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ABSTRACT

We present a model for nonlocal diffusion with Dirichlet boundary condi-

tions in a bounded smooth domain. We prove that solutions of properly

rescaled nonlocal problems approximate uniformly the solution of the cor-

responding Dirichlet problem for the classical heat equation.

1. Introduction

Let J : R
N → R be a nonnegative, radial, continuous function with

∫

RN J(z),

dz = 1. Assume also that J is strictly positive in B(0, d) and vanishes in

R
N \ B(0, d). Nonlocal evolution equations of the form

(1.1) ut(x, t) = (J ∗ u − u)(x, t) =

∫

RN

J(x − y)u(y, t) dy − u(x, t),

and variations of it, have been widely used to model diffusion processes. As

stated in [12] equation (1.1) models a “random walk” continuous in time where
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the probability distribution of jumping from location y to location x is given by

J(x− y). For recent references on nonlocal diffusion see, [2], [1], [3], [4], [5], [6],

[8], [12], [14], [15] and references therein.

In this article we propose the following nonlocal “Dirichlet” boundary value

problem: Given g(x, t) defined for x ∈ R
N \Ω and u0(x) defined for x ∈ Ω, find

u(x, t) such that

(1.2)



















ut(x, t) =

∫

RN

J(x − y)(u(y, t) − u(x, t))dy, x ∈ Ω, t > 0,

u(x, t) = g(x, t), x 6∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

In this model we prescribe the values of u outside Ω which is the analogue

of prescribing the so-called Dirichlet boundary conditions for the classical

heat equation. However, the boundary data is not understood in the usual

sense as we will see in Remark 2.1, below. As explained before the integral
∫

J(x − y)(u(y, t) − u(x, t)) dy takes into account the individuals arriving or

leaving position x ∈ Ω from or to other places while we are prescribing the

values of u outside the domain Ω by imposing u = g for x 6∈ Ω. When g = 0 we

get that any individuals that leave Ω, die, this is the case when Ω is surrounded

by a hostile environment. See [11] for a similar model.

Existence and uniqueness of solutions of (1.2) is proved by a fixed point

argument in Section 2, where a comparison principle is also obtained.

Let us consider the classical Dirichlet problem for the heat equation,

(1.3)















vt(x, t) − ∆v(x, t) = 0, x ∈ Ω, t > 0,

v(x, t) = g(x, t), x ∈ ∂Ω, t > 0,

v(x, 0) = u0(x), x ∈ Ω.

The nonlocal Dirichlet model (1.2) and the classical Dirichlet problem (1.3)

share many properties, among them the asymptotic behavior of their solutions

as t → ∞ is similar as was proved in [7].

The main goal of this article is to show that the Dirichlet problem for the

heat equation (1.3) can be approximated by suitable nonlocal problems of the

form of (1.2).

More precisely, for a given J and a given ε > 0 we consider the rescaled kernel

(1.4) Jε(ξ) = C1
1

εN
J (ξ/ε) , with C−1

1 =
1

2

∫

B(0,d)

J(z)z2
N dz.
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Here C1 is a normalizing constant in order to obtain the Laplacian in the limit

instead of a multiple of it. Let uε(x, t) be the solution of

(1.5)



















uε
t (x, t) =

∫

Ω

Jε(x − y)

ε2
(uε(y, t) − uε(x, t))dy, x ∈ Ω, t > 0,

u(x, t) = g(x, t), x 6∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Our main result now reads as follows.

Theorem 1.1: Let Ω be a bounded C2+α domain for some 0 < α < 1. Let

v ∈ C2+α,1+α/2(Ω × [0, T ]) be the solution to (1.3) and let uε be the solution

to (1.5) with Jε as above. Then, there exists C = C(T ) such that

(1.6) sup
t∈[0,T ]

‖v − uε‖L∞(Ω) ≤ Cεα → 0, as ε → 0.

Related results for the Neumann problem where recently obtained in [10].

Note that the assumed regularity of v is a consequence of regularity assump-

tions on the boundary data g, the domain Ω and the initial condition u0, see

[13].

The rest of the paper is organized as follows: in Section 2, we prove existence,

uniqueness and a comparison principle for our nonlocal equation and in Section 3

we prove the convergence result.

2. Existence, uniqueness and a comparison principle

Existence and uniqueness of solutions is a consequence of Banach’s fixed point

theorem. We look for u ∈ C([0,∞); L1(Ω)) satisfying (1.2). Fix t0 > 0 and

consider the Banach space Xt0 =
{

w ∈ C([0, t0]; L
1(Ω))

}

with the norm

|||w||| = max
0≤t≤t0

‖w(·, t)‖L1(Ω).

We will obtain the solution as a fixed point of the operator T : Xt0 → Xt0

defined by

Tw0
(w)(x, t) = w0(x) +

∫ t

0

∫

RN

J (x − y) (w(y, s) − w(x, s)) dy ds,

where we impose

w(x, t) = g(x, t), for x 6∈ Ω.
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Lemma 2.1: Let w0, z0 ∈ L1(Ω), then there exists a constant C depending on

J and Ω such that

|||Tw0
(w) − Tz0

(z)||| ≤ Ct0|||w − z||| + ||w0 − z0||L1(Ω)

for all w, z ∈ Xt0 .

Proof. We have

∫

Ω

|Tw0
(w)(x, t) − Tz0

(z)(x, t)| dx ≤

∫

Ω

|w0 − z0|(x) dx

+

∫

Ω

∣

∣

∣

∣

∫ t

0

∫

RN

J (x − y) [(w(y, s) − z(y, s)) − (w(x, s) − z(x, s))] dy ds

∣

∣

∣

∣

dx.

Hence, taking into account that w and z vanish outside Ω,

|||Tw0
(w) − Tz0

(z)||| ≤ ||w0 − z0||L1(Ω) + Ct0|||w − z|||,

as we wanted to prove.

Theorem 2.1: For every u0 ∈ L1(Ω) there exists a unique solution u, such

that u ∈ C([0,∞); L1(Ω)).

Proof. We check first that Tu0
maps Xt0 into Xt0 . Taking z0 ≡ 0 and z ≡ 0 in

Lemma 2.1 we get that Tu0
(w) ∈ C([0, t0]; L

1(Ω)) for any w ∈ Xt0 .

Choose t0 such that Ct0 < 1. Now taking z0 ≡ w0 ≡ u0 in Lemma 2.1 we get

that Tu0
is a strict contraction in Xt0 and the existence and uniqueness part

of the theorem follows from Banach’s fixed point theorem in the interval [0, t0].

To extend the solution to [0,∞) we may take as initial data u(x, t0) ∈ L1(Ω)

and obtain a solution up to [0, 2t0]. Iterating this procedure we get a solution

defined in [0,∞).

Remark 2.1: Note that in general a solution u with u0 > 0 and g = 0 is strictly

positive in Ω (with a positive continuous extension to Ω) and vanishes outside

Ω. Therefore, a discontinuity occurs on ∂Ω and the boundary value is not taken

in the usual “classical” sense, see [7].

We now define what we understand by sub and supersolutions.
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Definition 2.1: A function u ∈ C([0, T ); L1((Ω)) is a supersolution of (1.2) if

(2.1)































ut(x, t) ≥

∫

RN

J(x − y)(u(y, t) − u(x, t))dy, x ∈ Ω, t > 0,

u(x, t) ≥ g(x, t), x 6∈ Ω, t > 0,

u(x, 0) ≥ u0(x), x ∈ Ω.

As usual, subsolutions are defined analogously by reversing the inequalities.

Lemma 2.2: Let u0 ∈ C(Ω), u0 ≥ 0, and u ∈ C(Ω × [0, T ]) a supersolution to

(1.2) with g ≥ 0. Then, u ≥ 0.

Proof. Assume to the contrary that u(x, t) is negative in some point. Let

v(x, t) = u(x, t) + εt with ε so small such that v is still negative somewhere.

Then, if (x0, t0) is a point where v attains its negative minimum, there holds

that t0 > 0 and

vt(x0, t0) = ut(x0, t0) + ε >

∫

RN

J(x − y)(u(y, t0) − u(x0, t0)) dy

=

∫

RN

J(x − y)(v(y, t0) − v(x0, t0)) dy ≥ 0

which is a contradiction. Thus, u ≥ 0.

Corollary 2.1: Let J ∈ L∞(RN ). Let u0 and v0 in L1(Ω) with u0 ≥ v0 and

g, h ∈ L∞((0, T ); L1(RN \ Ω)) with g ≥ h. Let u be a solution of (1.2) with

u(x, 0) = u0 and Dirichlet datum g and v be a solution of (1.2) with v(x, 0) = v0

and datum h. Then, u ≥ v a.e.

Proof. Let w = u−v. Then, w is a supersolution with initial datum u0−v0 ≥ 0

and datum g−h ≥ 0. Using the continuity of solutions with respect to the data

and the fact that J ∈ L∞(RN ), we may assume that u, v ∈ C(Ω × [0, T ]). By

Lemma 2.2 we obtain that w = u − v ≥ 0. So the corollary is proved.

Corollary 2.2: Let u ∈ C(Ω × [0, T ]) (resp., v) be a supersolution (resp.,

subsolution) of (1.2). Then, u ≥ v.

Proof. It follows from the proof of the previous corollary.
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3. Convergence to the heat equation

In order to prove Theorem 1.1, let ṽ be a C2+α,1+α/2 extension of v to

R
N × [0, T ].

Let us define the operator

L̃ε(z) =
1

ε2

∫

RN

Jε(x − y)
(

z(y, t) − z(x, t)
)

dy.

Then ṽ verifies

(3.1)















ṽt(x, t) = L̃ε(ṽ)(x, t) + Fε(x, t) x ∈ Ω, (0, T ],

ṽ(x, t) = g(x, t) + G(x, t), x 6∈ Ω, (0, T ],

ṽ(x, 0) = u0(x), x ∈ Ω.

where, since ∆v = ∆ṽ in Ω,

Fε(x, t) = −L̃ε(ṽ)(x, t) + ∆ṽ(x, t).

Moreover as G is smooth and G(x, t) = 0 if x ∈ ∂Ω we have

G(x, t) = O(ε), for x such that dist(x, ∂Ω) ≤ εd.

We set wε = ṽ − uε and we note that

(3.2)















wε
t (x, t) = L̃ε(w

ε)(x, t) + Fε(x, t) x ∈ Ω, (0, T ],

wε(x, t) = G(x, t), x 6∈ Ω, (0, T ],

wε(x, 0) = 0, x ∈ Ω.

First, we claim that, by the choice of C1, the fact that J is radially symmetric

and ũ ∈ C2+α,1+α/2(RN × [0, T ]), we have that

(3.3) sup
t∈[0,T ]

‖Fε‖L∞(Ω) = sup
t∈[0,T ]

‖∆ṽ − L̃ε(ṽ)‖L∞(Ω) = O(εα) .

In fact,

∆ṽ(x, t) −
C1

εN+2

∫

RN

J ((x − y)/ε) (ṽ(y, t) − ṽ(x, t)) dy

becomes, under the change variables z = (x − y)/ε,

∆ṽ(x, t) −
C1

ε2

∫

RN

J (z) (ṽ(x − εz, t)− ṽ(x, t)) dz

and hence (3.3) follows by a simple Taylor expansion. This proves the claim.

We proceed now to prove Theorem 1.1.
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Proof of Theorem 1.1. In order to prove the theorem by a comparison we first

look for a supersolution. Let w be given by

(3.4) w(x, t) = K1ε
αt + K2ε.

For x ∈ Ω we have, if K1 is large,

(3.5) wt(x, t) − L̃(w)(x, t) = K1ε
α ≥ Fε(x, t) = wε

t (x, t) − L̃ε(w
ε)(x, t).

Since

Gε(x, t) = O(ε) for x such that dist(x, ∂Ω) ≤ ε

choosing K2 large, we obtain

(3.6) w(x, t) ≥ wε(x, t)

for x 6∈ Ω such that dist(x, ∂Ω) ≤ εd and t ∈ [0, T ]. Moreover it is clear that

(3.7) w(x, 0) = K2ε > wε(x, 0) = 0.

By (3.5), (3.6) and (3.7) we can apply the comparison result and conclude that

(3.8) wε(x, t) ≤ w(x, t) = K1ε
αt + K2ε.

In a similar fashion we prove that w(x, t) = −K1ε
αt−K2ε is a subsolution and

hence,

(3.9) wε(x, t) ≥ w(x, t) = −K1ε
αt − K2ε.

Therefore

(3.10) sup
t∈[0,T ]

‖u − uε‖L∞(Ω) ≤ C(T )εα.

This proves the theorem.
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