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ABSTRACT

We prove that if a group possesses a deficiency 1 presentation where one of

the relators is a commutator, then it is Z×Z, large or is as far as possible

from being residually finite. Then we use this to show that a mapping

torus of an endomorphism of a finitely generated free group is large if it

contains a Z × Z subgroup of infinite index, as well as showing that such

a group is large if it contains a Baumslag–Solitar group of infinite index

and has a finite index subgroup with first Betti number at least 2. We

give applications to free by cyclic groups, 1 relator groups and residually

finite groups.

1. Introduction

Recall [45] that a finitely generated group G is large if it has a finite index

subgroup possessing a homomorphism onto a non-abelian free group. This is a

strong property and implies that G contains a non-abelian free subgroup [42], G

is SQ-universal [45] (every countable group is a subgroup of a quotient of G), G

has finite index subgroups with arbitrarily large first Betti number [37], G has

uniformly exponential word growth [25], as well as having subgroup growth of

strict type nn (which is the largest possible growth for finitely generated groups)

[38], and the word problem for G is solvable strongly generically in linear time

[32]. Thus on proving that G is large we obtain all these other properties for

free.
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There have been a range of results that give criteria for finitely generated or

finitely presented groups to be large. Starting with B. Baumslag and

S. J. Pride [2] which showed that groups with a presentation of deficiency at

least 2 are large, we then have in [23] a condition that implies this result, as

well as a proof that a group with a deficiency 1 presentation in which one of

the relators is a proper power is large. This latter result was also independently

derived by Stöhr in [48] and was followed by conditions for a group with a defi-

ciency 0 presentation where some of the relators are proper powers to be large,

due to Edjvet in [19]. Then further conditions for a finitely presented group to

be large, all of which imply the Baumslag-Pride result, are by Howie in [29],

G. Baumslag in [6] and a characterisation by Lackenby in [34]. In Section 2,

we give a criterion, based on the Howie result, for a finitely presented group G

to be large which is purely in terms of the Alexander polynomial of G and is

straightforward to use in practice. This result is particularly powerful in the

case of deficiency 1 groups which are then our focus for much of the rest of

the paper. Of course, unlike groups of deficiency 2 or higher, not all groups of

deficiency 1 are large: think of Z or the soluble Baumslag-Solitar groups given

by the presentations 〈x, y|xyx−1 = ym〉 for m ∈ Z\{0}. Other examples of

non-large deficiency 1 groups were given by Pride and Edjvet in [20] consisting

of those Baumslag-Solitar groups 〈x, y|xylx−1 = ym〉 for l, m 6= 0 where l and

m are coprime, as well as some HNN extensions of these.

As for large groups of deficiency 1, we have already mentioned those with a

relator that is a proper power and we again have examples in [20] with Theorem

6 stating that the group 〈x, y|xnylx−n = ym〉 for l, m, n 6= 0 is large if |n| > 1

or if l and m are not coprime. Further results of a more technical nature which

give largeness for some other 2 generator 1 relator presentations are in [18]. At

this point it seems difficult to say convincingly either way whether groups of de-

ficiency 1 are generally large. In this paper we hope to offer substantial evidence

that largeness is a natural property to expect in a deficiency 1 group. Although

we will display a few new groups of deficiency 1 which are not large in Example

3.5(ii), our main results are on establishing families of deficiency 1 groups which

are all large. In Section 3 we introduce the concept of a non-abelian residually

abelianised (NARA) group and this has a number of equivalent definitions, one

of which is that it is finitely generated and non-abelian but has no non-abelian

finite quotients; the idea being that a NARA group G is as far from being resid-

ually finite as possible because we cannot distinguish G from its abelianisation
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G/G′ by just looking at finite index subgroups. We obtain Theorem 3.6 which

states that if G has a deficiency 1 presentation in which one of its relators is a

commutator then G = Z × Z or G is NARA with abelianisation Z × Z or G is

large.

In [18] from 1984 it is asked if those groups which are an extension of a

finitely generated non-abelian free group by Z are large. They are certainly

torsion free groups with a natural deficiency 1 presentation and are also called

mapping tori of finitely generated non-abelian free group automorphisms. These

groups appear to make up a sizeable class of deficiency 1 groups but we can

expand this class considerably by allowing arbitrary endomorphisms in place

of automorphisms to obtain groups which are ascending HNN extensions of

finitely generated free groups. Such groups have been the attention of much

recent research where significant progress has been made. In particular these

groups have been shown to be coherent (every finitely generated subgroup is

finitely presented) in [21], Hopfian in [22] and even residually finite in [13]. If

largeness were added to this list (on removing the obvious small exceptions),

then it would show that such an HNN extension, indeed even a group which

is virtually such an HNN extension, has all the nice properties that one could

reasonably hope for.

In Section 4, we apply our results to show that for G a mapping torus of a

finitely generated free group endomorphism, we have G is large if it contains

a Z × Z subgroup of infinite index. Also G is large if it contains a Baumslag-

Solitar subgroup and has a finite index subgroup H (6= Z×Z) with β1(H) ≥ 2.

Of course if β1(H) = 1 for all H , then we would have an example of such a G

which is not large. However, we know of no examples apart from the soluble

Baumslag-Solitar groups themselves, and it seems believable that no other G

has this property.

In Section 5, we restrict to groups G of the form F -by-Z where F is free. By

Section 4 G is large if it contains Z × Z and F = Fn is of finite rank n ≥ 2.

It is known by [8], [9] and [14] that these are exactly the groups of the form

Fn-by-Z which are not word hyperbolic. We also show that if F is of infinite

rank but G is finitely generated then G is, in fact, large. By combining these

results with known facts about word hyperbolic groups, this allows us to prove

in Theorem 5.4 that if G is any finitely generated group which is virtually free-

by-Z then (apart from the obvious small exceptions) G is SQ-universal, has

uniformly exponential growth and has a word problem that is solvable strongly
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generically in linear time. This is also true for the finitely generated subgroups

of G.

Section 6 looks at 1 relator groups G, where we need only consider the case

where G has a 2 generator 1 relator presentation. We know that by Section 3

we obtain largeness unless G = Z × Z (which is easily detected in the 1 relator

case) or G is NARA. It is true that 2 generator 1 relator groups which are

NARA exist, but if we insist that the relator is a product of commutators, then

no examples are known; indeed it was only recently that non-residually finite

examples of such groups were given in [43] Problem (OR7). Moreover, if the

relator is a single commutator, then no examples are known that fail even to

be residually finite (this is Open Problem (OR8) in [43]) so in this case not

being NARA and hence large seems very likely. We give methods that show

this in practice for a given presentation. Finally, in Section 7, we make the

straightforward but useful observation that a group G is large if and only if

the quotient of G by its finite residual is large, suggesting that the best setting

in which to examine largeness is the residually finite case. We prove that a

residually finite group with infinitely many ends is large (this is most definitely

not true if residual finiteness is removed) and examine finitely presented groups

which are LERF, which is a strengthening of being residually finite.

The author would like to acknowledge helpful comments from Ilya Kapovich,

Gilbert Levitt and Alec Mason, as well as thanking the referee for a thorough

reading of the paper.

2. A Condition for Largeness

We quote the following facts that we will need about the Alexander polynomial

of a finitely presented group; see [35]. Let G be given by a finite presentation

〈x1, . . . , xn| r1, . . . , rm〉 and let G′ be the derived (commutator) subgroup of

G. Then the abelianisation G = G/G′ is a finitely generated abelian group

Zβ1(G) × T for T the torsion subgroup whereas the free abelianisation ab(G)

is Zβ1(G). On taking any surjective homomorphism χ : G → Z, we have the

Alexander polynomial ∆G,χ ∈ Z[t±1] which is a Laurent polynomial up to the

ambiguity of multiplication by the units ±tk for k ∈ Z. It is defined in the

following way: on taking t to be an element in G with χ(t) = 1 we have that t

acts by conjugation on H1(kerχ; Z), so H1(kerχ; Z) is a module over the group

ring Z[t±1] of the integers. It is easy to see that this is a finitely presented
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module, for instance we could use the Reidemeister-Schreier rewriting process

to obtain a presentation of kerχ from that of G and then abelianise, which

would result here in an (n − 1) × m presentation matrix. Thus we have the

first elementary ideal which is generated by the maximal minors, these being

the determinants of the matrices left over when we cross off the correct number

of columns to make the resulting matrix square (here we are assuming there

are at least as many columns as rows, or else we let the first elementary ideal

and the Alexander polynomial be zero). Note that this ideal is independent

of the particular presentation matrix chosen for H1(kerχ; Z). The definition

of the Alexander polynomial ∆G,χ(t) is then the generator (up to units) of the

smallest principal ideal containing the first elementary ideal, or equivalently the

highest common factor of the maximal minors.

The next point is the crucial fact which allows us to use the Alexander poly-

nomial to detect largeness.

Theorem 2.1: If G is a finitely presented group which has a homomorphism

χ onto Z such that ∆G,χ = 0, then G is large.

Proof. We have seen that H1(kerχ; Z) is a finitely presented module over Z[t±1]

but we can also take rational coefficients and use the fact that H1(kerχ; Z) ⊗Z

Q = H1(kerχ; Q) is a finitely presented module over Q[t±1] where t acts in

the same way, and we even have the same presentation matrix. Thus we can

define the Alexander polynomial over Q exactly as above in terms of the first

elementary ideal, and it will be the same polynomial as for Z, except that now it

is only defined up to units of Q[t±1] which are now qt±n for q ∈ Q\{0}. However,

note that ∆G,χ is zero over Z if and only if it is zero over Q. The advantage of

moving to rational coefficients is that Q[t±1] is a principal ideal domain, so by

the structure theorem it is a direct sum of cyclic modules. Thus the presentation

matrix P can be put into canonical form in which all off-diagonal entries are

zero and the diagonal entries are d1, . . . , dk for di ∈ Q[t±1]. By evaluating the

first elementary ideal we see that the Alexander polynomial over Q is d1 . . . dk

and this is zero if and only if some di is zero which happens if and only if

H1(kerχ; Q) has a free Q[Z]-module of at least rank 1 in its decomposition.

Now we invoke Howie’s condition for largeness in [29, Section 2]. Adopting

that notation, we let K be the standard connected 2-complex obtained from

our finite presentation of G, with N = kerχ and K the 2-complex which is

the regular covering of K corresponding to N so that π1(K) = N . Let F be
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a field: on following through the proof of [29, Proposition 2.1], we see that if

H1(K; F) contains a free F[Z]-module of rank at least 1 then the conclusion of

the proposition holds. But this is the hypothesis of [29, Theorem 2.2] which

proves that for any sufficiently large n the finite index subgroup NGn admits a

homomorphism onto the free group of rank 2.

In our case we have on setting F = Q that H1(K; Q) = H1(kerχ; Q) so if

∆G,χ = 0 we conclude that G is large.

Note: the above also works if we take F to be Z/pZ and ∆G,χ vanishes over

this field.

Corollary 2.2: If G is a finitely presented group possessing a homomorphism

to Z with kernel having infinite rational first Betti number then G is large.

Proof. We have by definition that β1(kerχ; Q) is the dimension of H1(kerχ; Q)

as a vector space over Q. It is also the degree of the Alexander polynomial ∆G,χ

(where the degree of a Laurent polynomial in t is the degree of the highest non-

zero power of t minus the degree of the lowest) by [35, Theorem 6.17] or [40,

Section 4]. In particular, ∆G,χ = 0 if and only if β1(kerχ; Q) is infinite, so this

claim now follows directly from Theorem 2.1.

Note: The Corollary is most definitely not true for all finitely generated groups;

we do require a finite number of relators too, as can be seen by the example of

the restricted wreath product Z o Z.

3. Deficiency 1 groups

The deficiency of a finite presentation is the number of generators minus the

number of relators and the deficiency def(G) of a finitely presented group G is

the maximum deficiency over all presentations. (It is bounded above by β1(G)

so is finite.) We know that groups of deficiency at least 2 are large so it seems

reasonable to ask whether we can use our criterion to obtain large groups with

lower deficiencies, for instance deficiency 1. In fact this case turns out to be a

very fruitful choice, both from the point of view that calculating the Alexander

polynomial of a deficiency 1 group is more efficient than for lower deficiencies,

and because of the behaviour of deficiency in finite covers. Given a presentation

for a group G with n generators and m relators and an index i subgroup H of

G, we can use Reidemeister-Schreier rewriting to obtain a presentation for H
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of G with (n − 1)i + 1 generators and mi relators, thus the deficiency of H is

at least (def(G) − 1)i + 1. So if def(G) = 1 then either def(H) = 1 for all

H ≤f G or H , and thus G, is large anyway by [2].

Theorem 3.1: If G is a group with a deficiency 1 presentation

〈x1, . . . , xn|r1, . . . , rn−1〉

where one of the relators is of the form xixjx
−1
i x−1

j then G is large if the

subgroup of ab(G) generated by the images of xi and xj has infinite index.

Proof. Without loss of generality we can reorder the generators and so we can

assume we have the relator x1x2x
−1
1 x−1

2 . As ab(G) is a free abelian group Zβ1(G)

of finite rank, we have that x1 and x2 generate a free abelian subgroup of strictly

smaller rank. Therefore there must exist a surjective homomorphism χ : G → Z

with x1 and x2 in the kernel, as well as coprime integers k3, . . . , kn such that

k3χ(x3)+ · · ·+knχ(xn) = 1. Therefore there exists a matrix M ∈ GL(n−2, Z)

such that its first column is (k3, . . . , kn) and this gives rise to an automorphism

β of Zn−2 sending the standard basis e3, . . . , en (where we think of ei as the

image of the generator xi in the abelianisation Zn of the free group Fn) to

a new basis b3, . . . , bn. Now by [39] I.4.4, we have an automorphism α of Fn

that fixes x1, x2 and induces β on e3, . . . , en. On rewriting our presentation

in terms of y1 = α(x1), . . . , yn = α(xn), we now have χ(y3) = 1 and so we

can regard H1(kerχ; Z) as a Z[t±1] module where t is equal to y3 and acts

by conjugation. We can obtain a presentation matrix P for this module by

performing Reidemeister-Schreier rewriting on G using {tj : j ∈ Z} as a Schreier

transversal. We find that our original relation x1x2x
−1
1 x−1

2 becomes the set of

group relations x1,jx2,jx
−1
1,jx

−1
2,j where x1,j = tjx1t

−j and x2,j = tjx2t
−j . To

obtain the equivalent relation for P , we abelianise and regard each of these

group relations as the same module relation multiplied by powers of t. But this

becomes zero, thus giving us a zero column in P .

The crucial point about the group presentation having deficiency one is that

this makes P a square matrix (of size n − 1). This means that the Alexander

polynomial ∆G,χ is merely the determinant of P , which must be zero owing to

the zero column, hence we have largeness of G by Theorem 2.1.
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Corollary 3.2: If G = 〈x1, . . . , xn|r1, . . . , rn−1〉 has a deficiency 1 presenta-

tion with a relator r1 = x1x2x
−1
1 x−1

2 and the abelianisation G = Z×Z×Z/mZ

for m ≥ 2, then G is large.

Proof. We are done by Theorem 3.1 unless the images x1, x2 in G generate a

finite index subgroup S of G, but if so, then S must have Z-rank equal to that of

G, which is 2. However, S is generated by two elements so in this case S can only

be isomorphic to Z×Z. Now take a homomorphism θ from G onto Z/jZ for some

j ≥ 2 such that S is in the kernel. We require another generator g ∈ {x3, . . . , xn}

such that θ(g) generates Imθ but this can be achieved by taking an appropriate

automorphism of the free group of rank n that fixes x1 and x2, just as in

Theorem 3.1. We now perform Reidemeister-Schreier rewriting to obtain from

our original presentation of G a deficiency 1 presentation for kerθ consisting

of nj + 1 generators and nj relators. We have gi, 0 ≤ i < j as a Schreier

transversal for kerθ in G and on setting x1,i = gix1g
−i and x2,i = gix2g

−i,

which will all be amongst the generators for our presentation of kerθ given by

this process (because x1, x2 ∈ S ≤ kerθ), our original relator r1 gives rise to j

relators x1,ix2,ix
−1
1,i x

−1
2,i in the presentation for our subgroup. As these disappear

when we abelianise, we see that β1(kerθ) is at least j + 1 and we are done by

Theorem 3.1.

It might be felt that requiring two generators to commute in a deficiency 1

presentation is rather restrictive but most of the rest of our results are based on

finding deficiency 1 groups G which have a finite index subgroup H possessing

such a presentation. This means β1(H) ≥ 2 and Corollary 3.2 will apply unless

the abelianisation H = Z ×Z. We now discuss a generalisation of the property

of being residually finite which allows us to avoid this exception.

Recall that a group G is residually finite if the intersection RG over all the

finite index subgroups F ≤f G is the trivial group I. Although this works per-

fectly well as a general definition, it is most useful when G is finitely generated,

and that will be our assumption here. Our motivation for the next definition is

to ask: how badly can a group fail to be residually finite and what is the worst

possible case? The first answer that would come to mind is when G (6= I) has no

proper finite index subgroups at all, but we are dealing with groups possessing

positive first Betti number and hence infinitely many subgroups of finite index.

By noting that elements outside the commutator subgroup G′ cannot be in RG,

we obtain our condition.
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Definition 3.3: We say that the finitely generated group G is residually abe-

lianised if

G′ =
⋂

F≤f G

F.

If further G is non-abelian then we say it is NARA (non-abelian residually

abelianised).

Note that by excluding G being abelian, we have that G residually finite im-

plies G is not NARA. The definition has many equivalent forms but the general

idea is that a NARA group cannot be distinguished from its abelianisation if

one only uses standard information about its finite index subgroups.

Proposition 3.4: Let G be finitely generated and non-abelian with commu-

tator subgroup G′, abelianisation G = G/G′ and let RG be the intersection of

the finite index subgroups of G. The following are equivalent:

(i) G is NARA.

(ii) G has no non-abelian finite quotient.

(iii) G has no non-abelian residually finite quotient.

(iv) If an(G) denotes the number of finite index subgroups of G having index

n then an(G) = an(G) for all n.

(v) For all F ≤f G we have F ′ = G′.

(vi) For all F ≤f G we have F ∩ G′ = G′.

(vii) For all F ≤f G we have F ′ = F ∩ G′.

Proof. The equivalence of (i) with (ii) is immediate on dropping down to a finite

index normal subgroup. We have (iii) implies (ii) and (i) implies (iii) as any

residually finite image of G must factor through G/RG. As for (iv), this is just

using the index preserving correspondence between the subgroups of G and the

subgroups of G containing G′.

As for the rest, we have that F ′ ≤ F ∩ G′ ≤ G′ whenever F is a subgroup of

G. If (i) holds for G with F a finite index subgroup, then RF = RG = G′ but

RF is inside F ′ so F ′ and G′ are equal, giving (v). This immediately implies

(vi) and (vii) so we just require that these two in turn imply (i). This is obvious

for (vi) and for (vii) we can adopt the proof of [36] Theorem 4.0.8 which states

that if Γ is a residually finite group, then for each of its (non-trivial) cyclic

subgroups there exists a homomorphism onto another (non-trivial) cyclic group

which can be extended to a finite index subgroup of Γ. If (i) fails then take
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F ≤f G and g ∈ G′ but g /∈ F . Dropping down to N ≤ F with N �f G, we

have H = N〈g〉 ≤f G and H/N ∼= 〈g〉/(N ∩〈g〉). Thus g /∈ H ′ because by being

outside N it survives under a homomorphism from H to an abelian group. But

g is certainly in H ∩ G′.

The importance of condition (vii) holding for G is that we fail to pick up

extra abelianisation in finite covers F ≤f G since F/F ′ is just F/(F ∩ G′) ∼=

FG′/G′ ≤f G/G′. In particular β1(F ) = β1(G), so G is not large.

Example 3.5:

(i) The Thompson group T is NARA. This group has a 2 generator 2 relator

presentation with abelianisation Z × Z and its commutator subgroup T ′ has

no proper finite index subgroups as T ′ is infinite and simple; see [17]. But for

F ≤f T we have F ∩ T ′ ≤f T ′ thus T ′ ≤ F .

(ii) If G is infinite but has no proper finite index subgroups then G is NARA.

Moreover, for any such G and any residually abelianised group A we have Γ =

G ∗ A is NARA because if N �f Γ, then N ∩ G �f G so G ≤ N . This implies

that the normal closure C of G is in N so Γ/N must be abelian as it is a finite

quotient of Γ/C ∼= A. A famous example that will do for G is the Higman group

H with 4 generators and 4 relators as introduced in [27]. It has β1(G) = 0 so

its deficiency must be zero. Thus H ∗H is NARA so it too has no proper finite

index subgroups, since it is infinite and equals its own commutator subgroup. By

repeating this construction we obtain H ∗· · ·∗H using n copies of H which gives

us examples of NARA groups Gn which can have arbitrarily many generators

(by the Grushko-Neumann theorem) and with β1(Gn) = 0 and deficiency zero.

In order to obtain examples of deficiency 1 NARA groups we can take the free

product of Gn with Z or Z × Z so that the resulting groups need arbitrarily

many generators and have their first Betti number equal to 1 or 2. Of course

there are no groups of deficiency two or higher which are NARA because they

are all large.

(iii) There are 1 relator groups which are NARA: the first example dates back

to a short paper [3] of G. Baumslag in 1969 entitled “A non-cyclic one-relator

group all of whose finite quotients are cyclic” with the group in question being

〈a, b|a = a−1b−1a−1bab−1ab〉.
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However Baumslag-Solitar groups are not NARA, as can be seen by taking

quotients onto dihedral groups.

In terms of its wide application, the following is our main result on largeness

of deficiency 1 groups.

Theorem 3.6: If G has a deficiency 1 presentation 〈Fn|R〉 where one of the

relators is a commutator in Fn then exactly one of these occurs:

(i) G = Z × Z.

(ii) G is NARA with abelianisation Z × Z.

(iii) G is large.

In particular, if there exists H ≤f G with H 6= Z × Z, then G is large.

Proof. If our relator r = uvUV for u, v words in the generators for Fn, then

we can regard r as the commutator of two generators simply by adding u and

v to the generators and their definitions to the relators, noting that this does

not change the deficiency. We must have β1(G) ≥ 2 and if β1(G) ≥ 3 (or if the

subgroup generated by the images of u and v has Z-rank less than 2), then G

is large by Theorem 3.1. Moreover, if G has non-trivial torsion, then we have

largeness by Corollary 3.2 so the only case in which the given presentation for

G does not show largeness is when G = Z × Z with the subgroup S = 〈u, v〉

(where u and v are the images of u and v in G) being of finite index. If neither

(i) nor (ii) are true, then Proposition 3.4 tells us that none of the given seven

conditions hold for G, so the failure of (vii) means that there is a subgroup

L ≤f G with γ in L ∩ G′ but not in L′. Consequently L = L/L′ is an abelian

group which surjects to L/(L ∩ G′) with γ in the kernel. But L/(L ∩ G′) is

isomorphic to LG′/G′ which is a finite index subgroup of G and thus is equal to

Z × Z. As this is a Hopfian group, we conclude that β1(L) ≥ 2 but L 6= Z × Z.

We know that L also has a deficiency 1 presentation which we can obtain from

G by rewriting and if one of the relations in such a presentation for L were a

commutator, then we could conclude by Theorem 3.1 or Corollary 3.2 applied

to this presentation that L, and hence G, is large. In fact although we cannot

guarantee this, we now show that there is a finite index subgroup of L which

has such a presentation, along with the necessary abelianisation. We do this

by keeping track of what happens to our original relator r when we perform

Reidemeister-Schreier rewriting on dropping to a finite index subgroup. The

process of rewriting for a subgroup H in G = 〈g1, . . . , gn〉 involves taking a

Schreier transversal T to obtain a generating set for H of the form tgi(tgi)
−1,



122 J. O. BUTTON Isr. J. Math.

where t ∈ T and x is the element of T in the same coset as x. In particular

by taking t equal to the identity we have that if a generator gi of G is in H ,

then it becomes a generator of H . Moreover as the relators for H are obtained

by expressing the relators trjt
−1 in terms of these generators, any relator made

up solely from those gi which are contained in H will remain unchanged in the

presentation for H .

First we take H to be the normal subgroup of finite index in G which is the

inverse image of 〈u, v〉 under the abelianisation map from G to G. Then the

deficiency 1 presentation for H has r as one of its relators thus we have largeness

for H and G unless H = Z×Z. However, if so then we must have H ′ = H ∩G′.

This is because otherwise we have a surjective but non-injective homomorphism

from H/H ′ to H/(H ∩G′) ∼= Z×Z, thus we can use Hopficity again. Moreover

as G′ ≤ H we get H ′ = G′.

Let k, l be the minimum positive integers such that a = uk and b = vl are in

L. We set N = 〈H ′, a, b〉 which is a finite index normal subgroup of H and of

G, with G/N abelian. We rewrite for N in H in two stages; first we drop to

the subgroup with exponent sum of u equal to 0 mod k and rewrite using the

transversal ui, 0 ≤ i < k, and then we do the same with v. In both of these

stages a and b will be amongst the generators for N and our relator uvUV in

H gives rise to a relator ava−1v−1 after the first rewrite, and then this becomes

abAB. Thus we have G′ ≤ N �f G with N having a deficiency 1 presentation

which includes generators a, b and the relator abAB.

Finally we go from N to the subgroup L ∩ N ≤f G which on rewriting will

keep a and b because they are generators in the presentation for N which also

lie in L ∩ N , and consequently abAB remains too. Now our γ ∈ L from before

which is in G′\L′ is also in N as G′ ≤ N . But from above we have a surjective

homomorphism from L to Z × Z × Z/jZ for some j ≥ 2 with γ mapping onto

the Z/jZ factor. But then we can restrict this surjection to the finite index

subgroup L ∩N which also contains γ so L∩N has the right presentation and

the right homology to obtain largeness.

Note that Example 3.5 (ii) shows that case (ii) in Theorem 3.6 can occur but

this is the only type of example known to us.
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4. Ascending HNN extensions of free groups

A wide and important class of deficiency 1 groups is obtained by taking a free

group Fn with free basis x1, . . . , xn and an endomorphism θ of Fn to create the

mapping torus

G = 〈x1, . . . , xn, t|tx1t
−1 = θ(x1), . . . , txnt−1 = θ(xn)〉.

We call such a presentation a standard presentation for G. We do not assume

that θ is injective or surjective. However there is a neat way of sidestepping the

non-injective case using [31] where it is noted that G is isomorphic to a mapping

torus of an injective free group homomorphism θ̃ : Fm → Fm where m ≤ n. Of

course, it might be that Fn is non-abelian but m = 0 or 1, however this would

mean that G = Z or 〈a, t|tat−1 = ak〉 for k 6= 0. However in these cases G is

soluble and so is definitely not large. Therefore we will assume throughout that

θ is injective, whereupon G is also called an ascending HNN extension of the

free group Fn, where we conjugate the base Fn to an isomorphic subgroup of

itself using the stable letter t.

We have that our base Fn = 〈x1, . . . , xn〉 embeds in G and we will refer to

this copy of Fn in G as Γ. Then tΓt−1 = θ(Γ) which is equal to Γ if and only

if θ is surjective in which case G is free by Z. Otherwise θ(Γ) < Γ, with θ(Γ)

being isomorphic to Fn meaning that it has infinite index in Γ.

Once an ascending HNN extension G is formed, there is an obvious homo-

morphism χ from G onto Z associated with it which is given by χ(t) = 1 and

χ(Γ) = 0, so that

kerχ =

∞
⋃

i=0

t−iΓti.

In the case of an automorphism kerχ is just Γ but otherwise θ(Γ) = tΓt−1 < Γ so

that kerχ is a strictly ascending union of free groups, thus is infinitely generated

and locally free, but never free because β1(kerχ; Q) ≤ β1(Γ; Q).

The following result, which is Lemma 3.1 in [22], allows us to recognise as-

cending HNN extensions “internally”.

Lemma 4.1: A group G with subgroup Γ is an ascending HNN extension with

Γ as base if and only if there exists t ∈ G with

(1) G = 〈Γ, t〉;

(2) tk 6∈ Γ for any k 6= 0;

(3) tΓt−1 ≤ Γ.
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A strong property that ascending HNN extensions of free groups possess is

that they are coherent by [21], in fact the result is more general and gives us

this description which is Theorem 1.2 and Proposition 2.3 in [21].

Theorem 4.2: If G = 〈t, F 〉 is an ascending HNN extension of the (possibly

infinitely generated) free group F with associated homomorphism χ and H is a

finitely generated subgroup of G, then H has a finite presentation of the form

〈s, a1, . . . , ak, b1, . . . , bl|sa1s
−1 = w1, . . . , saks−1 = wk〉

where ai, bj ∈ kerχ and k, l ≥ 0, with w1, . . . , wk words in the ai and the bj .

The next proposition gives us standard but useful properties of ascending

HNN extensions.

Proposition 4.3: Let G be an ascending HNN extension

〈x1, . . . , xn, t|tx1t
−1 = θ(x1), . . . , txnt−1 = θ(xn)〉

with respect to the injective endomorphism θ of the finitely generated free group

Γ = Fn with free basis x1, . . . , xn and let χ be the associated homomorphism.

(i) Each element g of G has an expression of the form g = t−pγtq for

p, q ≥ 0 and γ ∈ Γ.

(ii) For each j ∈ N we have for s = tj the normal subgroup Gj = 〈Γ, s〉 of

index j in G with G/Gj
∼= Z/jZ which has presentation

〈x1, . . . , xn, s|sx1s
−1 = θj(x1), . . . , sxns−1 = θj(xn)〉.

(iii) If H ≤f G then H is also an ascending HNN extension of a finitely

generated free group with respect to the (restriction to H of the) same

associated homomorphism χ.

(iv) If ∆ ≤f Γ then H = 〈∆, t〉 has finite index in G = 〈Γ, t〉.

Proof. (i) is [21, Lemma 2.2 (1)].

(ii) This is [30, Lemma 2.2 (1)].

(iii) This can be proved directly but we may use the fact that H has a

presentation as in Theorem 4.2. We now show that G and all its finite index

subgroups have deficiency exactly 1 so we must have l = 0 in this presentation

and then the result follows. This also demonstrates that in proving certain

ascending HNN extensions of free groups are large, we are genuinely finding new
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examples as opposed to groups that could be proved large by the Baumslag-

Pride result [2].

We know that H has a deficiency 1 presentation by Reidemeister-Schreier

rewriting the standard presentation for G. By [46, Proposition 3.6 (ii)] we have

that the 2-complex C associated to this standard presentation of G is aspherical

and the Euler characteristic χ(C) = 1 − (n + 1) + n = 0. Therefore the finite

cover C̃ of C with fundamental group H has χ(C̃) = 0 and is also aspherical.

Now by the Hopf formula we have that an upper bound for the deficiency of

any finitely presented group Γ is β1(Γ) − β2(Γ). As C̃ is a K(H, 1) space we

have β1(H) − β2(H) = β1(C̃) − β2(C̃) = 1 − χ(C̃) = 1 and so our deficiency 1

presentation for H is best possible.

(iv) Let γ1, . . . , γd be a transversal for ∆ in Γ. If we can show that H∩K ≤f K

for K the kernel of the associated homomorphism then we are done, despite the

fact that K and H ∩ K are infinitely generated, because t ∈ H and any g ∈ G

is of the form ktm for k ∈ K.

The set

S = {t−mγit
m : m ∈ N, 1 ≤ i ≤ d}

contains an element of every coset of H ∩K in K. This can be seen by writing

k ∈ K as t−mγtm for γ ∈ Γ using (i). Then there is γi such that γγi = δ ∈ ∆.

This means that kt−mγit
m = t−mδtm which is in H and in K. We now show

that the index of H ∩ K in K is at most d. Note that for q > p, any element

of the form t−pγit
p is in the same coset as some element of the form t−qγjt

q

because θq−p(γi)γ
−1
j = δ for some δ ∈ ∆ and some j ∈ {1, . . . , d}, thus giving

t−pγit
p(t−qγjt

q)−1 = t−qδtq which is in H∩K. Therefore we proceed as follows:

S is a set indexed by (l, i) ∈ N × Z/dZ and we refer to l as the level. Choose a

transversal T for H ∩K in K from S which a priori could be infinite and let g1

be the element in T with smallest level l1 (and smallest i if necessary). Then

for each level l1 + 1, l1 + 2, . . . above l1 there is an element in S with this level

that is in the same coset of H ∩ K as g1 and so cannot be in T . Cross these

elements off from S and now take the next element g2 in T according to our

ordering of S. Certainly g2 with level l2 has not been crossed off and we repeat

the process of removing one element in each level above l2; as these are in the

same coset as g2 they too have not been erased already. Now note that we can

go no further than gd because then we will have crossed off all elements from
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all levels above ld; thus we must have a transversal for H ∩ K in K of no more

than d elements.

Let G = 〈Fn, t〉 be the mapping torus of an injective endomorphism θ of the

free group Fn. We say that θ has a periodic conjugacy class if there exists

i > 0, k ∈ Z and w ∈ Fn\{1} such that θi(w) is conjugate to wk in Fn. If this

is so with θi(w) = vwkv−1, then let us take the endomorphism φ of Fn such

that φ = ι−1
v θi where we use ιv to denote the inner automorphism of Fn that is

conjugation by v. We have on setting ∆ = 〈w〉 and s = v−1ti that the subgroup

〈∆, s〉 of G is an ascending HNN extension with base ∆ and stable letter s by

Lemma 4.1. Consequently it has the presentation 〈s, w|sws−1 = wk〉. These

presentations are part of the famous family of 2 generator 1 relator subgroups

known as the Baumslag-Solitar groups. We define the Baumslag-Solitar group

BS(j, k) = 〈x, y|xyjx−1 = yk〉 for j, k 6= 0 (and without loss of generality

j > 0). We have that G contains BS(1, k) for some k if and only if G has a

periodic conjugacy class where θi(w) is conjugate to wk. Furthermore if there

exists i, j > 0, k ∈ Z and w ∈ Fn\{1} with θi(wj) conjugate in Fn to wk, then

k = dj and θi(w) is conjugate to wd so that θ has a periodic conjugacy class.

Indeed G cannot contain a subgroup isomorphic to a Baumslag-Solitar group

BS(j, k) unless j = 1 (or j = k in which case G contains BS(1, 1) anyway).

We can now deal with ascending HNN extensions of free groups which contain

Z × Z.

Theorem 4.4: If θ is an injective endomorphism of the free group Γ of rank n

with w ∈ Fn\{1} such that θ(w) = w then there is a finite index subgroup ∆ of

Γ and j ≥ 1 such that ∆ has a free basis including w, and such that θj(∆) ≤ ∆.

Proof. We use the classic result [24] of Marshall Hall Jnr. that if L is a non-

trivial finitely generated subgroup of the non-abelian free group Fn, then there

is a finite index subgroup F of Fn such that L is a free factor of F . We just need

to put L = 〈w〉 so that F = 〈w〉 ∗ C for some C ≤ Fn with w a basis element

for F . The second condition is the crucial part. The aim is to repeatedly pull

back F ; although we do not have F ≤ θ−1(F ) in general as this is equivalent

to θ(F ) ≤ F which would mean we are done, we do find that the index is non-

increasing. To see this note that θ−1(F ) = θ−1(F ∩ θ(Γ)) and θ−1θ(Γ) = Γ as

θ : Γ → θ(Γ) is an isomorphism. Now the index of F ∩ θ(Γ) in θ(Γ) is preserved

by applying θ−1 to both sides, so it is equal to the index of θ−1(F ) in Γ. But the
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index of F ∩ θ(Γ) in θ(Γ) is no more than that of F in Γ, thus [Γ : θ−i(F )] gives

us a non-increasing sequence which must stabilise at N with value k. When it

does we have for i ≥ 0 that θ−(i+N)(F ) is just moving around the finitely many

index k subgroups. Although it happens that θ−1 does not in general permute

these index k subgroups, we must land on some such subgroup ∆ twice so we

have j ≥ 1 with θ−j(∆) = ∆, giving ∆ ≥ θj(∆).

We now show that, although the rank of θ−i(F ) reduces whenever the index

reduces, we can keep w as an element of a free basis each time we pull back.

This time we restrict θ to an injective homomorphism from θ−1(F ) to F with

image θθ−1(F ). As θθ−1(F ) is a finitely generated subgroup of F containing a

free basis element w of F , we can ensure w is in a free basis for θθ−1(F ) (for

instance see [39] Proposition I.3.19). Now θ−1(F ) and θθ−1(F ) are isomorphic

via θ with inverse φ say, so a basis b1, . . . , br for the latter gives rise to a basis

φ(b1), . . . , φ(br) for θ−1(F ) and if b1 = w then φ(b1) = w.

Corollary 4.5: If G = 〈Γ, t〉 is a mapping torus of an injective endomorphism

θ of the free group Γ of rank n and Z×Z ≤ G then we have H ≤f G such that

H has a deficiency 1 presentation 〈x1, . . . , xm, s|r1, . . . , rm〉 including a relator

of the form sx1s
−1x−1

1 .

Proof. As BS(1, 1) ≤ G we have w ∈ Γ\{1} with θi(w) = vwv−1 for some

v ∈ Γ, thus on dropping to the index i subgroup H of G given by H = 〈Γ, ti〉

and setting φ to be ι−1
v θi where ιv(x) = vxv−1, we can assume that there

is w ∈ Γ\{1} with φ(w) = w and that H is an ascending HNN extension

of Γ via the injective endomorphism φ and with stable letter tH say. So by

Theorem 4.4 we have ∆ ≤f Γ with ∆ having a free basis w, x2, . . . , xm and

j ≥ 1 with φj(∆) ≤ ∆. Thus by Proposition 4.3 (ii) and (iv) we have that

L = 〈∆, s|s = tjH〉 has finite index in G and by Lemma 4.1 L is an ascending

HNN extension with base ∆ and stable letter s. Thus on taking the standard

presentation for L given by conjugation of s on this free basis for ∆, we see that

it has deficiency 1 with a relator equal to sws−1w−1.

We can now gain largeness for a range of mapping tori.

Corollary 4.6: If G = 〈Γ, t〉 is the mapping torus of an endomorphism θ of

the free group Γ of rank n and Z × Z ≤ G then G = 〈x, y|xyx−1 = x±1〉 or is

large.
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Proof. We can assume without loss of generality that θ is injective because if

not then we can replace θ with θ̃ which is an injective endomorphism of a free

group Fm with m ≤ n, and then G is still equal to the mapping torus of Fm

using θ̃ and this will contain Z × Z. Hence we are in the case of Corollary

4.5 which allows us to apply Theorem 3.6 to H ≤f G. As Z × Z ≤ G, we do

not have m = 0 and only the two groups above for m = 1. Otherwise G and

hence H contain a non-abelian free group for m ≥ 2 so H is not in case (i)

of Theorem 3.6. By Proposition 4.3 (iii) H is an injective mapping torus of

a finitely generated free group endomorphism and so the recent result [13] of

Borisov and Sapir tells us that H is residually finite, so it is not NARA. Thus

H and G are large.

Although it might be said that one only requires the NARA property to apply

Theorem 3.6 and not the full force of residual finiteness, it should be pointed

out that there are mapping tori G of injective endomorphisms of the free group

F2 such that the abelianisation G = Z × Z and such that for any finite index

subgroup N which is normal in G with G/N soluble, we have N = Z × Z.

We finish this section by looking at those mapping tori G of endomorphisms

of free groups which contain an arbitrary Baumslag-Solitar subgroup. Our

results are not quite definitive because we need β1(G) ≥ 2 in order to apply our

methods and we cannot show that G necessarily has a finite index subgroup

with that property. However this is the only obstacle to largeness.

Theorem 4.7: If G = 〈Γ, t〉 is a mapping torus of an endomorphism θ of the

free group Γ of rank n which contains a Baumslag-Solitar subgroup BS(j, k)

then either G is large or G = BS(1, k) or β1(H) = 1 for all H ≤f G.

Proof. As usual we assume that θ is injective. We know that G can only contain

Baumslag-Solitar subgroups of type BS(1, k) or BS(k, k) for k 6= 0 and as

we have already covered those which contain BS(1, 1), we need only consider

BS(1, k) ≤ G for k 6= ±1. If there is some H ≤f G with β1(H) ≥ 2, then

we can replace G by H because H is a mapping torus by Proposition 4.3 (iii)

and BS(1, k)∩H ≤f BS(1, k) so H contains some Baumslag-Solitar group too.

Therefore we are looking at the situation where we have a periodic conjugacy

class of the form w ∈ Fn\{1} and i > 0 with θi(w) conjugate to wd for some

d 6= ±1. Just as in the Z × Z case, we drop down to a finite index subgroup

and change our automorphism by an inner automorphism, so we can assume
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that θ(w) = wd. Now we follow the proof of Theorem 4.4 to get F ≤f Γ

with 〈w〉 a free factor of F , observing that w ∈ θ−1(F ) so that we keep w as

we pull back F . Note that we can assume w is not a proper power by the

comment before Theorem 4.4 so we can also preserve w in a free basis each

time because wd ∈ θθ−1(F ) and if wc ∈ θθ−1(F ) for 0 < |c| < |d| then the

element u ∈ θ−1(F ) with θ(u) = wc cannot be a power of w but θ(ud) = θ(wc),

hence contradicting injectiveness. Thus wd can be extended to a free basis for

θθ−1(F ) by [39] Proposition I.3.7 meaning that w will be in the corresponding

basis for θ−1(F ).

We can now work to obtain an equivalent version of Corollary 4.5. Having

gone from G to the finite index subgroup H which is an ascending HNN exten-

sion of Γ via the injective homomorphism θ, we see as before that by repeatedly

pulling back F we obtain ∆ ≤f Γ which has a free basis including w and with

θj(∆) ≤ ∆. Hence the HNN extension J of ∆ using θj with stable letter s has

finite index in H , as well as a deficiency 1 presentation that includes the relator

sws−1w−e for e 6= 0,±1. We will also require later that e 6= 2 and this can

be obtained by taking the subgroup of J of index 2 as in Proposition 4.3 (ii)

so that now the relator would be sws−1w−4. Now consider taking a surjective

homomorphism χ from J to Z (which must send w to 0). If β1(J) were 1,

then the only available χ would be the homomorphism associated to this HNN

extension so it would send s to 1 (or −1). However, if not, then we can find

χ′ 6= χ as we have β1(H) ≥ 2 and hence β1(J) ≥ 2 because J ≤f H . Hence we

have a non-trivial homomorphism χ′−kχ that sends s to 0 (which can be made

surjective by multiplying by the right constant) where k is χ′(s). On evaluating

the Alexander polynomial of J with respect to this homomorphism, we proceed

as in Theorem 3.1 and discover that the group relation sws−1w−e becomes the

module relation (1 − e)w when rewritten and abelianised. Thus we have a col-

umn in our square presentation matrix consisting of all zeros except 1 − e in

the row corresponding to the generator w. Thus if we apply Theorem 2.1 using

the field Z/pZ with p a prime dividing 1− e then our Alexander polynomial is

zero so we have largeness for J , and hence for G.

Although we do not have a proof that a mapping torus of a free group endo-

morphism containing a Baumslag-Solitar subgroup of infinite index has a finite

index subgroup with first Betti number at least two, the statement of Theo-

rem 4.7 is still useful in a practical sense because if we are presented with a
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particular group G of this form that we would like to prove is large, we can

enter the presentation into a computer and ask for the abelianisation of its low

index subgroups. As soon as we see one with first Betti number at least two,

we can conclude largeness. Note that in [30] it is conjectured that a mapping

torus of a free group endomorphism is word hyperbolic if it does not contain

Baumslag-Solitar subgroups, and if this and the above question on having a

finite index subgroup with first Betti number at least two are both true, then

we have proved largeness for all the non-word hyperbolic ascending HNN exten-

sions of finitely generated free groups (with the obvious exception of the soluble

Baumslag-Solitar groups).

We can even say something if G is a mapping torus of an injective endo-

morphism of an infinitely generated free group in the case when G is finitely

generated, thanks to the power of [21] by using Theorem 4.2. We immediately

see that either G has deficiency at least two and so is large, or l = 0 in which

case G is also a mapping torus of an endomorphism of a finitely generated free

group and so the results of this section apply.

5. Free by Cyclic Groups

If in the previous section we use an automorphism α of a free group F to form

our mapping torus, we obtain a semidirect product F oα Z and every free-by-Z

group is of this form. We already have largeness for a range of these groups.

Theorem 5.1: If the finitely generated group G is free-by-Z, then G is large

if the free group F is infinitely generated, or if Z × Z ≤ G and F has rank at

least 2.

Proof. If F is infinitely generated, then applying Theorem 4.2 with H = G tells

us that G has deficiency at least 2. This is because if l = 0 then the kernel of

the associated homomorphism χ is

∞
⋃

n=0

s−nAsn where A = 〈a1, . . . , ak〉

but then β1(kerχ; Q) ≤ β1(A; Q) whereas we have F = kerχ.

If F has finite rank then this is Corollary 4.6. Note that a semidirect product

A o B is residually finite if both A and B are residually finite and A is finitely

generated, so we do not need to use [13] when applying this corollary to G.
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In contrast, G. Baumslag gives in [5] an example of an infinitely generated

free-by-Z group with every finite quotient cyclic so that this group is not resid-

ually finite. Indeed its finite residual RG must contain G′ and hence it is not

large because every finite index subgroup F of G has the property that all of

the finite quotients of F are abelian, as F ′ ≤ G′ ≤ RG = RF . This is a striking

demonstration of how largeness and residual finiteness are best suited to finitely

generated groups. He then proves in [4] that finitely generated groups which are

F -by-Z for F an infinitely generated free group are residually finite. As for the

residual finiteness of finitely generated groups that are ascending HNN exten-

sions of infinitely generated free groups, this appears to be open (it corresponds

to the case l > 0 in Theorem 4.2); indeed that they are Hopfian is Conjecture

1.4 in [22].

Corollary 5.2: If G is Fn-by-Z for Fn the free group of rank n then either

G is large or G is word hyperbolic or G = BS(1,±1).

Proof. It is known by [8], [9] and [14] that such a G being word hyperbolic is

equivalent to G containing no subgroups isomorphic to Z × Z and also to the

automorphism α having no periodic conjugacy classes.

In fact, the equivalence of the last two notions can be proved directly by

quoting the classical result of Higman [26] which says that an automorphism

of a free group that maps a finitely generated subgroup into itself maps it onto

itself. So if α has a periodic conjugacy class we can assume there is i > 0 and

w ∈ Fn\{1} such that θi(w) is conjugate to w±1.

This leaves us with an important question:

Question 5.3: If G is Fn-by-Z for n ≥ 2 and G is a word hyperbolic group

then is G large?

As for whether the six consequences of largeness given in the introduction

hold for these groups G, the first is obvious whereas it is unknown if G has

superexponential subgroup growth or has infinite virtual first Betti number:

Question 12.16 by Casson in [7] is equivalent to asking whether there exists

H ≤f G with β1(H) ≥ 2. However being word hyperbolic means that the other

properties are known to hold, giving us a definitive result for these three cases.

Theorem 5.4: If G is finitely generated and is virtually free-by-Z then for all

finitely generated subgroups H of G we have:
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(i) H has word problem solvable strongly generically in linear time;

(ii) H has uniformly exponential growth;

(iii) H is SQ-universal;

unless H is virtually S for S = Z or Z × Z.

Proof. We have shown by Theorem 5.1 and Corollary 5.2 that any free-by-Z

group G which is finitely generated (excepting BS(1,±1) and Z) is large or is

non-elementary word hyperbolic. This implies SQ-universality (by [44] for the

hyperbolic case and [45] when G is large) and uniformly exponential growth (by

[33] for the hyperbolic case and [25] when we have largeness). Then Corollary

4.1 in [32] (where we also have the relevant definitions) proves (i) if G has a finite

index subgroup with a non-elementary word hyperbolic quotient. Moreover if

G ≤f Γ, then the properties (i), (ii) and (iii) hold for Γ as well, by [32] for (i),

[25] for (ii) and [42] for (iii).

Finally if H ≤ G where G is free-by-Z, then H/(H∩F ) ∼= HF/F ≤ G/F = Z

so either this is trivial with H ≤ F hence H is free, or it is isomorphic to Z

and so H is an extension of the free group H ∩F by Z (although if F is finitely

generated, then H∩F is not necessarily finitely generated if H has infinite index

in F ). Thus if H is finitely generated then (i), (ii), (iii) or the exceptions hold

for H too, and if L is a finitely generated subgroup of the virtually free-by-Z

group Γ with G ≤f Γ then L∩G ≤f L so L∩G is a finitely generated subgroup

of G, hence we gain our properties for L ∩ G and then also for L.

6. 1 Relator Groups

Groups having a finite presentation with only 1 relator have been much studied.

It is known that such a group contains a non-abelian free group unless it is

isomorphic to BS(1, m) or is cyclic, see [39, II Proposition 5.27] and [49]. Indeed

if the presentation has at least 3 generators, then we know by [2] that the

group is large so we need only concern ourselves here with 2 generator 1 relator

presentations 〈a, b|r〉. Largeness is also known by [23] and [48] when r is a

proper power, which is exactly when the group has torsion, but for l, m coprime

we have by [20] that BS(l, m) is not large as it has virtual first Betti number

equal to 1, and similarly Example 3.5 (iii) is not large. Thus another direction

in which to go when looking for large 2 generator 1 relator groups is if r is in the

commutator subgroup of F2, as at least that gives first Betti number equal to
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2. The starting case to be considered here should be to take r actually equal to

a commutator and application of Theorem 3.6 gives us a near definitive result.

Corollary 6.1: If G = 〈a, b|uvUV 〉 where u and v are any elements of F2 =

〈a, b〉 with uvUV not equal to abAB, baBA or their cyclic conjugates when

reduced and cyclically reduced then G is large or is NARA.

Proof. It is well-known that G = Z×Z if and only if the relator is of the above

form (equivalently if and only if u, v form a free basis for F2); see, for instance,

[41, Theorem 4.11]. Otherwise we are in Theorem 3.6 case (ii) or (iii).

Question 6.2: If G = 〈a, b|uvUV 〉 then can G be NARA?

No examples are known to us. This is an important question because a

yes answer gives us a non-residually finite 1 relator group with the relator a

commutator, the existence of which is Problem (OR8) in the problem list at [43]

(however there it is shown that non-residually finite examples exist if the relator

is merely in the commutator subgroup) and a no answer gives us largeness. We

can prove that we do not have NARA groups in a whole range of cases.

Proposition 6.3: If G = 〈F2|uvUV 〉 then G can only be NARA if u, v /∈ F ′
2

with the images of u and v generating the abelianisation Z × Z of F2 and such

that u is a free basis element for F2 or Gu = 〈F2|u〉 is NARA, along with the

same condition for v.

Proof. If the images of u and v do not generate the homology of F2 up to finite

index, then we are done by Theorem 3.1. Now suppose that Gu is not NARA

or Z (the latter happening if and only if u is an element of a free basis for F2)

then as G surjects to Gu we see that a non-abelian finite image of Gu is also an

image of G. Then swap u and v.

Otherwise we can take a free basis α, β for F2 such that there are k, l ≥ 1

with u equivalent to αk in homology and v to βl. If k > 1, then consider the

homomorphism of F2 into the linear (hence residually finite) group SL(2, C)

given by

α 7→

(

eπi/k 0

0 e−πi/k

)

, β 7→

(

1 1

0 1

)

.

This is non-abelian but does make u and v commute so we are done by Propo-

sition 3.4 (iii).
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In fact there are other ways to conclude that G = 〈F2|uvUV 〉 is not NARA

and hence large, for instance the powerful algorithm of K. S. Brown in [15],

which determines whether a 2 generator 1 relator group is a mapping torus of

an injective endomorphism of a finitely generated group (which must necessarily

be free), can be used (along with [13] proving that such groups are residually

finite). If all else fails, then there is the option of using the computer to find

the abelianisation of some low index subgroups of G and look for one which is

not Z × Z in order to obtain largeness. For instance, in [18] it is shown that

G = 〈a, b|ak1bl1ak2bl2ak3bl3〉

for k1k2k3, l1l2l3 6= 0 and k1+k2+k3 = l1+l2+l3 = 0 is large for all possibilities

except for one particular relator (on which we use the computer to find a finite

index subgroup H of the form in Theorem 3.6 and with β1(H) > 2) and two

infinite families of relators (these are of the required form so we can use Brown’s

algorithm) thus we have shown that the remaining cases are all large.

We finish this section by mentioning a conjecture of P. M. Neumann in [42]

from 1973: that a 1 relator group is either SQ-universal or is isomorphic to

BS(1, m) or cyclic (the next comment that “a proof of this by G. Sacredote

seems to be almost complete now” turns out with hindsight to be somewhat

over optimistic). In addition to presentations with 3 or more generators or with

the relator a proper power, at least this can be seen to be true for those 2

generator 1 relator groups G which are free by cyclic, and possibly ascending

HNN extensions of free groups if the two questions at the end of Section 4 are

true, as well as if G is virtually a group of this type. We make progress on this

question from a different direction in the next section.

7. Residual Finiteness

It appears that often when we have a counterexample to statements about

largeness, this is achieved by taking a group which is not residually finite. The

following straightforward observation suggests why:

Proposition 7.1: A group G is large if and only if the residually finite group

G/RG is large, where RG is the intersection of all the finite index subgroups of

G.
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Proof. A group is large if any quotient is large, whereas any homomorphism

from G to a residually finite group factors through G/RG and if H ≤f G then

RH = RG.

Thus perhaps we should take the same approach as those who count finite

index subgroups of finitely generated groups by only considering residually finite

groups. However the example of G = BS(2, 3), where G/RG is soluble but not

finitely presented, means we can lose good properties of our original group.

This assumption removes the obvious counterexamples which are SQ-universal

but not large, for instance taking free products of groups with no finite index

subgroups, and then the two properties begin to look more similar. A recent

result of [1] shows that finitely generated groups with infinitely many ends

are SQ-universal. Whilst they cannot all be large, as evidenced by these free

products, it is straightforward to establish this in the residually finite case by

adapting an argument of Lubotzky from [37].

Theorem 7.2: A residually finite group with infinitely many ends is large.

Proof. If Γ = G1 ∗φ G2 where φ is an isomorphism from A a finite subgroup

of G1 to B a finite subgroup of G2 then, as G1 will be residually finite, we

can take M �f G1 with M ∩ A = I and [G1 : M ] > 2|A|, meaning that the

subgroup AM/M of G1/M has index greater than 2 and is isomorphic to A.

We can also get N �f G2 with N ∩ B = I and [G2 : N ] > 2|B|. Now we

can form (G1/M) ∗φ (G2/N), where φ(aM) = φ(a)N provides an isomorphism

from AM/M to BN/N . This is a quotient of Γ and is virtually free by [47,

II Proposition 11], with the index conditions ensuring that it is virtually non-

abelian free (see [47, 2.6 Exercise 3]).

As for HNN extensions Γ = G∗φ, where φ is an isomorphism with domain

a finite proper subgroup A of G, and φ(A) ≤ G is conjugate to A in Γ via

the stable letter t, we now take N �f Γ such that there exists g ∈ G with

ag /∈ N for all a ∈ A, which implies that AN 6= GN . Thus AN/N and

φ(A)N/N are subgroups of GN/N which are conjugate in Γ/N via tN , thus

isomorphic, with both of these proper subgroups. Hence the HNN extension

〈GN/N, s|s(aN)s−1 = φ(a)N〉 can be formed and this is a non-ascending HNN

extension of a finite group, thus it is virtually non-abelian free.

A group G is called LERF (equivalently subgroup separable) if every finitely

generated subgroup is an intersection of finite index subgroups. An observation
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in [12] is that G cannot be LERF if there is a finitely generated subgroup

H and t ∈ G with tHt−1 ⊂ H , thus proper ascending HNN extensions of

finitely generated groups are never LERF. If G is Fn-by-Z and β1(G) ≥ 2

then it is possible for G to be simultaneously free-by-cyclic and also to be a

proper ascending HNN extension of a finitely generated free group with respect

to another associated homomorphism onto Z, so being LERF is quite a lot

stronger than merely being residually finite. However if we assume this we can

gain some very specific conclusions.

Theorem 7.3: If G is finitely presented and LERF then either G has virtual

first Betti number equal to 0, or G is large, or G is virtually LoZ for L finitely

generated.

Proof. Any group with positive first Betti number is an HNN extension (it is a

semidirect product (kerχ)oZ for χ a homomorphism onto Z) but if it is finitely

presented then [11] tells us that it is an HNN extension L∗φ with stable letter

t and with L and the domain A of φ both finitely generated. Thus on taking

H ≤f G with β1(H) > 0 we have H = L∗φ with presentation

〈L, t|tait
−1 = φ(ai) for 1 ≤ i ≤ m〉

where a1, . . . , am is a generating set for A. Now if A 6= L, then, as subgroups

of LERF groups are also LERF, we have F ≤f H which contains A but not L.

We can take N ≤ F which is normal in H and of finite index. This gives us

AN ≤ F < LN and so we can argue as in Theorem 7.2 to get a non-ascending

HNN extension: We have that LN/N is finite and AN 6= LN implies that

AN/N is a proper subgroup of LN/N . Now the isomorphism φ from A to φ(A) is

induced by conjugation by t, so that in H/N we have that AN/N and φ(A)N/N

are conjugate by the element tN . Hence the induced map φ(aN) = φ(a)N is

well-defined and is an isomorphism between these two subgroups. Therefore

we can form (LN/N)∗φ with the domain of φ equal to AN/N , and this has

presentation

〈LN/N, s|s(aiN)s−1 = φ(aiN) for 1 ≤ i ≤ m〉

which is an image of H under the homomorphism L 7→ LN/N, t 7→ s and is

large by [47, II Proposition 11] so H is large too.

Otherwise the HNN extension is ascending but the LERF condition means

that H is in fact a semidirect product.
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Going back to deficiency 1 groups, we have [28, Theorem 6] which states that

if G has deficiency 1 and is an ascending HNN extension with base the finitely

generated subgroup L, then the geometric dimension of G (thus the cohomo-

logical dimension) is at most two. But on combining this with [22, Corollary

2.5], which states that if L is of type FP2 and has cohomological dimension 2,

then G has cohomological dimension 3, we see that if G has deficiency 1, then

L finitely presented (or even FP2) implies that L is in fact free. This means

that the only way a deficiency 1 group G could fail the Tits alternative of not

being virtually soluble and not containing F2 is for G to be an ascending HNN

extension L∗φ where L is finitely generated but not finitely presented and where

L fails the Tits alternative. It is unknown whether this can occur but at least

we can conclude the Tits alternative holds for coherent deficiency 1 groups. In

[49] it is shown that a soluble deficiency 1 group is BS(1, m) or Z. As these

groups are coherent, this result is easily extended to virtually soluble deficiency

1 groups by the above and the result in [11] that a finitely presented group G

with β1(G) > 0 which does not contain F2 is an ascending HNN extension of a

finitely generated group.

We can use this to obtain some results about LERF groups in particular

cases.

Corollary 7.4: If G is LERF and has deficiency 1, then either G is SQ-

universal or G is BS(1,±1) or Z or G = L o Z for L finitely generated but not

finitely presented.

Proof. Certainly β1(G) > 0 so by the proof of Theorem 7.3 G is large or equals

L o Z with L finitely generated. If L is finitely presented, then the above

comment shows that L is free and Theorem 5.4 (iii) applies if L is non-abelian

free.

We can finish by making some progress on P. M. Neumann’s conjecture given

in the last section.

Corollary 7.5: If G is a 1 relator group which is LERF then either G is

SQ-universal or G is cyclic or G = BS(1,±1).

Proof. We know that G is finite cyclic or has deficiency at least two or has

deficiency one whereupon Corollary 7.4 applies. But if G = L o Z for L finitely

generated then L must be free by [15, Section 4].
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cohomology, Annales Scientifiques de lÉcole Normale Supérieure 35 (2002), 153–171.

[41] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Dover Publications,

Inc., Mineola, NY, 2004.

[42] P. M. Neumann, The SQ-universality of some finitely presented groups, Journal of the

Australian Mathematical Society 16 (1973), 1–6.



140 J. O. BUTTON Isr. J. Math.

[43] New York Group Theory Cooperative, Open problems in combinatorial and geometric

group theory, available at

http://zebra.sci.ccny.cuny.edu/web/nygtc/problems/
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