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Abstract. We prove an abstract theorem which provides multiple critical
points for locally Lipschtiz functionals under the presence of symmetry. The
abstract result is applied to find multiple solutions in H1

0(�) for the critical semi-
linear elliptic equation −�u = f (x, u) + |u|4/(N−2)u, where f is a discontinuous
perturbation and � ⊂ R

N is a bounded smooth domain.

1 Introduction

It is known that free boundary problems can be reduced to the study of partial
differential equations with discontinuous nonlinearities. This is the case in the
model of the heat conductivity in eletrical media, where we denote by K(x, t)
and σ(x, t) the thermal and electrical conductivity, respectively, x ∈ � ⊂ R

N is the
position and t ∈ R is the temperature. Since we are considering an electrical media,
the function σ can be discontinuous on t, and the distribution of the temperature is
unknown. This can be described by the PDE

−
N∑
i=1

∂

∂xi

(
K(x, u(x))

∂u(x)
∂xi

)
= σ(x, u(x))

which is related with a free boundary problem in which the jump surface of the
electrical conductivity in unknown. We also learned from J. L. Lions [25] that
there is a close connection between PDEs with discontinuos nonlinearities and
obstacle problems, since this last one is also a free boudary problem (see [11]
for a comprehensive discussion on this subject). Finally, it is worth mentioning
that PDEs with discontinuous nonlinearities also arise in the context of nonsmooth
mechanics, the seepage surface problem, the Elenbass equation, and other related
areas (see [8, 10, 12] for instance).

One of the main techniques to deal with PDEs with discotinuous nonlinearities
is the nonsmooth critical point theory. Roughly speaking, it consists in extending
for locally Lipschtiz continuous functions the classical variationalmethods strongly
developed since the pioneer work of Ambrosetti and Rabinowitz [3].
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The starting point for the nonsmooth theory comes from the concept of gener-
alized gradients, introduced by Clarke [13, 14, 15]. Let E be a reflexive Banach
space with duality given by 〈ξ, u〉, for any ξ ∈ E∗, u ∈ E, and denote by Liploc(E)
the set of all locally Lipschitz continuous functionals I : E → R. The generalized
directional derivative of I at u ∈ E in the direction v ∈ E is defined as

I0(u; v) := lim sup
‖h‖E→0, λ→0+

I(u + h + λv) − I(u + h)
λ

, ∀v ∈ E.

The generalized gradient of I at u is the following subset of E∗,

∂I(u) := {ξ ∈ E∗ : I0(u; v) ≥ 〈ξ, v〉, ∀v ∈ E},
and we say that u ∈ E is a critical point of I if 0 ∈ ∂I(u). It can be proved that, if
I ∈ C1(E,R), then ∂I(u) = {I ′(u)} and therefore this notion reduces to the classical
one in the smooth case.

In a seminal paper [12], Chang used the above concepts to derive minimax the-
orems for non-differentiable functionals. Among other results, he proved versions
of the Mountain Pass Theorem and the Saddle Point Theorem. Since then, many
researchers have obtained existence and multiplicity of critical points for non-
differentiable functionals under different compactness and geometric conditions.
We cite the papers [22, 27, 28, 24, 21, 19, 1], the books [29, 16] and references
therein.

Our first interest here is to present conditions that guarantee the existence of
multiple critical points for even functionals. Before stating our main theorem we
define, for I ∈ Liploc(E) and u ∈ E,

λI(u) := min{‖ξ‖E∗ : ξ ∈ ∂I(u)}.
We say that I satisfies the nonsmooth (PS)c-condition at level c ∈ R if any sequence
(un) ⊂ E such that I(un) → c and λI(un) → 0 has a convergent subsequece.

Our main abstract result is the following:

Theorem 1.1. Let E = V ⊕ X be an infinite-dimensional reflexive Banach
space with dimV = k < +∞. Suppose that I ∈ Liploc(E) is even, I(0) = 0 and

(I1) there exists ρ > 0 such that

inf
u∈X∩∂Bρ

I(u) ≥ 0;

(I2) for some M ∈ R and a subspace V0 ⊂ E such that dimV0 = m > k, we have

sup
u∈V0

I(u) < M.

If I satisfies the nonsmooth (PS)c-condition for any c ∈ [0,M), then I has at least
m − k pairs of nonzero critical points.
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The key point for proving the above result is the correct establishment of
deformation arguments. Besides a classical result proved by Chang [12], we
use here two new deformation lemmas whose proofs were inspired by results
presented for C1-functionals in the papers of Bartolo, Benci & Fortunato [6] and
Silva [32]. Of course, adapting for the Lipsthiz case requires new ideas and some
fine calculations.

Theorem 1.1 is the nonsmooth version of [33, Theorem 2.1] (see also [32,
Theorem 3.7]) and complements the aforementioned abstract results for locally
Lipschtiz functionals. It is closely related with previous works of Szulkin [35] and
Goeleven, Montreanu and Panagiotopoulos [18] (see also [16, Theorem 2.1.7]).
Essentially, they supposed that I ≥ β > 0 on X∩∂Bρ, I is anticoercive in V0 and the
nonsmooth (PS)c-condition is satisfied at any level. Besides our weaker geometric
conditions, we only requires compactness in the range [0,M). As it is well known,
since the paper of Brezis and Nirenberg [7], local compactness conditions are
specially important when dealing with PDEs with critical nonlinearities

In the second part of the paper, we apply our abstract theorem to find multiple
solutions for the problem

(Pμ)

⎧⎪⎨
⎪⎩

−�u = f (x, u) +μ|u|2∗−2u, in �,

u = 0, on ∂�,

where � ⊂ R
N , N ≥ 3, is a bounded smooth domain, μ > 0 is a parameter,

2∗ := 2N/(N − 2) is the critical Sobolev exponent and f : �× R → R satisfies:

(f0) for a.e. x ∈ �, the map f (x, ·) is odd and, for any M > 0, there holds

sup
x∈�, 0≤s≤M

|f (x, s)| < +∞.

There is a vast literature concerning semilinear critical problems with discotinuous
nonlinearities. Since it is impossible to give a complet list of references, we just
quote the papers [4, 5, 2, 9, 20, 36, 31] and its references.

In order to introduce the class of nonlinearities that we are going to deal with,
we define

f (x, s) := min{ lim
t→s− f (x, t), lim

t→s+
f (x, t)},

f (x, s) := max{ lim
t→s− f (x, t), lim

t→s+
f (x, t)},

and consider the family of index J := {0, 1, . . . , n} or J := {0} ∪ N. We say that a
function satisfying (f0) belongs to the class F if there exists an ordered sequence
(sj)j∈J ⊂ [0,+∞) such that s0 = 0 and



4 M. F. FURTADO AND J. P. P. DA SILVA

(F1) if J has infinitely many points, then limj→+∞ sj = +∞;
(F2) lims→s±

j
f (x, s) ∈ R, for any j ∈ J \ {0};

(F3) the map s �→ f (x, s) is continuous in (sj−1, sj) for any j ∈ J \ {0} and for
a.e. x ∈ �;

(F4) there holds
sup

x∈�, s>0

|f (x, s) − f (x, s)| < +∞;

(F5) if βj := supx∈� f (x, sj), then the set J := {j ∈ J : βj < 0} is finite;
(F6) if f (x, sj) > 0 a.e. in �, then f (x, sj) ≥ 0, a.e. in �;
(F7) if f (x, sj) = 0 a.e. in �, then f (x, sj) = 0, a.e. in �;
(F8) f (x, s) = 0, for any s ∈ [0, s1] and a.e. in �.

Besides the above structural conditions, we are going to consider the case
that f is a locally superlinear with quasicritical growth. More specifically, we shall
assume the following:
(f1) there exist σ ∈ [0, 2) and a1, a2 > 0 such that

1
2
f (x, s)s − F(x, s) ≥ −a1 − a2s

σ, ∀ s > 0, a.e. in �,

where F(x, s) :=
∫ s
0 f (x, t) dt;

(f2) there holds

lim
s→+∞

f (x, s)
s2∗−1 = 0, uniformly a.e. in �;

(f3) there exist θ ∈ (2, 2∗) and a3, a4 > 0 and such that

F(x, s) ≤ a3s
θ + a4, ∀ s > 0, a.e. in �;

(f4) there is an open nonempty set �0 ⊂ � such that

lim inf
s→+∞

F(x, s)
s2

= +∞, uniformly a.e. in �0.

As an application of Theorem 1.1, we obtain the following multiplicity result:

Theorem 1.2. Suppose that f ∈ F satisfies (f1)–(f4). Then, given k ∈ N, there
exists μk > 0 such that, for any μ ∈ (0, μk), problem (Pμ) has at least k pairs of

nonzero solutions in W2,2N/(N+2)(�) ∩ H1
0(�).

Denote by H : R → R the Heaviside function given by H(s) = 0, if s ≤ 0,
and H(s) = 1, otherwise. It is not difficult to see that Theorem 1.2 applies for
the model function f (s) := H(s − a)g(s), whenever g(s) behaves like a pure power
|s|p−2s, with 2 < p < 2∗. The main point here is that we can consider a larger
class of nonlinearities, including that which are not bounded by a polynomial with
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subcritical growth. Moreover, differently from many of the aforementioned works,
it is not necessary for f to have only a finite number of discontinuity points. In the
final section of the paper we present two examples of nonlinearities f which seem
not to be considered in the literature.

As a final comment, let u be one of the solutions given by Theorem 1.2 and
suppose that the set {x ∈ � : |u(x)| > s1} has zero Lebesgue measure. In this
case, it follows from (F8) that f (·, u) ≡ 0, and therefore −�u = μ|u|2∗−2u in �.
So, if λ1(�) > 0 is the first eigenvalue of (−�,H1

0(�)), we can use Poincaré’s
inequality to get

λ1(�)‖u‖2
L2(�) = ‖u‖2 = μ‖u‖2∗

L2∗ (�) ≤ μs2∗−2
1 ‖u‖2

L2(�),

from which we conclude that

μ ≥ λ1(�)
s2∗−2
1

.

Hence, for μ > 0 small, the solutions are such that the range of f (·, u) “crosses”
the first point of discontinuity. Actually, one of the examples presented in the last
section is such that f (·, u) crosses any prescribed number of points where f is not
continuous.

The rest of the paper is organized in the following way: in the next section we
present some basic results about nonsmooth critical point theory and our deforma-
tion results. Theorems 1.1 and 1.2 are proved in Section 3 and 4, respectively.

2 Abstract framework and basic results

For completness, we start this section by recalling some elements of the critical
point theory for locally Lipschitz functionals developed by Chang [12]. From now
on (E, ‖·‖) is a reflexive Banach space with the duality in its dual space E∗ denoted
by 〈ξ, u〉, for any ξ ∈ E∗, u ∈ E. By Liploc(E) we mean the set of all functions
I : E → R which are locally Lipschitz continuous, i.e., for each u ∈ E, there exist
a neighbourhood Nu of u and a constant Cu > 0 such that

|I(u1) − I(u2)| ≤ Cu‖u1 − u2‖, ∀ u1, u2 ∈ Nu.

It is clear that I ∈ Liploc(E) may not be differentiable at a point u ∈ E. However,
we can define the generalized directional derivative by setting

I0(u; v) := lim sup
‖h‖→0, λ→0+

I(u + h + λv) − I(u + h)
λ

, ∀v∈ E.

It can be proved that the above quantity is well defined. Moreover, the map
v �→ I0(u; v) is sub-additive and positively homogeneous, and therefore convex.
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Since it is also continuous, we can follow Clarke [13] and introduce the sub-
differential at u ∈ E as

∂I0(u; z) := {ξ ∈ E∗ : I0(u; v) ≥ I0(u; z) + 〈ξ, v − z〉, ∀v ∈ E}.

Finally, the generalized gradient of I at u is the subset of E∗ given by

∂I(u) := {ξ ∈ E∗ : I0(u; v) ≥ 〈ξ, v〉, ∀v ∈ E}.

We collect below the main properties of the generalized gradient.

Proposition 2.1. For any u ∈ E and I ∈ Liploc(E), the following hold:

(a) the set ∂I(u) ⊂ E∗ is convex and compact in the weak-∗ topology;

(b) the function λI : E → R given by

λI(u) := min{‖ξ‖E∗ : ξ ∈ ∂I(u)}

is well defined and lower semi-continuous;

(c) if J ∈ C1(E,R), then

∂J(u) = {J′(u)}, ∂(I + J)(u) = ∂I(u) + {J′(u)}.

According to the last item above, it is natural to say that u ∈ E is a critical point
of I ∈ Liploc(E) if 0 ∈ ∂I(u). This means that I0(u0; v) ≥ 0, for any v ∈ E. We say
that c is a critical level if there exists a critical point u0 ∈ E of I such that I(u0) = c.

From the above definition we easily get ∂(−I)(u) = −∂I(u). Hence, it follows
from [12, Propostion (9), p. 106] that

Proposition 2.2. If I ∈ Liploc(E) and φ ∈ C1([0, 1],E), then the composition
h := I ◦ φ is differentiable almost everywhere and

min
ξ∈∂I(φ(t))〈ξ, φ

′(t)〉 ≤ h′(t) ≤ max
ξ∈∂I(φ(t))〈ξ, φ

′(t)〉, for a.e. t ∈ [0, 1].

We say that I ∈ Liploc(E) satisfies the nonsmooth (PS)c-condition if any se-
quence (un) ⊂ E such that

lim
n→+∞ I(un) = c, lim

n→+∞λI(un) = 0

has a convergent subsequece. It is clear that this condition implies that the set
Kc := {u ∈ E : I(u) = c, 0 ∈ ∂I(u)} is compact.

Given α, β ∈ R, we define the sets

Iβ := {u ∈ E : I(u) ≤ β}, Kβ
α := {u ∈ E : I(u) ∈ [α, β], 0 ∈ ∂I(u)}.
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For any given set A ⊂ E and δ > 0, we denote by Nδ(A) the closed δ-neighborhood
of A. We finally set, for any ε, δ > 0,

B(ε, α, β, δ) := Iβ+ε \ (Iα−ε ∪ Nδ(K
β
α )).

As is well known, in order to prove minimax results we need to construct a
useful homeomorphism deforming a level set of the functional in another one. The
starting point is defining some kind of pseudo-gradient field.

Lemma 2.3. Let E be a reflexive Banach space and I ∈ Liploc(E) satisfying

the nonsmooth (PS)c-condition for any c ∈ [α, β]. Then, for any given δ > 0, there
exist d0, ε0 > 0 such that

λI(u) ≥ d0, ∀ u ∈ B(ε0, α, β, δ),

and a locally Lipschitz vector field v :B(ε0, α, β, δ)→E satisfying ‖v(u)‖≤1 and

(2.1) 〈ξ, v(u)〉 > d0

2
, ∀ ξ ∈ ∂I(u).

Moreover, if I is even, the above vector field can be constructed as an odd function.

Proof. Suppose that the first statement is not true. Then we can obtain
sequences (εn), (cn) ⊂ R, (un) ∈ B(εn, α, β, δ) such that εn → 0, cn → 0 and
λI(un) → 0. Since I(un) ∈ [α − εn, β + εn], up to a subsequence we have that
I(un) → c0 ∈ [α, β]. It follows from the nonsmooth (PS)c0-condition that, up to a
subsequence again, un → u0 strongly in E. Since λI is lower semi-continuous, we
have that λI(u0) = 0. Hence, u0 ∈ Kβ

α , which contradicts un �∈ Nδ(K
β
α ).

Now we have proved that B(ε, α, β, δ) has no critical points, the construction
of the vector field v can be done arguing along the same lines of [12, Lemma 3.3].
We omit the details. �

The following results are the keystone for the proof of our abstract result. They
are variants, in the nonsmooth setting, of the deformations presented in [32, 6]. In
the first one, we require compactness only at level c = 0.

Lemma 2.4. Let E = V ⊕ X be a reflexive Banach space with dimV < +∞.

Suppose that I ∈ Liploc(E) satisfies I(0) = 0, (I1) and the nonsmooth (PS)0-
condition. Then, for each δ > 0, there exist r, ν > 0 and a homeomorphism

ψ : E → E such that:
(ψ1) ψ(u) = u, for any u ∈ E \ Bρ+r;

(ψ2) if u ∈ ∂Bρ ∩ X \ Nδ(K0 ∩ ∂Bρ), then I(ψ(u)) ≥ ν;

(ψ3) ψ is odd when I is even.
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Proof. Suppose first that K0 ∩ ∂Bρ �= ∅ and set, for any ε ∈ (0, 1),

Aε := {u ∈ E : d(u,X ∩ ∂Bρ) ≤ ε, d(u,K0 ∩ ∂Bρ) ≥ δ/2, |I(u)| ≤ ε}
and

Cε := {u ∈ E : d(u,K0) > 4ε, λI(u) ≥ ε},
where d(u,K) denotes the distance of the point u for the set K ⊂ E.

We claim that, for ε > 0 small, there holds Aε ⊂ Cε. Indeed, if this is not true,
we can obtain a sequence (un) ⊂ E such that

(2.2) d(un,X ∩ ∂Bρ) → 0, d(un,K0 ∩ ∂Bρ) ≥ δ

2
, I(un) → 0,

but d(un,K0) → 0 or λI(un) → 0. If the first alternative holds we can use the
compactness of K0 and the first convergence in (2.2) to guarantee that, along a
subsequece, un → u ∈ K0 ∩ ∂Bρ, which contradicts d(un,K0 ∩ ∂Bρ) ≥ δ/2. If
λI(un) → 0, we can use the nonsmooth (PS)0-condition to guarantee the conver-
gence of (un) and argue as before.

By applying Lemma 2.3 with α = β = 0 and δ = ε, we obtain d0, ε0 > 0 and a
locally Lipschtiz vector field v defined in B := B(ε0, 0, 0, ε) verifying (2.1). It is
clear that we may suppose that ε0 < ε. We now pick 0 < ε < ε0 and choose cutoff
Lipscthiz functions g1, g2 : E → [0, 1] such that

h1(u) =

⎧⎨
⎩1, if I(u) �∈ [−ε0, ε0],

0, if I(u) ∈ [−ε, ε], h2(u) =

⎧⎨
⎩1, if u �∈ N4ε(K0),

0, if u ∈ N2ε(K0).

We can easily verify that the function V : E → E given by

W0(u) :=

⎧⎨
⎩h1(u)h2(u)v(u), if u ∈ B

0, if u �∈ B

is a locally Lipsthiz vector field globally defined. We finally consider Lipscthiz
functions h3, h4 : E → [0, 1] such that

h3(u) =

⎧⎨
⎩1, if d(u,X ∩ ∂Bρ) ≤ ε,

0, if d(u,X ∩ ∂Bρ) ≥ ε,
h4(u) =

⎧⎨
⎩1, if d(u,K0 ∩ ∂Bρ) ≥ 3δ/4,

0, if d(u,K0 ∩ ∂Bρ) ≥ δ/2,

and define
W(u) := h3(u)h4(u)W0(u), u ∈ E.

We shall construct our deformation as the solution of the Cauchy problem

(2.3)
d
dt
σ(t, u) = W(σ(t, u)), σ(0, u) = u.
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Since W is locally Lipschitz and ‖W‖ ≤ 1, the above EDO has a unique so-
lution globally defined and the map u �→ σ(t, u) is a homeomorphism for any
fixed t ≥ 0. We consider 0 < t0 < min{ε, δ/4} and we shall verify the lemma for
the map ψ(u) := σ(t0, u), r = ε and ν > 0 to be chosen later.

Let u ∈ E \ Bρ+ε and notice that h3(u) = W(u) = 0. Thus σ(·, u) = u

and therefore property (ψ1) clearly holds. In order to verify (ψ2), we take
u ∈ ∂Bρ ∩ X \ Nδ(K0 ∩ ∂Bρ). If W(u) = 0 then σ(·, u) = u and I(σ(·, u)) is constant.
Otherwise, if W(σ(t, u)) �= 0, then σ(t, u) ∈ B and it follows from Proposition 2.2
and (2.1) that

d
dt

I(σ(t, u)) ≥ min
ξ∈∂I(ψ(t,u))

〈ξ, σ′(t, u)〉 = min
ξ∈∂I(σ(t,u))

〈ξ,W(σ(t, u))〉 ≥ d0

2
,

from which we conclude that the map t �→ I(σ(t, u)) is nondecreasing.
If I(σ(t, u)) > ε for some t ∈ [0, t0], then ψ(u) = σ(t0, u) satisfies (ψ2) with

ν = ε. So, we may assume that I(σ(t, u)) ≤ ε, for any t ∈ [0, t0]. It follows
from (I1) that

(2.4) 0 ≤ I(u) = I(σ(0, u)) ≤ I(σ(t, u)) ≤ ε < ε0, ∀ t ∈ [0, t0].

Since ‖W‖ ≤ 1, after integrating (2.3) over [0, t] we get ‖σ(t, u) − u‖ ≤ t, for
any t ∈ [0, t0]. Recalling that t0 ≤ ε, we obtain

d(σ(t, u),X ∩ ∂Bρ) ≤ ε, ∀ t ∈ [0, t0].

Moreover, for any t ∈ [0, t0] and z ∈ K0 ∩ ∂Bρ, there holds

‖σ(t, u) − z‖ ≥ ‖u − z‖ − ‖σ(t, u) − u‖ ≥ δ − t0,

and therefore we can use t0 ≤ δ/2 to conclude that

(2.5) d(σ(t, u),K0 ∩ ∂Bρ) ≥ 3δ
4
, ∀ t ∈ [0, t0].

Let t ∈ [0, t0] be fixed. Since ε < ε, it follows from (2.4)–(2.5) that
σ(t, u) ∈ Aε ⊂ Cε. Actually, from the definition of Cε and (2.4) again, we con-
clude that σ(t, u) ∈ B. Moreover, all the above considerations and the definition
of the cutoff functions show that hi(σ(t, u)) = 1, for any i ∈ {1, 2, 3, 4}. Thus,
integrating

d
dt

I(σ(t, u)) ≥ min
ξ∈∂I(σ(t,u))

〈ξ,W(σ(t, u))〉 = min
ξ∈∂I(σ(t,u))

〈ξ, v(σ(t, u))〉 ≥ d0

2

over [0, t0] and using (I1), we obtain

I(σ(t0, u)) ≥ I(u) +
t0d0

2
≥ t0d0

2
.
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Hence, we conclude that (ψ2) holds for ν :=min{ε, t0d0/2}, whenever K0 ∩ ∂Bρ �=∅.
If this set is empty, we can proceed in a similar way just dropping the condition
d(u,K0 ∩ ∂Bρ) > δ/2 in the definition of Aε.

The proof of (ψ3) can be done as in Lemma 2.5. �
We state and prove in the sequel our second deformation result.

Lemma 2.5. Let E be a reflexive Banach space and I ∈ Liploc(E) satisfying

the nonsmooth (PS)c-condition for any c ∈ [α, β]. If Kβ
α is bounded then, for any

given ε > 0, there exist c1, R1 > 0, ε̂ ∈ (0, ε) and a homeomorphism η : E → E

such that

(η1) ‖η(u) − u‖ ≤ c1, for any u ∈ E;
(η2) I(η(u)) ≤ I(u), for any u ∈ E;

(η3) η(Iβ \ BR1 ) ⊂ Iα−ε̂;
(η4) η is odd when I is even.

Proof. Given δ ∈ (0, 1), we can apply Lemma 2.3 to obtain ε0 ∈ (0, ε) and
d0 ∈ (0, 1/2) such that

(2.6) λI(u) ≥ d0 > 0, ∀ u ∈ B := B(ε0, α, β, δ).

We set
A1 := {u ∈ E : I(u) ≤ α− ε0} ∪ {u ∈ E : I(u) ≥ β + ε0}

and, for any ε̂ ∈ (0, ε0),

A2 := {u ∈ E : α− ε̂ ≤ I(u) ≤ β + ε̂}.

Let R > 0 be such that Nδ(K
β
α ) ⊂ BR. Consider Lipschitz functions

h1, h2 : E → [0, 1]

satisfying

h1(u) =

⎧⎨
⎩1, if u ∈ A2,

0, if u ∈ A1,
h2(u) =

⎧⎨
⎩1, if u �∈ B2R,

0, if u ∈ BR,

and define the locally Lipschtiz vector field

W(u) :=

⎧⎨
⎩h1(u)h2(u)v(u), if u ∈ B,

0, if u �∈ B,

where v : B → E comes from Lemma 2.3.
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We now consider the Cauchy problem

d
dt
σ(t, u) = −W(σ(t, u)), σ(0, u) = u.

Since ‖W(u)‖ ≤ 1, for any u ∈ E, the above EDO has a unique solution globally
defined and the map u �→ σ(t, u) is a homeomorphism for any fixed t ≥ 0. We
pick t0 > 2(β− α + ε̂)/d0 and we shall prove the lemma for η(u) := σ(t0, u).

By integrating the EDO over [0, t0] and using ‖W‖ ≤ 1, we easily get

‖η(u) − u‖ = ‖σ(t0, u) − u‖ ≤ t0,

and therefore (η1) holds for c1 := t0. In order to prove (η2) we first notice that,
if W(u) = 0, then σ(t, u) = u and there is nothing to do. If W(σ(t, u)) �= 0,
then σ(t, u) ∈ B and we can use Proposition 2.2 and (2.6) to get

(2.7)

d
dt

I(σ(t, u)) ≤ max
ξ∈∂I(σ(t,u))

〈ξ, σ′(t, u)〉

= − min
ξ∈∂I(σ(t,u))

〈ξ,W(σ(t, u))〉

≤ −g1(σ(t, u))h2(σ(t, u))
d0

2
.

Thus, the map t �→ I(σ(t, u)) is nonincreasing and (η2) is verified.
Let R1 > 2R + t0 and u ∈ Iβ \ BR0 . If I(u) ≤ α − ε̂, it is clear from the

monotonicity of t �→ I(σ(t, u)) that η(u) ∈ Iα−ε̂. So, we need only to consider
u ∈ Iβ \ (Iα−ε̂ ∪ BR1 ). In this case, we have that

‖σ(t, u)‖ ≥ ‖u‖ − ‖σ(t, u) − u‖ ≥ R1 − c1 = R1 − t0 > 2R,

in such a way that g2(σ(t, u)) = 1 on [0, t0]. Suppose by contradiction that
η(u) /∈ Iα−ε̂. Then

α− ε̂ < I(σ(t, u)) ≤ β, ∀ t ∈ [0, t0],

which shows that g1(σ(t, u)) = 1. Moreover, from the defintion of B we see that
σ(t, u) ∈ B, for any t ∈ [0, t0]. Thus, integrating (2.7) over this interval and
using t0 > 2(β− α + ε̂)/c0, we obtain

I(σ(t0, u)) ≤ I(u) − t0c0

2
≤ β− t0c0

2
< α− ε̂,

which is a contradiction. Hence, η(u) = σ(t0, u) ∈ Iα−ε̂ and (η3) holds.
In order to prove (η4) we consider the above argument with all the cutoff

functions being even and recall that the map v can be taken odd when I is even,
according to Lemma 2.3. �
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3 The abstract result

We devote this section to the proof of our abstract theorem. From now on, we shall
assume that the hypotheses of Theorem 1.1 hold. Let

E := {Y ⊂ E \ {0} : Y is closed, Y = −Y}
be the class of all closed and symmetric sets of E which do not contain the origin.
Recall that the genus [23] of a nonempty set A ⊂ E is defined as

γ(A) := inf{k ∈ N : there exists ϕ : A → R
k \ {0} continuous and odd}.

If no such map ϕ exists we define γ(A) = +∞ and we also set γ(∅) = 0. We refer
to [30, Chapter 7] for the main properties of the genus.

Since I satisfies the (PS)0-condition the set

K̃0 := K0 ∩ Bρ

is compact. Thus, for some δ > 0 small, we have that γ(N2δ(K̃0)) = γ(K̃0). For
this δ > 0, we apply Lemma 2.4 to obtain r, ν > 0 and an odd functionψ : E → E
such that
(ψ1) ψ(u) = u, for any u ∈ E \ Bρ+r;
(ψ2) if u ∈ ∂Bρ ∩ X \ Nδ(K0 ∩ ∂Bρ), then I(ψ(u)) ≥ ν.
We also pick β > ν verifying

(3.1) 0 < sup
u∈V0

I(u) < β < M

and fix α ∈ (0, ν). By applying now Lemma 2.5 with 0 < ε < β − α, we
obtain c1, R1 > 0, ε̂ ∈ (0, ε) and an odd function η : E → E such that
(η1) ‖η(u) − u‖ ≤ c1, for any u ∈ E;
(η2) I(η(u)) ≤ I(u), for any u ∈ E;
(η3) η(Iβ \ BR1 ) ⊂ Iα−ε̂.

We now recall that dimV0 = m > k = dimV , choose R > 0 such that

(3.2) R > max{R1, ρ + c1 + r}
and set

D := V0 ∩ BR, G := {h ∈ C(D,E) : h is odd, h ≡ η on ∂D}.
Moreover, for any j ∈, {1, 2, . . . ,m}, we define

�j := {h(D \ Y) : h ∈ G, Y ∈ E, γ(Y) ≤ m − j}.
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We claim that the following properties hold:
(�1) �j �= ∅;
(�2) �j+1 ⊂ �j, if additionally j �= m;
(�3) if ϕ ∈ C(E,E) is odd and ϕ ≡ Id on Iα−ε̂ or on E \ Bρ+r, then ϕ(A) ∈ �j, for

any A ∈ �j;
(�4) if A ∈ �j, Y ∈ E, γ(Y) ≤ l < j, then A \ Y ∈ �j−l.

Thefirst two statements are clear and (�4) can be proved as in [30, Proposition 9.18],
in such a way that we shall only verify (�3). Let A = h(D \ Y) ∈ �j and notice that,
since ϕ(A) = (ϕ ◦ h)(D \ Y), it is sufficient to show that ϕ ◦ h = η on ∂D. Given
u ∈ ∂D, we may use u ∈ V0, (3.1) and (3.2) to get u ∈ Iβ \ BR1 . Hence, by (η3), we
have that η(u) ∈ Iα−ε̂ and therefore ϕ(η(u)) = η(u) if ϕ ≡ Id on Iα−ε̂. In the case
that ϕ ≡ Id on E \ Bρ+r, the same conclusion follows from (η1) and (3.2).

After introducing all this notation, we can define the minimax levels

cj := inf
A∈�j

max
u∈A

I(u), j = 1, 2, . . . ,m.

Since 0 ∈ A, for any A ∈ �1 and I(0) = 0, we have that c1 ≥ 0. Moreover, (η2)
implies that η|D ∈ G and γ(∅) = 0, and therefore we conclude that η(D) ∈ �m.
Hence,

cm ≤ max
z∈η(D)

I(z) = max
u∈D

I(η(u)) ≤ max
u∈D⊂V0

I(u) < M.

The above consideration and property (�1) provide

0 ≤ c1 ≤ · · · ≤ cj ≤ cj+1 ≤ · · · ≤ cm < M.

The next result is a variant of [30, Proposition 9.23].

Proposition 3.1. If m ≥ j > k and A ∈ �j, then A ∩ ∂Bρ ∩ X �= ∅.

Proof. Let A = h(D \ Y) ∈ �m, where Y ∈ E is such that γ(Y) ≤ m − j. Let
� := h−1(Bρ) and notice that, if u ∈ ∂D, then (η1) implies that

‖h(u)‖ = ‖η(u)‖ ≥ R − c1 > ρ.

Hence � ⊂ intD is an open set of the m-dimensional space V0, bounded, sym-
metric and 0 ∈ �. The Borsuk–Ulam theorem implies that γ(∂�) = m. Since
h(∂�) ⊂ ∂Bρ, we have that ∂� ⊂ ϒ := h−1(∂Bρ) and we can use [30, Proposi-
tion 7.5] to obtain

γ(h(ϒ \ Y)) ≥ γ(ϒ \ Y) ≥ γ(ϒ) − γ(Y) ≥ γ(∂�) − γ(Y) = m − γ(Y) > k.

By using [30, Proposition 7.8] we conclude that h(ϒ \ Y) ∩ X �= ∅. The result is a
consequence of h(ϒ) ⊂ A ∩ ∂Bρ. �
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Corollary 3.2. If l ≥ j > k, A ∈ �l and γ(K̃0) ≤ l − j, then

A ∩ ψ(X ∩ ∂Bρ \ Nδ(K̃0)) �= ∅.

Proof. Since ψ−1 is even and continuous, it follows from (ψ1) and (�3)
that ψ−1(A) ∈ �l. Thus, γ(N2δ(K̃0)) = γ(K̃0) ≤ l − j and (�4) imply that

A := ψ−1(A) \ N2δ(K̃0) ∈ �j.

Hence, we can use Proposition 3.1 to obtain A ∩ ∂Bρ ∩ X �= ∅. Since A is closed,
we have that A ⊂ ψ−1(A) \ Nδ(K̃0) and the result easily follows. �

Corollary 3.3. If l ≥ j > k and cj ≤ · · · ≤ cl < ν, then γ(K̃0) ≥ l − j + 1.

Proof. If γ(K̃0) ≤ l − j, it follows from Corollary 3.2 and (ψ2) that

cl = inf
A∈�l

max
A

I(u) ≥ inf
A∈�l

{
max

A∩ψ(∂Bρ∩X\Nδ(˜K0))
I(u)

}
≥ ν

which is a contradiction. �

Lemma 3.4. If l ≥ j > k and cl = cj = c ≥ α > 0, then γ(Kc) ≥ l − j + 1.

Proof. By using I(0) = 0 < c and the nonsmooth (PS)c-condition, we
get Kc ∈ E. Suppose, by contradiction, that γ(Kc) ≤ l − j. Then, for some δ1 > 0
small, there holds γ(Nδ1(Kc)) ≤ l − j. Since the nonsmooth (PS)c-condition pro-
vides compactness for Kc, a simple inspection of the proof of a deformation lemma
due to Chang (see [12, Theorem 3.11]) provides ε ∈ (0, ε̂/2) and an odd homeo-
morphism τ : E → E such that
(τ1) τ(u) = u, for any u ∈ Ic+ε̂/2 \ Ic−ε̂/2;
(τ2) τ(Ic+ε \ Nδ1(Kc)) ⊂ Ic−ε.
Since cl = c, there exists A ∈ �l such that maxu∈A I(u) ≤ c + ε. By using (�4) we
conclude that A \ Nδ1 (Kc) ∈ �j. From α ≤ c and (τ1), we obtain that τ = Id on Iα−ε̂

and therefore we can use (�3) to infer that

A := τ(A \ Nδ1 (Kc)) ∈ �j.

But (τ2) provides A ⊂ Ic−ε and so

c = cj ≤ max
u∈A

I(u) ≤ c − ε,

which does not make sense. Hence γ(Kc) ≥ l − j + 1 and we have done. �
We are now ready to present the proof of our abstract theorem.
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Proof of Theorem 1.1. Suppose first that ν ≤ ck+1 ≤ cm. If all the minimax
levels ck+1, ck+2, . . . , cm are different, it follows from Lemma 3.4 that γ(Kcj) ≥ 1,
for each j ∈ J := {k+1, k+2, . . . ,m}. So, we have m−k distint critical levels, each
of them with a pair of nonzero critical points. On the other hand, if ck+j = ck+j+1

for some j ∈ J, then the same lemma implies that γ(Kck+j) ≥ 2, and therefore there
are infinitely many pairs of critical points at level ck+j.

We consider now the case that ck+1 ≤ cl < ν ≤ cl+1 ≤ cm. By using Corol-
lary 3.3 we get γ(K̃0) ≥ l − k. As before, if l − k > 1 then we have done.
Otherwise, l = k + 1 and there is a pair of nonzero critical points at level 0. More-
over, since ν ≤ ck+2 ≤ cm, arguing as in the first part of the proof we obtain at
least m − k − 1 nonzero critical points with energy in [ν, cm]. �

4 Elliptic problem with critical growth

Throughout, we denote by E the Sobolev space H1
0(�) endowed with the norm

‖u‖ :=
(∫

�
|∇u|2dx

)1/2

and by 2# the conjugated exponent of 2∗, namely 2# := (2∗)′ = 2N/(N + 2). For
any μ > 0, a straightforward computation shows that the functional

Jμ(u) :=
1
2
‖u‖2 − μ

2∗

∫
|u|2∗

dx, u ∈ E,

belongs to C1(E,R). Concerning the nonsmooth part of the equation we notice
that, in view of (f0), (f2) and (F4), there exists C ∈ R such that

|f (x, s)| ≤ C(1 + |s|2∗−1), for a.e. x ∈ �, s ∈ R.

Hence [12, Section 2] the map F : �× R → R given by F(x, s) :=
∫ s
0 f (x, t)dt is a

Carthéodory function. Moreover, the map

�(u) :=
∫
�

F(x, u) dx, u ∈ E,

belongs to Liploc(E). We are going to look for solutions of problem (Pμ) as critical
points of the functional

Iμ(u) := Jμ(u) −�(u), u ∈ E.

Given u ∈ E and w ∈ L1
loc(�), we write hereafter w ∈ [f (·, u), f (·, u)] when

f (x, u(x)) ≤ w(x) ≤ f (x, u(x)), for a.e. x ∈ �. By using this notation, we can
characterize the elements of the generalized gradient of Iμ at some point u ∈ E in
the following way:
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Lemma 4.1. If ξ ∈ ∂Iμ(u), then there exists wξ ∈ L2#
(�) such that

〈ξ, ϕ〉 =
∫
�
∇u∇ϕ dx − μ

∫
�

|u|2∗−2uϕ dx −
∫
�
wξϕ dx, ∀ϕ ∈ E

and wξ ∈ [f (·, u), f (·, u)].

Proof. According to Proposition 2.1(c), we have that

∂Iμ(u) = {J′
μ(u)} − ∂�(u).

Since E ⊂ L2∗
(�), if ξ0 ∈ ∂�(u) there exists a linear functional ξ : L2∗

(�) → R

such that ξ|E = ξ0. Recalling that 2# = (2∗)′, we can use Riesz’ theorem to
obtain wξ ∈ L2#

(�) such that

〈ξ, ϕ〉 = 〈ξ, ϕ〉 =
∫
�
wξϕ dx, ∀ϕ ∈ E.

This and the definition of Jμ prove the first statement. For the last one, we refer to
[12, Corollary on page 111]. �

Corollary 4.2. If u ∈ E is a critical point of Iμ, then u ∈ W2,2#
(�) ∩ H1

0(�)
and

−�u − μ|u|2∗−2u ∈ [f (·, u), f (·, u)].

Proof. In this case, we have 0 ∈ ∂Iμ(u) = {J′
μ(u)} − ∂�(u). By picking ξ = 0

in Lemma 4.1, we obtain

(4.1)
∫
�
∇u∇ϕ dx = μ

∫
�

|u|2∗−2uϕ dx +
∫
�
w0ϕ dx, ∀ϕ ∈ H1

0(�),

with w0 ∈ [f (·, u), f (·, u)]. Since μ|u|2∗−2u + w0 ∈ L2#
(�), we obtain from [17,

Theorem 9.15] a unique u ∈ W1,2#

0 (�)∩W2,2#
(�) such that −�u = μ|u|2∗−2u+w0

in �. Recalling that u ∈ H1
0(�), we can use (4.1) to conclude that u = u and the

lemma is proved. �

Lemma 4.3. There exists μ∗ > 0 such that, if μ ∈ (0, μ∗) and u ∈ E is a

critical point of Iμ then u is a strong solution of (Pμ).

Proof. By Lemma 4.1 and Corollary 4.2, we obtain

w0(x) := −�u(x) − μ|u(x)|2∗−2u(x) ∈ [f (x, u(x)), f (x, u(x))]

a.e. in �, with w0 ∈ L2#
(�). For any j ∈ J \ {0}, we define

�j := {x ∈ � : u(x) = ±sj},
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where sj > 0 are points where f (x, ·) is discontinuous. If we can prove that any�j

has Lebesgue measure zero, it follows from (F3) that, for a.e. x ∈ �,

[f (x, u(x)), f (x, u(x))] = {f (x, u(x))},
in such a way that w0(x) = f (x, u(x)).

Let J ⊂ J be the finite subset of index given by (F5) and set

j0 := max{j : j ∈ J}, β∗ := max{βj : j ∈ J} < 0.

We are going to prove the lemma for

μ∗ := −β∗s1−2∗
j0 > 0.

Pick μ ∈ (0, μ∗) and suppose, by contradiction, that |�j| > 0. By a result due to
Stampacchia [34], we have that −�u = 0 in �j, and therefore

(4.2) −μ|sr|2∗−2sr ∈ [f (x, sj), f (x, sj)].

We may suppose that u(x) = sj > 0. Since μ > 0, it follows from (F6) and (F7)
that j ∈ J. Hence, recalling that sj ≤ sj0 , we get

f (x, sj) < f (x, sj) ≤ β∗ = −μ∗s2∗−1
j0 ≤ −μs2∗−1

j ,

which contradicts (4.2). �
We prove in the sequel that sequences of almost critical points are bounded.

Lemma 4.4. If (un) ⊂ E is such that Iμ(un) → c > 0 and λIμ(un) → 0,

then (un) is bounded.

Proof. From Proposition 2.1(b), there exists ξn ∈ ∂Iμ(un) such that

‖ξn‖∗ = λIμ(un),

where ‖ξ‖∗ stands for the norm of the linear functional ξ ∈ E∗. If

wn = wξn ∈ L2#
(�)

is the function given by Lemma 4.1, we have that

c + on(1) +
1
2
‖ξn‖∗‖un‖ ≥ Iμ(un) − 1

2
wn(un)

=
μ

N
‖un‖2∗

2∗ +
∫
�

[1
2
wnun − F(x, un)

]
dx,

where on(1) stands for a quantity approaching zero as n → +∞.
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If un(x) ≥ 0, we can use wn ∈ [f (·, un), f (·, un)] and (f1) to get

1
2
wnun − F(x, un) ≥ 1

2
f (x, un)un − F(x, un) ≥ −a1 − a2|un|σ.

Otherwise, if un(x) < 0, using f (x,−s) = −f (x, s), for s ≥ 0, and (f1) again, we
obtain

1
2
wnun − F(x, un) ≥ 1

2
f (x, un)un − F(x, un)

=
1
2
f (x,−un)(−un) − F(x,−un) ≥ −a1 − a2|un|σ.

All together, the above expressions yield

‖un‖2∗
2∗ ≤ c1 + c2‖un‖ + c3‖un‖σσ

and therefore we infer from 0 ≤ σ < 2 that

(4.3)
1
2
‖un‖2∗

2∗ ≤ c2‖un‖ + c4.

By using Iμ(un) = c + on(1) and (f3), we obtain

1
2
‖un‖2 ≤ c + on(1) +

μ

2∗ ‖un‖2∗
2∗ + b1‖un‖θθ + b2|�|.

This inequality, 2 < θ < 2∗ and (4.3) imply that

‖un‖2 ≤ c5‖un‖2∗
2∗ + c5 ≤ c6‖un‖ + c5,

which proves the lemma. �
We define

S := inf
{∫

�
|∇u|2dx :

∫
�

|u|2∗
dx = 1

}

and state in the sequel the concentration-compactness principle due to Lions [26].
It will be important in the proof of the nonsmooth Palais–Smale condition.

Lemma 4.5. Let (un) ⊂ H1
0(�) be such that un ⇀ u weakly in H1

0(�).
Then there exist ν, ζ bounded measures on �, an at most countable index set J,
{xj}j∈J ⊂ � and (νj)j∈J, (ζj)j∈J ⊂ (0,+∞) such that ζj ≥ Sν2/2∗

j ,

(a) |un|2∗
dx ⇀ ν = |u|2∗

dx +
∑

j∈J νjδxj ;

(b) |∇un|2dx ⇀ ζ ≥ |∇u|2dx +
∑

j∈J ζjδxj ;

weakly in the sense of measures.
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Before proving the next result we notice that, for any ε > 0 given, we can
use f ∈ F to obtain Cε > 0 such that, for a.e. x ∈ � and any s ∈ R, there hold

(4.4) max{|f (x, s)|, |f (x, s)|} ≤ Cε + ε|s|2∗−1

and
max{|f (x, s)s|, |f (x, s)s|} ≤ Cε + ε|s|2∗

.

Moreover, we can obtain a Carathéodory function g : �× R → R such that

(4.5) lim|s|→+∞
g(x, s)
|s|2∗−1 = 0, uniformly a.e. in �

and

(4.6) max{|f (x, s)|, |f (x, s)|} ≤ g(x, s),

for a.e. x ∈ � and any s ∈ R.
We prove in what follows a technical convergence result which will be useful

to get compactness.

Lemma 4.6. If un ⇀ u weakly in E, wn ⇀ w0 weakly in L2#
(�) and

wn ∈ [f (·, un), f (·, un)], then

lim
n→+∞

∫
�
wnϕ dx =

∫
�
w0ϕ dx, ∀ϕ ∈ E

and

lim
n→+∞

∫
�
wnun dx =

∫
�
w0u dx.

Proof. The first statement directly follows from the weak convergenge of (un)
and the embedding H1

0(�) ↪→ L2∗
(�) � (L2#

(�))∗. For the second one, we notice
that ∫

�
(wnun −w0u) dx =

∫
�
wn(un − u) dx +

∫
�
(wn −w0)u dx

=
∫
�
wn(un − u) dx + on(1)

and therefore it is sufficient to check that the last integral above goes to zero.
Since we may assume that un pointwise converges, it is clear that

(4.7) lim
n→+∞wn(x)(un(x) − u(x)) = 0, for a.e. x ∈ �.

Due to the compact embeddings we obtain h1 ∈ L1(�) such that |un|2∗−1 ≤ h1

a.e. in �. Hence, we can use wn ∈ [f (·, un), f (·, un)] and (4.4) to conclude



20 M. F. FURTADO AND J. P. P. DA SILVA

that |wn| ≤ C1 + h1 a.e. in �. By using (4.5) and [33, Lemma 3.1], we conclude
that g(·, un)un → g(·, u)u in L1(�) and therefore there exists h2 ∈ L1(�) such that
|g(·, un)un|, |g(·, un)u| ≤ h2 a.e. in �. Thus, using wn ∈ [f (·, un), f (·, un)] again
and (4.6), we get |wnun − wnu| ≤ 2h2 a.e. in � and the result follows from (4.7)
and the Lebesgue Theorem. �

Lemma 4.7. Let (un) ⊂ H1
0(�) be as in Lemma 4.5 and suppose that

λIμ(un) → 0.

Then the set J is empty or finite.

Proof. It is sufficent to prove that, if j ∈ J, then

(4.8) νj ≥ (S/μ)N/2.

Indeed, if this is true, then

+∞ > ν(�) ≥ ∑
j∈J

νj ≥ ∑
j∈J

(S/μ)N/2,

and therefore J cannot have infinitely many elements.
In order to prove (4.8), we consider φ ∈ C∞

0 (RN, [0, 1]) such that φ ≡ 1 on B1

and φ ≡ 0 outside B2. For any ε > 0, we set φε(x) := φ((x − xj)/ε). It is easy to
see that (φεun) ⊂ H1

0(�) is bounded. Let ξn ∈ ∂Iμ(un) be such that ‖ξn‖∗ = λIμ (un)
and wn = wξn ∈ L2#

(�) given by Lemma 4.1. Since 〈ξn, φεun〉 = on(1), we can
compute

(4.9) Iεn +
∫
�

|∇un|2φεdx = on(1) + μ
∫
�

|un|2∗
φεdx +

∫
�
wnunφεdx,

where
Iεn :=

∫
�

un(∇un · ∇φε)dx.

Recalling that wn ∈ [f (·, un), f (·, un)], we can use (4.4) to conclude that the
sequence (wn) ⊂ L2#

(�) is bounded. So, we may assume that wn ⇀ w0 weakly
in L2#

(�) and argue as in the proof of Lemma 4.6 to get

lim
n→+∞

∫
�
wnunφεdx =

∫
�
w0uφεdx.

It follows from (4.9) and Lemma 4.5 that

(4.10) lim sup
n→+∞

Iεn +
∫
�
φεdζ = μ

∫
�
φεdν +

∫
�
w0uφεdx.
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We now notice that, since we may assume un → u strongly in L2(�), the change
of variables y = (x − xj)/ε provides

|Iεn| ≤ ‖un‖
(∫

�∩Bε(xj)
u2

n|∇φε|2dx
)1/2

=
c1

ε

(∫
�∩Bε(xj)

u2
n|∇φ((x − xj)/ε)|2dx

)1/2

≤ c2ε
(N−2)/2

(∫
�∩Bε(xj)

u2(εy + xj)dy + o(1)
)1/2

,

as ε→ 0+, from which we conclude that

lim
ε→0

lim sup
n→∞

Iεn = 0.

So, letting ε → 0+ in (4.10), using the Lebesgue Theorem and the definition
of φε, we obtain ζ({xj}) = μν({xj}), that is, ζj = μνj. This equality together
with Sν2/2∗

j ≤ ζj (see Lemma 4.5) imply (4.8). �

Proposition 4.8. Suppose that f ∈ F satisfies (f1) and (f2). Then, for any

given M > 0, there exists μ∗∗ > 0 such that Iμ satisfies the nonsmooth (PS)c-
condition for all c < M and μ ∈ (0, μ∗∗).

Proof. Let (un) ⊂ E be such that Iμ(un) → c < M and λIμ(un) → 0. As
before, we consider ξn ∈ ∂Iμ(un) such that ‖ξn‖∗ = λIμ(un) and wn ∈ L2#

(�)
verifies wn ∈ [f (·, un), f (·, un)] and

(4.11) 〈ξn, ϕ〉 =
∫
�
(∇un · ∇ϕ)dx − μ

∫
�

|un|2∗−2unφdx −
∫
wnϕdx,

for any ϕ ∈ E. Since (un) is bounded we may assume that un ⇀ u weakly in E
and wn ⇀ w0 weakly in L2#

(�).
By using (f1) as in the proof of Lemma 4.4, we obtain

Iμ(un) − 1
2
〈ξn, un〉 =

μ

N
‖un‖2∗

2∗dx −
∫
�

[1
2
wnun − F(x, un)

]
dx

≥ μ

N
‖un‖2∗

2∗ − a1|�| − a2

∫
�

|un|σdx

≥ μ

N
‖un‖2∗

2∗ − a1|�| − a2|�|(2∗−σ)/2∗
(∫

�
|un|2∗

dx
)σ/2∗

.

Passing to the limit, using c < M and Lemma 4.5 again, we get

μ

N

∫
�

dν ≤ M + c1 + c2

(∫
�

dν
)σ/2∗

,
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for c1 := a1|�| and c2 := a2|�|(2∗−σ)/2∗
. So,∫

�
dν ≤

(N(M + c1 + c2)
μ

)2∗/(2∗−σ)
=:

(c3

μ

)2∗/(2∗−σ)
,

if
∫
� dν ≥ 1. From σ ≥ 0, we conclude that α := N/2 − (2∗ − σ)/2∗ > 0. By

setting

μ∗∗ := min
{
S,

(
SN/2c(2∗−σ)/2∗

3

)1/α}
a straightforward computation shows that, if

∫
� dν ≥ 1 and μ ∈ (0, μ∗∗), then∫

�
dν ≤

( S
μ

)N/2
.

Since μ∗∗ ≤ S, it is clear that the above inequality also holds if
∫
� dν ≤ 1.

The above considerations prove that 0 < μ < μ∗∗ implies that∫
�

dν ≤ (S/μ)N/2.

It follows from (4.8) that J = ∅ and therefore Lemma 4.5 yields

lim
n→+∞

∫
�

|un|2∗
dx =

∫
�

|u|2∗
dx.

By using (4.11) with ϕ = (un − u), the above convergence, Lemma 4.6 and the
weak convergence of un, we get

on(1) = 〈ξn, un − u〉 =
∫
�
∇un · ∇(un − u) dx −

∫
�
wn(un − u) dx

− μ

∫
�

|un|2∗
dx + μ

∫
�

|un|2∗−2unu dx

= ‖un‖2 − ‖u‖2 + on(1),

from which we conclude that ‖un‖2 → ‖u‖2. Thus, the weak convergence implies
that un → u strongly in E. �

In what follows we prove that the functional Iμ verifies the geometric condi-
tions of our abstract critical point theorem. Let {ϕk}k∈N be the eigenfunctions of
(−�,H1

0(�)) and set, for each k ∈ N,

X0 := {0}, Xk := span{ϕ1, . . . , ϕk}.
The variational characterization of the eigenvalues provides

(4.12) λk+1 := inf
u∈X⊥

k \{0}
‖u‖2

‖u‖2
2

→ +∞, as k → +∞.
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Proposition 4.9. Suppose that f ∈ F satisfies (f3) and (f4). Then there exist

k0 ∈ N, ρ, μ∗∗∗ > 0 such that, for any μ ∈ (0, μ∗∗∗),

Iμ(u) ≥ 0, ∀ u ∈ X⊥
k0

∩ ∂Bρ.
Moreover, for any given m ∈ N, there exists an m-dimensional subspace V0 ⊂ E
and a constant M > 0 such that Iμ(u) ≤ M, for any u ∈ V0.

Proof. Let θ ∈ (2, 2∗) be given by (f3) and α ∈ (0, 1) such that

θ = 2(1 − α) + 2∗α.

For any u ∈ X⊥
k , it follows from the definition of λk+1, (f3), Sobolev and Hölder’s

inequalities that

Iμ(u) ≥ 1
2
‖u‖2 − μc1‖u‖2∗ − a3‖u‖2(1−α)

2 ‖u‖2∗α
2∗ − a4|�|

≥ 1
2
‖u‖2 − μc1‖u‖2∗ − c2λ

α−1
k+1 ‖u‖θ − a4|�|

=
1
2
‖u‖2(1 − 2c2λ

α−1
k+1 ‖u‖θ−2) − μc1‖u‖2∗ − a4|�|,

for some c1, c2 > 0. By picking ρ = ρ(k) > 0 such that 2c2λ
α−1
k+1 ρ

θ−2 = 1/2, we
obtain

Iμ(u) ≥ 1
4
ρ2 − μc1ρ

2∗ − a4|�|, ∀ u ∈ X⊥
k ∩ ∂Bρ.

Since (4.12) implies that ρ(k) → +∞, as k → +∞, we can choose k0 > 0 large in
such a way that ρ2/4 > a4|�| + ρ2/8. Thus

Iμ(u) ≥ ρ2
(1

8
− 8μc1ρ

2∗−2
)
, ∀ u ∈ X⊥

k0
∩ ∂Bρ

and the first statement of the proposition holds for μ∗∗∗ := 2−7c1ρ
2−2∗

.
Let �0 ⊂ � be given by (f4) and consider m disjoint open balls contained

in �0. We pick m regular functions with support contained in each of these balls
and denote by V0 the subspace spanned by such functions. It is clear that, for
some c1 > 0, there holds

c1‖u‖2 ≤ ‖u‖2
2, ∀ u ∈ V0.

From (F4) and (f0), we obtain c2 > 0 such that F(x, s) ≥ s2/(2c1) − c2, for
any x ∈ �0, s ∈ R. Hence, we obtain

Iμ(u) ≤ 1
2
‖u‖2 −

∫
�

F(x, u) dx ≤ c1|�|, ∀ u ∈ V0.

This finishes the proof. �



24 M. F. FURTADO AND J. P. P. DA SILVA

We are ready to present the proof of the last result.

Proof of Theorem 1.2. If k0 ∈ N andμ∗∗∗ > 0 are given by Proposition 4.9,
it follows that the even functional Iμ verifies Iμ(0) = 0 and the condition (I1) of
Theorem 1.1 with the decomposition E = Vk0 ⊕V⊥

k0
. The condition (I2) also follows

from the application of Proposition 4.9 with m := k + k0. If we set

μk := min{μ∗, μ∗∗, μ∗∗∗},
the nonsomooth (PS)c condition holds for any c ∈ [0,M), where M is given by
Proposition 4.9. For any μ ∈ (0, μk), Theorem 1.1 provides (k + k0) − k0 = k pairs
of critical points for Iμ which are strong solutions by Lemma 4.3. �

5 Some examples

In this final section we present two applications of Theorem 1.2. For the first one,
we pick 0 < ε < (N + 2)/(N − 2), define

g1(s) := s2∗−1−ε, g2(s) := s2∗−1−(log s)−1/2
,

for s ≥ 1, and consider an increasing sequence (tn) ⊂ (0,+∞) such that
log t1 > ε−1/2 and tn → +∞. For each n ∈ N, we pick δn > 0 such that

(5.1) 2δn[(tn + δn)
2∗−1 − (tn + δn)

2∗−1−ε] ≤ 1
n2

and the intervals In := (tn − δn, tn + δn) are disjoints. We define

g(s) :=

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 ≤ s < t1,

g1(s), if s �∈ ⋃+∞
n=1 In,

g2(s), if s ∈ ⋃+∞
n=1 In,

and g(s) := −g(−s), if s < 0. The function g is even and has infinitely many points
of discontinuity. Moreover, if t∗n ∈ (tn, tn+1) and 2 < p < 2∗, we have that

g(t∗n)
(t∗n)p−1 = (t∗n)

2∗−p−(log t∗n)−1/2 → +∞, as n → +∞,

and therefore g is not dominated by a subcritical power. For this example, the
following holds:

Theorem 5.1. Let a > 0 and μ, λ > 0. Then, for any given k ∈ N, there
exists μk > 0 such that, for any μ ∈ (0, μk), the problem

(5.2) −�u = λH(|u| − a)g(u) + μ|u|2∗−2u in�, u ∈ H1
0(�),
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has at least k pairs of nontrivial solutions in W2,2N/(N+2)(�) ∩ H1
0(�). Moreover,

for any M > 0 given, there exists μ = μ(M) > 0 such that, if max{λ, μ} < μ

and uλ,μ ∈ H1
0(�) is a weak solution of (5.2), then the set {x ∈ � : |uλ,μ(x)| ≥ M}

has positive measure.

Proof. We are going to show that the function f (s) := λH(|s| − a)g(s), s ∈ R,
satisfies all the hypotheses of Theorem 1.2. It is clear that f ∈ F verifies (f4). In
order to verify (f1), we fix s > a and call n0 ∈ N the biggest natural number such
that s ∈ In0 . Since

(5.3) t2
∗−1−ε = g1(t) ≤ f (t) ≤ g2(t) = t2

∗−1−(log t)−1/2
, ∀ t > a,

we easily get

lim
s→+∞

f (s)
s2∗−1 ≤ lim

s→+∞
g2(s)
s2∗−1 = lim

s→+∞ s−(log s)−1/2
= 0,

which proves that f satisfies (f2). It follows from (5.1) and (5.3) that, for some
c1, c2 > 0,

F(s) ≤ c1 +
∫ s

0
t2

∗−1−ε dt +
n0∑

n=1

2δn[g1(tn + δn) − g2(tn + δn)]

≤ c1 +
s2∗−ε

2∗ − ε
+

∞∑
n=1

2δn[(tn + δn)
2∗−1 − (tn + δn)

2∗−1−ε]

≤ c2 +
s2∗−ε

2∗ − ε
,

which proves (f3). The above expression, the definition of f and (5.3) also imply
that

f (s)s − 2F(s) ≥ s2∗−ε − 2c2 − 2
2∗ − ε

s2∗−ε ≥ −2c2,

and therefore f satisfies (f1). By applyingTheorem1.2,we obtainmultiple solutions
for problem (5.2).

We prove now the second part of the corollary. Let u = uλ,μ be a nonzero solu-
tion of (5.2) and M > 0. Of coursewe may assume that u ∈ L∞(�), since otherwise
the result is clearly true. By using that f (s)s is even, we obtain f (s)s ≤ c1|s|2∗

, for
any s ∈ R and some c1 > 0. Hence, it follows that

(5.4)
λ1(�)‖u‖2

L2(�) ≤ ‖u‖2 = λ
∫
�

f (u)u dx + μ
∫
�

|u|2∗
dx

≤ λc1‖u‖2∗−2
L∞(�)‖u‖2

L2(�) + μ‖u‖2∗−2
L∞(�)‖u‖2

L2(�),
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from which we conclude that

‖u‖L∞(�) ≥
( λ1(�)
λc1 + μ

)(N−2)/4
> M,

whenever λ and μ are sufficciently close to zero. �
It is worth noticing that, according to the last part of the above result, the

solutions we found are such that the range of f (·, u) crosses any prescribed number
of discontinuity of the function f .

In our second example, we consider sequences (aj), (bj), (cj) ⊂ L∞(�) such
that
(1) aj(x) ≥ �1 > 0 for a.e. x ∈ � \�0;
(2) cj(x) ≥ �1 > 0 for a.e. x ∈ �0;
(3) ‖aj‖L∞(�), ‖bj‖L∞(�), ‖cj‖L∞(�) ≤ �2,

for any j ≥ j0, some �1, �2 > 0 and �0 ⊂ � a proper subset with positive
measure. After that, we pick (sj), (qj), (pj) ⊂ (0,+∞) and (σj) ⊂ {0, 1} verifying
(4) sj → +∞, 1 < qj < 2 < pj < 2∗, σj = 0, for any j ≥ j0,

and define, for each j ∈ N, the function fj : �× [0,+∞) → R as

fj(x, s) := χ�\�0 (x)[aj(x)s
qj−1 + bj(x)s] + χ�0 (x)cj(x)s

pj−1,

where χA stands for the characteristic function of the set A. For simplicity of
notation, we also set f0 := 0.

Arguing as in Theorem 5.1, we can prove the following:

Theorem 5.2. Consider the problem

(5.5) −�u = λf (x, u) + μ|u|2∗−2u in �, u ∈ H1
0(�),

where μ, λ > 0 and f : �× R → R is given by

f (x, s) :=
∞∑
j=0

(−1)σj fj(x, s)χ[sj,sj+1](s), s ≥ 0,

and f (x, s) := −f (x,−s), if s < 0. Then, for any given k ∈ N, there exists μk > 0
such that, for any μ ∈ (0, μk), the same conclusions of Corollary 5.1 hold for the
problem (5.5).

We notice that this last nonlinearity is indefinite in sign. Morover, it is not
superlinear in all the domain � since it is clear from the definition that

lim sup
s→+∞

2F(x, s)
s2 ≤ �1, for a.e. x ∈ � \�0,

and therefore the well known Ambrosetti–Rabinowitz superlinear condition
(see [3]) is not satisfied.
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