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ABSTRACT

This paper is a continuation of [2]. In [2], we constructed an equivalence

between the derived category of equivariant coherent sheaves on the cotan-

gent bundle to the flag variety of a simple algebraic group and a (quotient

of) a category of constructible sheaves on the affine flag variety of the

Langlands dual group. Below we prove certain properties of this equiva-

lence related to cells in the affine Weyl group; provide a similar “Langlands

dual” description for the category of equivariant coherent sheaves on the

nilpotent cone, and link it to perverse coherent sheaves; and deduce some

conjectures by Lusztig and Ostrik.

Contents

1. Statements . . . . . . . . . . . . . . . . . . . . . . . . 186

1.1. Recollection of notation and set-up . . . . . . . . . 186

1.2. Category f
P

f
I and the nil-cone . . . . . . . . . . . 187

1.3. Description of the t-structure on D
Gˇ(N) . . . . . 188

1.4. Dualities . . . . . . . . . . . . . . . . . . . . . . . . 189

1.5. Cells and nilpotent orbits . . . . . . . . . . . . . . 189

1.6. Duflo involutions . . . . . . . . . . . . . . . . . . . 190

1.7. Truncated convolution categories . . . . . . . . . . 191

2. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 192

2.1. Proof of Theorem 1 . . . . . . . . . . . . . . . . . 192

2.2. Proof of Theorem 2 . . . . . . . . . . . . . . . . . 196

Received April 19, 2004 and in revised form July 6, 2006

185



186 ROMAN BEZRUKAVNIKOV Isr. J. Math.

2.3. Proof of Theorem 3 . . . . . . . . . . . . . . . . . 197

2.4. Proof of Theorem 4 . . . . . . . . . . . . . . . . . 198

2.5. Proof of Proposition 1 . . . . . . . . . . . . . . . . 202

2.6. Proof of Proposition 2 . . . . . . . . . . . . . . . . 204

References . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Acknowledgements. I am grateful to all the people mentioned in acknowle-

dgements in [2]. I also thank Eric Sommers for stimulating interest, Jian-yi

Shi for a minor correction and the referee for helpful comments. The author

worked on this paper while supported by NSF grant DMS-0071967 and em-

ployed by the Clay Institute.

1. Statements

1.1. Recollection of notation and set-up. We keep the set-up and no-

tation of [2]. In particular, F` is the affine flag variety of a split simple group

G over an algebraically closed field k; Wf is the Weyl group of G, and W is the

extended affine Weyl group; fW f ⊂ fW ⊂ W are the sets of minimal length

representatives of respectively 2-sided and left cosets of Wf in W ; DI = DI(F`)

is the Iwahori equivariant derived category of l-adic sheaves (l 6= char(k)) on

F` and PI ⊂ DI(F`) is the full subcategory of perverse sheaves.

Lw, w ∈ W are irreducible objects of PI . The Serre quotient category fPI of

PI is defined by

fPI = PI/〈Lw | w 6∈ fW 〉,

where for an abelian category A, and a set S of irreducible objects of A we let

〈S〉 denote the full abelian subcategory of objects obtained from elements of S

by extensions.

N is the variety of nilpotent elements in the Langlands dual Lie algebra ǧ ;

and pSpr : Ñ → N is its Springer resolution. For an algebraic group H acting

on a variety X we write DH(X) instead of Db(CohH(X)).

Convolution provides DI(F`) with a monoidal structure. In [2], we con-

structed a monoidal functor

F : DGˇ(Ñ) → DI(F`);
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and used it to define an equivalence

(1) fΦ : DGˇ(Ñ)−̃→Db(fPI).

We now state the results proved in this note.

1.2. Category fP
f
I and the nil-cone. Let us define a further Serre quotient

category fP
f
I of PI by

fPf
I = PI/〈Lw | w 6∈ fW f 〉.

Let prff : fPI → fP
f
I be the projection functor. (We will use the same

notation for the extension of these exact functors to the derived categories.

We will also abuse notation by omitting the projection to a quotient category

functor from notations; e.g. we will sometimes write “X” or “X considered as

an object of fPf” instead of prff (X).)

Theorem 1: There exists an equivalence

(2) fΦf : DGˇ(N)−̃→Db(fPf
I),

such that

(3) prff ◦ fΦ ∼= fΦf ◦ pSpr∗,

Remark 1: The functor (fΦf )−1 is a derived functor of a left exact functor.

Namely, let OGˇ be the ind-object of Rep(G )̌ corresponding to the module

of regular functions on G ,̌ where Gˇ acts by left translations. Notice that for

an object F of the derived category of G -̌equivariant coherent sheaves one has

RiΓ(F) = Hom(O, F ⊗ O[i]).

For X ∈ fP
f
I the space

Homf P
f

I

(δe, X ∗ Z(OGˇ)) =
⊕

V ∗
λ ⊗ Hom(δe, X ∗ Zλ);

can be given a structure of a Gˇ equivariant O(N)-module. Thus we get a left

exact functor H : fP
f
I → CohGˇ(N); we claim that its derived functor RH is

isomorphic to (fΦf )−1.

A sketch of the proof of this claim is as follows (the claim will not be used

below, and details of the proof are omitted). It follows from the theorem

and its proof that fΦf (V ⊗ ON) ∼= Z(V ) ∈ fP
f
I , V ∈ Rep(G )̌, and that

H ◦ fΦf |CohGˇ

fr
(N)

∼= idCohGˇ

fr
(N) canonically, where CohGˇ

fr (N) ⊂ CohGˇ(N) is

the full subcategory consisting of objects of the form V ⊗ON, V ∈ Rep(G )̌ (we

will call such objects free sheaves).
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The proof of Theorem 1 below shows also that for a finite complex C• of ob-

jects of CohGˇ
fr (N) the object fΦf (C•) is represented by the complex (fΦf (Ci)).

Furthermore, it follows from Theorem 7 of [2] that Ext>0
f P

f

I

(δe, Zλ) = 0, thus

for a complex C• of object of fP
f
I of the form Ci = Z(Vi), the object RH(C•)

is represented by the complex (H(Ci)). Thus we get a canonical isomorphism

(4) RH ◦ fΦf |DGˇ

fr
(N)

∼= id |DGˇ

fr
(N),

where DGˇ
fr (N) ⊂ DGˇ(N) represented by a finite complex of free sheaves.

Finally, observe that the functor RH ◦ fΦf sends D<0(CohGˇ(N)) to itself,

because:

F ∈ D<0(CohGˇ(N)) ⇒ Ext≥0(V ⊗ O, F) = 0 ∀V ∈ Rep(G )̌ ⇒

Ext>0(Z(V ), fΦf (F)) ∀V ∈ Rep(G )̌ ⇒ RH(fΦf (F)) ∈ D<0(CohGˇ(N)).

Together with (4) this shows that RH ◦ fΦf ∼= id.

Remark 2: Theorem 1 implies that the functor Rp∗ : DGˇ(Ñ) → DGˇ(N) iden-

tifies DGˇ(N) with the quotient category DGˇ(Ñ)/ Ker(Rp∗).

Notice that the analogous statement with Db replaced by D− is an imme-

diate consequence of the isomorphism RpSpr∗(OÑ
) ∼= ON, and the fact that

a triangulated functor admitting a left adjoint which is also a right inverse is

factorization by a thick subcategory, see, e.g., [14, Proposition II.2.3.3].

It is natural to ask whether the equivalence DGˇ(Ñ)/ Ker(Rp∗) ∼= DGˇ(N)

can be deduced directly from the isomorphism Rp∗(OÑ
) ∼= ON, and whether a

similar equivalence holds for an arbitrary proper morphism p with Rp∗(O) ∼= O.

I do not know the answer to these questions.

1.3. Description of the t-structure on DGˇ(N). One can use the equiv-

alences (1), (2) to transport the tautological t-structure on the right-hand side

to a t-structure on the left-hand side. Let us call the resulting t-structure on

the derived category of equivariant coherent sheaves the exotic t-structure. We

provide an explicit description of the exotic t-structure on DGˇ(N).

Theorem 2: The exotic t-structure on DGˇ(N) coincides with the perverse

coherent t-structure corresponding to the perversity given by

(5) p(O) = codim(O)/2;

see [1], [4].
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1.3.1. Let O denote the set of G -̌conjugacy classes of pairs (N, ρ) where N ∈ N,

and ρ is an irreducible representation of the centralizer ZGˇ(N).

For a pair (N, ρ) ∈ O let Lρ be the irreducible G -̌equivariant vector bundle on

the orbit G (̌N), whose fiber at N is isomorphic to ρ. Let j be the embedding

of G (̌N) into N. We have the irreducible coherent perverse sheaf ICN,ρ =

j!∗(Lρ[−codimGˇ(N)
2 ]), see [1].

Corollary 1: (a) We have fΦf (ICN,ρ) = Lw for some w ∈ fW f .

(b) Identify Z[W ] with the Grothendieck group K(CohGˇ(St)), where St =

Ñ ×N Ñ is the Steinberg variety, see [7], [12]. Let C̄w be the Kazhdan–

Lusztig basis of Z[W ] (specialization of the Kazhdan–Lusztig basis in

the affine Hecke algebra at v = 1). Let pr : Z[W ] → K(CohGˇ(N)) be

the map induced by Rp∗, where p : St → N is the projection.

We have pr(C̄w) = 0 for w 6∈ fW f ; and pr(C̄w) is the class of an irreducible

perverse coherent sheaf corresponding to the perversity (5).

Remark 3: The corollary implies validity of Conjectures 1 and 2, and the first

part of Conjecture 3 in [13].

1.4. Dualities. We will denote the Verdier duality functor on various cate-

gories by V. Thus V is an contravariant auto-equivalence of the abelian cate-

gory PI , which induces auto-equivalences of the quotient categories fPI ,
fP

f
I

and their derived categories.

Define the anti-autoequivalence σ of DGˇ(N) by F 7→ R Hom(F, O). It is well-

known that N is a Gorenstein scheme, and the dualizing sheaf for N is trivial.

Thus σ coincides with the Grothendieck–Serre duality up to homological shift.

Let κ : Gˇ→ G ,̌ be an automorphisms which sends an element g to an element

conjugate to g−1. We will also use the same letter to denote the induced push-

forward functor on the categories of representations and equivariant coherent

sheaves.

Theorem 3: We have

(6) fΦf ◦ κ ◦ σ ∼= V ◦ fΦf ;

1.5. Cells and nilpotent orbits. Recall the notion of a two-sided cell in

W , and the bijection between the set of two-sided cells in W and nilpotent con-

jugacy classes in ǧ , see [10]; for a two-sided cell c let Nc ∈ ǧ be a representative

of the corresponding conjugacy class.
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For a two-sided cell c ⊂ W let P
≤c
I ⊂ PI be the Serre subcategory generated

by irreducible objects Lw, w ∈
⋃

c′≤c c′; and let fP
≤c

I ⊂ fPI ,
fP

f
I

≤c
⊂ fP

f
I

be the images of P
≤c
I . Let also Db

≤c(
fPI) ⊂ Db(fPI), Db

≤c(
fP

f
I ) ⊂ Db(fP

f
I )

be the full triangulated subcategories generated by fP
≤c

I , fP
f
I

≤c
respectively.

Replacing the non-strict inequality by the strict one we get the definition of

categories fP
f
I

<c
, Db

<c(
fP

f
I ) etc.

For a closed G -̌invariant subset S ⊂ N or S ⊂ Ñ let DGˇ
S (N) ⊂ DGˇ(N)

(respectively, DGˇ
S (Ñ)) be the full subcategory of complexes whose cohomology

sheaves are set-theoretically supported on S (i.e., they are supported on some,

possibly non-reduced, subscheme with topological space S). We abbreviate

D≤Nc
(N) = DGˇ

Gˇ(Nc)
(N); D≤Nc

(Ñ) = DGˇ
p
−1

Spr
(Gˇ(Nc))

(N).

Theorem 4: a) Db
≤c(

fPI) = fΦ(D≤Nc
(Ñ));

Db
≤c(

fP
f
I ) = fΦf (D≤Nc

(N)).

b) We have

c1 ≤ c2 ⇐⇒ Nc
1
∈ G (̌Nc

2
),

where the inequality in the left hand side refers to the standard partial

order on the set of 2-sided cells.

Remark 4: Part (b) of the theorem was conjectured by Lusztig, see [10].

1.6. Duflo involutions. Recall the notion of a Duflo (or distinguished)

involution in an affine Weyl group. We quote two of several available equivalent

definitions. On the one hand, an element w ∈ W is a Duflo involution if

and only if the corresponding element in the asymptotic Hecke algebra (which

is the Grothendieck ring of the truncated convolution category, see the next

subsection) is an idempotent. Moreover, the sum of all these idempotents over

all Duflo involutions is the unit element in the asymptotic Hecke algebra.

On the other hand, an element w ∈ W is a Duflo involution if and only if

the degree of the Kazhdan-Lusztig polynomial Pe,w is equal to (l(w)− a(w))/2,

where a : W → Z is Lusztig’s a-function and l denotes the length (recall that for

any w the degree of Pe,w is at most (l(w)−a(w))/2). The latter characterization

will be used in the proof of Lemma 8 below.

It is known that for each two sided cell c ⊂ W the set c ∩ fW f contains a

unique Duflo involution, it will be denoted by dc.
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For a G -̌orbit O ⊂ N let ÔO denote the sheaf j∗(O), where j is the embedding

O ↪→ N, and j∗ denotes the non-derived direct image.

Proposition 1: We have

fΦf
(
ÔGˇ(Nc)

[
−

codimG (̌Nc)

2

])
∼= Ldc

.

Remark 5: The proposition implies Conjecture 4 in [13].

1.7. Truncated convolution categories. In [11], Lusztig defined for

every two sided cell a monoidal category, whose simple objects are Lw, w ∈ c.

He conjectured a relation between this category and representations of the group

ZGˇ(Nc); these conjectures were partly proved in [5], [6]. More precisely, one

of the results of [5] is as follows. Let P
c

I denote the Serre quotient category

P
≤c
I /P

<c
I , and Ac ⊂ P

c
I be the full subcategory consisting of subquotients of ob-

jects of the form Z(V )∗Lw mod P
<c
I , V ∈ Rep(G )̌, w ∈ c. Let also Af

c ⊂ Ac be

the subcategory consisting of subquotients Z(V ) ∗Lw mod P
<c
I , V ∈ Rep(G )̌,

w ∈ c ∩ fW f . Convolution with a central sheaf Z(V ) induces a functor on Ac,

Af
c which is also denoted by X 7→ Z(V ) ∗ X .

Truncated convolution provides Ac, Af
c with the structure of a monoidal

category. In [5] we identified the monoidal category Af
c with the category of

representations of a subgroup Hc ⊂ Zc, where Zc denotes the centralizer of Nc

in G ;̌ in particular, we have the restriction functor rf
c : Rep(Zc) → Af

c (see

Proposition 3 below for a more detailed statement).

We will compare rf
c with a functor arising from fΦf . Set Db

c(
fP

f
I ) :=

Db
≤c(

fP
f
I )/Db

<c(
fP

f
I ); let CohGˇ

Nc
(N) be the category of equivariant coherent

sheaves on the formal neighbourhood of the orbit G (̌Nc) in N, and DGˇ
Nc

(N) ∼=

DGˇ
≤Nc

(N)/D<Nc
(N) be its bounded derived category.

By Theorem 4(a) the functor fΦf induces an equivalence DGˇ
Nc

(N)−̃→Db
c(

fP
f
I );

we denote this equivalence by Φc.

Proposition 2: For ρ ∈ Rep(Zc) we have a canonical isomorphism in fP
f
I

c

(7) Φc(Lρ[−m]) ∼= rf
c (ρ),

where m =
codimGˇ(Nc)

2 .

Corollary 2: We have Hc = Zc.
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Remark 6: A bijection between the set Λ+ of dominant weights of Gˇ (which is

the same as dominant coweights of G) and the set O was defined in [4]; let ι1

denote this bijection. From the definition of ι1 in [4], it follows that

fΦf (ICι1(λ)) = Lwλ
,

where {wλ} = fW f ∩ Wf · λ · Wf .

Another bijection between the same sets (which we denote by ι2) was defined

in [5]. ι2 is characterized as follows. If (N, ρ) = ι2(λ), and N = Nc for a

two-sided cell c, then we have an isomorphism in P
c
I

rc(ρ) ◦ Ldc
∼= Lwλ

.

Thus Proposition 2 implies that ι1 = ι2.

Remark 7: The equality ι1 = ι2 implies Conjecture 3 in [13].

2. Proofs

2.1. Proof of Theorem 1.

Lemma 1: For w 6∈ fW f we have pSpr∗(
fΦ

−1
(Lw)) = 0.

Proof. For F ∈ DGˇ(Ñ) we have pSpr∗(F) = 0 if and only if Ext•(Vλ⊗O, F) = 0

for all λ ∈ Λ+. Thus we need to check that for X ∈ Db(fPI) we have

(8) Ext•f P
(Zλ, Lw) = 0

for w 6∈ fW f .

We will check the equivalent statement

Ext•DIW
(∆e ∗ Zλ, ∆e ∗ Lw) = 0

for w 6∈ fW f [2, Theorem 2].

If w ∈ fW but w 6∈ fW f then for some simple root α, α 6= α0 we have Lw =

π!
α(L′

w); here α0 is the affine simple root, πα : F` → F`(α) is the projection

(P1 fibration) to the corresponding partial affine flag variety, and L′
w is an I-

equivariant constructible complex on F`(α) (actually, L′
w[1] is a perverse sheaf).

Then ∆e ∗ Lw
∼= π!

α(∆e ∗ L′
w), and we have

Ext•(∆e ∗ Zλ, ∆e ∗ Lw) = Ext•(πα!(∆e ∗ Zλ), ∆e ∗ L′
w) = 0,

because πα!(∆e ∗ Zλ) = 0, [2, proof of Lemma 28].
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2.1.1. The lemma shows that the functor pSpr∗ ◦ fΦ
−1

: Db(fPI) → DGˇ(N)

factors through Db(fP
f
I ) (here we use that Db(A/B) ∼= Db(A)/Db

B
(A) for an

abelian category A, and a Serre subcategory B, where Db
B

(A) ⊂ Db(A) is the

full subcategory of objects with cohomology in B).

It remains to check that the resulting functor

Υ : Db(fP
f
I ) → DGˇ(N),

is an equivalence; then fΦf := Υ−1 clearly satisfies the conditions of the theo-

rem.

2.1.2. Let us check that Υ is a full embedding.

First we claim that

(9) Hom
Db(f P

f

I
)(X, Y )

Υ
−→ HomDGˇ(N)(Υ(X), Υ(Y ))

is an isomorphism for X = Zλ. Indeed, (8) implies that HomDb(f PI)(Zλ, Y )−̃→

Hom
Db(f P

f
I
)(Zλ, Y ). Also, the equality RpSpr∗(OÑ

) = ON implies that

HomDGˇ(Ñ)(Vλ ⊗ O
Ñ

, F)−̃→HomDGˇ(Ñ)(RpSpr∗(Vλ ⊗ O
Ñ

), RpSpr∗(F))

= HomDGˇ(N)(Vλ ⊗ ON, RpSpr∗(F))

for F ∈ DGˇ(Ñ). Thus validity of (9) for X = Zλ follows from fΦ
−1

being an

equivalence.

We now want to deduce that (9) is an isomorphism for all X . The argument

is a version of the proof of the fact that an effaceable δ-functor is universal.

Lemma 2: Let D be a triangulated category, F = (F i), F ′ = (F ′i) be coho-

mological functors from D to an abelian category, and φ : F → F ′ be a natural

transformation. Let S ⊂ D be a set of objects. Assume that

i) There exists d ∈ Z such that F i(X) = 0 = F ′i(X) for i < d, X ∈ S.

ii) For any X ∈ S there exists an exact triangle X → X̃ → Y where Y ∈ S,

and φ : F i(X̃) → F ′i(X̃) is an isomorphism for all i.

Then φ : F i(X) → F ′i(X) is an isomorphism for all X ∈ S.
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Proof. We go by induction in i. Condition (i) provides the base of induction.

Applying the 5-lemma to

F i−1(X̃) −−−−→ F i−1(Y ) −−−−→ F i(X) −−−−→ F i(X̃) −−−−→ F i(Y )

‖

y ‖

y
y ‖

y
y

F ′i−1
(X̃) −−−−→ F ′i−1

(Y ) −−−−→ F ′i(X) −−−−→ F ′i(X̃) −−−−→ F ′i(Y )

we see that φ : F i(X) ↪→ F ′i(X). Since Y ∈ S we have φ : F i(Y ) ↪→ F ′i(Y )

which implies φ : F i(X)−̃→F ′i(X).

To exhibit a generating set for Db(fP
f
I ) satisfying the conditions of Lemma

2 we need another Lemma.

A filtration on the object of fPI (respectively, fP
f
I ) will be called costandard

if its associated graded is a sum of objects jw∗, w ∈ fW (respectively, w ∈ fW f ).

Such a filtration will be called standard if its associated graded is a sum of

objects jw!, w ∈ fW (respectively, w ∈ fW f ).

Lemma 3: a) If w1, w2 ∈ W and w2 ∈ Wf · w1 · Wf , then jw1∗ and jw2∗

are isomorphic in fP
f
I .

b) Let X ∈ fP
f
I be an object with a costandard filtration. Then there

exists a short exact sequence 0 → Y → Z → X → 0 in fP
f
I where Z is

a (finite) sum of objects Zλ, and Y has a costandard filtration.

Proof. (a) We can assume that w2 = sw1 or w2 = w1s for a simple reflection

s = sα ∈ Wf , and that `(w2) > `(w1). Assume first that w2 = sw1. We have

jw2∗ = js∗ ∗ jw1∗. The short exact sequence

0 → δe → js∗ → Ls → 0

(where e ∈ W is the identity, and δe = je∗ = je! = Le is the unit object of the

monoidal category DI(F`)) yields an exact triangle

jw1∗ → jw2∗ → Ls ∗ jw1∗.

It is easy to see that Ls ∗ jw1∗ is a perverse sheaf; this object is equivariant with

respect to the parahoric group scheme Iα. It follows that any of its irreducible

subquotient is also equivariant under this group; hence such a subquotient is

isomorphic to Lw for some w satisfying `(sw) < `(w). This shows that Ls ∗ jw1∗

is zero in fP
f
I , hence jw2∗ and jw1∗ are isomorphic in fP

f
I .
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In the case w2 = w1s the proof is parallel, with the words “is equivariant

under Iα” replaced by “lies in the image of the functor π∗
α.” Thus (a) is proved.

(b) Theorem 7 of [2] implies that Zλ (considered as an object of fPI) has

both a standard and a costandard filtration. The top of the latter is a surjection

fλ : Zλ → jλ∗ whose kernel, subsequently, has a costandard filtration. Taking

the image of fλ in fP
f
I we get an arrow f̄λ : Zλ → jwλ∗ in fP

f
I whose kernel

has a costandard filtration by (a); recall that {wλ} = fW f ∩ Wf · λ · Wf .

Let now X ∈ fP
f
I be an object with a costandard filtration; let 0 → X ′ →

X → jw∗ → 0 be the top of the filtration. By induction in the length of the

filtration we can assume the existence of an exact sequence

0 → Y ′ → Z ′ f ′

−→ X ′ → 0

of the required form. We have w = wλ for some λ ∈ Λ+. We claim that

the surjection f̄λ : Zλ → jw∗ factors through a map Zλ → X . Indeed, the

obstruction lies in Ext1
f P

f
I

(Zλ, X ′). We claim that

Ext1
f P

f

I

(Zλ, jw∗) = Ext1f PI
(Zλ, jw∗) = 0.

Here the first equality follows from (8). The second one is a consequence of the

existence of a standard filtration on Zλ (considered as an object of fPI), and

the equality

Ext•f PI
(jw1!, jw2∗) = Ql

δw1,w2 .

The latter is a consequence of [2, Theorem 2 and Lemma 1], which identify the

left-hand side with an Ext space in the derived category of l-adic complexes on

F` (more precisely, with Ext•(∆w1
,∇w2

) in the notation of [2]).

Now let f̃λ : Zλ → X be some map, such that the composition Zλ → X → jw∗

equals f̄λ. Then we set Z = Z ′ ⊕ Zλ, and the map f : Z → X is set to be

f := f ′ ⊕ f̃λ. The exact sequence

0 → Ker(f ′) → Ker(f) → Ker(f̄λ) → 0

shows that f satisfies the requirements of (b).

2.1.3. We can now finish the proof of Υ being an equivalence. We apply Lemma

2 to the following data:

D = Db(fP
f
I )op,

F : X 7→ Hom•(X, X0) for some fixed X0 ∈ Db(fP
f
I );

F ′ : X 7→ Hom•(Υ(X), Υ(X0));
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the transformation φ comes from functoriality of Υ;

the set S consists of all objects of fP
f
I which have a costandard filtration.

We claim that the conditions of Lemma 2 are satisfied.

In fact, condition (i) is satisfied for any d such that X0 ∈ D≥−d(fP
f
I ),

Υ(X0) ∈ D≥−d(CohGˇ(N)). Vanishing of F i(X), X ∈ S, i < d follows then

from vanishing of negative Ext’s between objects of fP
f
I , while vanishing for

(F ′)i(X), X ∈ S, i < d follows from vanishing of negative Ext’s in CohGˇ(N),

in view of the fact that Υ(S) ⊂ CohGˇ(N). The latter inclusion amounts to the

fact that Ext>0
f PI

(Z(V ), X) = 0, X ∈ S, V ∈ Rep(G )̌, which follows from the

tilting property of central sheaves, Theorem 7 of [2].

Since (9) has been proven to be an isomorphism for X = Zλ, Lemma 3(b)

shows that condition (ii) of Lemma 2 is satisfied. Hence (9) is an isomor-

phism whenever X has a costandard filtration; in particular, for X = jw∗. But

Db(fP
f
I ) is generated as a triangulated category by jw∗, w ∈ fW f ; hence (9)

holds for all X , i.e., Υ is a full embedding.

It remains to show that Υ is essentially surjective; since it is a full embedding

it suffices to see that the image of Υ contains a set of objects generating DGˇ(N)

as a triangulated category. This is done in Lemma 7 of [4].

2.2. Proof of Theorem 2. It follows from the results of [4] that DGˇ(N)

carries a unique t-structure such that the objects Aλ lie in the heart of this

t-structure for all λ, where Aλ = pSpr∗(O(λ)); and this t-structure coincides

with the perverse coherent t-structure corresponding to the perversity function

p(O) = codimO/2 (which coincides with the middle perversity up to a total

shift by dim N/2). Recall that the objects Jλ ∈ PI (the Wakimoto sheaves),

satisfy fΦ(O(λ)) ∼= Jλ; hence

(10) fΦf (Aλ) ∼= prff (Jλ).

Thus the heart of the t-structure obtained by transport of the tautological

t-structure on Db(fP
f
I ) under the equivalence (fΦf )−1 contains the objects Aλ

in its heart, so it coincides with the perverse coherent t-structure.

2.2.1. Proof of Corollary 1. a) is immediate from Theorem 2, because ICN,ρ

is an irreducible object in the heart of the perverse coherent t-structure, so
fΦf (ICN,ρ) is an irreducible object of fP

f
I . Let us prove (b). Let p denote the
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map on Grothendieck groups induced by the composition

Db(PI) → Db(fP
f
I )

f Φf−1

−→ DGˇ(N).

We can identify Z[W ] with K(Db(PI)) by means of the isomorphism sending

(−1)`(w) · w to the class [jw!] = [jw∗]; it maps C̄w to the class of Lw. Thus it

is clear that p(Cw) = 0 for w 6∈ fW f ; and (a) shows that p(Cw) is the class of

an irreducible perverse coherent sheaf. It remains to check that p = pr. This

follows from: p(w) = (−1)`(w)[Aλ] = pr(w) for λ ∈ Λ+, w ∈ Wf · λ · Wf . Here

the first equality follows from (10) for w = λ and from Lemma 3(a) in general.

The second equality holds by Lemma 2.4 in [13].

2.3. Proof of Theorem 3. Recall that S denotes the equivalence Rep(G )̌ →

PGO
(Gr). Let υ : Rep(G )̌ → Rep(G )̌op denote the functor V 7→ V ∗.

Recall also that CohGˇ
fr (N) denotes the category of G -̌equivariant vector bun-

dles on N which have the form V ⊗ O, V ∈ Rep(G )̌. Thus CohGˇ
fr (N) is

a tensor category under the tensor product of vector bundles. It was shown

in [2] that the map V ⊗ O 7→ Z(V ) extends naturally to a monoidal functor

CohGˇ
fr (N) → DI(F`); we denote the resulting monoidal functor by Z̃ (thus

Z̃ = F ◦ p∗Spr in notation of [2]).

Lemma 4: There exists a tensor isomorphism of functors CohGˇ
fr (N)op→PGO

(Gr)

Z̃ ◦ (σ ◦ κ) ∼= V ◦ Z̃.

Proof. The functor Z̃ is characterized by the following two conditions (cf. [2,

Proposition 4(a)]):

Z̃|Rep(Gˇ)
∼= Z(11)

Z̃(N taut
V ⊗O) = MZ(V ).(12)

More precisely, given a functor Z̃′ with a functorial tensor isomorphism

Z̃′(V ⊗ O) ∼= Z(V ), V ∈ Rep(G )̌, which intertwines Z̃′(N taut
V ⊗O

) and MZ(V ),

one can construct a canonical isomorphism Z̃′ ∼= Z̃. Here N taut
F

is the “topo-

logical” endomorphism of an equivariant sheaf F ∈ CohGˇ(N), whose action

on the fiber at a point x ∈ N coincides with the action of x ∈ Stabgˇ(x) com-

ing from the equivariant structure; and MZ(V ) is the logarithm of monodromy

endomorphism of Z(V ) (arising from the construction of Z(V ) via the nearby

cycles functor). Thus we will be done if we show that (11) can be constructed,

so that (12) holds, for Z̃ replaced by V ◦ Z̃ ◦ (σ ◦ κ).
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This follows from existence of natural isomorphisms satisfying the correspond-

ing equalities:

κ(V ⊗ O) ∼= κ(V ) ⊗ O, κ(N taut
V ⊗O) = N taut

κ(V )⊗O
;(13)

σ(V ⊗ O) ∼= V ∗ ⊗ O, σ(N taut
V ⊗O) = N taut

V ∗⊗O;(14)

V(Z(V )) ∼= Z(V ), V(MZ(V )) = MZ(V ).(15)

Here (13) and (14) are easy exercises; and (15) follows from the fact that nearby

cycles commute with Verdier duality, and the isomorphism V◦Ψ ∼= Ψ◦V (where

Ψ is the nearby cycles functor) respects the monodromy action, by inspection

of the definition of Z in [8].

2.3.1. We are now ready for the proof of the theorem. Using the monoidal

functor Z̃ one can define the action of the monoidal category CohGˇ
fr (N) on

fP
f
I and on its derived category. It follows from the isomorphisms (3), and the

definition of fΦf in [2] (cf. [2, Theorem 1]) that fΦf intertwines this action with

the action of CohGˇ
fr (N) on DGˇ(N) by tensor products; i.e., we have a natural

isomorphism

(16) fΦf (V ⊗ F) ∼= Z(V ) ∗ fΦf (F).

Set φ = fΦf−1
◦V◦fΦf ◦σ◦κ. We want to construct an isomorphism φ ∼= id.

Lemma 4 shows that φ commutes with the action of CohGˇ
fr (N) by tensor

products. Furthermore, it is easy to see that φ(O) ∼= O. Thus we get an

isomorphism

(17) φ|CohGˇ

fr
(N)

∼= id .

Let now C• be a bounded complex where Ci ∈ CohGˇ
fr (N), and C be the cor-

responding object of DGˇ(N). By inspection of the definition of fΦf one checks

that φ(C) is represented by the complex (φ(Ci)). This yields an isomorphism

(18) φ|DGˇ

fr
(N)

∼= id

(see Remark 1 for notation). As in Remark 1 we see that φ preserves

D<0(CohGˇ(N)), which, together with (18), yields an isomorphism φ ∼= id.

2.4. Proof of Theorem 4. We first recall some results of [6], [5] (see Section

1.7 above for notation).
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Proposition 3: Ac carries a natural structure of a rigid monoidal category

(given by the truncated convolution ◦); Af
c ⊂ Ac is a monoidal subcategory.

Let 1 be the unit object1 of Ac. We have a monoidal central2 functor

rc : Rep(Zc) → Ac such that

i) The composition of the restriction functor resGˇ
Zc

: Rep(G )̌ → Rep(Zc)

with rc is isomorphic to the functor V 7→ Z(V ) ∗ 1.

ii) The element Nc yields a tensor endomorphism of the functor ResGˇ
Zc

.

The isomorphism of (i) carries this endomorphism into the endomor-

phism induced by the logarithm of monodromy, see [8, Theorem 2].

iii) For X ∈ Ac we have a canonical isomorphism

(19) Zλ ∗ X ∼= rc(Vλ|Zc
) ◦ X.

iv) The functor V 7→ rc(V ) ◦ X from Rep(Zc) to Ac is exact and faithful

for all X ∈ Ac, X 6= 0.

v) The functor rf
c defined by rf

c (X) = rc(X) ◦ Ldc
is a monoidal functor

Rep(Zc) → Af
c .

There exists an algebraic subgroup Hc ⊂ Zc, and an equivalence Af
c

∼=

Rep(Hc), which intertwines rf
c with the restriction functor Rep(Zc) → Rep(Hc).

Proof. See [6].

We need to spell out compatibility between (19) and equivalence fΦ.

The functor F induces a map

HomCohGˇ(N)(V1 ⊗ O, V2 ⊗ O) → Hom(Z(V1), Z(V2));

where V1, V2 ∈ Rep(G )̌. For h ∈ HomCohGˇ(N)(V1 ⊗ O, V2 ⊗ O) define

hX : Z(V1) ∗ X → Z(V2) ∗ X by hX = F (h) ∗ idX .

On the other hand, given h ∈ HomCohGˇ(N)(V1 ⊗ O, V2 ⊗ O) we can consider

the induced map of fibers at Nc; we denote this map by hNc
∈ HomZc

(V1, V2).

Lemma 5: Let X ∈ P
≤c
I , X mod P

<c
I ∈ Ac. Then for

h ∈ HomCohGˇ(N)(V1 ⊗ O, V2 ⊗ O)

isomorphism (19) carries hX into rc(hNc
) ◦ idX .

1 It follows from the results of Lusztig [5] that 1 ∼= Ldc
; Proposition 1 provides a description

of the corresponding object in the derived category of coherent sheaves.
2 See, e.g., [2, §3.2], or (with more details) [5, §2.1], for a definition.
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Proof. We need to enhance (19) to an isomorphism between the two actions

of the tensor category CohGˇ
fr (N) on Ac, where the first one is given by

F : X 7→ Z̃(F) ∗ X, while the second one is given by F : X 7→ rc(FNc
) ◦ X ,

where FNc
denotes the fiber of F at Nc. We apply the (easy) uniqueness part

of the Proposition 4(a) in [2] to the situation where the target category C is

the category of endo-functors of Ac. According to that proposition, it suffices

to check that (19) is compatible with the image of the tautological endomor-

phism N taut of idCohGˇ

fr
(N). In view of Proposition 3 (iii), this compatibility

follows by comparing Proposition 3 (ii) with compatibility (12) between N taut

and monodromy via Z̃.

Theorem 4 will be deduced from the next

Lemma 6: a) For w ∈ fW we have

(20) w ∈ c ⇒ pSpr(supp(fΦ
−1

(Lw))) = G (̌Nc).

b) For any X ∈ Db(fPI) we have

(21) pSpr(supp(fΦ
−1

(X))) =
⋃

c

G (̌Nc),

where c runs over the set of such 2-sided cells that the multiplicity of Lw in

the Jordan–Hoelder series of Hi(X) is non-zero for some w ∈ c ∩ fW .

Proof. Let J ⊂ ON be the ideal sheaf of the closure of a G -̌orbit O on N. Fix

n > 0. There exists a surjection of equivariant sheaves V ⊗ O � Jn for some

V ∈ Rep(G )̌. Let φ : V ⊗ O → O be the composition V ⊗ O � Jn ↪→ O; we

use the same symbol to denote the pull-back of φ under pSpr. Then an object

F ∈ DGˇ(Ñ) lies in DGˇ
p
−1

Spr
(O)

(Ñ) if and only if the arrow φ ⊗ idF : V ⊗ F → F

equals zero for some (equivalently, for all large) n. Thus to check (20) it is

enough to show that for w ∈ c we have

(22) O 3 Nc ⇐⇒ 0 = φLw
∈ Hom(Z(V ) ∗ Lw, Lw).

If w ∈ c ∩ fW , then a morphism Z(V ) ∗ Lw → Lw is zero if and only if

the induced arrow in Ac is zero; this is also equivalent to the induced arrow

in fPI being zero. In view of Lemma 5 the induced map (φ)Lw
mod P

<c
I ∈

Hom(Z(V ) ∗ Lw, Lw) equals rc(φNc
) ◦ idLw

. But φNc
= 0 if Nc ∈ O, so (22)

holds in this case. Conversely, if O 63 Nc then φNc
6= 0 for all n. Since the

functor V 7→ rc(V )◦X from Rep(Zc) to Ac is exact and faithful for all X ∈ Ac,
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X 6= 0 we see that φLw
is non-zero in this case. This shows (22), and hence

(20).

(20) implies that the left hand side of (21) is contained in the right-hand

side. Let us check the other inclusion. Let J be the ideal sheaf of a proper G -̌

invariant subvariety S in the right-hand side of (21), and φ : V ⊗O → O satisfy

im(φ) = Jn as before. We need to verify that supp(X) 6⊂ S, which is equivalent

to saying that the induced morphism Z(V )(X) → X is nonzero. There exists

w ∈ c ⊂ W such that the multiplicity of Lw in the Jordan–Hoelder series of

Hi(X) is non-zero for some i but Nc 6∈ S. We saw in the previous paragraph

that the morphism (φ)Lw
: Z(V ) ∗ Lw → Lw is non-zero. But the latter is a

subquotient of Hi((φ)X ); so (φ)X 6= 0 as well.

2.4.1. Proof of Theorem 4 (conclusion). (a) follows from (b) and (21); so let us

prove (b). Let c1, c2 ⊂ W be two sided cells. Let Ji ⊂ ON be the ideal sheaf of

G (̌Nc
i
), and φi : Vi ⊗ ON → ON have Ji as its image (i = 1, 2).

Assume that c1 ≤ c2; pick w1 ∈ c1 ∩
fW , w2 ∈ c2 ∩

fW . Then Lw1
is a direct

summand in the convolution X1 ∗ Lw2
∗ X2 for some semisimple complexes

X1, X2 ∈ Db
I(F`). Hence the arrow (φ2)Lw1

is a direct summand in

X1 ∗ ((φ2)Lw2
) ∗ X2 = (φ2)X1∗Lw2

∗X2
.

But

(φ2)Lw2
= 0;

hence

(φ2)Lw1
= 0,

which implies

Nc
1
∈ pSpr(supp(fΦ

−1
(Lw1

))) ⊂ G (̌Nc
2
).

Conversely, suppose that Nc
1
∈ G (̌Nc2

). Let

K = (0 → Λd(V ) ⊗ ON → · · · → V ⊗ ON → ON → 0)

be the Koszul complex of φ1. Pick w ∈ c2 ∩
f W . Then we have

G (̌Nc
1
) = pSpr(supp(K ⊗ON

fΦ
−1

(Lw))).

Hence, according to (21), there exists w1 ∈ c1 such that Lw1
is a subquotient

of Hi(fΦ(K ⊗ON

fΦ
−1

(Lw))) for some i. The object fΦ(K ⊗ON

fΦ
−1

(Lw)) is

represented by the complex

0 → Z(Λd(V )) ∗ Lw → Z(Λd−1(V )) ∗ Lw → · · · → Z(V ) ∗ Lw → Lw → 0.
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But the Jordan-Hoelder series of Zλ ∗ Lw consists of Lu with u ≤
LR

w. Hence

c1 ≤ c2. The Theorem is proved.

2.5. Proof of Proposition 1. The proposition will be deduced from the

next two lemmas

Lemma 7: Let j : O ↪→ N be an orbit of codimension 2m, and F ∈ DGˇ(N)

satisfy the following properties

i) F is an irreducible perverse coherent sheaf with respect to the perversity

(5).

ii) supp(F) = O.

iii) HomDGˇ(N)(O, F[m]) 6= 0.

Then F ∼= ÔO[−m].

Proof. The condition HomDGˇ(N)(O, F[m]) 6= 0 is equivalent to the existence of

a non-zero G -̌invariant section of the coherent sheaf Hm(F) (where the coho-

mology is taken with respect to the usual t-structure on the derived category of

coherent sheaves). For a perverse coherent sheaf F on O we have Hi(F) = 0 for

i < m, and Hm(F) is a torsion free sheaf on O. (Indeed, otherwise we would

have a non-zero morphism defined on a G -̌invariant open subscheme of O from

V to F[i] where i ≤ m and V is the non-derived direct image of a vector bundle

under the locally closed embedding of an orbit O′ ⊂ O, O′ 6= O. Since V [−d]

is a perverse coherent sheaf for d = codimO′/2 > m this would give an Ext of

degree i − d < 0 between perverse coherent sheaves, which is impossible.)

Thus a non-zero section of Hm(F) does not vanish on O. Also, j∗(Hm(F))

is an irreducible G -̌equivariant vector bundle. Such a vector bundle has a

non-zero G -̌invariant section if and only if it is trivial; in which case we have

F ∼= j!∗(OO[−m]) ∼= ÔO[−m], where the last equality is proved in [4], Remark

11.

Lemma 8: We have

Ext
a(dc)
f PI

(L0, Ldc
) 6= 0,

where a stands for Lusztig’s a-function on W , see, e.g., [9, Section 1.1].

Proof. The standard definition of a Duflo involution (see, e.g., [9, Section

1.3]) shows that the costalk j!
e(Ld) has non-zero cohomology in degree a(d).

We can think of j!
e(Ld) as an object in the I-equivariant derived category of
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l-adic sheaves on the point. Moreover, it is a pull-back of an object in the

I-equivariant derived category of l-adic sheaves on the spectrum of a finite field.

The latter object is known to be pure (cf., e.g., [8, Appendix, Section A.7]);

hence it is isomorphic to the direct sum of its cohomology (notice that Hom be-

tween two objects of the bounded I-equivariant derived category of the point is

identified with Hom between corresponding complexes with constant cohomol-

ogy on (Pn)rank (G), n � 0. Thus any pure object in the I-equivariant derived

category of the point is isomorphic to the sum of its cohomology by [3, Theorem

5.4.5]).

It follows that HomDb
I
(F`)(Le, Ld[a(d)]) 6= 0. In view of Theorem 2 of [2] we

will be done if we check that the map

HomDb
I
(F`)(Le, Ld[a(d)]) → HomDIW

(∆e, ∆e ∗ Ld[a(d)]),

sending h to id∆e
∗h is injective.

Recall (see, e.g., [11]) that Ld[a(d)] is a direct summand in Lw ∗Lw−1 for any

w ∈ c ∩ fW (e.g., for w = d). Thus for any h ∈ HomDI(F`)(Le, Ld[a(d)]) the

composition

(23) Le
h

−→ Ld[a(d)] → Lw ∗ Lw−1

is non-zero for such w.

For w ∈ W and X, Y ∈ D(F`); or X, Y ∈ DI(F`) we have a canonical

isomorphism

(24) Hom(X ∗ Lw, Y ) ∼= Hom(X, Y ∗ Lw−1).

In particular, Hom(Le, Lw ∗Lw−1) ∼= Hom(Lw, Lw) is a one dimensional space;

thus multiplying h ∈ HomDI (F`)(Le, Ld[a(d)]) by a constant we can assume that

the composition (23) corresponds to id ∈ Hom(Lw, Lw) under the isomorphism

(24). Then one can check that the composition

∆e

id∆e ∗h
−→ ∆e ∗ Ld[a(d)] → ∆e ∗ Lw ∗ Lw−1

corresponds under (24) to id ∈ Hom(∆e ∗ Lw, ∆e ∗ Lw). In particular, it is not

equal to zero.

2.5.1. We are now ready to finish the proof of the proposition. It suffices to

see that the object (fΦf )−1(Ld) satisfies the conditions of Lemma 7. The first
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condition holds by Theorem 2. The second one holds by Theorem 4(a). Finally,

to check condition (iii) notice that by Lemma 8 we have

ll Hom(ON, fΦf−1
(Ld)[a(dc)]) = Hom(ON, pSpr∗(

fΦ
−1

(Ld)[a(dc)])

= Hom(O
Ñ

, fΦ
−1

(Ld)[a(dc)])

= Hom(Le, Ld[a(dc)]) 6= 0.

By [10], Theorem 4.8(c) we have a(dc) = codim(G (̌Nc))/2, which implies con-

dition (iii).

2.6. Proof of Proposition 2. If ρ is trivial then (7) follows from Proposition

1. Applying (19) we see that (7) holds when ρ = ResGˇ
ZGˇ(Nc)

(V ) for V ∈

Rep(G )̌.

Let now ρ be arbitrary. Let L ∈ CohGˇ(N) be some sheaf supported on the

closure of G (̌Nc), and such that L|Gˇ(Nc)
∼= Lρ. We can choose a short exact

sequence

(25) W ⊗ O
φ

−→ V ⊗ O → L → 0,

V, W ∈ Rep(G )̌.

Then we get an exact sequence

W |ZGˇ(Nc) → V |ZGˇ(Nc) → ρ → 0

in Rep(Zc), and hence an exact sequence in fPI
c
:

rc(W |Zc
) ◦ Ldc

→ rc(V |Zc
) ◦ Ldc

→ rc(ρ) ◦ Ldc
→ 0;

by (19) it can be written as

(26) Z(W ) ∗ Ldc
→ Z(V ) ∗ Ldc

→ rc(ρ) ◦ Ldc
→ 0.

On the other hand, consider the tensor product of (25) by j∗(O) where j

stands for the embedding G (̌Nc) ↪→ N (and j∗ is the non-derived direct image).

We get a short exact sequence

(27) W ⊗ j∗(O) → V ⊗ j∗(O) → L′ → 0

where L′|Gˇ(Nc)
∼= Lρ. Theorem 2 and the definition of a perverse coherent sheaf

show that the functor F 7→ Φc(F)[−m] is exact with respect to the standard
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t-structure on the category DGˇ
Nc

(N). Applying this functor to (27) we get an

exact sequence in fP
f
I

c
, which by Theorem 1 has the form

(28) Z(W ) ∗ Ldc
→ Z(V ) ∗ Ldc

→ Φc(Lρ[−m]) → 0.

Lemma 5 implies that (28) is isomorphic to (26) (or rather to its image in

the quotient category fP
f
I

c
); in particular, (7) holds.

2.6.1. Proof of Corollary 2. The functor Φc is an equivalence, thus Proposition

2 implies that the functor rf
c : Rep(Zc) → Af

c
∼= Rep(Hc) is fully faithful. The

functor of restriction of a representation to a subgroup can only be fully faithful

if the subgroup coincides with the whole group, thus Hc = Zc.
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