Euclidean space (Rn, g), n ≥ 3, and we determine all metrics,

conformal to g, whose Ricci tensor is the given tensor T . A similar question

is considered for the Einstein equation. The theory is also extended to locally

conformally flat manifolds.

Our previous results with special classes of tensors T and conformal metrics

can be found in [PT1–PT5] and [P], where all solutions to the problems were

given explicitly. In this paper, we consider the pseudo-Euclidean space (Rn, g),

with n ≥ 3, coordinates x = (x1, . . . , xn) and gij = δijεi, εi = ±1, where

at least one εi is positive. We consider nondiagonal tensors of the form T =
∑

i fijdxidxj , such that, for i 6= j, fij(xi, xj) is a differentiable function of xi

and xj . For such a tensor, we want to find metrics ḡ = 1
ϕ2 g, that solve the

Ricci equation or the Einstein equation. More precisely, we want to solve the
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following problems

(1)







ḡ = 1
ϕ2 g

Ric ḡ = T.

(2)







ḡ = 1
ϕ2 g

Ric ḡ − K̄
2 ḡ = T.

We will show that any such tensor, that solves (1) or (2), is of two types.

Namely, up to a change of order of the independent variables, T is either of the

form

T =

2
∑

i,j=1

fij(x1, x2)dxidxj + h(x1, x2)

n
∑

i=3

dx2
i

and ϕ(x1, x2) is a solution of a hyperbolic equation, or T is determined by p,

3 ≤ p ≤ n, nonconstant, differentiable functions Uj(xj). In the second case,

ϕ and T are given explicitly in terms of Uj . This characterization is given in

Theorem 1.1 for the Ricci tensor equation and in Theorem 1.2 for the Einstein

equation. We also extend the results to locally conformally flat manifolds.

As a consequence of Theorem 1.1, we show that for certain functions K̄, de-

pending on the functions of one variable Uj(xj), there exist metrics ḡ, conformal

to the pseudo-Euclidean metric g, whose scalar curvature is K̄. Equivalently,

we find C∞ solutions for the equation

(3)
4(n− 1)

n− 2
∆gu+ K̄u

n+2

n−2 = 0.

where ∆g denotes the Laplacian in the pseudo-Euclidean metric g. This result

is related to the prescribed scalar curvature problem: Given a differentiable

function K̄, on a Riemannian manifold (M, g), is there a metric ḡ, conformal

to g, whose scalar curvature is K̄? This problem has been studied by many

authors. In particular, when K̄ is constant, it is known as the Yamabe problem.

By applying the theory, we exhibit examples of complete metrics on Rn, on

the n-dimensional torus T n, or on cylinders T k × Rn−k, that solve the Ricci

equation or the Einstein equation.
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Main results

We will now state our main results. The proofs will be given in the following

section. We will denote by ϕxixj
and fij,xk

the second order derivative of ϕ

with respect to xixj and the derivative of fij with respect to xk, respectively.

Theorem 1.1: Let (Rn, g), n ≥ 3, be a pseudo-Euclidean space, with coordi-

nates x = (x1, . . . , xn), gij = δijεi, εi = ±1. Consider a nondiagonal symmetric

tensor T =
∑n

i,j=1 fijdxidxj . Assume that, for i 6= j, fij(xi, xj) is a differ-

entiable function of xi and xj . Then there exists a metric ḡ = 1
ϕ2 g such that

Ric ḡ = T if, and only if,

(4) fii = (n− 2)
ϕxixi

ϕ
+ εi

∆gϕ

ϕ
− εi(n− 1)

|∇gϕ|2
ϕ2

for all i

and up to a change of order of the independent variables, one of the following

cases occur:

a) f12(x1, x2) is any nonzero differentiable function, fij ≡ 0, for all i 6= j,

such that i ≥ 3 or j ≥ 3 and ϕ = ϕ(x1, x2) is a nonvanishing solution

of the hyperbolic equation

(5) (n− 2)ϕx1x2
− f12ϕ = 0.

b) There exists an integer p, 3 ≤ p ≤ n, such that fij = 0, if i 6= j, i ≥ p+1

or j ≥ p+1. Moreover, there exist nonconstant differentiable functions,

Uj(xj), for 1 ≤ j ≤ p, such that for all i, j, 1 ≤ i 6= j ≤ p,

(6) fij = (n− 2)U ′
iU

′
j, and ϕ = ae

∑p

j=1
Uj(xj) + be−

∑ p

j=1
Uj(xj),

or

(7)

fij = −(n− 2)U ′
iU

′
j , and ϕ = a cos

( p
∑

j=1

Uj(xj)

)

+ b sin

(

−
p

∑

j=1

Uj(xj)

)

,

where a and b are real numbers such that a2 + b2 6= 0. Moreover, in each case

ϕ is defined on an open connected subset of Rn, where it does not vanish.

We have a similar result for the Einstein equation. Observe that if (Rn, g) is

a pseudo-Euclidean space and ḡ = g/ϕ2 is a conformal metric, then the scalar

curvature of ḡ is given by

(8) K̄ = (n− 1)
(

2ϕ∆gϕ− n|∇gϕ|2
)

.
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Theorem 1.2: Let (Rn, g), n ≥ 3, be a pseudo-Euclidean space, with coordi-

nates x = (x1, . . . , xn), gij = δijεi, εi = ±1. Consider a nondiagonal symmetric

tensor T =
∑n

i,j=1 fijdxidxj . Assume that, for i 6= j, fij(xi, xj) is a differ-

entiable function of xi and xj . Then there exists a metric ḡ = 1
ϕ2 g such that

Ric ḡ − K̄
2 ḡ = T if, and only if,

(9) fii = (n− 2)
(ϕxixi

ϕ
− εi

∆gϕ

ϕ
+ εi(n− 1)

|∇gϕ|2
2ϕ2

)

for all i

and up to a change of order of the independent variables, one of the following

cases occur:

a) f12(x1, x2) is any nonzero differentiable function, fij ≡ 0, for all i 6= j,

such that i ≥ 3 or j ≥ 3 and ϕ = ϕ(x1, x2) is a nonvanishing solution

of the hyperbolic equation

(10) (n− 2)ϕx1x2
− f12ϕ = 0.

b) There exists an integer p, 3 ≤ p ≤ n, such that fij = 0, if i 6= j, i ≥ p+1

or j ≥ p+1. Moreover, there exist nonconstant differentiable functions,

Uj(xj), for 1 ≤ j ≤ p, such that for all i, j, 1 ≤ i 6= j ≤ p,

(11) fij = (n− 2)U ′
iU

′
j and ϕ = a e

∑p

j=1
Uj(xj) + b e−

∑ p

j=1
Uj(xj),

or

(12)

fij = −(n− 2)U ′
iU

′
j and ϕ = a cos

( p
∑

j=1

Uj(xj)

)

+ b sin

(

−
p

∑

j=1

Uj(xj)

)

,

where a and b are real numbers such that a2 + b2 6= 0. Moreover, in each case

ϕ is defined on an open connected subset of Rn, where it does not vanish.

Corollary 1.3: If (Rn, g) is the Euclidean space and 0 < |ϕ(x)| ≤ C for some

constant C, then the metrics given by Theorems 1.1 and 1.2 are complete on

Rn.

By considering u = ϕ−(n−2)/2 and the expression of the scalar curvature ob-

tained from the Ricci tensor T , one gets the following corollaries from Theorem

1.1. These corollaries are related to the prescribed scalar curvature problem, as

one can see in Corollary 1.6.
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Corollary 1.4: Let (Rn, g) be a pseudo-Euclidean space, n ≥ 3, with coor-

dinates x = (x1, . . . , xn), gij = δijεi, εi = ±1. Let K̄ : Rn → R be given

by

(13) K̄ = (n− 1)

{

2(a2f2 − b2f−2)
∑

j

εjU
′′
j

+ [2(n+ 2)ab− (n− 2)(a2f2 + b2f−2)]
∑

j

εj(U
′
j)

2

}

where Uj(xj), 1 ≤ j ≤ p, are arbitrary nonconstant differentiable functions,

3 ≤ p ≤ n, a2 + b2 6= 0 and f = e
∑

Uj . Then the differential equation

(14)
4(n− 1)

n− 2
∆gu+ K̄(x)u

n+2

n−2 = 0

where ∆g denotes the Laplacian in the metric g, has a solution, globally defined

on Rn, given by

(15) u = (af + bf−1)−(n−2)/2.

Corollary 1.5: Let (Rn, g) be a pseudo-Euclidean space, n ≥ 3, with coor-

dinates x = (x1, . . . , xn), gij = δijεi, εi = ±1. Let K̄ : Rn → R be given

by

(16) K̄ = −(n− 1)(a2 + b2)

×
∑

j

εj

{

sin 2
(

∑

Uk + θ
)

U ′′
j +

[

(n− 2) sin2
(

∑

Uk + θ
)

+ 2
]

(U ′
j)

2
}

,

where Uj(xj), 1 ≤ j ≤ p, are arbitrary nonconstant differentiable functions,

3 ≤ p ≤ n, a2 + b2 6= 0 and θ is defined by cos θ = a/
√
a2 + b2 and sin θ =

−b/
√
a2 + b2. Then the differential equation

4(n− 1)

n− 2
∆gu+ K̄(x)u

n+2

n−2 = 0

where ∆g denotes the Laplacian in the metric g, has a solution, globally defined

on Rn, given by

(17) u =

(

√

a2 + b2 cos

(

∑

j

Uj + θ

))−n−2

2

.
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Observe that considering a = 1 and b = 0 in (13), we get a particular case of

Corollary 1.4. Let

(18) K̄(x) = (n− 1)e2
∑

j Uj(xj)
p

∑

j=1

εj
[

2U ′′
j − (n− 2)(U ′

j)
2
]

,

where Uj(xj), 1 ≤ j ≤ p, are nonconstant differentiable functions and 3 ≤ p ≤ n.

Then the differential equation (14) has a solution, globally defined on Rn, given

by

(19) u =
(

e−
∑

j Uj

)−n−2

2

.

The geometric interpretation of the above results is the following:

Corollary 1.6: Let (Rn, g) be a pseudo-Euclidean space, n ≥ 3 and K̄ a

function given by (13) (resp., (16)). Then there exists a metric ḡ = u4/(n−2)g,

where u is given by (15) (resp., (17)), whose scalar curvature is K̄. In particular,

if (Rn, g) is the Euclidian space and u is a bounded function then ḡ is a complete

metric.

Examples 1.7: As a direct consequence of Theorems 1.1, 1.2 and Corollary 1.3

we get the following examples, where we are considering (Rn, g), n ≥ 3, the

pseudo-Euclidean space with coordinates (x1, . . . , xn) such that gij = δijεi,

εi = ±1.

a) Consider for each j = 1, . . . , n, the function Uj = −x2mj

j , where mj

is a positive integer and the tensor T determined as in Theorem 1.1,

with a = 1, b = 0. We observe that although this tensor may have

singular points (depending on the integers mj), there exists ḡ = 1
ϕ2 g

such that Ric ḡ = T , globally defined on Rn with ϕ = exp(−∑

j x
2mj

j ).

Moreover, it follows from Corollary 1.3, that in the Euclidean case, the

metric ḡ, is a complete metric on Rn, with negative Ricci curvature.

b) Consider any periodic nonconstant function Uj(xj) for each j = 1, . . . , n.

Then the symmetric tensor T =
∑

fijdxidxj , defined as in Theorem

1.1, where we choose positive constants a and b, admits a metric ḡ, on

an n-dimensional torus, T n, conformal to the pseudo-Euclidean metric,

whose Ricci tensor is T . Observe that in the Euclidean case (εk = 1, for

all k), ḡ is a complete metric on T n. If we consider k periodic functions

Uj , 3 ≤ k < n, we get metrics defined on T k ×Rn−k, conformal to the
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pseudo-Euclidean metric. In the Euclidean case, if, moreover, ϕ is a

bounded function, then ḡ is a complete metric on T k ×Rn−k.

c) As a consequence of Theorem 1.2, we observe that periodic functions

Uj(xj), for each j = 1, . . . , n, determine a tensor T which admits a

solution ḡ, conformal to g, for the Einstein equation, defined on T n. If

we consider k periodic functions Uj, 3 ≤ k < n, we get solutions for the

Einstein equation on T k × Rn−k. In the Euclidean case, if, moreover,

ϕ is a bounded function, ḡ is a complete metric.

d) Consider the Euclidean space (Rn, g) and a tensor T as in Theorem 1.1,

with a = 1, b = 0, determined by

fij = (n− 2)U ′
iU

′
j , 1 ≤ i 6= j ≤ p, fij = 0 for i 6= j, i ≥ p+ 1, or j ≥ p+ 1,

fii = (n− 2)U ′′
i +

∑

j

U ′′
j − (n− 2)

∑

j 6=i

(U ′
j)

2,

where Uj(xj) are arbitrary differentiable functions such that U ′′
j < 0

for all j, 1 ≤ j ≤ p and p ≥ 3. Then the metric ḡ has negative Ricci

curvature. If, moreover, ϕ is bounded then ḡ is a complete metric on

Rn.

We now consider a Riemannian manifold locally conformally flat (Mn, g),

then one can consider problems (1) and (2) for any neighborhood V ⊂M such

that there are local coordinates (x1, . . . , xn) with gij = δij/F
2, where F is a

nonvanishing differentiable function on V . It is easy to see that the following

results hold.

Theorem 1.8: Let (Mn, g), n ≥ 3 be Riemannian manifold, locally confor-

mally flat. Let V be an open subset ofM with coordinates (x1, . . . , xn) such that

gij = δij/F
2. Consider a nondiagonal symmetric tensor T =

∑n
i,j=1 fijdxidxj .

Assume that, for i 6= j, fij(xi, xj) depends on xi and xj . Then there exists

ḡ = 1
ψ2 g such that Ric ḡ = T if, and only if, ψ = ϕ/F and, up to a change

of order of the independent variables, ϕ satisfies a) or b) of Theorem 1.1, with

εi = 1, for all i.

The following result provides the analogue theorem for the Einstein equation.

Theorem 1.9: Let (Mn, g), n ≥ 3, be Riemannian manifold, locally confor-

mally flat. Let V be an open subset ofM with coordinates (x1, . . . , xn) such that

gij = δij/F
2. Consider a nondiagonal symmetric tensor T =

∑n
i,j=1 fijdxidxj .
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Assume that, for i 6= j, fij(xi, xj) depends on xi and xj . Then there exists a

metric ḡ = 1
ψ2 g such that Ric ḡ − K̄

2 ḡ = T if, and only if, ψ = ϕ/F and, up to

a change of order of the independent variables, ϕ satisfies a) or b) of Theorem

1.2, with εi = 1, for all i.

We observe that there are similar results for manifolds that are locally con-

formal to the pseudo-Euclidean space.

Proof of the main results

In order to prove our main results we will need the following lemmas.

Lemma 1.10: Assume ϕ(x1, . . . , xp), p ≥ 3, is a nonvanishing differentiable

function that satisfies a system of equations

(20) ϕxixj
− fij(xi, xj)ϕ = 0, for all i 6= j,

where fij = fji is a differentiable function of xi and xj . Assume there is an

open subset U ⊂ Rp, where all fij do not vanish. Then there is an open dense

subset of U where
∏

i ϕxi
does not vanish. On each connected component of

this subset, there exist differentiable functions Vi(xi) 6= 0, i = 1, . . . p, such that

(21) fij = εVi(xi)Vj(xj), ε = 1 or ε = −1 for all 1 ≤ i 6= j ≤ p.

Proof. Since ϕ is a nonvanishing solution of (20) and all fij do not vanish on U ,

it follows that for each i the set Si = {x ∈ U ⊂ Rp; ϕxi
(x) = 0} has measure

zero. Therefore, there is an open dense subset of U where all ϕxi
do not vanish.

For the rest of the proof we restrict ourselves to a connected component of this

subset.

If ϕ is a solution of (20), then for each triple (i, j, k), of distinct indices

ϕxixjxk
= fijϕxk

.

Hence,

(22) fijϕxk
= fikϕxj

= fjkϕxi
, for all i, j, k, distinct.

In particular,

f1jϕxk
= f1kϕxj

, for all j 6= k ≥ 2.
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Hence, for all j ≥ 2, all the quotients ϕxj
/f1j are equal and, therefore, there

exists a nonvanishing function β1(x1, . . . , xp) such that

(23) ϕxj
= β1f1j, for all j ≥ 2.

Consider the derivative of this equation with respect to x1 and substitute (20).

It follows that for j 6= k, we have

β1,x1
f1j + β1f1j,x1

= f1jϕ,

β1,x1
f1k + β1f1k,x1

= f1kϕ.

Therefore,

(f1kf1j,x1
− f1jf1k,x1

)β1 = 0, for all j 6= k ≥ 2.

Moreover, f1j depends only on (x1, xj). Therefore, there exists a function

V1(x1), such that
f1j,x1

f1j
=
V ′

1(x1)

V1
, for all j ≥ 2.

We conclude that there exists Vj(xj) such that

(24) f1j = V1(x1)Vj(xj), for all j ≥ 2.

We will now show by induction that for any l ≥ 2, flk = cVlVk, for all

k ≥ 2, k 6= l, where c 6= 0 is a constant.

We start proving for l = 2. From (22) we get

ϕxk
= β2(x1, . . . , xp)f2k, for all k 6= 2.

Consider this equation for k = 1 and k ≥ 3 and take the derivative of each

equation with respect to x2, we get that

f21,x2
f2k − f2k,x2

f21 = 0 for all k ≥ 3.

Using (24) we have

(25) f2k = V2Ṽk(xk), for all k ≥ 3.

We will now relate Ṽk with Vk. From (22) we have

(26) f1kϕx2
= f2kϕx1

, for all k ≥ 3.

It follows from this equation and its derivative with respect to xk, after using

(20), (24) and (25),

(27) Ṽk = c2kVk, for all k ≥ 3,
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where c2k 6= 0 is a constant. If p ≥ 4, we will show that all the constants c2k

are equal. In fact, taking the derivative of (26) with respect to xl, l 6= k, l ≥ 3,

using (20), (24), (25) and (27), it follows that c2k = c2l. We denote this constant

by c. We conclude that we have shown that

(28) f1j = V1Vj , for all j ≥ 2 and f2k = cV2Vk, for all k ≥ 3.

Claim: Assume that for a fixed l, 2 ≤ l < p− 1 we have that

(29) fik = cViVk, for all i, 2 ≤ i ≤ l − 1, for all k ≥ 2, k 6= i,

then flk = cVlVk for all k ≥ 2, k 6= l.

In order to prove the claim, we observe that since flk = fkl, it follows from

the hypothesis that we only need to prove that flk = cVlVk for k ≥ l+ 1. From

(22) we get

ϕxk
= βl(x1, . . . , xp)flk, for all k 6= l.

Consider this equation for k = 1 and k ≥ l + 1 and take the derivative of each

equation with respect to xl, we get that

f1l,xl
flk − flk,xl

fl1 = 0 for all k ≥ l + 1.

Using (24) we have

(30) flk = VlV̂k(xk), for all k ≥ l + 1.

We now relate V̂k with Vk. From (22) we have

(31) f1kϕxl
= flkϕx1

, for all k ≥ l + 1.

It follows from this equation and its derivative with respect to xk, after using

(20), (24) and (30), that

(32) V̂k = clkVk, for all k ≥ l + 1,

where clk 6= 0 is a constant. It follows from (30), (32), and (24) that the equality

(31) reduces to V1ϕxl
= clkVlϕx1

for all k ≥ l+ 1. Taking the derivative of this

equation with respect to x2, it follows from (20), (28), (30) and (32) that clk = c

for all k ≥ l + 1. We conclude from (29) that

f1j = V1Vj , for all j ≥ 2,

fjk = cVjVk, for all j 6= k ≥ 2 where c ∈ R \ {0}.
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If c > 0, then we may consider Ṽj =
√
cVj for all j ≥ 2 and Ṽ1 = V1/

√
c.

Hence fij = ṼiṼj , for all i 6= j.

If c < 0, then we may consider Ṽj = −
√
−cVj for all j ≥ 2 and Ṽ1 = V1/

√
−c.

Hence fij = −ṼiṼj , for all i 6= j.

This completes the proof of the lemma.

Lemma 1.11: A nonvanishing differentiable function ϕ(x1, . . . , xp), p ≥ 3, is a

solution of

a) ϕxixj
− ϕ = 0, for all i 6= j, if and only if

(33) ϕ = ae
∑ p

j=1
xj + be−

∑p

j=1
xj

b) ϕxixj
+ ϕ = 0, for all i 6= j if and only if

(34) ϕ = a cos

p
∑

j=1

xj + b sin

(

−
p

∑

j=1

xj

)

,

where a, b ∈ R, a2 + b2 6= 0.

Proof. Assume that ϕ is a solution of

(35) ϕxixj
− ϕ = 0, for all i 6= j.

Since p ≥ 3, it follows that, ϕxixjxk
− ϕxk

= 0 for all i, j, k distinct. Since ϕ

does not vanish, we have

(36)
ϕxi

ϕ
= β(x1, . . . , xp), for all i,

where β is a differentiable function. Taking the derivative of (36) with respect

to xj , j 6= i, it follows from (35) that

βxj
+ β2 − 1 = 0, for all j.

Hence

β = c
ae

∑

j
xj − be−

∑

j
xj

ae
∑

j
xj + be−

∑

j
xj
,

where a, b ∈ R do not vanish simultaneously. Therefore, we conclude from (36)

that ϕ is given by (33). The converse holds trivially.

Similar arguments prove that ϕ is a nonvanishing solution of ϕxixj
+ ϕ = 0

if and only if (34) holds.
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Proof of Theorem 1.1. Since Ric g = 0, we have that ḡ = 1
ϕ2 g, is such that

Ric ḡ = T if, and only if,

(37) T = Ric ḡ =
1

ϕ2

{

(n− 2)ϕHessg(ϕ) +
[

ϕ∆gϕ− (n− 1)|∇gϕ|2
]

g
}

.

This is equivalent to saying that ϕ is a nonvanishing solution of the following

system of equations:

(38) ϕxixj
=

fij
n− 2

ϕ, for all i 6= j,

(39) fii = (n− 2)
ϕxixi

ϕ
+ εi

∆gϕ

ϕ
− εi(n− 1)

|∇gϕ|2
ϕ2

for all i.

Since ϕ is a differentiable function and n ≥ 3, it follows from (38) that

(40) fijϕxk
= fikϕxj

= fjkϕxi
, for all i, j, k distinct.

T is a nondiagonal symmetric tensor, hence there exists a pair (i0, j0) such

that fi0j0 = fj0i0 6= 0 on an open subset U ⊂ Rn. If fi0k ≡ 0 on U , for all k

distinct from i0 and j0, then we may assume under a change of the order of the

independent variables, if necessary, that f12(x1, x2) 6= 0 and f1j ≡ 0 for j ≥ 3

on U . Moreover, from (40),

f12ϕxk
= f1kϕx2

= f2kϕx1
,

hence, we get that ϕxk
= 0, for all k ≥ 3, f2k = 0 on U . Observe that ϕx1

and ϕx2
cannot be zero on any open subset of U , otherwise we would have

ϕx1x2
= f12ϕ/(n − 2) = 0. This is a contradiction since ϕ is a nonvanishing

function. Therefore, there exists an open subset U1 ⊂ U , where ϕx1
6= 0 and

ϕx2
6= 0 on U1. Hence, f2k ≡ 0 on U1 for all k ≥ 3. From (40) we have

f2jϕxk
= fjkϕx2

, for j 6= k ≥ 3 and therefore fjk ≡ 0 on U1. We conclude that

ϕ depends only on x1, x2 and it is a solution of the hyperbolic equation (5).

Moreover, (39) determines the diagonal elements fii which will depend only on

(x1, x2).

Otherwise, there exist indices i, j, k distinct such that fij and fik do not

vanish on an open subset U of Rn. Observe that ϕxk
and ϕxj

cannot be zero

on any open subset of U , since ϕ is a nonvanishing differentiable function. Let

U1 ⊂ U be an open subset where ϕxk
6= 0 and ϕxj

6= 0. It follows from (38)

fjk 6= 0 and ϕxi
6= 0 on U1. By reordering the variables, if necessary, we may

consider i = 1 and f1j 6= 0, on an open subset U2 ⊂ U1, for all j, such that

2 ≤ j ≤ p, where p is an integer 3 ≤ p ≤ n and f1s ≡ 0, on U2 for p+1 ≤ s ≤ n.
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Since, ϕ is a nonvanishing function, there is an open subset V of U2, where

ϕxj
6= 0 for j = 1, . . . , p. It follows from (40) that on V ,

f1jϕxk
= fjkϕx1

j 6= k, 2 ≤ j, k ≤ p

f12ϕxs
= f1sϕx2

, p+ 1 ≤ s ≤ n

fkjϕxs
= fsjϕxk

, j 6= k, 2 ≤ j, k ≤ p, p+ 1 ≤ s ≤ n

fksϕxr
= fsrϕxk

, s 6= r, p+ 1 ≤ s, r ≤ n.

From the first equality we get that fjk 6= 0 on V . From the second one we

conclude that ϕxs
≡ 0 on V . It follows from the third one that fsj ≡ 0 and

from the last equality we conclude that fsr ≡ 0 on V . Hence, ϕ depends

on the variables x1, . . . , xp, and it satisfies the differential equation (38) for

1 ≤ i 6= j ≤ p ,where all fij do not vanish on V .

It follows from Lemma 1.10 that, on each connected component W ⊂ V ,

where Πi6=j 6=kfijϕxk
6= 0, there exist nonconstant differentiable functions Ui(xi),

1 ≤ i ≤ p such that

fij
n− 2

= εU ′
i(xi)U

′
j(xj), for 1 ≤ i 6= j ≤ p,

where ε = 1 or ε = −1 for all i 6= j. We now consider on W the change of

variables yi = Ui(xi). In this new coordinates ϕ(y1, . . . , yp) satisfies the system

ϕyiyj
− εϕ = 0, for all i 6= j.

Lemma 1.11 implies that ϕ is given by (6) or (7) on W , according to the

value of ε. Moreover, the diagonal elements of the tensor T , fii(x1, . . . , xp) are

determined by (39).

In both cases, one can extend the domain of ϕ to a subset of Rn where the

functions Ui are defined and ϕ does not vanish. The converse in both cases is

a straightforward computation.

Proof of Theorem 1.2. Since Ric g = 0, we have that ḡ = 1
ϕ2 g, is such that

Ric ḡ − K̄ḡ/2 = T if, and only if,

(41) T =
1

ϕ2

{

(n−2)ϕHessg(ϕ)+
[

−(n−2)ϕ∆gϕ+
(n− 1)(n− 2)

2
|∇gϕ|2

]

g
}

.

This is equivalent to the following system of equations:

ϕxixj
=

fij
n− 2

ϕ, for all i 6= j
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and

fii = (n− 2)
(ϕxixi

ϕ
− εi

∆gϕ

ϕ
+ εi(n− 1)

|∇gϕ|2
2ϕ2

)

for all i.

The proof now follows by the same arguments as in Theorem 1.1.

Proof of Corollary 1.3. Consider the Euclidean space (Rn, g), n ≥ 3 and a met-

ric ḡ given by Theorems 1.1 or 1.2. If 0 < |ϕ(x)| ≤ C, then the metric ḡ is

complete, since there exists a constant m > 0, such that for any vector v ∈ Rn,

|v|ḡ ≥ m|v|.

Proof of Corollaries 1.4 and 1.5. It follows from (8), that for the metric ḡ of

Theorem 1.1 the scalar curvature is given by (13), (resp., (16)). By defining the

function u
−2

n−2 = ϕ, we conclude that u is a solution of (14).

Proof of Corollary 1.6. This result follows immediately from the previous corol-

laries, since finding a metric ḡ = u
4

n−2 g, with scalar curvature K̄ is equivalent

to solving equation (14).

For the proofs of Theorems 1.8 and 1.9, we consider the function ψ = ϕF .

Then arguments similar to those of Theorems 1.1 and 1.2 complete the proofs.
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