ISRAEL JOURNAL OF MATHEMATICS 164 (2008), 333–347 DOI: 10.1007/s11856-008-0033-2

REDUCIBILITY OF RATIONAL FUNCTIONS IN SEVERAL VARIABLES

BY

Arnaud Bodin

Laboratoire Paul Painlevé, Mathématiques, Université de Lille 1, 59655 Villeneuve d'Ascq, France. e-mail: Arnaud.Bodin@math.univ-lille1.fr

ABSTRACT

We prove an analogous of Stein theorem for rational functions in several variables: we bound the number of reducible fibers by a formula depending on the degree of the fraction.

1. Introduction

Let K be an algebraically closed field. Let $f = p/q \in K(x)$, with $x =$ $(x_1, \ldots, x_n), n \geq 2$ and $gcd(p, q) = 1$, the **degree** of f is

$$
\deg f = \max\{\deg p, \deg q\}.
$$

We associate to a fraction $f = p/q$ the pencil $p - \lambda q$, $\lambda \in \hat{K}$ (where we denote $\hat{K} = K \cup \{\infty\}$ and by convention if $\lambda = \infty$ then $p - \lambda q = q$.

For each $\lambda \in \hat{K}$ write the decomposition into irreducible factors

$$
p - \lambda q = \prod_{i=1}^{n_{\lambda}} F_i^{r_i}.
$$

The spectrum of f is $\sigma(f) = {\lambda \in \hat{K} : n_{\lambda} > 1}$, and the order of reducibility is $\rho(f) = \sum_{\lambda \in \hat{K}} (n_{\lambda} - 1).$

A fraction f is **composite** if it is the composition of a univariate rational fraction of degree more than 1 with another rational function.

Received July 05, 2006 and in revised from December 11, 2006

THEOREM 1.1: Let K be an algebraically closed field of characteristic 0. Let $f \in K(x)$ be noncomposite then

$$
\rho(f) < (\deg f)^2 + \deg f.
$$

A theorem of Bertini and Krull implies that if f is noncomposite then $\sigma(f)$ is finite and we should notice that $\#\sigma(f) \leq \rho(f)$. Later on, for an algebraically closed field of characteristic zero and for a polynomial $f \in K[x, y]$, Stein [St] proved the formula $\rho(f) < \deg f$. This formula has been generalized in several directions, see [Na1] for references. For a rational function $f \in \mathbb{C}(x, y)$ a consequence of the work of Ruppert [Ru] on pencil of curves, is that $\#\sigma(f) < (\deg f)^2$. For K algebraically closed (of any characteristic) and $f \in K(x, y)$ Lorenzini [Lo] proved under geometric hypotheses on the pencil $(p - \lambda q)$ that $\rho(f) < (\text{deg } f)^2$. This has been generalized by Vistoli [Vi] for a pencil in several variables for an algebraically closed field of characteristic 0.

Let us give an example extracted from [Lo]. Let $f(x,y) = \frac{x^3 + y^3 + (1+x+y)^3}{x y (1+x+y)}$ $\frac{y^2 + (1+x+y)}{xy(1+x+y)}$, then $\deg(f) = 3$ and $\sigma(f) = \{1, j, j^2, \infty\}$ (where $\{1, j, j^2\}$ are the third roots of unity). For $\lambda \in \sigma(f)$, $(f = \lambda)$ is composed of three lines hence $\rho(f) = 8$ $(\deg f)^2 - 1$. Then Lorenzini's bound is optimal in two variables.

The motivation of this work is that we develop the analogous theory of Stein for rational functions: composite fractions, kernels of Jacobian derivatives, groups of divisors, . . . The method for the two variables case is inspired from the work of Stein [St] and the presentation of that work by Najib [Na1]. Even the proofs similar to the ones of Stein have been included for completeness. Another motivation is that with a bit more effort we get the case of several variables by following the ideas of [Na1] (see the articles [Na2], [Na3]).

In §2, we prove that a fraction is noncomposite if and only its spectrum is finite. Then in §3, we introduce a theory of Jacobian derivation and compute the kernel. Next, in §4, we prove that for a noncomposite fraction in two variables $\rho(f) < (\deg f)^2 + \deg f$. Finally, in §5, we extend this formula to several variables and we close by stating a result for fields of any characteristic.

ACKNOWLEDGEMENTS. I wish to thank Pierre Dèbes and Salah Najib for discussions and encouragements.

2. Composite rational functions

Let K be an algebraically closed field. Let $\underline{x} = (x_1, \ldots, x_n), n \geq 2$.

Definition 2.1: A rational function $f \in K(x)$ is **composite** if there exist $q \in$ $K(\underline{x})$ and $r \in K(t)$ with deg $r \geq 2$ such that

$$
f=r\circ g.
$$

THEOREM 2.2: Let $f = p/q \in K(\underline{x})$. The following assertions are equivalent:

- (1) f is composite;
- (2) $p \lambda q$ is reducible in K[x] for all $\lambda \in \hat{K}$ such that deg $p \lambda q = \deg f$;
- (3) $p \lambda q$ is reducible in $K[x]$ for infinitely many $\lambda \in \hat{K}$.

Before proving this result we give two corollaries.

COROLLARY 2.3: f is noncomposite if and only if its spectrum $\sigma(f)$ is finite.

One aim of this paper is to give a bound for $\sigma(f)$. The hard implication of this theorem (3) \Rightarrow (1) is in fact a reformulation of a theorem of Bertini and Krull.

We also give a nice application pointed out to us by P. Débes.

COROLLARY 2.4: Let $p \in K[x]$ irreducible. Let $q \in K[x]$ with deg $q < \deg p$ and $gcd(p, q) = 1$. Then for all but finitely many $\lambda \in K$, $p - \lambda q$ is irreducible in $K[x]$.

CONVENTION: When we define a fraction $F = P/Q$ we will assume that $gcd(P,Q) = 1.$

We start with the easy part of Theorem 2.2:

Proof. (2) \Rightarrow (3) is trivial. Let us prove (1) \Rightarrow (2). Let $f = p/q$ be a composite rational function. There exist $g = u/v \in K(\underline{x})$ and $r \in K(t)$ with $k = \deg r \geq 2$ such that $f = r \circ g$. Let us write $r = a/b$. Let $\lambda \in \hat{K}$ such that $\deg a - \lambda b = \deg r$ and factorize $a(t) - \lambda b(t) = \alpha(t - t_1)(t - t_2) \cdots (t - t_k), \, \alpha \in K^*, t_1, \ldots, t_k \in K.$ Then,

$$
p - \lambda q = q \cdot (f - \lambda) = q \cdot \left(\frac{a - \lambda b}{b}\right)(g) = \alpha q \frac{(g - t_1) \cdots (g - t_k)}{b(g)}.
$$

Then by multiplication by v^k at the numerator and denominator we get

$$
(p - \lambda q) \cdot (v^k b(g)) = \alpha q(u - t_1 v) \cdots (u - t_k v),
$$

which is a polynomial identity. As $gcd(a, b) = 1$, $gcd(u, v) = 1$ and $gcd(p, q) = 1$ then $u - t_1v, \ldots, u - t_kv$ divide $p - \lambda q$. Hence $p - \lambda q$ is reducible in $K[\underline{x}]$. Г

Let us reformulate the Bertini–Krull theorem in our context from [Sc, Theorem 37]. It will enable us to end the proof of Theorem 2.2.

THEOREM 2.5 (Bertini–Krull): Let $F(\underline{x}, \lambda) = p(\underline{x}) - \lambda q(\underline{x}) \in K[\underline{x}, \lambda]$ an irreducible polynomial. Then the following conditions are equivalent:

- (1) $F(\underline{x}, \lambda_0) \in K[\underline{x}]$ is reducible for all $\lambda_0 \in K$ such that $\deg_x F(\underline{x}, \lambda_0) =$ $\deg_x F$.
- (2) (a) either there exist $\phi, \psi \in K[\underline{x}]$ with $\deg_x F > \max{\deg \phi, \deg \psi}$, and $a_i \in K[\lambda]$, such that

$$
F(\underline{x}, \lambda) = \sum_{i=0}^{n} a_i(\lambda) \phi(\underline{x})^{n-i} \psi(\underline{x})^i;
$$

(b) or char(K)= $\pi > 0$ and $F(\underline{x}, \lambda) \in K[\underline{x}^{\pi}, \lambda]$, where $\underline{x}^{\pi} = (x_1^{\pi}, \dots, x_n^{\pi})$.

We now end the proof of Theorem 2.2:

Proof. (3) \Rightarrow (1) Suppose that $p - \lambda_0 q$ is reducible in K[x] for infinitely many $\lambda_0 \in \hat{K}$; then it is reducible for all $\lambda_0 \in K$ such that $\deg_x F(\underline{x}, \lambda_0) = \deg_x F$ (see Corollary 3 of Theorem 32 of [Sc]). We apply Bertini–Krull theorem

CASE (a): $F(\underline{x}, \lambda) = p(\underline{x}) - \lambda q(\underline{x})$ can be written as

$$
p(\underline{x}) - \lambda q(\underline{x}) = \sum_{i=0}^{n} a_i(\lambda) \phi(\underline{x})^{n-i} \psi(\underline{x})^i.
$$

So we may suppose that for $i = 1, \ldots, n$, $\deg_{\lambda} a_i = 1$, let us write $a_i(\lambda) =$ $\alpha_i - \lambda \beta_i, \, \alpha_i, \beta_i \in K.$ Then

$$
p(\underline{x}) = \sum_{i=0}^{n} \alpha_i \phi(\underline{x})^{n-i} \psi(\underline{x})^i = \phi^n \sum_{i=0}^{n} \alpha_i \left(\frac{\psi}{\phi}\right)^i (\underline{x}),
$$

and

$$
q(\underline{x}) = \sum_{i=0}^{n} \beta_i \phi(\underline{x})^{n-i} \psi(\underline{x})^i = \phi^n \sum_{i=0}^{n} \beta_i \left(\frac{\psi}{\phi}\right)^i(\underline{x}).
$$

If we set $g(\underline{x}) = \psi(\underline{x})/\phi(\underline{x}) \in K[\underline{x}]$, and $r(t) = \frac{\sum_{i=0}^{n} \alpha_i t^i}{\beta_i t^i}$ $\frac{\sum_{i=0}^{n} \alpha_i t^i}{\sum_{i=0}^{n} \beta_i t^i}$ then $\frac{p}{q}(\underline{x}) = r \circ g$. Moreover as $\deg_x F > \max\{\deg \phi, \deg \psi\}$ this implies $n \geq 2$ so that $\deg r \geq 2$. Then $p/q = f = r \circ q$ is a composite rational function

CASE (b): Let $\pi = \text{char}(K) > 0$ and $F(\underline{x}, \lambda) = p(\underline{x}) - \lambda q(\underline{x}) \in K[\underline{x}^{\pi}, \lambda]$, For $\lambda = 0$ it implies that $p(x) = P(x^{\pi})$, then there exists $p' \in K[x]$ such that $p(x) =$ $(p'(\underline{x}))^{\pi}$. For $\lambda = -1$ we obtain $s' \in K[\underline{x}]$ such that $p(\underline{x}) + q(\underline{x}) = (s'(\underline{x}))^{\pi}$. Then $q(\underline{x}) = (p(\underline{x}) + q(\underline{x})) - p(\underline{x}) = (s'(\underline{x}))^{\pi} - (p'(\underline{x}))^{\pi} = (s'(\underline{x}) - p'(\underline{x}))^{\pi}$. Then if we set $q' = s' - p'$ we obtain $q(\underline{x}) = (q'(\underline{x}))^{\pi}$. Now set $r(t) = t^{\pi}$ and $g = p'/q'$ we get $f = p/q = (p'/q')^{\pi} = r \circ g$.

3. Kernel of the Jacobian derivation

We now consider the two variables case and K is an uncountable algebraically closed field of characteristic zero.

3.1. JACOBIAN DERIVATION. Let $f, g \in K(x, y)$, the following formula:

$$
D_f(g) = \frac{\partial f}{\partial x}\frac{\partial g}{\partial y} - \frac{\partial f}{\partial y}\frac{\partial g}{\partial x},
$$

defines a derivation $D_f: K(x,y) \to K(x,y)$. Notice the $D_f(g)$ is the determinant of the Jacobian matrix of (f, g) . We denote by C_f the kernel of D_f :

$$
C_f = \{ g \in K(x, y) \colon D_f(g) = 0 \} .
$$

Then C_f is a subfield of $K(x, y)$. We have the inclusion $K(f) \subset C_f$. Moreover, if $g^k \in C_f$, $k \in \mathbb{Z} \setminus \{0\}$ then $g \in C_f$.

LEMMA 3.1: Let $f = p/q$, $q \in K(x, y)$. The following conditions are equivalent:

- (1) $g \in C_f$;
- (2) f and g are algebraically dependent;
- (3) g is constant on irreducible components of the curves $(p \lambda q = 0)$ for all but finitely many $\lambda \in \hat{K}$;
- (4) g is constant on infinitely many irreducible components of the curves $(p - \lambda q = 0), \lambda \in \hat{K}$.

COROLLARY 3.2: If $g \in C_f$ is not a constant then $C_f = C_g$.

Proof. • (1) ⇔ (2). We follow the idea of [Na1] instead of [St]. f and g are algebraically dependent if and only if $\text{transc}_K K(f, g) = 1$. And

transc_K $K(f, g) = 1$ if and only if the rank of the Jacobian matrix of (f, g) is less or equal to 1, which is equivalent to $g \in C_f$.

• (2) \Rightarrow (3). Let f and g be algebraically dependent. Then there exists a two variables polynomial in f and g that vanishes. Let us write

$$
\sum_{i=0}^{n} R_i(f)g^i = 0
$$

where $R_i(t) \in K[t]$. Let us write $f = p/q$, $g = u/v$ and $R_n(t) =$ $\alpha(t - \lambda_1) \cdots (t - \lambda_m)$. Then

$$
\sum_{i=0}^{n} R_i \left(\frac{p}{q}\right) \left(\frac{u}{v}\right)^i = 0, \quad \text{hence } \sum_{i=0}^{n} R_i \left(\frac{p}{q}\right) u^i v^{n-i} = 0.
$$

By multiplication by q^d for $d = \max\{\deg R_i\}$ (in order that $q^d R_i(p/q)$ are polynomials) we obtain

$$
q^d R_n\left(p/q\right)u^n = v\left(-q^d R_{n-1}\left(p/q\right)u^{n-1} - \cdots\right).
$$

As $gcd(u, v) = 1$ then v divides the polynomial $q^d R_n(\frac{p}{q})$, then v divides $q^{d-m}(p-\lambda_1q)\cdots(p-\lambda_mq)$. Then all irreducible factors of v divide q or $p - \lambda_i q, i = 1, \ldots, m$.

Let $\lambda \notin {\infty, \lambda_1, \ldots, \lambda_m}$. Let V_{λ} be an irreducible component of $p - \lambda q$, then $V_{\lambda} \cap Z(v)$ is zero dimensional (or empty). Hence v is not identically equal to 0 on V_λ . Then for all but finitely many $(x, y) \in V_\lambda$ we get

$$
\sum_{i=0}^{n} R_i(\lambda) g(x, y)^i = 0.
$$

Therefore, g can only reach a finite number of values c_1, \ldots, c_n (the roots of $\sum_{i=0}^{n} R_i(\lambda) t^i$. Since V_λ is irreducible, g is constant on V_λ .

- $(3) \Rightarrow (4)$. Clear.
- (4) \Rightarrow (1). We first give a proof that if g is constant along an irreducible component V_{λ} of $(p - \lambda q = 0)$ then $D_f(q) = 0$ on V_{λ} (we suppose that V_{λ} is not in the poles of g). Let $(x_0, y_0) \in V_{\lambda}$ and $t \mapsto p(t)$ be a local parametrization of V_{λ} around (x_0, y_0) . By the definition of $p(t)$, we have $f(p(t)) = \lambda$, this implies that

$$
\left\langle \frac{dp}{dt} | \overline{\text{grad } f} \right\rangle = \frac{d(f(p(t))}{dt} = 0,
$$

and by hypotheses q is constant on V_{λ} this implies that $q(p(t))$ is constant and again:

$$
\left\langle \frac{dp}{dt} | \overline{\text{grad }g} \right\rangle = \frac{d(g(p(t))}{dt} = 0.
$$

Then grad f and grad g are orthogonal around (x_0, y_0) on V_λ to the same vector, as we are in dimension 2, this implies that the determinant of Jacobian matrix of (f, g) is zero around (x_0, y_0) on V_λ . By extension $D_f(g) = 0$ on V_λ .

We now end the proof: If g is constant on infinitely many irreducible components V_{λ} of $(p - \lambda q = 0)$ this implies that $D_f(g) = 0$ on infinitely many V_{λ} . Then $D_f(g) = 0$ in $K(x, y)$.

3.2. GROUP OF THE DIVISORS. Let $f = p/q$, let $\lambda_1, \ldots, \lambda_n \in \hat{K}$, we denote by $G(f; \lambda_1, \ldots, \lambda_n)$ the multiplicative group generated by all the divisors of the polynomials $p - \lambda_i q, i = 1, \ldots, n$.

Let

$$
d(f) = (\deg f)^2 + \deg f.
$$

LEMMA 3.3: Let $F_1, \ldots, F_r \in G(f; \lambda_1, \ldots, \lambda_n)$. If $r \geq d(f)$ then there exists a collection of integers m_1, \ldots, m_r (not all equal to zero) such that

$$
g = \prod_{i=1}^r F_i^{m_i} \in C_f.
$$

Proof. Let $\mu \notin {\lambda_1, \ldots, \lambda_n}$, and let S be an irreducible component of $(p - \mu q =$ 0). Let \bar{S} be the projective closure of S. The functions F_i restricted to \bar{S} have their poles and zeroes on the points at infinity of S or on the intersection $S \cap Z(F_i) \subset Z(p) \cap Z(q).$

Let $n : \tilde{S} \to \overline{S}$ be a normalization of \overline{S} . The inverse image under normalisation of the points at infinity are denoted by $\{\gamma_1, \ldots, \gamma_k\}$, their number verifies $k \leqslant \deg S \leqslant \deg f$.

At a point $\delta \in Z(p) \cap Z(q)$, the number of points of $n^{-1}(\delta)$ is the local number of branches of S at δ then it is less or equal than $\text{ord}_{\delta}(S)$, where $\text{ord}_{\delta}(S)$ denotes the order (or multiplicity) of S at δ (see e.g., [Sh], paragraph II.5.3). Then

$$
\#n^{-1}(\delta) \leq \text{ord}_{\delta}(S) \leq \text{ord}_{\delta} Z(p - \mu q) \leq \text{ord}_{\delta} Z(p - \mu q) \cdot \text{ord}_{\delta} Z(p)
$$

$$
\leq \text{mult}_{\delta}(p - \mu q, p) = \text{mult}_{\delta}(p, q)
$$

where $\text{mult}_{\delta}(p,q)$ is the intersection multiplicity (see, e.g., [Fu]). Then by Bézout theorem

$$
\sum_{\delta \in Z(p) \cap Z(q)} \#n^{-1}(\delta) \leqslant \sum_{\delta \in Z(p) \cap Z(q)} \operatorname{mult}_{\delta}(p,q) \leqslant \deg p \cdot \deg q \leqslant (\deg f)^2.
$$

Then the inverse image under normalisation of $\bigcup_{i=1}^r S \cap Z(F_i)$ denoted by $\{\gamma_{k+1},\ldots,\gamma_\ell\}$ have less or equal than $(\deg f)^2$ elements. Notice that $\ell \leq \deg f +$ $(\deg f)^2 = d(f).$

Now let ν_{ij} be the order of F_i at γ_i $(i = 1, \ldots, r; j = 1, \ldots, \ell)$. Consider the matrix $M = (\nu_{ij})$. Since the degree of the divisor (F_i) (seen over \tilde{S}) is zero we get $\sum_{j=1}^{\ell} \nu_{ij} = 0$, for $i = 1, \ldots, r$, that means that columns of M are linearly dependent. Then $rk M < \ell \leq d(f)$, by hypothesis $r \geq d(f)$. Then the rows of M are also linearly dependent. Let $m_1(\mu, S), \ldots, m_r(\mu, S)$ such that $\sum_{i=1}^r m_i(\mu, S)\nu_{ij} = 0, j = 1, \ldots, \ell.$

Consider the function $g_{\mu,S} = \prod_{i=1}^r F_i^{m_i(\lambda,S)}$. This function is regular and does not have zeroes or poles at the points γ_j , because $\sum_{i=1}^r m_i(\mu, S)\nu_{ij} = 0$. Then $g_{\mu,S}$ is constant on S.

This construction gives a map $(\mu, S) \mapsto (m_1(\mu, S), \ldots, m_r(\mu, S))$ from K to \mathbb{Z}^r . Since K is uncountable, there exists infinitely many (μ, S) with the same (m_1, \ldots, m_r) . Then the function $g = \prod_{i=1}^r F_i^{m_i}$ is constant on infinitely many components of curves of $(p - \mu q = 0)$ and by Lemma 3.1 this implies $g \in C_f$. H.

3.3. NONCOMPOSITE RATIONAL FUNCTION. Let $f = p/q$. Let $G(f)$ be the multiplicative group generated by all divisors of the polynomials $p - \lambda q$ for all $\lambda \in K$. In fact we have

$$
G(f) = \bigcup_{(\lambda_1,\ldots,\lambda_n)\in K^n} G(f;\lambda_1,\ldots,\lambda_n).
$$

Definition 3.4: A family $F_1, \ldots, F_r \in G(f)$ is f-free if $(m_1, \ldots, m_r) \in \mathbb{Z}^r$ is such that $\prod_{i=1}^r F_i^{m_i} \in C_f$ then $(m_1, ..., m_r) = (0, ..., 0)$.

A f-free family $F_1, \ldots, F_r \in G(f)$ is f-maximal if for all $F \in G(f)$, ${F_1, \ldots, F_r, F}$ is not f-free.

THEOREM 3.5: Let $f \in K(x, y)$, deg $f > 0$. Then the following conditions are equivalent:

(1) deg $f = \min \{ \deg g : g \in C_f \setminus K \};$

- (2) $\sigma(f)$ is finite;
- (3) $C_f = K(f);$
- (4) f is noncomposite.

Remark 3.6: This does not give a new proof of " $\sigma(f)$ is finite $\Leftrightarrow f$ is noncomposite" because we use Bertini–Krull theorem.

Remark 3.7: The proof $(1) \Rightarrow (2)$ is somewhat easier than in [St], whereas (2) \Rightarrow (3) is more difficult.

Proof.

• (1) \Rightarrow (2). Let us suppose that $\sigma(f)$ is infinite. Set $f = p/q$, with $gcd(p, q) = 1$. For all $\alpha \in \sigma(f)$, let F_{α} be an irreducible divisor of $p - \alpha q$, such that deg $F_{\alpha} < \deg f$. By Lemma 3.3 there exists a f-maximal family $\{F_1, \ldots, F_r\}$ with $r \leq d(f)$. Moreover, $r \geq 1$ because $\{F_\alpha\}$ is *f*-free: if not there exists $k \neq 0$ such that $F_{\alpha}^{k} \in C_{f}$ then $F_{\alpha} \in C_{f}$, but deg F_{α} < deg f that contradicts the hypothesis of minimality.

Now, the collection $\{F_1, \ldots, F_r, F_\alpha\}$ is not f-free, so that there exist integers $\{m_1(\alpha), \ldots, m_r(\alpha), m(\alpha)\}\$, with $m(\alpha) \neq 0$, such that

$$
F_1^{m_1(\alpha)} \cdots F_r^{m_r(\alpha)} \cdot F_\alpha^{m(\alpha)} \in C_f.
$$

Since $\sigma(f)$ is infinite then it is equal to \hat{K} minus a finite number of values (see Theorem 2.2), $\sigma(f)$ is uncountable and the map

$$
\alpha \mapsto (m_1(\alpha), \dots, m_r(\alpha), m(\alpha))
$$

is not injective. Let $\alpha \neq \beta$ such that $m_i(\alpha) = m_i(\beta) = m_i$, $i =$ 1,..., r and $m(\alpha) = m(\beta) = m$. Then $F_1^{m_1} \cdots F_r^{m_r} \cdot F_\alpha^m \in C_f$ and $F_1^{m_1} \cdots F_r^{m_r} \cdot F_\beta^m \in C_f$, it implies that $(F_\alpha/F_\beta)^m \in C_f$, therefore, $F_{\alpha}/F_{\beta} \in C_f$.

Now, $\deg F_{\alpha}/F_{\beta} < \deg f$, then by the hypothesis of minimality, F_{α}/F_{β} is a constant. Let $a \in K^*$ such that $F_{\alpha} = aF_{\beta}$, by definition F_{α} divides $p - \alpha q$, but, moreover, F_{α} divides $p - \beta q$ (as F_{β} do). Then as F_{α} divides both $p - \alpha q$ and $p - \beta q$, F_{α} divides p and q, that contradicts $gcd(p, q) = 1$.

• (2) \Rightarrow (3). Let $f = p/q$, $\sigma(f)$ finite and $g \in C_f$, we aim at proving that $g \in K(f)$. The proof will be done in several steps:

(a) REDUCTION TO THE CASE $g = u/q^{\ell}$. Let $g = u/v \in C_f$, then f and g are algebraically dependent, then there exists a polynomial in f and g that vanishes. As before let us write

$$
\sum_{i=0}^{n} R_i(f)g^i = 0,
$$

where $R_i(t) \in K[t]$. As $f = p/q$, $q = u/v$ then

$$
\sum_{i=0}^{n} R_i \left(\frac{p}{q}\right) \left(\frac{u}{v}\right)^i = 0, \quad \text{hence } \sum_{i=0}^{n} R_i \left(\frac{p}{q}\right) u^i v^{n-i} = 0.
$$

By multiplication by q^d for $d = \max\{\deg R_i\}$ (in order that all $q^d R_i(p/q)$ are polynomials) we get

$$
q^d R_n\left(p/q\right)u^n = v\left(-q^d R_{n-1}\left(p/q\right)u^{n-1} - \cdots\right).
$$

Since $gcd(u, v) = 1$, v divides the polynomial $q^d R_n(p/q)$; we write $vu' = q^d R_n(p/q)$, then

$$
g = \frac{u}{v} = \frac{uu'}{q^d R_n(p/q)}.
$$

But $R_n(p/q) \in K(p/q)$ then $(uu')/q^d \in C_f$, but we also have that $g \in K(f)$ if and only if $(uu')/q^d \in K(f)$. This proves the reduction.

(b) REDUCTION TO THE CASE $g = qu$. Let $g = u/q^{\ell} \in C_f$, $\ell \geq 0$. As $\sigma(f)$ is finite by Lemma 3.1 we choose $\lambda \in K$ such that $p - \lambda q$ is irreducible and $g \in C_f$ is constant (equal to c) on $p - \lambda q$. As $g = \frac{u}{q^{\ell}}$, we have $p - \lambda q$ divides $u - cq^{\ell}$. We can write

$$
u - cq^{\ell} = u'(p - \lambda q).
$$

Then

$$
\frac{u}{q^{\ell}} = \frac{u'}{q^{\ell-1}} \left(\frac{p}{q} - \lambda\right) + c.
$$

As u/q^{ℓ} and $f = p/q$ are in C_f we get $u'/q^{\ell-1} \in C_f$; moreover, $u/q^{\ell} \in K(f)$ if and only if $u'/q^{\ell-1} \in K(f)$. By induction on $\ell \geq 0$ this proves the reduction.

(c) REDUCTION TO THE CASE $g = q$. Let $g = qu \in C_f$, g is constant along the irreducible curve $(p-\lambda q=0)$. Then $qu=u_1(p-\lambda q)+c_1$. Let $\deg p = \deg q$. Then $q^h u^h = u_1^h (p^h - \lambda q^h)$ (where P^h denotes the homogeneous part of higher degree of the polynomial P). Then

 $p^h - \lambda q^h$ divides $q^h u^h$ for infinitely many $\lambda \in K$. As $gcd(p, q) = 1$, this gives a contradiction.

Hence deg $p \neq \deg q$. We may assume $\deg p > \deg q$ (otherwise $qu \in C_f$ and $p/q \in C_f$ implies $pu \in C_f$). Then we write

$$
qu = qu_1\Big(p/q - \lambda\Big) + c_1,
$$

that proves that $qu_1 \in C_f$ and that $qu \in K(f)$ if and only if $qu_1 \in K(f)$. The inequality deg $p > \deg q$ implies that $\deg u_1 <$ deg u. We continue by induction, $qu_1 = qu_2(p/q - \lambda) + c_2$, with deg $u_2 <$ deg u_1, \ldots , until we get deg $u_n = 0$ that is $u_n \in K^*$. Thus first we have to prove that $qu_n \in C_f$, that is to say $q \in C_f$, and secondly that $qu \in K(f)$ if and only if $q \in K(f)$.

(d) CASE $g = q$. If $q \in C_f$ then q is constant along the irreducible curve $(p - \lambda q = 0)$, then $q = a(p - \lambda q) + c$, $a \in K^*$. Then

$$
q = \frac{c}{1 - a(p/q - \lambda)} \in K(p/q) = K(f).
$$

- (3) \Rightarrow (4). Let us assume that $C_f = K(f)$ and that f is composite, then there exist $r \in K(t)$, deg $r \geq 2$ and $g \in K(x, y)$ such that $f = r \circ g$. By the formula deg $f = \deg r \cdot \deg g$ we get $\deg f > \deg g$. Now if $r = a/b$, then we have a relation $b(g)f = a(g)$, then f and g are algebraically dependent, hence by Lemma 3.1, $g \in C_f$. As $C_f = K(f)$, there exists $s \in K(t)$ such that $g = s \circ f$. Then $\deg g \geqslant \deg f$. That yields to a contradiction.
- (4) \Rightarrow (1). Assume that f is noncomposite and let $g \in C_f$ of minimal degree. By Corollary 3.2 we get $C_f = C_q$, then

$$
\deg g = \min \left\{ \deg h \colon h \in C_g \setminus K \right\}.
$$

Then by the already proved implication (1) \Rightarrow (3) for g, we get C_g = $K(g)$. Then $f \in C_f = C_g = K(g)$, and there exists $r \in K(t)$ such that $f = r \circ g$, but as f is noncomposite then deg $r = 1$, hence deg $f =$ $\deg g = \min \{ \deg h : h \in C_f \setminus K \}.$ П

4. Order of reducibility of rational functions in two variables

Let $f = p/q \in K(x, y)$; for all $\lambda \in \hat{K}$, let n_{λ} be the number of irreducible components of $p - \lambda q$. Let

$$
\rho(f) = \sum_{\lambda \in \hat{K}} (n_{\lambda} - 1).
$$

By Theorem 2.2, $\rho(f)$ is finite if and only if f is noncomposite. We give a bound for $\rho(f)$. Recall that we defined:

$$
d(f) = (\deg f)^2 + \deg f.
$$

THEOREM 4.1: Let K be an algebraic closed field of characteristic 0. If $f \in$ $K(x, y)$ is noncomposite then

$$
\rho(f) < d(f).
$$

Proof. First notice that K can be supposed uncountable, otherwise it can be embedded into an uncountable field L and the spectrum in K would be included in the spectrum in L.

Let us assume that f is noncomposite, then by Theorem 2.2 and its corollary we have that $\sigma(f)$ is finite: $\sigma(f) = {\lambda_1, \ldots, \lambda_r}$. We suppose that $\rho(f) \geq d(f)$. Let $f = p/q$. We decompose the polynomials $p - \lambda_i q$ in irreducible factors, for $i=1,\ldots,r$

$$
p - \lambda_i q = \prod_{j=1}^{n_i} F_{i,j}^{k_{i,j}},
$$

where n_i stands for n_{λ_i} . Notice that since $gcd(p, q) = 1$ then $F_{i,j}$ divides $p - \lambda_i q$ but does not divide any of $p - \mu q$, $\mu \neq \lambda_i$. The collection

$$
\{F_{1,1},\ldots,F_{1,n_1-1},\ldots,F_{r,1},\ldots,F_{r,n_r-1}\}\,,
$$

is included in $G(f, \lambda_1, \ldots, \lambda_r)$ and contains $\rho(f) \geq d(f)$ elements, then Lemma 3.3 provides a collection $\{m_{1,1}, \ldots, m_{1,n_1-1}, \ldots, m_{r,1}, \ldots, m_{r,n_r-1}\}$ of integers (not all equal to 0) such that

(1)
$$
g = \prod_{i=1}^r \prod_{j=1}^{n_i-1} F_{i,j}^{m_{i,j}} \in C_f.
$$

By Theorem 3.5 it implies that $g \in K(f)$, then $g = u(f)/v(f)$, where $u, v \in$ K[t]. Let μ_1, \ldots, μ_k be the roots of u and $\mu_{k+1}, \ldots, \mu_\ell$ the roots of v. Then

$$
g = \frac{u(p/q)}{v(p/q)} = \alpha \frac{\prod_{i=1}^{k} \frac{p}{q} - \mu_i}{\prod_{i=k+1}^{\ell} \frac{p}{q} - \mu_i}
$$

so that

(2)
$$
g = \alpha q^{\ell - 2k} \frac{\prod_{i=1}^{k} p - \mu_i q}{\prod_{i=k+1}^{\ell} p - \mu_i q}.
$$

If $m_{i_0,j_0} \neq 0$ then by the definition of g, by equation (1) and by equation (2), we get that F_{i_0,j_0} divides one of the $p-\mu_iq$ or divides q. If F_{i_0,j_0} divides $p-\mu_iq$ then $\mu_i = \lambda_{i_0} \in \sigma(f)$. If F_{i_0,j_0} divides q then $\mu_i = \infty$, so that $\infty \in \sigma(f)$. In both cases $p - \lambda_{i_0}q$ appears in formula (2) at the numerator or at the denominator of g. Then $F_{i_0,n_{i_0}}$ should appears in decomposition (1), that gives a contradiction. Then $\rho(f) < d(f)$. П

5. Extension to several variables

We follow the lines of the proof of [Na3]. We will need a result that claims that the irreducibility and the degree of a family of polynomials remains constant after a generic linear change of coordinates. For $\underline{x} = (x_1, \ldots, x_n)$ and a matrix $B=(b_{ij})\in Gl_n(K)$, we denote the new coordinates by $B\cdot \underline{x}$:

$$
B \cdot \underline{x} = \bigg(\sum_{j=1}^n b_{1j}x_j, \dots, \sum_{j=1}^n b_{nj}x_j\bigg).
$$

PROPOSITION 5.1: Let K be an infinite field. Let $n \geq 3$ and $p_1, \ldots, p_\ell \in$ $K[x_1, \ldots, x_n]$ be irreducible polynomials. Then there exists a matrix $B \in$ $Gl_n(K)$ such that for all $i = 1, \ldots, \ell$ we get:

- $p_i(B \cdot \underline{x})$ is irreducible in $\overline{K(x_1)}[x_2, \ldots, x_n]$;
- $\deg_{(x_2,...,x_n)} p_i(B \cdot \underline{x}) = \deg_{(x_1,...,x_n)} p_i$.

The proof of this proposition can be derived from [Sm, Ch. 5, Theorem 3D] or by using [FJ, Proposition 9.31]. See [Na3] for details.

Now we return to our main result.

THEOREM 5.2: Let K be an algebraically closed field of characteristic 0. Let $f \in K(\underline{x})$ be noncomposite, then $\rho(f) < (\deg f)^2 + \deg f$.

Proof. We will prove this theorem by induction on the number of variables n . For $n = 2$, we proved in Theorem 4.1 that $\rho(f) < (\deg f)^2 + \deg f$.

Let $f = p/q \in K(\underline{x})$, with $\underline{x} = (x_1, \ldots, x_n)$. We suppose that f is noncomposite. For each $\lambda \in \sigma(f)$ we decompose $p - \lambda q$ into irreducible factors:

(3)
$$
p - \lambda q = \prod_{i=1}^{n_{\lambda}} F_{\lambda, i}^{r_{\lambda, i}}.
$$

We fix $\mu \notin \sigma(f)$. We apply Proposition 5.1 to the polynomials $p - \mu q$ and $F_{\lambda,i}$, for all $\lambda \in \sigma(f)$ and all $i = 1, \ldots, n_\lambda$. Then the polynomials $p(B \cdot \underline{x}) - \mu q(B \cdot \underline{x})$ and $F_{\lambda,i}(B \cdot \underline{x})$ are irreducible in $\overline{K(x_1)}[x_2,\ldots,x_n]$ and their degrees in (x_2, \ldots, x_n) are equal to the degrees in (x_1, \ldots, x_n) of $p - \mu q$ and $F_{\lambda,i}$.

Denote $k = \overline{K(x_1)}$. This is an uncountable field, algebraically closed of characteristic zero. Now $p(B \cdot \underline{x}) - \mu q(B \cdot \underline{x})$ is irreducible, then $f(B \cdot \underline{x})$ is noncomposite in $k(x_2, \ldots, x_n)$.

Now equation (3) becomes

$$
p(B \cdot \underline{x}) - \lambda q(B \cdot \underline{x}) = \prod_{i=1}^{n_{\lambda}} F_{\lambda, i} (B \cdot \underline{x})^{r_{\lambda, i}}.
$$

Which is the decomposition of $p(B \cdot \underline{x}) - \lambda q(B \cdot \underline{x})$ into irreducible factors in $k(x_2, \ldots, x_n)$. Then

 $\sigma(f) \subset \sigma(f(B \cdot x)),$

where $\sigma(f)$ is a subset of K, and $\sigma(f(B \cdot \underline{x}))$ is a subset of $k = \overline{K(x_1)}$. As n_{λ} is also the number of distinct irreducible factors of $p(B \cdot \underline{x}) - \lambda q(B \cdot \underline{x})$ we get

$$
\rho(f) \leqslant \rho(f(B \cdot \underline{x})).
$$

Now suppose that the result is true for $n-1$ variables. Then for $f(B \cdot \underline{x}) \in$ $k(x_2, \ldots, x_n)$ we get

$$
\rho(f(B \cdot \underline{x})) < (\deg_{(x_2,\ldots,x_n)} f(B \cdot \underline{x}))^2 + (\deg_{(x_2,\ldots,x_n)} f(B \cdot \underline{x})).
$$

Hence:

$$
\rho(f) \leq \rho(f(B \cdot \underline{x}))
$$

$$
< (\deg_{(x_2,...,x_n)} f(B \cdot \underline{x}))^2 + (\deg_{(x_2,...,x_n)} f(B \cdot \underline{x}))
$$

$$
= (\deg_{(x_1,...,x_n)} f)^2 + (\deg_{(x_1,...,x_n)} f)
$$

$$
= (\deg f)^2 + (\deg f) \qquad \blacksquare
$$

If for $n = 2$ we start the induction with Lorenzini's bound $\rho(f) < (\deg f)^2$ we obtain with the same proof the following result for several variables, for K of any characteristic K and a better bound:

THEOREM 5.3: Let K be an algebraically closed field. Let $f \in K(x)$ be noncomposite then $\rho(f) < (\deg f)^2$.

References

- [FJ] M. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, Berlin, 1986.
- [Fu] W. Fulton, Algebraic curves, Addison-Wesley, reprint of 1969.
- [Lo] D. Lorenzini, Reducibility of polynomials in two variables, Journal of Algebra 156 (1993), 65–75.
- [Na2] S. Najib, Sur le spectre d'un polynôme à plusieurs variables, Acta Arithmetica 114 (2004), 169–181.
- [Na1] S. Najib, Factorisation des polynômes $P(X_1, \ldots, X_n) \lambda$ et théorème de Stein. Thesis, University of Lille, 2005.
- [Na3] S. Najib, Une généralisation de l'inégalité de Stein-Lorenzini, Journal of Algebra 292 (2005), 566–573.
- [Ru] W. Ruppert, Reduzibilität ebener Kurven, Journal für die Reine und Angewandte Mathematik 369 (1986), 167–191.
- [Sc] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia of Mathematics and its Applications 77, Cambridge University, Cambridge, 2000.
- [Sm] W. Schmidt, Equations over Finite Fields. An Elementary Approach, Lecture Notes in Mathematics 536, Springer-Verlag, Berlin-New York, 1976.
- [Sh] I. Shafarevich, Basic Algebraic Geometry 1, Springer-Verlag, Berlin, 1994.
- [St] Y. Stein, The total reducibility order of a polynomial in two variables, Israel Journal of Mathematics 68 (1989), 109–122.
- [Vi] A. Vistoli, The number of reducible hypersurfaces in a pencil, Inventiones Mathematicae 112 (1993), 247–262.