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ABSTRACT

We prove a result about an extension of the multiplier of an attracting

periodic orbit of a quadratic map as a function of the parameter. This has

applications to the problem of geometry of the Mandelbrot and Julia sets.

In particular, we prove that the size of p/q-limb of a hyperbolic component

of the Mandelbrot set of period n is O(4n/p), and give an explicit condition

on internal arguments under which the Julia set of corresponding (unique)

infinitely renormalizable quadratic polynomial is not locally connected.

1. Introduction

Douady–Hubbard–Sullivan (DHS) theorem [4], [18], [2] states that the multiplier

ρ of an attracting periodic orbit is a conformal isomorphism from a hyperbolic

component of the Mandelbrot set onto the unit disk {|ρ| < 1}, and it extends

homeomorpically to the boundaries.

In Theorem 4, we prove that ρ extends further to an analytic isomorphism

from a region containing the hyperbolic component onto a simply connected

domain Ω̃n containing {|ρ| ≤ 1} \ {1}, such that the domain Ω̃n is explicitly
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defined by the period n of the attracting orbit. This follows from the Main

Inequality, see Theorem 3 below, which in turn is based on Theorem 2 of [12],

see formulation in Subsection 3.1 below. We derive from Theorems 3–4 a few

consequences including Theorems 1–2, stated in the Introduction.

Let us be more precise. A hyperbolic component W of period n is a com-

ponent of the interior of the Mandelbrot set M , such that, for c in W , the

quadratic map fc(z) = z2 + c has an attracting periodic orbit of period n.

Denote by ρW (c) the multiplier of this orbit of fc, c ∈ W . By DHS theorem,

ρW performs a homeomorphism of the closure of W onto the closed unit disk.

A number t is called an internal argument of a point c ∈ ∂W if and only if

ρW (c) = exp(2πit). The point c with t = 0 is called the root of W . If c ∈ ∂W is

not the root and has a rational internal argument t, the connected component

of M \ {c} which is disjoint with W is not empty and called the t-limb L(W, t)

of W .

The first consequence of Theorem 4 concerns the size of the limbs. It streng-

thens Yoccoz’s bound (off the root), see Section 5.

Theorem 1: There exists A > 0, such that, for every hyperbolic component

W of period n and every t = p/q ∈ [−1/2, 1/2] \ {0}, the diameter of the limb

L(W, t) is bounded by:

(1) diamL(W, t) ≤ A
4n

p
.

This bound immediately implies the local connectivity of the Mandelbrot set

at some parameters c∗, where fc∗ is infinitely renormalizable with prescribed

unbounded combinatorics, see Corollary 5.1.

Let us discuss another result. Douady and Hubbard proposed an inductive

construction to build an infinitely renormalizable quadratic map with nonlocally

connected Julia set, and such that the Mandelbrot set is locally connected at

this parameter [23], [19]. Their construction involves choosing a sequence of

internal arguments tm of successive bifurcations step by step, by continuity

in the corresponding dynamical planes and in the parameter plane (with the

help of Yoccoz’s bound). The next statement makes explicit the two sides of

Douady–Hubbard’s procedure (parameter and dynamical).

Theorem 2: There exists B > 0 as follows. Let n ≥ 1. Let

t0, t1, . . . , tm, . . .
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be any sequence of rational numbers tm = pm/qm ∈ (−1/2, 1/2]. Denote

n0 = n, nm = nq0 · · · qm−1, m > 0. Assume that,

(2) pm > B4nm , Bn2
m < p2

m/qm,

for all m large enough, and also

(3)

∞
∑

m=1

|tm|1/qm−1 <∞.

Given a hyperbolic component W of the Mandelbrot set of period n, consider

the following sequence of hyperbolic componentsWm: W0 = W , and, form > 0,

Wm touches the hyperbolic component Wm−1 at a point cm−1 with an inter-

nal argument tm−1. For every m, consider the tm-limb L(Wm, tm) of Wm (it

contains Wm+1). Then the limbs L(Wm, tm) shrink to a unique point c∗, the

Mandelbrot set is locally connected at c∗, and the map fc∗ is infinitely renor-

malizable with nonlocally connected Julia set.

This statement can be reformulated in terms of the combinatorial data of an

infinitely renormalizable map, see Theorem 8.

Let us comment on the inequalities (2)–(3), above. Conditions (2) guarantee

that the corresponding multipliers are local parameters. Namely, if ρWm(c)

is the multiplier of the periodic orbit of fc, which is attracting for c ∈ Wm,

and ψm denotes an inverse to log ρWm , then the first inequality in (2) ensures

that ψm extends as a holomorphic function to a disk of radius proportional

to nm/qm around 2πitm while the second inequality in (2) implies that this

analytic continuation is in fact injective. In turn, condition (3) will guarantee

that the bifurcated periodic orbits stay away from the origin. This condition

was suggested by Milnor in [19, p. 21]. We confirm his guess.

1.1. Notation. We collect some notation to be used throughout the paper.

fc(z) = z2 + c, Jc = J(fc) its Julia set, D∞(c) the basin of infinity,

M = {c ∈ C : Jc connected} is the Mandelbrot set,

Bc is the Bottcher coordinate at infinity normalized by Bc(z) ∼ z as z → ∞,

Gc = limn→∞ 2−n log |fnc (z)| Green’s function of D∞(c), G(z) ∼ log |z| at

∞ extended by 0 to the whole plane, so that Gc(z) = log |Bc(z)| near infinity.

B(a, r) = {z : |z − a| < r}.

Acknowledgment. I would like to thank Carsten Petersen for a remark about

the paper [11].
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2. Main Inequality

Let O = {bk}
n
k=1 be a periodic orbit of f = fc0 of exact period n. Its multiplier

is the number ρ = (fn)′(bk). If ρ 6= 1, by the Implicit function theorem, there

exist n holomorphic functions bk(c), k = 1, . . . , n defined in a neighborhood of

c0, such that O(c) = {bk(c)}
n
k=1 is a periodic orbit of fc, and O(c0) = O. In

particular, if ρ(c) = (fnc )′(bk(c)) = 2nb1(c) · · · bn(c) denotes the multiplier of

O(c), it is holomorphic in c in this neighborhood.

In what follows we assume that the multiplier ρ is not very big, because we are

interested in studying the behavior of a multiplier not far from the hyperbolic

component where the corresponding periodic orbit is attracting. So, we will

always assume that

|ρ| < e.

Theorem 3: There exist λ∗ and B0 as follows. Let O(c) be a repelling periodic

orbit of fc of exact period n, and the multiplier of O(c) is equal to ρ. Then the

following inequality holds

(4)

|ρ− 1| ≤
1

n
Kn(c)

{

log |ρ(c)| +
|ρ′(c)|

|ρ(c)|

1

π
area({z : 0 < Gc(z) < 2−n logλ∗})

}

.

Here

Kn(c) =
2λ2

∗

logλ∗
max{|(fnc )′(z)| : z ∈ Jc}.

We have:

(5) Kn(c) ≤ B′(diamJc)
n ≤ B′(2β)n,

where B′ =
2λ2

∗

log λ∗

and β is the unique positive solution of the equation

β2 − |c| = β, and also

Kn(c) ≤ B04
n.

Comment 1: Let us note for future use a few bounds related to the number

Gc(0).

(a) First, the following fact was established in [7]: for the multiplier ρ of every

repelling periodic orbit of fc of period n, we have

Gc(0) ≤
1

n
log |ρ|.

In particular, since we assume |ρ| < e, then c belongs to a neighborhood of M

where Gc(0) ≤ n−1 ≤ 1.
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(b) Second, the transfinite diameter of the set {z : 0 ≤ Gc(z) < 2−n logλ}

(λ > 1) is equal to λ2−n

, and, hence, by a theorem of Polya [9],

area({z : 0 ≤ Gc(z) < 2−n logλ}) ≤ πλ2−n+1

.

Consider two particular cases of the inequality (4). One case corresponds to

passing to a limit as |ρ| → 1, and in the other put ρ′ = 0. Then we get the

following corollary.

Corollary 2.1: (A) There exists C0, such that, if, for some c, |ρ(c)| = 1,

then

(6) |ρ′(c)| ≥
n|ρ(c) − 1|

Kn(c)π−1area({z : 0, Gc(z) < 2−n logλ∗})
≥
C0n|ρ(c) − 1|

Kn(c)
.

(B) For every n-periodic orbit O of fc with the multiplier ρ, if 1 < |ρ| < e

and

(7) |ρ− 1| > Kn(c)
1

n
log |ρ|,

then ρ′ 6= 0.

Comment 2: (A) implies, of course, that ρ′ 6= 0 on the boundary of a hyperbolic

component where |ρ| = 1, and it was known after [5].

3. Proof of Theorem 3

3.1. Derivative of multiplier and Ruelle operator. The proof is based

on the following result, see Theorem 2 of [12]. Consider the Ruelle transfer

operator

Tg(z) =
∑

w:fc(w)=z

g(w)

(f ′
c(w))2

.

Given a periodic orbit O = {bk}
n
k=1 of f of exact period n and with the multi-

plier ρ 6= 0, 1, associate to O a function

(8) A(z) =
n

∑

k=1

1

(z − bk)2
+

1

ρ(1 − ρ)

n
∑

k=1

(fn)′′(bk)

z − bk
,

where (fn)′′(z) is the second derivative of the n-iterate of f with respect to z.

Then

(9) A(z) = (TA)(z) + 2
ρ′

ρ
(T 1)(z).
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Comment 3: In [12] we use this to give another, local proof of DHS theorem.

3.2. Estimate from above. Fix c and denote f = fc, G = Gc etc. Given

λ > 1, denote Uλ = {z : 0 < G(z) < logλ} and Cλ = Uλ \ f
−1(Uλ). Note that

Uλ is a subset of the basin of infinity D∞. Introduce also a number associated

to the cycle O as follows:

(10) M = lim inf
δ→0

∫

Eδ

dσz
|z − b|2

,

where Eδ = D∞ ∩ (B(b, δ) \ f−n
O (B(b, δ)), b is a point of the orbit, f−n

O is a

branch defined near b that fixes b, and dσz is the area element in the z-plane.

It is easy to see that

M ≤ 2π log |ρ|.

Comment 4: One can show (though we will not use this fact below) that M =

2πα log |ρ| where α is the the density of D∞ at the point b in the logarithmic

metric [14].

Lemma 3.1: For every λ > 1,

(11)

∫

Cλ

|A(z)|dσz ≤M + 2
|ρ′|

|ρ|
area

({

z : 0 < G(z) <
1

2
logλ

})

.

Proof. Denote by f−i
O a local branch sending a point b of the orbit O to fn−i(b),

i = 1, 2, . . . , n. For δ > 0, let Vδ = Uλ \
⋃n−1
i=0 f

−i
O (B(b, δ)). Then A is integrable

in Vδ, and one can write
∫

Vδ

|A|dσ =

∫

Vδ

|TA(z) + 2
ρ′

ρ
T 1(z)|dσ ≤

∫

f−1(Vδ)

|A|dσ + 2
|ρ′|

|ρ|
area(f−1(Vδ)).

Note that Vδ = f−1(Vδ) ∪Cλ ∪∆ \ (B(b, δ) \ f−n
O (B(b, δ)), where ∆ is an open

set, which shrinks to −O = (−b1, . . . ,−bn) as δ → 0. Therefore,
∫

Cλ

|A|dσ ≤ lim inf
δ→0

∫

Eλ

|A(z)|dσz + 2
|ρ′|

|ρ|
area(Uλ1/2).

We have: A(z) = (z − b)−2 + r(z) where r(z) is integrable at b. Sending δ → 0,

we get the desired inequality.

3.3. Estimate from below. We are left with the problem to estimate the

integral

(12) I(λ) :=

∫

Cλ

|A(z)|dσz .
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from below.

To be able to deal with I(λ) when J is disconnected and λ close to 1, let us

extend the Bottcher function B of f at ∞ to the following simply connected

domain (on the Riemann sphere) D∗
∞: it is obtained from D∞ by deleting all

arcs of external rays (gradient curves of G) starting from 0 and all its preimages

up to the Julia set. Denote the extended Bottcher function again by B. It

maps D∗
∞ onto a domain A whose boundary is a ’hedgehog’, see [15], [16]. Let

φ : A→ D∗
∞ be the inverse map. Note that φ′ has a singularity at the vertex p

of every needle (i.e., the image by B of a critical point of Gc), but it is of the

type |w − p|−1/2, i.e. integrable against the area.

Let λ > 1. One writes:

I(λ) =

∫

Cλ

|A(z)|dσz =

∫

λ<|w|<λ2

|A(φ(w))||φ′(w)|2dσw .

Let us consider the function p(z) = fn(z) − z. Note that it is nonzero in the

basin of infinity. By the Fubini theorem, we can continue as follows

∫

λ<|w|<λ2

|A(φ(w))||φ′(w)|2dσw

≥

∫ λ2

λ

min
|w|=r

|φ′(w)|

|p(φ(w))|
dr

∫

{z:G(z)=log r}

|A(z)p(z)||dz|.

Now,

∫

{z:G(z)=log r}

|A(z)p(z)||dz| ≥

∣

∣

∣

∣

∫

{z:G(z)=log r}

A(z)p(z)dz

∣

∣

∣

∣

= 2π|Rp|,

where

Rp =
1

2πi

∫

{z:G(z)=log r}

A(z)p(z)dz.

By the definition of A and the Cauchy formula,

Rp =

n
∑

k=1

(p′(bk) + γkp(bk)) = n(ρ− 1),

where γk = (fn)′′(bk)/ρ(1 − ρ). Thus, for every λ > 1,

(13) I(λ) ≥ 2πn|ρ− 1|

∫ λ2

λ

min
|w|=r

|φ′(w)|

|p(φ(w))|
dr.



292 GENADI LEVIN Isr. J. Math.

Now, from f ◦ φ(w) = φ(w2) we conclude that

φ′(w)

p(φ(w))
=

2nw2n−1φ′(w2n

)

(φ(w2n ) − φ(w))(fn)′(φ(w))
.

There is a choice for λ > 1. Take λ = λn where λ2n

n = λ∗ and λ∗ is fixed.

Let us estimate |c|. By Comment 1, (a), Gc(0) ≤ n−1. If Jc is connected, then

|c| ≤ 2. Otherwise the function φ which is inverse to the Bottcher coordinate B

of fc, extends in a univalent fashion to the disk {|w| > exp(Gc(0))}. Besides,

c = φ(wc), for some |wc| = exp(2Gc(0)), and φ is odd. Therefore, by a classical

distortion theorem, see, e.g., [9]

(14) |c| = |φ(wc)| ≤ 2 exp(2Gc(0)) ≤ 2 exp(2/n), n > 0.

Thus c belongs to a bounded neighborhood of the Mandelbrot set. Hence,

we can fix λ∗ in such a way that for all c in the fixed neighborhood,

|φ′(w2n

)/(φ(w2n

) − φ(w))| > 1/(2|w2n

|) for all λ∗ < |w|2
n

< λ2
∗. We define

Ln(c) =
2 max{|(fnc )′(z)| : Gc(z) = 2−n+1 logλ∗}

logλ∗
.

Then the inequality (4) holds with Ln(c) instead of Kn(c). By the Bernstein-

Walsh inequality,

(15) |(fnc )′(z)| ≤ max{|(fnc )′(z)| : z ∈ Jc} exp{(2n − 1)Gc(z)}.

For Gc(z) = 2−n+1 logλ∗, this implies that

Ln(c) ≤ Kn(c) :=
2λ2

∗

log λ∗
max{|(fnc )′(z)| : z ∈ Jc}.

3.4. The constant. Let us show that

(16) Kn(c) ≤ B′(2β)n,

where β is the unique positive solution of the equation β2 − |c| = β. (Note

that β > 1 because c 6= 0.) Indeed, if, for some δ > 0, |z| = β + δ, then

|fc(z)| > β + 2βδ. Hence, such z lies in D∞, and

max{|(fnc )′(z)| : z ∈ Jc} ≤ (2β)n.

It gives (16).

Furthermore, as we know,

|c| ≤ 2 exp(2/n) ≤ 2(1 +A1/n),
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for some A1. Therefore,

β ≤ 2 +A2/n

and, hence,

Kn(c) ≤ B4n(1 +A2/(2n))n ≤ 4nB0,

for some A2 and B0.

4. Analytic extension of the multiplier

4.1. A set of domains. Given C > 1, consider an open set Ω of points in the

punctured ρ-plane defined by the inequality

(17) |ρ− 1| > C log |ρ|.

It obviously contains the set D∗ = {ρ : 0 < |ρ| ≤ 1, ρ 6= 1} and is disjoint with

an interval 1 < ρ < 1+ε. Denote by Ω(C) the connected component of Ω which

contains the set D∗ completed by 0. Denote also by Ωlog(C) the set of points

L = log ρ = x+ iy, ρ ∈ Ω(C), |y| ≤ π.

Note that Ωlog(C) is symmetric with respect to the real axis.

Lemma 4.1: Ω(C) is simply-connected. More precisely, the intersection of

Ωlog(C) with any vertical line with x = x0 > 0 is either empty or equal

to two (mirror symmetric) intervals. If C > 4, then x < 2/(C − 2) for all

L = x + iy in Ωlog(C). In particular, Ω(C) ⊂ {|ρ| < e} for C > 4. If C is

large enough, Ωlog(C) contains two (mirror symmetric) domains bounded by

the lines y = ±(C/2)x (x > 0) and y = ±π

Proof. In the log-coordinate L = log ρ = x + iy, |y| ≤ π, the condition (17)

with x > 0 is equivalent to

(18) sin2
(y

2

)

>
C2x2 − (exp(x) − 1)2

4 exp(x)
.

Given x, the set containing y which satisfies the latter inequality is either empty

or a union [−π,−y)∪(y, π] with some y > 0. We have for x+ iy ∈ Ωlog(C): 1 >

(C2x2−(exp(x)−1)2)/4 exp(x), and since x > 0, Cx < exp(x)+1. If C > 4, then

it is easy to check that the first positive root of the equation Cx = exp(x)+1 is

smaller than 2/(C − 2). Therefore, |x| < 2/(C − 2) for any x+ iy ∈ Ωlog(C). If

C large, then, by this, x > 0 must be small, and the boundary curve of Ωlog(C)
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can be written in the form sin(y/2) = ±(1/2)(C2 − 1)1/2x(1 − x/2 + xr(x,C))

where r(x,C) = o(1/C2) uniformly in x. The statement follows.

4.2. Hyperbolic components and related definitions. Let W be a com-

ponent of the interior of M . It is called a hyperbolic component if fc, c ∈ W ,

has an attracting periodic orbit O(c). Let us call W n-hyperbolic, if the exact

period of the latter orbit is n.

Denote by ρW (c) the multiplier of O(c). By the DHS theorem, ρW is a

analytic isomorphism of W onto the unit disk, and it extends homeomorphically

to the boundaries. Given a number t ∈ (−1/2, 1/2], denote by c(W, t) the unique

point in ∂W with the internal argument t, i.e., ρW at this points is equal to

exp(2πt). The root of W is the point cW = c(W, 0) with the internal argument

zero. W is called primitive if and only if its root is not a point of other hyperbolic

component.

If t = p/q is a rational number, we will always assume that p, q are co-

primes. For any rational t 6= 0, denote by L(W, t) the connected component of

M \{c(W, t)} which is disjoint with W . It is called the t-limb of W . Also, denote

by W (t) a nq-hyperbolic component with the root point c(W, t); it touches W

at this point. The limb L(W, t) contains W (t). The root cW of W is the landing

point of precisely two external rays of the Mandelbrot set [5]. In what follows,

the notion of the wake of a hyperbolic component W [11] will be important: it

is the only component W ∗ of the plane cut by two external rays to the root of

W that contains W . We will also use the following fact (see, e.g., [16, Theorem

7.2]):

Proposition 1: The points of periodic orbit O(c) as well as its multiplier ρW

extend as analytic functions to the wake W ∗. Moreover, |ρW | > 1 in W ∗ \W .

The map ρW from W onto the unit disk c 7→ ρW (c) has an inverse, denoted

by c = ψW (ρ). It is defined, so far, in the unit disk.

4.3. Extension of the multiplier. Introduce

Ωn = Ω(n−14nB0),

the connected component of the set {ρ : |ρ − 1| > 4nB0

n log |ρ|} that contains

the (punctured) unit disk, and

Ωlog
n = Ωlog(n−14nB0) = {L = x+ iy : exp(L) ∈ Ωn, |y| ≤ π}.
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Theorem 4: (a) The function ψ = ψW extends to a holomorphic function

in the domain Ωn.

(b) The function ψ is univalent in a subset Ω̃n of Ωn defined by its log-

projection Ω̃log
n = {log ρ : ρ ∈ Ω̃n} as follows:

Ω̃log
n = Ωlog

n \ {L : |L−Rn| < Rn},

where Rn depends on n only and has an asymptotics

Rn = (2 +O(2−n))n log 2

as n→ ∞.

Finally, the image of Ω̃n by ψ is contained in the wake W ∗.

Comment 5: The disk {L : |L−Rn| < Rn} cuts off from Ωlog
n an asymptotically

negligible portion: the deleted part is contained in the disk {|L| < rn}, where

rn ∼ (4 log 2/B0)(n
2/4n).

Proof. Let ρ be a multiplier of some repelling orbit of period n for some fc. By

Corollary 2.1, part (B), if ρ ∈ Ωn, then ρ′ 6= 0.

(a) Since Ωn is simply connected, it is enough to show that ψ has an analytic

extension along any curve in Ωn (which starts at 0).

Firstly, c is an algebraic function of ρ. Indeed, consider two functionsQ(c, b) =

fnc (b) − b and P (c, b, ρ) = bfc(b) . . . f
n−1
c (b) − ρ/2n. They are polynomials in

c, b and ρ, which are of degree 2n and 2n− 1, respectively with respect to b and

with leading coefficients 1. Hence, resultant R(c, ρ) of Q and P with respect to

b is a polynomial such that R(c, ρ) = 0 if and only if Q and P have a joint root

b, which means that b is a fixed point of fnc and ρ = (fnc )′(b).

Now assume that ψ does not have an analytic continuation along a (simple)

curve β in Ωn starting in 0. By the above, it means that β contains a singular

point ρ0 of the algebraic function c, that is, when we make a small loop around

ρ0, we get a different value of c. Let ρ0 be the first such point when we move

from 0. Denote c0 = ψ(ρ0) the limit value of ψ when ρ approaches ρ0 along β.

Since c is algebraic, c and ρ can be written in a form:

c− c0 = uj , ρ− ρ0 = (φ(u))k,

where the integers j, k > 0 and φ is holomorphic near u = 0 such that φ(0) =

0, φ′(0) 6= 0. Note that ρ0 6= 1, hence ρ is holomorphic in c in a neighborhood

of c0. By the same reason, the period of the corresponding periodic orbit of fc0
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(=limit of the orbit of fψ(ρ) when ρ tends to ρ0 along β) is exactly n. ρ ∈ Ωn,

hence, ρ′(c0) 6= 0. But dc/dρ ∼ (j/k)uj−k/φ′(0), which implies j = k. Since ρ

is holomorphic in c near c0, we get

(φ(u))k = φ̃(uk)

for another holomorphic near u = 0 function φ̃. Here φ̃′(0) 6= 0, because φ′(0) 6=

0. Thus in a new local coordinate ũ = uk we have c− c0 = ũ, ρ− ρ0 = φ̃(ũ). It

follows that ψ can be extended through ρ0, a contradiction.

(b) ψ is univalent in some domain if it takes values in a simply connected

domain in the c-plane where the function ρ(c) (local inverse to ψ) is well-defined.

Let us choose the wake of W to be such a domain in the c-plane. The choice is

correct because as we know the function ρ extends to a holomorphic function

fromW to its wakeW ∗. Now it is enough to show that, for any L = log ρ ∈ Ω̃log
n ,

the value ψ(ρ) cannot belong to the boundary of W ∗. The latter consists of

two external rays in the c-plane to the root of W (including the root itself).

Assume it is not the case. Then we find a curve l in Ω̃n, which starts at 0 and

ends at some ρ0, such that ψ(ρ) ∈ W ∗ for all ρ ∈ l \ {ρ0} while c0 = ψ(ρ0),

for L0 = log ρ0 ∈ Ωlog
n does belong to such a ray. Consider a continuation of

the n-periodic orbit O(c) of fc along the curve l which is attracting for c ∈W .

Then the rotation number of the periodic orbit O(c0) of fc0 is zero (see, e.g.,

[16, Remark 7.2]). Now, by Theorem 5.1 of [15],

(19)
|L0|

2

Re(L0)
≤

2πn log 2

π/2 − arctan[(2n − 1)a0/π]
,

where a0 = Gc0(0). Let us estimate a0 from above. According to [7, Theorem

1.6], Re(L0) = log |ρ0| ≥ na0. By Lemma 4.1, Re(L0) < 2/(Cn − 2), where

Cn = 4nB0/n. Hence, a0 < 2/(4nB0 − 2n). It allows us to define

Rn =
πn log 2

π/2 − arctan[ 2(2n−1)
π(4nB0−2n) ]

.

Note that Rn = (2 + O(2−n))n log 2 as n → ∞. Now, (19) implies that

|L0 − Rn| < Rn, i.e., ρ0 belongs to the part of Ωn that we delete, a contra-

diction.
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5. Limbs

5.1. Yoccoz’s circles. Let W be an n-hyperbolic component. As we know,

the multiplier ρW is defined and analytic throughout the wake W ∗. Let us for-

mulate a result due to Yoccoz, which is a basic point for further considerations.

For every t = p/q 6= 0, consider the limb L(W, t). Then, for every c ∈ L(W, t),

a branch of log ρW (c) is contained in the following round disk (Yoccoz’s circle):

(20) Yn(t) =
{

L :
∣

∣

∣
L−

(

2πit+
n log 2

q

)
∣

∣

∣
<
n log 2

q

}

,

see [11], [21] as well as [22], [13], [14], [8], [7], [16].

As a well-known corollary [11], we have:

Proposition 2: (a) The intersection of the wake W ∗ of W (completed by

the root) with M is equal to the union of W and its limbs.

(b) For every hyperbolic component W there exists a constant CW depend-

ing on W , such that,

diamL(W, p/q) ≤ CW /q.

5.2. Condition on the internal argument.

Definition 5.1: Given n, let us call a rational numbers t = p/q ∈ [−1/2, 1/2]

n-deep, if and only if for every n-hyperbolic component W , there is a disk

B(2πit, d) with d < π, such that the following conditions hold:

(a) the inverse ψW to the map ρW extends to a univalent function defined

in the union of the unit disk and the domain exp(B(2πit, d));

(b) ψW (exp(B(2πit, d/2)) covers the limb L(W, t).

In order to stress the choice of d, we will call t also (n, d)-deep point.

Comment 6: By the proof of Theorem 4, if ψW extends just holomorphically

into exp(B(2πit, d)) and maps it into the wake W ∗, then ψW satisfies (a).

Therefore, by (20), if B(2πit, (4n log 2)/q) ⊂ Ω̃log
n , then t is (n, d)-deep with

d = (4n log 2)/q.

Proposition 3: (1) For every fixed n,

(1a) n-deep rationals are dense in (−1/2, 1/2);

(1b) the set of all t, which are not n-deep has a unique concentration

point 0.
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(2) There exists B > 0, such that, for every n > 0, the point t = p/q ∈

(−1/2, 1/2) is (n, 4n log 2/q)-deep if the following two inequalities hold:

p > B4n,(21)

p2/q > Bn2.(22)

Proof. (1) follows from Comment 6. As for (2), by the same Comment it is

enough to check that the inequalities (21)–(22) guarantee that the disk of radius

(4n log 2)/q centered at the point 2πit is contained in the domain Ω̃log
n . Denote

θ = 2πt and consider the disk B(iθ, r). Then for C > 0 and L = iθ + w where

|w| < r, r < 1, one can write:

(23)
| exp(L) − 1| − CRe(L) ≥ | exp(−iθ) − 1| − |exp(w) − 1| − C|w|

≥ 2| sin(θ/2)| − (C + 2)r.

That is, if r < 2| sin(θ/2)|/(C + 2), then the disk B(iθ, r) lies inside of Ωlog(C).

Note that | sin(θ)| ≥ 2θ/π. This shows that if we put here C = Cn = 4nB0/n

and r = rn = (4n log 2)/q, then there is B > 0, so that the inequality (21)

ensures that B(iθ, rn) lies in Ωlog
n , n > 0.

It is also easy to check that, if B is big enough, the inequality (22) means that

B(iθ, rn) is disjoint with the disk B(Rn, Rn), for n > 0, so that both inequalities

imply that B(iθ, rn) is contained in Ω̃log
n .

5.3. Uniform bound on the size of some limbs.

Theorem 5: (1) Let W be an n-hyperbolic component, and let c ∈ ∂W

have an internal argument t, such that t is n-deep. Then there is a

topological disk B(c), such that B(c) does not contain the root cW of

W and it is “roughly” a round disk around the point c: for some r,

B(c, r/4) ⊂ B(c) ⊂ B(c, 4r).

The function log ρW is univalent in B(c) and maps it onto the disk

B(2πit, d/2). Moreover, log ρW extends univalently to a topological

disk containing B(c), and maps this bigger domain onto B(2πit, d).

The limb L(W, t) is contained in B(c).

(2) There exists A > 0, such that, for every n-hyperbolic component W

and every t = p/q ∈ [−1/2, 1/2], the diameter of the limb L(W, t) is
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bounded by:

(24) diamL(W, t) ≤ A
4n

p
= A

4n

t

1

q
.

Comment 7: Part (2) is Theorem 1 stated in the Introduction. It strengthens

the bound of part (b) of Proposition 2 (off the root, i.e., if t = p/q is outside of

a neighborhood of zero).

Proof. (1) Following the Definition 5.1, one can take

B(c) = ψW (exp(B(2πit, d/2))).

We use here and later on classical distortion bounds for univalent maps, see,

e.g., [9]: if g is univalent in a disk B(0, R) and r < R, then

(25) B(g(0), α(r/R)−1r|g′(0)|) ⊂ g(B(0, r)) ⊂ B(g(0), α(r/R)r|g′(0)|),

where α(x) = (1 − x)−2.

Now (1) is an immediate consequence of the definition 5.1 and the latter

bound (with r = R/2).

(2) Let us prove the second part of the theorem. It is enough to show that

there exist M,N , such that if p > M4n, then diamL(W, t) ≤ N4n/p for all n, t.

Fix n and t = p/q. In the course of the proof Ai will denote different constants

from a finite collection of numbers. For rn = 2n log 2/q and Cn = n−14nB0 one

can write:

rn(Cn + 2)

| sin(πp/q)|
≤ A1

4n

p
.

Hence, if A14
n/p < 1/4, then by (23) the disk B(2πip/q, 2rn) is contained in

Ωlog
n . Hence, so is the disk Y := {|L − (iθ + n log 2/q)| < n log 2/q} which is

contained in B(2πip/q, 2rn). Let us introduce a map Ψ = ψW ◦exp, an inverse to

log ρW . By Theorem 4, Ψ extends to a holomorphic function in B(2πip/q, 2rn).

For every c in the limb L(W, t) there is L ∈ Y such that c = Ψ(L). Therefore,

the distance between the root of the limb and c is bounded from above by the

integral J :=
∫ L

iθ |Ψ
′(w)||dw| for some L with |L| = rn. On the other hand, by

Theorem 3,

|Ψ′(w)| ≤
π−1area({z : Gc(z) < a2−n})Cn

| exp(w) − 1| − CnRe(w)
.
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Here the area({z : Gc(z) < a2−n}) is smaller than π(1 + o(1)) as n → ∞ by

Comment 1 (b). Using (23) we can write

J ≤ (1 + o(1))Cnrn

∫ 1

0

dτ

2| sin(θ/2)| − rn(Cn + 2)τ
,

and hence

J ≤ (1 + o(1))Cn log
2| sin(θ/2)|

2| sin(θ/2)| − rn(Cn + 2)
.

Since rn(Cn + 2)/| sin(θ/2)| < 1/4 and log(1 − x)−1 ≤ 2x if 0 < x < 1/4, we

can proceed:

J ≤ (1 + o(1))Cn
rn

| sin(θ/2)|
≤ A2

4n

p

for all n. Thus it is enough to put M = 4A1 and N = A2.

Corollary 5.1: For any sequence

t0, t1, . . . , tm, . . .

of rational numbers tm = pm/qm ∈ [−1/2, 1/2] the following holds. Let W by

a n-hyperbolic component. Let W 0 = W , Wm = Wm−1(tm−1), m = 1, 2, . . .

(i.e., the hyperbolic component Wm touches the hyperbolic component Wm−1

at a point with the internal argument tm−1), so that Wm is nm-hyperbolic

component where the periods n0 = n, nm = nq0 · · · qm−1. Assume that

(26) lim sup
m→∞

pm/4
nm = ∞.

Then the limbs L(Wm, tm) shrink to a unique point c∗, in particular, the Man-

delbrot set is locally connected at c∗.

Proof. By the previous result, diamL(Wm, tm) → 0 along a subsequence.

Hence, L(Wm, tm) shrink to a point c∗. The local connectivity follows because

these limbs form a shrinking sequence of connected neighborhoods of c∗.

6. Selecting internal arguments

6.1. Bifurcations. Throughout this subsection, we consider the following situ-

ation. Let W be a n-hyperbolic component, and let c0 ∈ ∂W have an internal

argument t0 = p/q 6= 0.

Let O(c) = {bj(c)}
n
j=1 be the periodic orbit of fc which is attracting when

c ∈ W . Then all bj(c) as well as the multiplier ρ(c) are holomorphic in W and

extend to holomorphic functions in c near c0 (in fact, in the whole wake of W ).
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As we know, the multiplier ρ(c) is injective near c0. Denote the inverse function

by ψ(ρ), ψ(exp(2πt0)) = c0. ψ is well-defined in Ω̃n, that includes the unit disk

and a neighborhood of the point ρ0 = exp(2πit0).

Consider now the wake of the nq-hyperbolic component W (t0) (by definition,

it tangents W at the point c0). By Douady–Hubbard theory [5], the root c0 of

W (t0) is the landing point of precisely two external rays of M . Denote their

arguments by τ(c0), τ̃(c0). For every c in the wake of W (t0), we have the

following picture in the dynamical plane of fc: two external rays of fc with the

arguments τ(c0) and τ̃ (c0) land at one point (denote it bn(c)), which is a point

of the repelling periodic orbit O(c). It implies also that c lies in a component

of the plane minus these two external rays which does not contain the origin.

Indeed, by the formula for the uniformization map of the exterior of M [4], this

is true for those c in the wake of W (t0) which are outside of the Mandelbrot

set. Hence, it must be true throughout the wake because c cannot cross the

external rays as well as their landing point bn(c).

We will make use also of a well-known formula [1], [16]:

(27) |τ(c0) − τ̃(c0)| =
(β − α)(2n − 1)

2nq − 1
,

where β, α ∈ {0, 1, 2, . . . , 2n − 1} are two “digits” determined by W .

Next statement is combinatorial (cf. [3]).

Lemma 6.1: Let c be a point of a limb L(W, t′) with some t′ = p′/q′ and q′ > 2.

Assume that fc has a periodic point of period nQ with the multiplier 1. Then

Q ≥ q′ − 1.

Proof. Consider the dynamical plane of fc. The critical value c belongs to a

petal of a. Since c lies in the sector bounded by the two external rays with

arguments τ(c′), τ̃ (c′) where c′ is the root of L(W, t′), then a is in the same

sector, too. On the other hand, a is a landing point of two external rays fixed

by fnQn . Therefore, there must be |τ(c′)− τ̃ (c′)| > (2nQ−1)−1. If we now apply

formula (27), we get nQ ≥ nq′ − 2n+ 1, that is, Q ≥ q′ − 1.

The next lemma describes the bifurcation near the parameter c0, cf. [3], [10].

Lemma 6.2: There exist a small disk U around the origin, a neighborhood V of

the cycle O(c0), and n functions Fk(s), k = 1, . . . , n, which are holomorphic in

U , such that Fk(0) = 0, F ′
k(0) 6= 0 and, for every s ∈ U and every ρ = ρ0 + sq,
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the points

bk(c0) + Fk(s exp(2πj/q)), k = 1, . . . , n, j = 0, . . . , q − 1

are the only fixed points of fnqc in the neighborhood V different from O(c),

where c = ψ(ρ0 +sq) and ρ is the multiplier of O(c). They form a periodic orbit

of fc of period nq.

Proof. Introduce

p(c, z) =
fnqc (z) − z

fnc (z) − z
.

It is a polynomial in z and c. As we also know, the function c = ψ(ρ) satisfies

another polynomial equation R(c, ρ) = 0, see the proof of Theorem 4. Hence,

periodic points of period n form an algebraic function in ρ: they satisfy a

polynomial equation of the form

(28) p̃(ρ, z) = 0.

For every k, the point (ρ0, bk(c0)) with ρ0 = exp(2πit0) is a singular point of p̃.

Hence, there exist a local uniformizing parameter s and co-prime i, j, such that

every solution of (28) in a small enough neighborhood of the singular point, has

the form

ρ− ρ0 = si, z − bk(c0) = Fk(s),

where

Fk(s) = rks
j +O(sj+1)

is a holomorphic function near 0, rk 6= 0. Let us show that, necessarily, i = q,

j = 1.

We introduce a new (local) variable w = L(z) = z − bk(c) and consider

conjugate map

g(ρ, w) = L ◦ fnc ◦ L−1(w),

where c = ψ(ρ). Then for all ρ near ρ0 and w near 0,

(29) g(ρ, 0) = 0,
∂g

∂w
(ρ, 0) = ρ.

Now consider gq. Then

gq(ρ0, w) = w +Awq+1 +O(wq+2),

where A 6= 0. Taking this into account we obtain, using (29),

(30) gq(ρ, w) − w = (ρq − 1)w +O((ρ − ρ0)w
2) +Awq+1 +O(wq+2) A 6= 0.
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On the other hand, bk(c)−bk(c0) = O(ρ−ρ0) = O(si) so that a pair of functions

(31) (ρ− ρ0 = si, w = rks
j +O(sj+1) +O(si))

is a solution of the equation (gq(ρ, w) − w)/w = 0. Substituting this pair of

functions of s into (30) we arrive at the conclusion that i = jq.

Thus, locally, (near (ρ0, bk(c0))) the algebraic function (ρ, z) has the form

ρ− ρ0 = sq, z − bk(c0) = Fk(s) = F ′
k(0)s+O(s2), F ′

k(0) 6= 0.

Now, nq points bk(c0) + Fk(s exp(2πj/q)), k = 1, . . . , n, j = 0, . . . , q − 1 are

fixed by fnqc and are close to the n-cycle of fc0 with a multiplier a primitive

q-root of 1. Therefore, they form a single nq-periodic orbit.

The following two lemmas allow us to connect the multiplier ρ with the mul-

tiplier of a periodic orbit after the bifurcation. In the first one we use an idea

of [3] although our proof is more involved. The reason is that the limb L(W, t0)

can contain more than one hyperbolic components of period nq or less (which

is impossible in case n = 1 considered in [3]).

Lemma 6.3: There exists Q, as follows. For all q > n > 0, q > Q, if the disc

B(ρ0, (9/10)q) is contained in Ω̃n, then each function Fk extends to a holomor-

phic function in the disk {|s| < 9/10}. Moreover, the domain ψ(B(ρ0, (9/10)q))

is disjoint with any limb L(W, p′/q′) which is different from L(W, t0) and such

that q′ ≤ q+1. The multiplier ρW (t0) of the nq-periodic orbit has a well-defined

analytic extension from the hyperbolic component W (t0) to the union of the

limb L(W, t0) and the domain ψ(B(ρ0, (9/10)q)).

Proof. Denote B = B(ρ0, (9/10)q). Since B ⊂ Ω̃n, then ψ is defined and

univalent in B. Denote B̃ = ψ(B).

We prove by several steps that the function Fk(s) extends to a analytic func-

tion in {|s| < 9/10}.

1. B̃ is disjoint with all the limbs L(W, t′) of W different from L(W, t0), such

that t′ = p′/q′ and q′ ≤ q + 1. Indeed, let us project the disk B by log. Since

(9/10)q is very small, the projection is (asymptotically) a disk B(2πit0, (9/10q)).

If q > n and q is big enough, (9/10)q < r0 := 1/(nq2(q + 1)). On the other

hand, doing a simple calculation similar to [3] we see that for all n, q, the ball

B(2πit0, r0) is disjoint with every Yoccoz circle that touches the vertical line at

a point 2πip′/q′ with some q′ ≤ q + 1. The claim follows.
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2. Assume the contrary: there exists a path γ in B that connects 0 and some

s1, such that Fk cannot be extended analytically through s1. Since (ρ(s), a(s))

where ρ(s) − ρ0 = sq, z(s) − bk(c0) = Fk(s) satisfy a polynomial equation, the

function Fk has an analytic continuation along every curve unless it meets a

singular point. Therefore, the point (ρ1, a), such that ρ1 := ρ(s1) and a :=

bk(c0) + Fk(s1) is so that a is a fixed point of fnqc1 (c1 = ψ(ρ(s1))) with the

multiplier 1.

Let us see where c1 ∈ B̃ can be situated. By Lemma 6.1, c1 belongs either to

L(W, t0) or to some L(W, p′/q′) other than L(W, t0) and such that q′ ≤ q + 1.

The latter possibility is excluded by Step 1. Thus c1 ∈ L(W, t0).

3. Consider the image Γ of the path γ by the map ψ(ρ0 + sq). It connects

the root c0 = c(W, t0) of L(W, t0) to c1. The curve Γ cannot belong completely

to the wake W ∗∗ := W (t0)
∗ (which contains the limb L(W, t0)). The reason

is that, as we know, the point a(s) extends analytically to this wake. Assume

for a moment that there is another curve Γ1 that connects c1 and c0 inside the

wake W ∗∗ and such that it lies in B̃. Let us deform (keeping the end points

fixed) the curve Γ1 to Γ inside B̃. If along the way we will not meet another

singular point, then it will contradict the fact that the point c1 is singular for

a(s). Hence, we must meet another singular point. It must also belong to the

limb L(W, t0). Then we can replace Γ1 by another curve that connects c0 and

c1 inside W ∗∗ and inside B, such that Γ1 can be deformed to Γ inside B without

meeting singular points, a contradiction.

We conclude that there exists a curve Γ1 connecting c0 and c1 inside the

wake W ∗∗, such that it leaves B̃ (and then comes back to c1), such that when

we deform Γ1 to Γ we meet a singular point c2, which belongs to another limb

L(W, p2/q2) with q2 ≤ q + 1. Then the continuum L(W, p2/q2) contains the

points c2 and its root and is disjoint with L(W, t0), therefore, L(W, p2/q2) must

cross B̃, a contradiction to the fact that B̃ is disjoint with all such limbs.

This proof also shows that the results of analytic extension of the function

ρW (t0)(c), c ∈ W (t0), along a curve in the limb L(W, t0) and a curve in the

domain B̃ are the same provided the curves have the same ends.

Definition 6.1: The latter lemma shows that for every ρ such that |ρ − ρ0| <

(9/10)q, the points bk(c0) + Fk(sj), k = 1, . . . , n, j = 0, . . . , q − 1, where sj are

the q different roots of the equation ρ − ρ0 = sq, form a nq-cycle of fc where
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c = ψ(ρ). We denote this periodic orbit by Oq(c). As c = c0, it coincides with

the n-cycle O(c0).

Definition 6.2: If A,B are two sets in the plane, we say that A is δ-close to B

and denote it by d(A,B) < δ if and only if for every point a ∈ A there exists a

point b ∈ B, such that |a− b| < δ.

Comment 8: The function d is not symmetric. On the other hand, it is easy to

check the triangle inequality: if d(A,B) < δ1 and d(C,A) < δ2, then d(C,B) <

δ1 + δ2.

For t0 = p/q, denote

(32) Bt0 = B(exp(2πit0), (9/10)q).

By (14), one can assume that |c| < 3. If z is a periodic point of fc we then

have |z| ≤ 3. Now the Schwarz Lemma gives us:

Corollary 6.1: For every ρ ∈ Bt0 , where t0 is as in Lemma 6.3, and for every

s such that ρ− ρ0 = sq and |s| < 9/10, we have, for c = ψ(ρ):

d(Oq(c), O(c0)) < 7|s|,

d(O(c), O(c0)) < 6
(10|s|

9

)q

.

Denote by λ(ρ) the multiplier of the periodic orbit Oq(c) for c = ψ(ρ). In

other words, λ = ρW (t0) ◦ ρ
−1 whenever it is well defined.

It follows from, for instance, Lemma 6.2 that λ is defined and holomorphic

near ρ = ρ0. Moreover, by [10],

dλ

dρ
(ρ0) = −

q2

ρ0
.

This formula can also be derived directly from (30) with help of (31) where

i = q, j = 1.

Lemma 6.3 tells us that, for q > n > n0, the function λ is holomorphic in Bt0 .

But it is not necessarily univalent there. On the other hand, to choose next

internal argument, we need that the image by λ is not small. This is proved in

the next statement.

Lemma 6.4: For every real T ∈ (−1/2, 1/2], the equation λ(ρ) = exp(2πiT )

has at most one solution ρ in Bt0 , and for such a solution the corresponding
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c = ψ(ρ) lies on the boundary of the nq-hyperbolic component W (t0), which

tangents W at the point c0 = ψ(2πit0). The following covering property holds:

for every r ≤ (9/10)q, the image of the disk B(exp(2πit0), r) under the map λ

covers the disk B(1, q2r/16).

Proof. Let λ(ρ1) = exp(2πiT1) for some real T1. Lemma 6.3 tells us that ψ(Bt0)

is disjoint with any p′/q′-limb of W other than L(W, t0), where q′ ≤ q + 1. On

the other hand, for c1 = ψ(ρ1), the map fc1 has nq-periodic orbit Oq(c1) with

the multiplier ρ1 = exp(2πiT1). Therefore, c1 ∈ L(W, t) and moreover it lies

in the boundary of an nq-hyperbolic component. This hyperbolic component

belongs to some limb L(W, t′), t′ = p′/q′, where, by the above, q′ > q + 1. If

t′ 6= t0, then L(W, t′) contains a parameter c̃ on the boundary of this component,

such that fc̃ has a nq-periodic orbit with the multiplier 1. By Lemma 6.1,

q ≥ q′ − 1, in contradiction with the previous condition q′ > q + 1 or t′ = t0.

Thus c1 is in the limb L(W, t0). Hence, it lies in the boundary of some nq-

hyperbolic component belonging this time to L(W, t0). On the other hand,

the multiplier of the periodic orbit Oq(c) is bigger on modulus than 1 off the

closure of the component W (t0). Thus the hyperbolic component containing c1

in its boundary is just W (t0). Since the corresponding multiplier is injective

on the boundary, it means that ρ1 is the only solution of the equation λ(ρ) =

exp(2πiT1).

To prove the covering property, given r ≤ (9/10)q, consider a functionm(w) =

(q2r)−1(λ(ρ0+rw)−1). It is holomorphic in the unit disk, m(0) = 0, |m′(0)| = 1

and, by the proven part of the statement, m(w) = 0 if and only if w = 0.

Therefore, by a classical result (Caratheodory–Fekete, see, e.g., [9]), the disk

B(0, 1/16) is covered by the image of the unit disk under the map m. This is

equivalent to the covering property.

6.2. Nonlocally connected Julia sets. Our aim is to prove Theorem 2

stated in the Introduction. We will do it in a few steps. The main one consists

of proving the following result.

Theorem 6: There exists Q, such that, for every n > 0 the following holds. Let

t0, t1,. . . ,tm,. . . be a sequence of rational numbers tm = pm/qm ∈ (−1/2, 1/2).

Denote n0 = n, nm = nq0q1 · · · qm−1 for m > 0.
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(a) Assume that, for everym, we have: qm > nm, qm > Q, and tm is (nm, dm)-

deep, with dm > 1/(nmq
3
m), see Definition 5.1, and, moreover, |tm|1/qm−1 < 1/2,

m = 1, 2, . . .;

Let W be n-hyperbolic components.

(1) Denote W 0 = W , Wm = Wm−1(tm−1), m = 1, 2, . . . (i.e., the hyperbolic

component Wm touches the hyperbolic component Wm−1 at a point with the

internal argument tm−1). Then (a) implies that the limbs L(Wm−1, tm−1) form

a nested sequence of compact sets with the intersection a unique point c∗.

If, in addition to (a), we also assume:

(b)
∞
∑

m=1

|tm|1/qm−1 < 4−n/16,

then:

(2) the map fc∗ is infinitely renormalizable with non locally connected Julia

set.

We begin the proof with some notations.

∆ = 4−n/16, εm = |tm+1|
1/qm , ψm(w) = ψWm(exp(w)), m = 0, 1, . . . ,

cm = ψm(2πitm),m = 0, 1, . . . .

Note that cm is the point in the boundary of Wm with the internal argument

tm.

Since tm is nm-deep, the function ψm extends in a univalent fashion to

B(2πitm, dm).

Remind that

B(cm) = ψm(B(2πitm, dm/2)).

By Theorem 5, each B(cm) is “roughly” a round disk around the point cm:

B(cm, rm/4) ⊂ B(cm) ⊂ B(cm, 4rm),

where rm = |ψ′
m(2πitm)|dm/2. Denote

Bm = ψm(B(2πitm, (9/10)qm)),

Dm = ψm(B(2πitm, |tm+1|)),

D′
m = ψm(B(2πitm, 100|tm+1|)).

If r/dm ≤ 1/2, then ψm(B((2πitm, r)) is “roughly” a disk:

B(cm, 4
−1r|ψ′

m(2πitm)|) ⊂ ψm(B((2πitm, r)) ⊂ B(cm, 4r|ψ
′
m(2πitm)|).
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Note also that by the condition (a) all qm are big provided Q is big, and dm >

1/(nmq
3
m).

It implies 100|tm+1|/(9/10)qm and (9/10)qm/dm are small (for Q big enough),

Bm, Dm and D′
m are “roughly” disks (around cm), and for m = 0, 1, . . .,

Dm ⊂ D′
m ⊂ Bm ⊂ B(cm),

and, moreover, the diameter of each previous set is much smaller than the

diameter of the next one.

Lemma 6.5: There is Q, such that, for qm > nm and qm > Q the following

holds.

(i) cm+1 ∈ Dm,

(ii) B(cm+1) ⊂ D′
m.

Proof. We can use Lemmas 6.3–6.4 because (9/10)qm < 1/(nmq
3
m) if qm > nm

big enough. Consider the function λ = ρWm+1 ◦ ψm. Then λ is holomorphic

in B(2πitm, (9/10)qm) and since qm > nm and |tm+1| = εqm
m < (1/2)qm , then

λ(B(2πitm, |tm+1|)) covers the disk B(1, q2m|tm+1|/16). If qm > 16 and tm+1 is

small enough, then

exp(2πitm+1) ∼ 1 + 2πitm+1 ∈ B(1, q2m|tm+1|/16).

Therefore, by the first part of Lemma 6.4, the point

cm+1 = ψm+1(2πitm+1) ∈ ψm(B(2πitm, |tm+1|)) = Dm.

To prove that B(cm+1) is contained in the bigger disk D′
m, let us notice that

by part (1) of Theorem 5, the root cm of Wm+1 is outside of B(cm+1), and

B(cm+1) is “roughly” a disk around cm+1. Hence,

B(cm+1) ⊂ B(cm+1, 16|cm+1 − cm|) and B(cm+1) ⊂ B(cm, 17|cm+1 − cm|).

Let us estimate |cm+1 − cm|. We use the distortion bounds for univalent

maps (25). Denote δm = 2|tm+1|/dm. Since cm+1 ∈ Dm, then |cm+1 − cm| <

δmα(δm)rm where α(x) = (1 − x)−2. Thus B(cm+1) ⊂ B(cm, 17δmα(δm)rm).

On the other hand, D′
m = ψm(B(2πitm, 100|tm+1|) contains the disk

B(cm, 100δm(α(100δm))−1rm).

We conclude that if δm < x0 where x0 > 0 is the solution of equation

100(1 − 100x0)
2 = 17(1 − x0)

−2,
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then

B(cm+1) ⊂ B(cm, 17δmα(δm)rm) ⊂ B(cm, 100δm(α(100δm))−1rm) ⊂ D′
m.

The condition δm < x0 means that 2|tm+1| < dmx0. This holds if (9/10)qm <

(dm/2)x0 which is apparently always the case if qm is big enough. Thus if Q is

big, the conclusion (ii) holds. The lemma is proved.

The latter lemma implies that for all m,

D′
m+1 ⊂ Bm+1 ⊂ B(cm+1) ⊂ D′

m.

Since the limb L(Wm, tm) is contained in B(cm) and the diameters ofD′
m is by a

definite factor smaller than the diameter of B(cm), we conclude that the limbs

L(Wm, tm) shrink to a point c∗. This proves conclusion (1) of the theorem.

Moreover, we have:

{c∗} =

∞
⋂

m=0

Bm =

∞
⋂

m=0

D′
m.

Based on this and on Lemma 6.1, it is not difficult to prove the conclusion

(2).

Indeed, let us denote by Om(c) the nm-periodic orbit of fc, which is attracting

if c ∈ Wm, m = 0, 1, 2, . . .. As we know, Om extends holomorphically for c in the

wake (Wm)∗ of Wm. Moreover, Lemma 6.3 tells us that for each m = 0, 1, 2, . . .,

the orbit Om+1 extends holomorphically to the disk Bm near the root cm of the

wake (Wm+1)∗.

Since c∗ ⊂ D′
m ⊂ Bm and cm+1 ⊂ Dm, Corollary 6.1 allows us to write:

(33) d(Om(c∗), Om(cm)) < 6(
10(100)1/qmεm

9
)qm < 6(2∆)qm < ∆

and

(34) d(Om+1(cm+1), Om(cm)) < 7εm.

By the triangle inequality for d, we get from ( 34):

d(Om+1(cm+1), O0(c0)) < 7
m

∑

k=0

εk

and then ( 33) implies

(35) d(Om+1(c∗), O0(c0)) < 7

m
∑

k=0

εk + ∆ < 8∆.
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On the other hand, since O0(c0) is a neutral n-periodic orbit of fc0 , the

distance of O0(c0) to zero is bigger than 4−n. Hence, we have: if ∆ = 4−n/16,

then, for all m = 0, 1, 2, . . ., every point of Om(c∗) is away from the origin by

the distance at least 4−n/2.

It is known that this implies the nonlocal connectivity of Jc∗ (see [23] for a

detailed proof, although our description is closer to [19]). Let us outline a proof.

Denote by τm, τ
′
m two external arguments in the c-plane to the root cm of the

wake of Wm. By the formula (27), |τm+1 − τ ′m+1| ≤ (2nm)2/(2nmqm − 1) → 0

as m→ ∞, that is τm, τ
′
m tend to some τ∗.

On the other hand, for every c in the wake of Wm+1, we have the following

picture in the dynamical plane of fc (see beginning of the present section): two

external rays of fc with arguments τm+1 and τ ′m+1 land at a single point bm(c),

which is a point of the repelling periodic orbit Om(c). Moreover, c lies in the

sector bounded by these two external rays and disjoint with the origin.

Now assume that the Julia set of fc∗ is locally connected. Then this discussion

implies that, in the dynamical plane of fc∗ , the external argument of c∗ is equal

to τ∗ and since τm → τ∗, also bm(c∗) → c∗. Taking a preimage by fc∗ , it

gives us a sequence of points of the sets Om(c∗) which tends to the origin, a

contradiction with the fact that the orbits Om(c∗) stay away from the origin.

6.3. Proof of Theorem 2. Here we prove a more general Theorem 7. Theo-

rem 2 stated in the Introduction is an immediate corollary of this together with

Definition 5.1 and sufficient conditions (21)–(22).

Theorem 7: Let n ≥ 1. Let

t0, t1, . . . , tm, . . .

be any sequence of rational numbers tm = pm/qm ∈ (−1/2, 1/2] which satisfies

the following properties. Denote n0 = n, nm = nq0 · · · qm−1, m > 0. Assume

that, for all m large enough, qm > nm and tm is (nm, dm)-deep with dm >

1/(nmq
3
m), and also

(36)

∞
∑

m=1

|tm|1/qm−1 <∞.

Given a hyperbolic component W of the Mandelbrot set of period n, consider

a sequence of hyperbolic components Wm: W0 = W , and, for m > 0, Wm =

Wm−1(tm−1), i.e., Wm touches the hyperbolic component Wm−1 at a point
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cm−1 with the internal argument tm−1. For every m, consider the tm-limb

L(Wm, tm) of Wm (it contains Wm+1). Then the sequence of limbs L(Wm, tm)

shrink to a unique point c∗, the Mandelbrot set is locally connected at c∗, and

the map fc∗ is infinitely renormalizable with nonlocally connected Julia set.

Let m0 be large enough, so that |tm+1| < (1/2)qm and tm is nm-deep for

every m ≥ m0. Then the sequence tm0
, . . . , tm, . . . satisfies the conditon (a) of

Theorem 6 with n = nm0
. Hence, by the conclusion (1) of Theorem 6 the limbs

L(Wm, tm) shrink to a unique point c∗.

It remains to show that the Julia set Jc∗ of fc∗ is not locally connected.

We show that whether Jc∗ is locally connected or not depends only on the tail

of the sequence t0, . . . , tm, . . .. Let us introduce the following notation. Let

W0 be the 1-hyperbolic component (the main cardioid). Given k, let us start

with the component W0 and the tail Tk = {tk, tk+1, . . .} in place of W and

{t0, t1, . . .}. Then we get a sequence of hyperbolic components W k,m
0 , m ≥ k,

where W k,k
0 = W0 and, for m > k, the component W k,m

0 touches W k,m−1
0 at

the point with internal argument tm−1. We have proved that, for every k ≥ m0,

the sequence of limbs L(W k,m
0 ), m = k, k + 1, . . . shrinks to a unique point ck∗ .

Now, we have

Proposition 4: For every k large enough, the Julia set of fck
∗

is not locally

connected.

Proof. Choose k big enough so that

∞
∑

m=k

|tm+1|
1/qm < 4−1/16,

and apply Theorem 6 to n = 1 and to the sequence {tk, tk+1, . . .}.

Let us come back to the map fc∗ . The next statement will finish the proof

that Jc∗ is not locally connected.

Proposition 5: For every k, there is a restriction fnk
c∗ : Uk → Vk, such that

this is a polynomial-like map of degree 2, which is quasi-conformally conjugate

to fck
∗

.

Proof. Consider first the wake of W k−1. For c in this wake, fc has a periodic

orbit Ok−1(c) of period nk−1 which is attracting if and only if c ∈ W k−1 and

is holomorphic in c. Now consider the wake (W k)∗ of the next component
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W k. Denote also ak the root of W k. If c = ak, then Ok−1(ak) is neutral

with the multiplier exp(2πitk−1): there are qk−1 petals attached to each point

of Ok−1(ak), and f
nk−1

ak acts (locally) on them as a rotation with the nota-

tion number tk−1. If c ∈ (W k)∗, then Ok−1(c) is repelling, and has the rota-

tion number tk−1. There exists a point bk−1(c) of Ok−1(c), such that for c ∈

(W k)∗ ∪ {ak}, there are two external rays Rk(c), R̃k(c) of arguments τ(ak),

τ̃ (ak) landing at bk−1(c), such that the component of the plane bounded by

these two rays that contains c contains no other ray to the orbit. There are two

topological disks c ∈ S′
k(c) ⊂ Sk(c), such that, Sk(c) is bounded by bk−1(c),

the rays Rk(c), R̃k(c) and by some equipotential, and fnk
c : S′

k(c) → Sk(c) is

a proper map of degree 2. By a “thickening” of Sk(c), one can turn it into a

polynomial-like map Pk,c : Uk,c → Vk,c, see [20] for details.

If c ∈ B := {c∗} ∪
⋃∞
m=k(W

m ∪ {ak}), we claim that the Julia set of

Pk,c : Uk,c → Vk,c is connected. Indeed, consider the iterates fnkj
c (c), j =

0, 1, . . .. If c is close to ak and in W k, then they converge to bk(c). On the other

hand, neither of these iterates cannot cross the boundary of S′
k(c) when c ∈ B,

because fc is not Misiurewich map for such c. This proves the claim.

By the Straightening Theorem [6], for every c ∈ B, there is a unique ν(c) ∈M ,

such that Pk,c : Uk,c → Vk,c is hybrid equivalent to fν(c). Moreover, by [6],

the map c 7→ ν(c) is continuous (it follows essentially from the compactness

of K-quasiconformal maps and Proposition 7 of [6]). We need to show that

ν(c∗) = ck∗ . By continuity, it is enough to show that, for every root am with

m > k, ν(am) is the root akm of the hyperbolic component W k,m
0 . Let us prove

it by induction on m.

(1) m = k+1. Notice that if c is close to ak and inW k, then Pk,c : Uk,c → Vk,c

has an attracting fixed point: the point bk(c) of Ok(c) which lies in S′
k(c) and

coincides with bk−1(c) when c = ak. This attracting fixed point persists as

c ∈ W k (periodic points cannot leave S′
k(c)), and when c = ak+1, it has the

multiplier exp(2πitk). Hence, the conjugate map fν(ak+1) has a neutral fixed

point, and it interchanges the petals at this point with the same rotation number

tk. It follows that ν(ak+1) = akk+1, the unique point in the boundary of the

main cardioid with the internal argument tk.

(2) Assume that ν(am) = akm holds for some m ≥ k + 1. Then a similar

argument shows that ν(am+1) = akm+1.
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6.4. Maps with unbounded combinatorics. Let us consider the case n = 1,

that is we start with the main cardioid. Then we can reformulate Theorem 2

as follows.

Theorem 8: Let a sequence pm/qm, m = 0, 1, . . ., of nonzero rational numbers

in (−1/2, 1/2) be such that:

∞
∑

m=1

|
pm
qm

|1/qm−1 <∞,

pm > B4nm , Bn2
m <

p2
m

qm
,

for all m large enough, where nm = q0 · · · qm−1.

Let fc be an infinitely renormalizable polynomial with the following combi-

natorial data.

(a) The renormalization periods consists of the sequence {nm}
∞
m=1.

(b) Denote J0 = J(fc), and, for every m > 0, Jm be the Julia set of the

renormalization of period nm, which contains 0. Let αm and βm be the α (i.e.,

separating) and β (i.e., nonseparating) fixed points of fnm
c : Jm → Jm. We

assume that, for every m, βm+1 = αm, and the rotation number of αm with

respect to the map fnm
c : Jm → Jm is equal to pm/qm.

Then there exists a unique polynomial which satisfies the conditions (a)–(b).

Its Julia set is not locally connected.

Comment 9: Corollary 5.1 can be generalized as follows. Let f admit a sequence

of simple renormalizations of periods nm and with the corresponding rotation

numbers pm/qm. If lim log pm/nm > 0, then f is rigid.

In turn, by a refinement of the proof of Theorem 2, one can get rid of as-

sumption (2). The conclusion will be that the sequence cm converges to some

c∗, and Jc∗ is not locally connected. See [17].
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