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ABSTRACT

We use the theory of zeta functions of groups to establish a lower limit for

the degree of polynomial normal subgroup growth in class two nilpotent

groups.

1. Introduction

Let G be a finitely generated torsion-free nilpotent group, T-group in short, and

let s⊳
n(G) denote the number of normal subgroups of G of index up to n. Then

the degree of normal polynomial subgroup growth is

α⊳
G = inf{α ≥ 0 : there exists c > 0 with s⊳

n(G) < cnα for all n}.

In this paper we shall give a new lower limit to this quantity using the theory

of zeta functions of groups.

In [3] Grunewald, Segal and Smith defined the normal zeta function of aT-group as a formal Dirichlet series of the form

ζ⊳
G(s) =

∑

H⊳f G

|G : H |−s =

∞∑

n=1

a⊳
n(G)n−s,

where

a⊳
n(G) = |{H ⊳ G : |G : H | = n}|.
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The zeta function converges on some right half-plane {s ∈ C : ℜ(s) > α⊳
G},

where α⊳
G is the abscissa of convergence of ζ⊳

G(s), which also determines the

degree of polynomial subgroup growth.

It is proved in [3] that T-groups have polynomial subgroup growth.

Proposition 1.1 (GSS): For a T-group G,

d = h(Gab) ≤ α⊳
G ≤ α≤

G ≤ h(G),

where h(G) is the Hirsch length of the group G, and α≤
G is the degree of poly-

nomial subgroup growth of all the subgroups of G.∗

In [2] du Sautoy and Grunewald prove that α⊳
G and α≤

G are always rational

numbers.

For T-groups of nilpotency class 2, called T2-groups, we have a sharper es-

timate for the abscissa of convergence of the normal zeta functions proved in

[3].

Proposition 1.2 (GSS): Let G be a T2-group. Put h = h(G), d = h(Gab),

m = h(Z(G)) and r = h(G/Z(G)). Then

1

2
(m + r−1) ≤ α⊳

G ≤ max{d, h(1 − r−1)}.

The purpose of this paper is to improve the lower limit. In particular, we

prove the following.

Theorem 1.3: Let G be a T2-group. Put h = h(G), d = h(Gab), m = h(Z(G))

and r = h(G/Z(G)). Then α⊳
G is at least

(1) max
1≤k≤m

{

d,
k(m + d − k) + 1

r + k

}

.

It is easy to see that this improves the limit given in [3] as soon as the centre

has dimension bigger than twice the Hirsch length of the abelianisation.

Example 1.4 ([6]): Let F2,d be the free class two nilpotent group on d gen-

erators. Then d is also the Hirsch length of the abelianisation and m =

h(Z(F2,d)) = h([F2,d, F2,d]) = d(d − 1)/2. Using calculus to estimate the maxi-

mum in (1), the abscissa of convergence is approximately at least

d(3 −
√

6 + 2d) + d(d − 1)/2.

* The Hirsch length of a group G is the number of infinite cyclic factors in a
subnormal series with cyclic factors of G.
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This is m + O(d
√

d) when d → ∞ and thus improves the previous limit consid-

erably, as the lower limit given in [3] is asymptotically 1
2m + O(d−1).

Apart from the above, we have very little knowledge of the actual value for

the abscissa of convergence for T-groups in general. There are some specific

results in [6] for certain classes of groups, including the normal zeta function of

the direct product of n copies of the Heisenberg group and maximal class two

quotients of Un(Z), the group of upper triangular unipotent matrices over Z. In

both of these cases, the abscissa of convergence of the normal zeta function is

the Hirsch length of the abelianisation.

For subgroup growth Dan Segal has proved that (3 − 2
√

2)h − 1
2 ≤ α≤

G using

pro-p group methods. This result was extended by Klopsch to soluble groups

[4].

2. Results

Since zeta functions of groups are Dirichlet series, we can use the following

analytic observations. Let (an) and (bn) be sequences of non-negative integers,

and let α and β be the respective abscissae of convergence of the Dirichlet series
∑

ann−s and
∑

bnn−s. Then

(2) ∀n an ≤ bn ⇒ α ≤ β.

We shall also use the fact that if
∑

ann−γ is convergent for some real number

γ then α ≤ γ.

The Theorem 1.3 is based on the following useful lemma proved in [3].

Lemma 2.1 (GSS): Let G be a T-group and A a subgroup of Z(G) such that

G/A ∼= Zd. For each B ≤f A put X(B)/B = Z(G/B). Then

ζ⊳
G(s) = ζZd(s) ·

∑

B≤f A

|A : B|d−s|G : X(B)|−s.

One can also use the above lemma locally, that is, to count only subgroups

of p-power index, since when working with T-groups, the normal zeta function

decomposes as an Euler product of local factors over primes p

ζ⊳
G(s) =

∏

p

ζ⊳
G,p(s)

where

ζ⊳
G,p(s) =

∞∑

n=0

a⊳
pn(G)p−ns.
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For T2-groups, the centre Z = Z(G) ∼= Zm, where m = h(Z(G)). If B is a

subgroup of Z of finite p-power index, denoted by B ≤p Z, and gives rise to a

quotient group

Z/B ∼= Z/pn1Z⊕ · · · ⊕Z/pnkZ,

we say that B is of type (1, . . . , 1, pn1, . . . , pnk

︸ ︷︷ ︸

m

).

We want to count how many subgroups B ≤p Z are there that give isomorphic

quotient groups, i.e., how many groups belong to the same isomorphism type.

We shall work additively and consider the lattice given by a finite index

subgroup in Zm
p , as there is no harm if we work over Zp. Now GLm(Zp) acts

transitively on sublattices B ≤ Zm
p with a quotient Zm

p /B of a fixed given

isomorphism type

(pr0 , pr0+r1 , pr0+r1+r2 , . . . , pr0+r1+r2+···+rm−1)

= pr0(1, pr1 , pr1+r2 , . . . , pr1+r2+···+rm−1),

where ri ≥ 0, relative to the lattice Zm
p . We call I := {i : ri > 0} the flag type

of the lattice.

Note that the index of the lattice of flag type I is

(3) |Zm
p : B| = p

P
i∈I

(m−i)ri .

Let GB denote the stabiliser of the lattice of the flag type I = {i1, . . . , ij}.
The stabiliser consists of matrices of the form


























GLi1(Zp) pri1Zp pri1
+ri2Zp . . . pri1

+···rijZp

GLi2−i1(Zp) pri2Zp . . . pri2
+···+rijZp

GLi3−i2(Zp) pri3
+···+rijZp

. . .
...

GLm−ij
(Zp)
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with zeros below the diagonal blocks. By the orbit-stabiliser theorem the num-

ber of lattices (subgroups) of this type, and thus also of the type

(pr0 , pr0+r1 , pr0+r1+r2 , . . . , pr0+r1+r2+···+rm−1),

is |GLm(Zp)/GB |.
In order to find the index of the stabiliser in GLm(Zp), we consider the filtra-

tion of GLm(Zp) by the congruence subgroups:

Γi = {γ ∈ GLm(Zp) : γ ≡ 1m mod pi},

where Γ0 = GLm(Zp). Then GB ≥ Γk for k ≥ r1 + · · · + rm−1. We can use the

following formula:

|GLm(Zp) : GB| =

k∏

i=0

[Γi : (Γi ∩ GB)Γi+1]

= [Γ0 : GBΓ1]

k∏

i=1

[Γi : (Γi ∩ GB)Γi+1]

= f(p)p
P

i∈I ri(m−i)i−deg f .

If we write g(p) = f(p)p− deg f , we have that the index is equal to

g(p)p
P

i∈I ri(m−i)i,

where g(p) = p−g0 + · · · + 1 is a polynomial in p−1, which can be expressed in

terms of p-binomial coefficients. Moreover, g(p) is always independent of the

particular values ri take.

We shall construct a subgroup in the centre of the group, which gives us the

lower bound, and note that this choice of an isomorphism type is in fact the

best possible.

Proposition 2.2: Let G be a T2-group. Put h = h(G), d = h(Gab), m =

h(Z(G)) and r = h(G/Z(G)). Then α⊳
G is at least

max
1≤k≤m

{

d,
k(m + d − k) + 1

r + k

}

.

Proof: The integer d is a lower bound, as in Proposition 1.1.

For the other expression we need to do some work. For each B ≤f Z put

X(B)/B = Z(G/B). Then by Lemma 2.1

ζ⊳
G(s) = ζZr(s) ·

∑

B≤f Z

|Z : B|d−s|G : X(B)|−s =
∏

p

∞∑

n=1

apnp−ns.
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Since we already have considered d as the lower bound, we will ignore the term

ζZr(s) in subsequent considerations, since the abscissa of convergence of this is

r ≤ d.

We calculate an approximation to the zeta function by concentrating on iso-

morphism classes of the type

(1, 1, . . . , 1
︸ ︷︷ ︸

k0

, pn, . . . , pn

︸ ︷︷ ︸

k1

),

where 0 ≤ k0, k1 ≤ m. Call subgroups of this type pure.

We note that a subgroup of the pure type as above has index pk1n in the

centre of the group. There are pk0k1ng(p) subgroups of this type in the centre.

The subgroup of type (pn, . . . , pn

︸ ︷︷ ︸

r

) in the abelianisation belongs to the centre

of G quotiented out by a subgroup B of type (1, 1, . . . , 1
︸ ︷︷ ︸

k0

, pn, . . . , pn

︸ ︷︷ ︸

k1

). So X(B) ≥

pnZr and thus |G : X(B)| ≤ pnr.

We define the zeta function

ζpure
G,p (s) =

∑

B≤pureZ

|Z : B|d−s|G : X(B)|−s

to count only normal subgroups of pure isomorphism type. Moreover, we will

approximate |G : X(B)| by pnr for each B ≤pure Z of pure type, as this will

not increase the abscissa considered.

Putting everything together, we have

ζpure
G,p (s) ≥

∞∑

n=0

bpnp−ns

= 1 + g(p)

∞∑

n=1

p−nrspnk0k1pnk1(d−s)

= 1 + g(p)
∞∑

n=1

pn(k0k1+k1d−(r+k1)s)

= 1 + g(p)
pk1(k0+d)−(r+k1)s

1 − pk1(k0+d)−(r+k1)s
=: 1 + f(p),

which converges for ℜ(s) > βp, for some βp.

It is now clear that βp ≤ α⊳
G,p since bpn ≤ apn as we are counting only a thin

section of subgroups. So βp does indeed provide a lower bound for the local

abscissa of convergence of ζ⊳
G,p(s).
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It is also clear that if we put

ζ⊳
G(s) =

∞∑

n=1

ann−s,

and let
∏

p

∞∑

n=0

bpnp−ns =

∞∑

n=1

bnn−s,

then ∀n an ≥ bn and so α⊳
G ≥ β, where β is the abscissa of convergence of

∑∞

n=1 bnn−s. It remains to determine β.

For global abscissa of convergence, we need to know how the Euler product

over all prime numbers converges in relation to the local factors. To infer this,

we can use the following facts:

(A) An infinite product
∏

n∈J(1 + an) converges absolutely if and only if the

corresponding sum
∑

n∈J |an| converges.

(B)
∑

p |p−s| converges at s ∈ C if and only if ℜ(s) > 1.

We have
∞∑

n=0

bpnp−ns = 1 + f(p),

where

f(p) = g(p)
pk0k1+k1d−(r+k1)s

1 − pk0k1+k1d−(r+k1)s
,

and
∏

p 1 + f(p) converges if and only if
∑

p f(p) converges using (A).

Now
∑

p f(p) diverges for

ℜ(s) ≤ k0k1 + k1d + 1

r + k1
:= β,

because

∑

p

g(p)
pk0k1+k1d−(r+k1)s

1 − pk0k1+k1d−(r+k1)s
≥

∑

p

pk0k1+k1d−(r+k1)s

1 − pk0k1+k1d−(r+k1)s

=
∑

p

(

pk0k1+k1d−(r+k1)s

+ p2(k0k1+k1d−(r+k1)s) + · · ·
)

which diverges at

s =
k0k1 + k1d + 1

r + k1
= β,
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using (B).

It is left to find k0 and k1 such that this abscissa is maximal. Changing

variables so that k1 = m − k, and k0 = k, we want to find the maximum of

k(m + d − k) + 1

r + k
,

which is what we claimed.

Remark 2.3: This result is asymptotically as good as we would hope for, be-

cause asymptotically it grows as fast as the Hirsch length of the group.

One might wonder if the choice of isomorphism types of the form

(1, 1, . . . , 1
︸ ︷︷ ︸

k0

, pn, . . . , pn

︸ ︷︷ ︸

k1

) is better than any other choice of isomorphism type, or

was the previous proposition only an ad hoc construction? As the next remark

shows, this choice gives us the best approximation to the lower bound with the

knowledge we have at present.

Remark 2.4: Keep the notation as above. Assume that B ≤f Z is of the mixed

isomorphism type

(pr0 , pr0+r1 , pr0+r1+r2 , . . . , pr0+r1+r2+···+rm−1)

where ri ≥ 0 and pkZr ≥ X(B), so that |G : X(B)| ≤ pkr, where k = r0 + r1 +

r2+· · ·+rm−1. If we consider an approximation ζmixed
G,p (s) to the zeta function by

counting over B ≤f Z as above, with the approximation that |G : X(B)| ≤ pkr,

then the lattices of the pure type (1, 1, . . . , 1
︸ ︷︷ ︸

k0

, pn, . . . , pn

︸ ︷︷ ︸

k1

) determine the abscissa

of convergence of this new approximation ζmixed
G,p (s), which coincides with the

abscissa of ζpure
G,p (s) given in Proposition 2.2.

From Proposition 2.2 it is easy to see the following rough limit, when the

abscissa starts to be bigger than the Hirsch length of the abelianisation.

Corollary 2.5: If m2 > 4(rd − 1), then the abscissa of convergence of the

normal zeta functions is larger than the Hirsch length of the abelianisation.

Proof: Based on the proposition above, we have

α⊳
G ≥ max

k

{

d,
k(m + d − k) + 1

r + k

}
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where k = 1, 2, . . . , m. From this it is clear that the abscissa is bigger than d if

k(m + d − k) + 1

r + k
> d

for some k = 1, 2, . . . , m. Now

k(m + d − k) + 1

r + k
> d

for some k if and only if

max
k

k(k − m) + 1 > rd.

Using calculus the maximum is attained at k = m/2. Substituting this in the

expression we deduce that the abscissa is bigger than d if m2 > 4(rd−1).

Remark 2.6: It is clear that the first group satisfying m2 > 4(d2 − 1) is F2,5

where 100 > 96, and so the global abscissa of convergence is at least 5 1
10 .

Determining the abscissa explicitly seems to be surprisingly difficult. Even in

class two nilpotent groups and their normal zeta functions, we need to take into

account the geometry of the Pfaffian hypersurface associated to the bilinear form

induced by taking commutators in the group. This geometry can be quite tricky:

even a variety like an elliptic curve can be found embedded in a presentation of aT2-group as is seen in [1]. Another example of a variety arising in this context is

a quadric four-fold in P5, which is the variety related to the presentation of the

free class two nilpotent group on four generators, F2,4. The quadric four-fold

contains points, lines and planes as linear subspaces and all these separately

affect |F2,4 : X(B)| as seen in the explicit calculation in [5]. Thus we also need

to be able to describe the dimensions of the varieties of linear subspaces lying on

the variety associated to the group and be careful with singular points and other

quirks in the geometry. The zeta function seems to reflect all these features in

its appearance.
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