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ABSTRACT

Let N ≥ n+1, and denote by K the convex hull of N independent standard

gaussian random vectors in R
n. We prove that with high probability, the

isotropic constant of K is bounded by a universal constant. Thus we verify

the hyperplane conjecture for the class of gaussian random polytopes.

1. Introduction

The hyperplane conjecture suggests a positive answer to the following question:

Is there a universal constant c > 0, such that for any dimension n and for any

convex set K ⊂ R
n of volume one, there exists at least one hyperplane H ⊂ R

n

with Voln−1(K ∩H) > c? Here, of course, Voln−1 denotes (n − 1)-dimensional

volume.

This seemingly innocuous question, considered two decades ago by Bourgain

[4, 5], has not been answered yet. We refer the reader to, e.g., [2], [19] or [15]
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for partial results, history and for additional literature regarding the hyperplane

conjecture. In particular, there are large classes of convex bodies for which an

affirmative answer to the above question is known. These include unconditional

convex bodies [4, 19], zonoids, duals to zonoids [2], bodies with a bounded outer

volume ratio [19], unit balls of Schatten norms [16] and others (e.g., [12, 18]).

A potential counter-example to the hyperplane conjecture could have stem-

med from random convex bodies, that typically belong to none of these classes.

Recall that, starting with Gluskin’s work [9], random polytopes are a major

source of counter examples in high-dimensional convex geometry (in addition

to the distance problem [9], one has, e.g., the basis problem [24] or the gaussian

perimeter problem [20]). The goal of this short note is to show that gaussian

random polytopes, and related models of random convex sets, do not constitute

a counter-example to the hyperplane conjecture.

Suppose K ⊂ R
n is a convex body. The isotropic constant of K, denoted here

by LK, is defined by

(1) nL2
K = inf

T :Rn→Rn

1

Voln(K)1+2/n

∫

K
|Tx|2dx,

where the infimum runs over all volume-preserving affine maps T : R
n → R

n,

and | · | stands for the standard Euclidean norm in R
n. Directly from the

definition, the isotropic constant is invariant under affine transformations. It is

well-known (see [11] or [19]) that when Voln(K) = 1,

(2) c1/LK ≤ inf
T :Rn→Rn

sup
H⊂Rn

Voln−1(TK ∩H) ≤ c2/LK,

where the infimum runs over all volume-preserving affine maps T : R
n → R

n,

the supremum runs over all hyperplanes H ⊂ R
n, and c1, c2 > 0 are some uni-

versal constants. Throughout the text, the symbols c, C, c′, C′, c1, c2 etc. denote

various positive universal constants, whose value may change from one line to

the next.

Thus, according to (2), the hyperplane conjecture is equivalent to the exi-

stence of a universal upper bound for the isotropic constant of an arbitrary

convex body in an arbitrary dimension. It is well-known that LK > c for any

finite-dimensional convex body K (see, e.g., [19]). The best known general upper

bound is LK < Cn1/4 for a convex body K ⊂ R
n (see [15] and also [6], [7] and

[8]).
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There are two natural models for random convex bodies (a body is a compact

with non-empty interior). In the centrally-symmetric context, the first model is

the symmetric convex hull of N random independent points, while the second

(its dual), is the intersection ofN random strips. For the second model, however,

it is quite easy to demonstrate the hyperplane conjecture (say, in the gaussian

model). Indeed, if N ≥ 2n, then a simple calculation shows that it has a

bounded outer volume ratio, and hence has a bounded isotropic constant (see

[19]). If n ≤ N < 2n, then the hyperplane conjecture holds deterministically

whenever the resulting set is a body, according to [13]. Thus we will focus on

the first model.

We say that a random vector X = (X1, . . . , Xn) ∈ R
n is a standard gaussian

vector if its coordinatesX1, . . . , Xn are independent, standard normal variables.

Theorem 1.1: Let n ≥ 1, N ≥ n and let G0, . . . , GN be independent standard

gaussian vectors in R
n. Denote

K = conv{G0, . . . , GN} and T = conv{±G1, . . . ,±GN}

where conv denotes convex hull. Then, with probability greater than 1−Ce−cn,

LK < C and LT < C.

Here, C, c > 0 are universal constants.

Let us sketch the proof in the case that N > n2 (for smaller N the argument

is only slightly more opaque). It is easy to see that in this case the radius

of the inscribed ball is, with high probability, ≥ c
√

logN — just calculate

the probability that in a given direction all points are inside a strip of width

ε
√

logN and do a union-bound over a dense net in Sn−1. On the other hand,

with probability 1 all faces of K are (n − 1)-dimensional simplices. Further,

with high probability all centers of gravity of all simplices are with distance

≤ C
√

logN from 0 — the center of gravity of each simplex is a gaussian vector

whose coordinates have variance 1/n, and again all that is needed is to do a

union-bound over all n-tuples of vertices. The concentration of the volume of

a simplex around its center of gravity shows that almost all the mass is within

distance of ≈
√

logN which implies the required estimate for LK.

On first glance it seems that some miracle is at work — why should we get

the same
√

logN in the lower and upper bound? However, this is some mani-

festation of the phenomenon that the maximum of many independent variables
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is strongly concentrated. Of course, the different faces of our body are not in-

dependent, but it turns out that they are sufficiently independent to display a

similar concentration phenomenon. Thus our proof is robust and would admit

direct generalizations to other types of distributions, in place of the standard

gaussian distribution. We will prove it for some other distributions that include

the uniform distribution on the cube and on its corners {±1}n, see Theorem

3.2 below. The technique should also work for points uniform on Sn−1.

Acknowledgement. We would like to thank Jean Bourgain for motivating us

to work on this problem. BK would also like to thank Alain Pajor for discussions

on the subject.

2. Simplices

In this section, we assume that N ≥ n ≥ 1 are integers, and that G0, . . . , GN are

independent random vectors in R
n which need not be identically distributed.

We write Gi = (Gi,1, . . . , Gi,n) ∈ R
n, and we make the following assumptions

regarding G0, . . . , GN :

(∗a) The random variables Gi,j (i = 0, . . . , N, j = 1, . . . , n) are independent.

(∗b) For any i = 0, . . . , N, j = 1, . . . , n,

EGi,j = 0, EG2
i,j = 1 and E exp

(

G2
i,j/10

)

≤ 10.

(∗c) The Gi (i = 0, . . . , N) are absolutely continuous with respect to the

Lebesgue measure on R
n.

The constant 10 plays no special role. Note that (∗a), (∗b) and (∗c) hold when

G0, . . . , GN are independent standard gaussian vectors. Our main technical tool

is the following Bernstein’s inequality for variables with exponential tail (“ψ1”),

see, e. g. [3] or [26, Section 2.2.2].

Theorem 2.1: Let L > 0, let m ≥ 1 be an integer, and let X1, . . . , Xm be

independent random variables with zero mean. Assume that

E exp(|Xi|/L) ≤ 20 for 1 ≤ i ≤ m.

Then, for any t > 0,

P

{
∣

∣

∣

∣

1

m

m
∑

i=1

Xi

∣

∣

∣

∣

> t

}

≤ 2 exp(−cmmin{t/L, t2/L2}),

where c > 0 is a universal constant.
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The following lemma is a consequence of Theorem 2.1.

Lemma 2.2: Fix 0 ≤ k1 < k2 < · · · < kn ≤ N . Then,

(i) P

{

∣

∣

1
n

∑n
i=1Gki

∣

∣ > C
√

log 2N
n

}

<
(

n
10N

)n
,

(ii) P

{
∣

∣

∣

1
N+1

∑N
i=0Gi

∣

∣

∣
> C

√

log 2N
n

}

<
(

n
10N

)n
,

(iii) P

{

1
n2

(

|
∑n

i=1Gki
|2 +

∑n
i=1 |Gki

|2
)

> C log 2N
n

}

<
(

n
10N

)n
.

Here, C > 0 is a universal constant.

Proof. Fix 1 ≤ i, j ≤ n. We have, for an integer p ≥ 1,

E(Gki,j)
2p = (10pp!) · E

(G2
ki,j

/10)p

p!
≤ (10pp!) · EeG2

ki,j/10
(∗b)

≤ p! · 100p.

We use the inequality xp/p! + xp+1/(p + 1)! ≤ (p + 2)
(

xp/p! + xp+2/(p+ 2)!
)

for a positive even integer p, and conclude that for any t,

E exp(tGki,j) = 1 + tEGki,j +

∞
∑

p=2

E(tGki,j)
p

p!
≤ 1 + 2

∞
∑

p=1

(2p+ 2)E(tGki,j)
2p

(2p)!

≤ 1 + 4

∞
∑

p=1

t2p2pp! · 100p

(2p)!

≤ 1 + 4

∞
∑

p=1

t2p100p

p!

≤ exp(400t2),

where we also used the fact that EGki,j = 0, according to (*b). By indepen-

dence, for any j = 1, . . . , n and t,

E exp

(

t

n
∑

i=1

Gki,j

)

≤ exp
(

400nt2
)

,

so

E exp

(∣

∣

∣

∣

t

n
∑

i=1

Gki,j

∣

∣

∣

∣

)

≤ E exp

(

t

n
∑

i=1

Gki,j

)

+ exp

(

− t

n
∑

i=1

Gki,j

)

≤ 2 exp(400nt2).(3)
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Denote by Yj = 1√
n

∑n
i=1Gki,j (j = 1, . . . , n). Then the Yj are independent ran-

dom variables of mean zero and variance one. Moreover, by (3), for j = 1, . . . , n,

E exp
( |Y 2

j − 1|
106

)

≤ 2E exp
( Y 2

j

106

)

= 2

∫ ∞

0

P

{ Y 2
j

106
> log t

}

dt ≤

≤ 2 + 2

∫ ∞

1

t−1000
Ee

√
log t|Yj | dt

(3)

≤ 2 + 4

∫ ∞

1

t400−1000 dt < 3.(4)

Hence, we may apply Theorem 2.1 for the independent random variables Y 2
j −1,

with L = 106. We conclude that

P

{

1

n

n
∑

j=1

Y 2
j > C log

2N

n

}

≤ P

{

1

n

n
∑

j=1

[Y 2
j − 1] > (C/4) log

2N

n

}

≤ 2 exp
(

− cn
C

4 · 106
log

2N

n

)

<
1

2
·
( n

10N

)n

,(5)

for an appropriate choice of a large universal constant C. Consequently,

P

{∣

∣

∣

∣

1

n

n
∑

i=1

Gki

∣

∣

∣

∣

>

√

C log
2N

n

}

= P

{

1

n

n
∑

j=1

Y 2
j > C log

2N

n

}

<
( n

10N

)n

.

This completes the proof of (i). The argument that leads to prooving (ii) is

similar. We define Ỹj = 1√
N+1

∑N
i=0Gi,j (j = 1, . . . , n). Arguing exactly as

above, we find that for j = 1, . . . , n,

E exp
( |Ỹ 2

j − 1|
106

)

< 3.

We may invoke Theorem 2.1 for the independent random variables Ỹ 2
j −1, with

L = 106. This yields

P

{∣

∣

∣

∣

1

N + 1

N
∑

i=0

Gi

∣

∣

∣

∣

> C

√

log
2N

n

}

= P

{

1

N + 1

n
∑

j=1

Ỹ 2
j > C2 log

2N

n

}

≤ P

{

1

n

n
∑

j=1

[Ỹ 2
j − 1] > (C/2)2 log

2N

n

}

≤ 2 exp
(

− cn
C2

2 · 106
· log

2N

n

)

<
( n

10N

)n

,



Vol. 170, 2009 RANDOM CONVEX SETS 259

provided that C is a sufficiently large universal constant. This proves (ii). It

remains to prove (iii). The random variablesG2
i,j−1 (i = 0, . . . , N , j = 1, . . . , n)

are independent, have mean zero and satisfy

E exp
[

|G2
i,j − 1|/10

]

≤ 2E exp(G2
i,j/10) ≤ 20,

according to (∗b). Hence, we may apply Theorem 2.1 for the independent

random variables G2
ki,j

− 1, with L = 10. We conclude that for any 1 ≤ j ≤ n,

(6) P

{

1

n

n
∑

i=1

[G2
ki,j − 1] > C log

2N

n

}

≤ 2 exp
(

− cn
C

10
· log

2N

n

)

<
( n

20N

)n

,

for a large universal constant C. We sum (6) over j = 1, . . . , n and conclude

that

P

{

1

n2

n
∑

i,j=1

G2
ki,j > (C + 4) log

2N

n

}

≤
n

∑

j=1

P

{

1

n

n
∑

i=1

[G2
ki,j − 1] > C log

2N

n

}

(7)

(6)
<n

( n

20N

)n

<
1

2
·
( n

10N

)n

.

The desired conclusion (iii) follows at once from (7) and (5).

The next lemma is a simple, concrete calculation for the regular (n − 1)-

simplex. We write e1, . . . , en for the standard basis in R
n, and denote

4n−1 = conv{e1, . . . , en} ⊂ R
n,

the (n− 1)-dimensional regular simplex.

Lemma 2.3: Let X = (X1, . . . , Xn) be a random vector that is distributed

uniformly in 4n−1. Then,

EXiXj = (1 + δi,j)/(n(n+ 1))

where δi,j is Kronecker’s delta.

Proof. Examine X without its last coordinate, (X1, . . . , Xn−1). This is dis-

tributed uniformly in the simplex

{

x ∈ R
n−1 ;

n−1
∑

i=1

xi ≤ 1, ∀i, xi ≥ 0

}

.
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Consequently, the density of the random variable Y = X1 + · · · + Xn−1 is

proportional to t 7→ tn−2 in the interval (0, 1), and is zero elsewhere. Hence,

(8) E(X1 + · · · +Xn−1)
2 = EY 2 =

∫ 1

0

t2 · (n− 1)tn−2dt =
n− 1

n+ 1
.

Note that
∑n

i=1Xi ≡ 1. Therefore

(9) 1 = E

( n
∑

i=1

Xi

)2

=
n

∑

i=1

EX2
i +

∑

i6=j

EXiXj .

From (8) and (9) we get that, when n ≥ 2,

(n− 1)EX2
1 + (n− 1)(n− 2)EX1X2 =

n− 1

n+ 1
, nEX2

1 + n(n− 1)EX1X2 = 1,

and the lemma follows.

Corollary 2.4: Fix 0 ≤ k1 < k2 < · · · < kn ≤ N , and set

F = conv{Gk1
, . . . , Gkn

}.

Denote Z = 1
N+1

∑N
i=0Gi. Then with probability greater than 1−4 (n/(10N))

n
,

the set F is an (n− 1)-dimensional simplex that satisfies

(i) 1
Voln−1(F)

∫

F |x|2dx < C log 2N
n ,

(ii) 1
Voln−1(F)

∫

F |x− Z|2dx < C log 2N
n .

Here, C > 0 is a universal constant.

Proof. The random vectors Gki
are independent and absolutely continuous ac-

cording to (∗c). Hence, with probability one, the vectors Gk1
, . . . , Gkn

span

R
n, and the set F is an (n − 1)-dimensional simplex in R

n whose vertices are

the points Gk1
, . . . , Gkn

. Denote T = (Gki,j)i,j=1,...,n, an n× n matrix. Then,

F = T
(

4n−1
)

and hence,

(10)
1

Voln−1(F)

∫

F
|x|2dx =

1

Voln−1(4n−1)

∫

4n−1

|Tx|2 dx.
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According to Lemma 2.3,

1

Voln−1(4n−1)

∫

4n−1

|Tx|2 dx

(11)

=

n
∑

i,j=1

〈Gki
, Gkj

〉 1

Voln−1(4n−1)

∫

4n−1

xixj dx

=
1

n(n+ 1)

n
∑

i,j=1

〈Gki
, Gkj

〉(1 + δi,j) =
1

n(n+ 1)

(∣

∣

∣

∣

n
∑

i=1

Gki

∣

∣

∣

∣

2

+

n
∑

i=1

|Gki
|2

)

.

Here, of course, 〈·, ·〉 stands for the standard scalar product in R
n. We conclude

from (10), (11) and Lemma 2.2(iii) that

(12) P

{

1

Voln−1(F)

∫

F
|x|2dx > C log

2N

n

}

<
( n

10N

)n

.

As for the second part of the corollary, according to Lemma 2.2(i) and Lemma

2.2(ii) we know that

(13) P

{∣

∣

∣

∣

1

n

n
∑

i=1

Gki

∣

∣

∣

∣

+

∣

∣

∣

∣

1

N + 1

N
∑

j=0

Gj

∣

∣

∣

∣

< 2C

√

log
2N

n

}

≥ 1 − 2
( n

10N

)n

.

Additionally,

1

Voln−1(F)

∫

F
|x− Z|2 dx

(14)

= |Z|2 − 2

〈

1

Voln−1(F)

∫

F
xdx, Z

〉

+
1

Voln−1(F)

∫

F
|x|2 dx

=

∣

∣

∣

∣

1

N + 1

N
∑

j=0

Gj

∣

∣

∣

∣

2

− 2

〈

1

n

n
∑

i=1

Gki
,

1

N + 1

N
∑

j=0

Gj

〉

+
1

Voln−1(F)

∫

F
|x|2 dx.

By combining (14) with (12) and (13), we obtain

(15) P

{

1

Voln−1(F)

∫

F
|x− Z|2 dx > 5C log

2N

n

}

< 3
( n

10N

)n

.

From (12) and (15) the corollary follows.

For a point x ∈ R
n and a set A ⊂ R

n, we write d(x,A) = infy∈A |x− y|.
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Lemma 2.5: Set

K = conv{G0, . . . , GN}, T = conv{±G1, . . . ,±GN},

and denote Z = 1
N+1

∑N
i=0Gi. Then with probability greater than 1 − Ce−cn,

(i) 1
Voln(T )

∫

T |x|2dx < C log 2N
n ,

(ii) 1
Voln(K)

∫

K |x− Z|2dx < C log 2N
n .

Here, c, C > 0 are universal constants.

Proof. The random vectors Gi,j are absolutely continuous, by assumption (∗c).
With probability one, the vectors G1, . . . , GN linearly span R

n and the vectors

G0, . . . , GN affinely span R
n, and hence Voln(T ) > 0,Voln(K) > 0. Addition-

ally, with probability one, the points G0, . . . , GN are in general position in R
n;

that is, with probability one, no n+ 1 distinct points from {G0, . . . , GN} lie in

the same affine hyperplane in R
n. Consequently, with probability one, all the

(n − 1)-dimensional facets of the polytopes K and T are simplices. Note that,

in the case of T we use the fact that Gi and −Gi could never belong to the

same face.

Let F1, . . . ,F` be a complete list of the (n−1)-dimensional facets of T . Since

a facet is determined by n points from {±G1, . . . ,±GN}, then

` ≤
(

2N

n

)

≤
(

2eN

n

)n

.

According to Corollary 2.4(i), with probability greater than 1 − 4
(

2e
10

)n
,

(16)

∫

Fi

|x|2dx < C

(

log
2N

n

)

· Voln−1(Fi), for all i = 1, . . . , `.

Each point x ∈ T (except for the origin) may be uniquely represented as x = ty

with 0 < t ≤ 1 and y ∈ ∂T . We integrate with respect to these standard polar

coordinates, and obtain that

(17)
1

Voln(T )

∫

T
|x|2 dx =

1

Voln(T )

∫

∂T

∫ 1

0

|ty|2tn−1〈y, νy〉 dt dy

where νy is the unit outward normal to ∂T at y (νy is uniquely defined almost

everywhere as T is convex). When y ∈ Fi for some i = 1, . . . , `, we have that

〈y, νy〉 = d(0, aspFi) where aspFi is the affine subspace spanned by Fi. Hence,
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from (17),

(18)
1

Voln(T )

∫

T
|x|2dx =

1

Voln(T )

∑̀

i=1

d(0, aspFi)

n+ 2

∫

Fi

|y|2dy.

Recall that
∑`

i=1 d(0, aspFi) · Voln−1(Fi) = nVoln(T ). We combine (18) with

(16), and conclude that with probability greater than 1 − 4
(

2e
10

)n
,

1

Voln(T )

∫

T
|x|2dx < 1

Voln(T )

∑̀

i=1

d(0, aspFi) · Voln−1(Fi)

n+ 2
· C log

2N

n

< C log
2N

n
.

This completes the proof of (i). The proof of (ii) is very similar; we supply some

details. Let G1, . . . ,Gk denote the (n−1)-dimensional facets of K. Observe that

Z ∈ K, and that any x ∈ K (except for the point Z) is uniquely represented as

x = Z + t(y − Z) with 0 < t ≤ 1 and y ∈ ∂K. As before, integration in polar

coordinates yields

1

Voln(K)

∫

K
|x− Z|2 dx =

1

Voln(K)

∫

∂K

∫ 1

0

tn−1|t(y − Z)|2〈y − Z, νy〉 dt dy

=
1

n+ 2

k
∑

i=1

d(Z, aspGi)

Voln(K)

∫

Gi

|y − Z|2 dy.

Again,
∑k

i=1 d(Z, aspGi)Voln−1(Gi) = nVoln(K). Thus, in order to prove (ii),

we may simply reproduce the argument from the proof of (i), with Corollary

2.4(ii) replacing the role of Corollary 2.4(i). This completes the proof.

3. Random Polytopes

We summarize the results of Section 2 in the following corollary. Note that the

convex bodies discussed in this corollary have diameter that is larger than c
√
n

with high probability. Nevertheless, it is still possible to prove a much better

estimate regarding the second moment of the Euclidean norm.

Corollary 3.1: Let N ≥ n ≥ 1 and suppose that G0, . . . , GN are independent

random vectors in R
n that satisfy conditions (∗a) and (∗b) above. Set

K = conv{G0, . . . , GN}, T = conv{±G1, . . . ,±GN},
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and denote Z = 1
N+1

∑N
i=0Gi. Then with probability greater than 1 − Ce−cn,

1

Voln(T )

∫

T
|x|2dx < C log

2N

n
and

1

Voln(K)

∫

K
|x− Z|2dx < C log

2N

n
,

where C, c > 0 are universal constants.

Proof. Suppose first that G0, . . . , GN satisfy also (∗c); that is, assume that they

are absolutely continuous random variables. Then the desired conclusion follows

from Lemma 2.5. For the general case, note that the quantity

(19)

P

{

1

Voln(T )

∫

T
|x|2dx < C log

2N

n
,

1

Voln(K)

∫

K
|x− Z|2dx < C log

2N

n

}

depends continuously on the distribution of G0, . . . , GN in the weak topology at

measures where P(Voln(K) = 0) = P(Voln(T ) = 0) = 0. At other measures (19)

may have a discontinuity of no more than P(Voln(K) = 0) + P(Voln(T ) = 0).

The corollary follows by approximating G0, . . . , GN with absolutely continuous

random vectors that satisfy (∗a), (∗b) and (∗c) and noting that by (∗a) and (∗b)

we have P(Voln(K) = 0) + P(Voln(T ) = 0) < Ce−cn, according to [23].

The next theorem is concerned with non-gaussian analogs of Theorem 1.1.

The main new case covered by that theorem is that of random sign vectors,

i.e., independent random vectors whose coordinates are independent, symmet-

ric Bernoulli variables. We remark in passing that in the Bernoulli case the

probability of K or T to be degenerate was known before [23]. See [14, 25].

Theorem 3.2: Let n ≥ 1 and n ≤ N ≤ 2n. Suppose that G1, . . . , GN are

independent random vectors in R
n that satisfy conditions (∗a) and (∗b) above.

Assume further that Gi,j (i = 1, . . . , N, j = 1, . . . , n) are symmetric random

variables. Set T = conv{±G1, . . . ,±GN}. Then with probability greater than

1 − Ce−cn,

LT < C

where C, c > 0 are universal constants.

Proof. We may assume that N > n (otherwise, T is a cross-polytope whenever

it is non-degenerate. The isotropic constant of the cross-polytope is well-known

to be bounded). Recall that LT < Cn1/4 and hence we may assume that n

exceeds a certain universal constant. It was proved in [17, Theorem 4.8] that,
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under the assumptions of the present theorem,

(20) (Voln(T ))
1/n

> C

√

log(2N/n)

n

with probability greater than 1−Ce−cn. From Corollary 3.1 we know that with

probability larger than 1 − Ce−c′n,

(21)
1

Voln(T )

∫

T
|x|2dx < C log

2N

n

The theorem follows by substituting the estimates (20) and (21) into the defi-

nition (1).

Generally speaking, the restrictions on N in Theorem 3.2 are typically quite

easy to work around. For example, in the case of Bernoulli variables, if 2n ≤
N < 3n then (20) and hence the conclusion of Theorem 3.2 hold with a different

constant, while if N ≥ 3n, then with very high probability T is a hypercube

(whose isotropic constant equals 1/
√

12). The assumption that the Gi,j are

symmetric is probably redundant; we believe that (20) may be proved, along

the lines of the argument from [17], without having to rely on this assumption.

Our next lemma shows the same volume estimates in the Gaussian case for

all values of N . It is standard and well-known.

Lemma 3.3: Let N > n ≥ 1 and suppose that G0, . . . , GN are independent

standard gaussian vectors in R
n. Denote

K = conv{G0, . . . , GN} and T = conv{±G1, . . . ,±GN}.

Then, with probability greater than 1 − Ce−cn,

Voln(K)1/n > c

√

log(2N/n)

n
and Voln(T )1/n > c

√

log(2N/n)

n
,

where c, C > 0 are universal constants.

Proof sketch. We start with the lower bound for Voln(T ). For the range N ≥
2n, it is well-known (see, e.g., [10, 17] and references therein) that with proba-

bility greater than 1 − Ce−cn,

(22) c

√

log
4N

n
Dn ⊆ T

where Dn = {x ∈ R
n; |x| ≤ 1} is the unit Euclidean ball in R

n. Since

Vol1/n
n (Dn) > c/

√
n, the desired lower bound for Voln(T ) follows from (22)
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in this case. In the remaining case n < N < 2n, the lower bound for Voln(T )

follows from [17, Theorem 4.8].

Regarding Voln(K), consider first the case n ≤ N ≤ Cn, for a certain large

universal constant C > 0. It turns out that in this range a single simplex

supplies enough volume for our needs. We thus assume that N = n. Denote

G′
i = Gi −G0 for i = 1, . . . , n, and set K′ = conv{±G′

1, . . . ,±G′
n}. Then,

(23) Voln(K) = Voln(conv{0, G1−G0, G2−G0, . . . , GN−G0}) ≥ 4−n Voln(K′)

by the Rogers–Shephard inequality [22]. With probability one, the vectors

G1, . . . , Gn are linearly independent. Let S : R
n → R

n be the unique linear

map that satisfies S(Gi) = Gi −G0 for i = 1, . . . , n. Then K′ = S(T ). Hence,

(24) Voln(K′) = det(S) · Voln(T ).

Let v ∈ R
n be such that 〈v,Gi〉 = 1 for i = 1, . . . , n. The vector v is independent

of G0. Clearly, Sx = x−〈x, v〉G0 for all x ∈ R
n. Therefore det(S) = 1−〈v,G0〉.

Conditioning on v, we see that det(S) is a gaussian random variable with mean

1 and variance |v|2. Hence,

(25) P{| det(S)| < 2−n} = Ev

∫ 2−n

−2−n

1
√

2π|v|2
exp

(

− (t− 1)2

2|v|2
)

dt ≤ C̃2−n,

since for all values of |v|, the integrand never exceeds C̃/2. The desired lower

bound for Voln(K), for the case where n ≤ N ≤ Cn, follows from (23), (24),

(25) and from the lower bound for Voln(T ), that was already proved.

The case N > Cn, where C is a sufficiently large constant, may be handled

as follows: The vector Z = 1
N+1

∑N
i=0Gi ∈ K satisfies |Z| < c/2 with proba-

bility greater than 1 − Ce−c̃n, where c is the constant from (22). Hence, with

probability greater than 1 − Ce−c̃n,

conv {±G0, . . . ,±GN} ⊆ c

2
Dn + (K −K) = {z + x− y; |z| < c/2, x, y ∈ K}.

From (22) we thus conclude that, with probability greater than 1 − C̄e−c̄n,

c

2

√

log
4N

n
Dn ⊆ K −K.

An additional application of the Rogers–Shephard inequality leads to the desired

lower bound for Voln(K).
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Proof of Theorem 1.1. We may assume that N > n; otherwise, with probability

one, T is a cross-polytope and K is a simplex, both with a bounded isotropic

constant. From Corollary 3.1 and Lemma 3.3 we see that with probability

greater than 1 − Ce−cn,

1

Voln(T )1+
2

n

∫

T
|x|2dx < Cn and

1

Voln(K)1+
2

n

∫

K
|x− Z|2dx < Cn

for some point Z ∈ R
n depending on K. The theorem follows from the definition

(1).
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Basel, 1995, pp. 61–66.

[9] E. D. Gluskin, The diameter of Minkowski compactum roughly equals to n, Funkt-

sional’nyj Analiz i ego Prilozheniya 15 (1981), 72–73; English translation in Functional

Analysis and its Applications 15 (1981), 57–58.

[10] E. D. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications

to the geometry of Banach spaces (Russian), Matematicheskĭı Sbornik. Novaya Seriya
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