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Abstract. The trigonometric monomial cos(〈k, x〉) on T
d , a harmonic poly-

nomial p : Sd−1 → R of degree k and a Laplacian eigenfunction −�f = k2f have
a root in each ball of radius ∼ ‖k‖−1 or ∼ k−1, respectively. We extend this to
linear combinations and show that for any trigonometric polynomials on T

d , any
polynomial p ∈ R[x1, . . . , xd] restricted to S

d−1 and any linear combination of
global Laplacian eigenfunctions on R

d with d ∈ {2, 3} the same property holds for
any ball whose radius is given by the sum of the inverse constituent frequencies.
We also refine the fact that an eigenfunction −�φ = λφ in � ⊂ R

n has a root in
each B(x, αnλ

−1/2) ball: the positive and negative mass in each B(x, βnλ
−1/2) ball

cancel when integrated against ‖x − y‖2−n.

1 Introduction

The purpose of this paper is to prove same type of result for
(1) trigonometric polynomials on the torus Td,
(2) the restriction of polynomials p ∈ R[x1, . . . , xd] to the unit sphere Sd−1,
(3) and global solutions of (−� + λ)φ = 0 on R

d where d = 2, 3.
In each of these settings a single basis object (a trigonometricmonomial,a harmonic
polynomial, a Laplacian eigenfunction) has many roots: each ball with radius
inversely proportional to degree/frequency is guaranteed to contain a root. We will
extend this to linear combinations and show that they still have many roots on a
suitable scale. A result in this style was first proven by Kozma–Oravecz [17].

Theorem (Kozma–Oravecz [17]). Let f : Td → R be a real-valued trigono-

metric polynomial with mean value 0 of the form

f (x) =
∑
k∈S

ak exp(2πi〈x, k〉),

where S ⊂ Zd. Then f has a zero in each ball of radius

r(f ) =
1
4

∑
k∈S

1
‖k‖ .
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Note that f being real-valued necessarily entails that −S = S and that a−k = ak.
The function having mean value 0 implies 0 /∈ S. In one dimension, d = 1, the
result is sharp up to constants: [17, Theorem 2] shows that if f has frequencies
supported in [−A − B,−A] ∪ [A,A + B], then the maximum length of an interval
without sign change is (B+ 1)/(2A+B). The question dates back at least to a 1965
paper of Taikov [25] with an extremal trigonometric polynomial given by Babenko
[1]. The same extremal polynomial also appears in [15, 24].

2 Results

2.1 Trigonometric Polynomials. We start by proving a result in the style
of Kozma–Oravecz. We show that instead of counting the number of summands,
it suffices to look at the number of contributing frequencies.

Theorem 1. If f : Td → R is a real-valued trigonometric polynomial with

mean value 0 of the form

f (x) =
∑
k∈S

ak exp(2πi〈x, k〉),

then, introducing 	 = {‖k‖ : k ∈ S}, f has a zero in each ball of radius

r(f ) = d3/2
∑
λ∈	

1
λ
.

The result is identical (up to the value of the constant) to the result of Kozma–
Oravecz in dimension d = 1. The improvement is more pronounced in higher
dimensions where many different trigonometric polynomials may correspond to
the same frequency (in higher dimensions, a sphere can contain many lattice
points). The proof indicates that the optimal constant may perhaps be expected to
grow linearly (or slower) in the dimension; we comment on this after the proof.

2.2 SphericalHarmonics. There is an analogous result for the restriction
of arbitrary polynomials on the unit sphere. If pn ∈ R[x1, . . . , xd] is a polynomial
of degree n in Rd, then its restriction onto the unit sphere Sd−1 can be expressed as
a linear combination of harmonic polynomials of degree at most n

pn(x)
∣∣
Sd−1 =

n∑
k=0

akfk(x) where fk ∈ Hd
k .

We recall that the space of harmonic polynomials of degree k is

Hd
k = {f ∈ R[x1, . . . , xd] : f homogenenous of degree k and �f = 0}.
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There exists an elementary argument that if f ∈ Hd
k , then f has zero on each ball of

radius cdk−1 (see below). This can be extended to sums of harmonic polynomials.

Theorem 2. If p ∈ R[x1, . . . , xd] has the restriction

p(x)
∣∣
Sd−1 =

∑
k∈S

akfk(x) where fk ∈ Hd
k

and mean value 0 on Sd−1, then p
∣∣
Sd−1 has a zero on each (geodesic) ball of radius

r = π2d
∑
k∈S

1
k
.

The ball B(x, r) here refers to the set of all points on Sd−1 whose (geodesic)
distance from x ∈ S

d−1 is at most r. We did not optimize the constant π2d. Our
approach will necessarily lead to a linear growth of the constant in the dimension
and this dependence could conceivably be optimal.

2.3 Laplacian eigenfunctions. On a compact, smooth manifold (M, g)
a Laplacian eigenfunction is a solution of −�f = λf . A basic property of such
a function is that f changes sign on each ball of radius cM · λ−1/2. A natural
problem is whether this can be extended to linear combinations of eigenfunctions
[6, 7, 11, 13, 16, 19, 20, 21, 22]. The problem is well-understood in the one-
dimensional setting where the answer follows from Sturm–Liouville theory; we
refer to recent papers of Bérard–Helffer [3, 4]. The Laplacian eigenfunctions on
Td are given by the trigonometric polynomials. The eigenfunctions on Sd−1 are
the harmonic polynomials and

∀f ∈ Hd
k − �Sd−1 f = k(k + d − 2)f.

Theorem 1 and Theorem 2 follow the same basic blueprint.

Question. Let (M, g) be a compact, smooth manifold and let −�φk = λkφk

be the sequence of Laplacian eigenfunctions. Is it true, that for some 0 < cM < ∞
depending only on the manifold, that any finite linear combination

f (x) =
∑
k∈S

akφk(x) has a root in each ball of radius r = cM

∑
k∈S

1√
λk

?

We learned this question from Stefano Decio (see also [10]). Theorem 3 proves
it for global eigenfunctions on R2 and R3. This result can be seen as being similar
in spirit to Theorem 1 for d = 2, 3 while allowing for a much larger class of
functions.
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Theorem 3. Let d ∈ {2, 3} and n ∈ N. Suppose, for each 1 ≤ k ≤ n, the

smooth function φk : Rd → R is a global solution of −�φk = λkφk. Then

f (x) =
n∑

k=1

akφk(x) has a zero in every ball with radius r = 2π
n∑

k=1

1√
λk

.

We give a proof using the closed-form solution of a linear, non-homogeneous
wave equation in Euclidean space. Because of finite speed of propagation, there is
some hope of a variant of it also working on a bounded domain � ⊂ R

d.

2.4 An identity for eigenfunctions. The proof of Theorem 3 suggests
an interesting identity for Laplacian eigenfunctions.

Theorem 4. Suppose −�φ = λφ in a neighborhood of B(x, r) ⊂ R
n and

n ≥ 3. Then, for an explicit universal function function Qn : R≥0 → R we have∫
‖x−y‖≤r

φ(y)
‖y − x‖n−2

dy =
1
λ

Qn(
√

λ · r) · φ(x).

In particular, in three dimensions, n = 3,

∫
‖x−y‖≤r

φ(y)
‖y − x‖dy = 4π

1 − cos (
√

λ · r)
λ

· φ(x).

The statement is purely local and does not depend on any boundary condi-
tions which might make it useful in the study of the behavior of eigenfunctions.
Moreover, the function Qn is completely explicit and can be written as

Qn(x) = 2
n−2
2 
(n/2)nωn

∫ x

0
s

4−n
2 J n−2

2
(s)ds.

When n = 3, we get J1/2(x) =
√

2/πx−1/2 sin (x) and the expression simplifies. An
interesting consequence, valid in all dimensions as long as B(x, r) ⊂ �, is

if φ(x) = 0, then
∫

‖x−y‖≤r

φ(y)
‖y − x‖n−2 dy = 0

which says that mass around a root is perfectly balanced with respect to ‖x−y‖2−n.
Another interesting consequence is with respect to the distribution of roots: for

example, any eigenfunction on � ⊂ R3 with Dirichlet boundary conditions has a
root in each πλ−1/2 ball intersecting the domain and this is the sharp constant. As
a consequence of Theorem 4, we see that on a ball twice that size∫

‖x−y‖≤2πλ−1/2

φ(y)
‖y − x‖dy = 0
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which is a way of saying that there is a precise balance between positive and
negative mass on each ball of radius 2πλ−1/2 with respect to the Coulomb kernel.
This is also true (with the smallest positive root of Qn as constant) in higher
dimensions.

3 Proof of Theorem 1

A key ingredient is an asymptotic result for the smallest positive root of the Bessel
function Jd/2−1, sometimes denoted as j d

2 −1,1. Results on these roots are classical
and we only need a relatively simple bound.

Lemma 1. The smallest positive root of the Bessel function Jd/2−1 satisfies

∀ d ≥ 2 j d
2 −1,1 ≤ j0,1

2
d.

Sketch. Asymptotics of roots of the Bessel function are a classical subject.
In our setting, an old 1949 result of Tricomi [26] implies that, for some α ∈ R as
d → ∞,

j d
2 −1,1 =

d
2

+ αd1/3 + O(d−1/3).

Checking the first few values of d, we see that jd/2−1,1/d is maximal when d = 1
(and then steadily decaying towards its limit 1/2). In the case of d = 1, there is
an explicit closed form expression (being π/2). Since our result is implied by the
result of Kozma–Oravecz when d = 1, we are only interested in d ≥ 2. The largest
value is assumed when d = 2 corresponding to j0,1 ∼ 2.404 . . . . �

Proof of Theorem 1. We assume d ≥ 2. The proof is by induction on #	.
The case #	 = 1. When #	 = 1, then 	 = {λ} and f is a Laplacian

eigenfunction −�f = 4π2λ2 and we deduce the existence of a sign change in every
ball of radius d3/2 ·λ−1 as follows. Suppose, without loss of generality, that f > 0 on
the ball B(x0, r) where x0 = (1/2, 1/2, . . . , 1/2). We consider the largest connected
domain B(x0, r) ⊂ � ⊂ T

d containing x0 on which f is positive. It is a classical
fact that an eigenfunction restricted to a nodal domain � is a multiple of the first
nontrivial eigenfunction with Dirichlet boundary conditions on that domain (see
[2, 8]). This means that, restricting the function f to its nodal domain �, we arrive
at

4π2λ2 =

∫
� |∇f |2dx∫

� f 2 dx
= λ1(�) = inf

g:�→R

g|∂�=0

∫
� |∇g|2dx∫

� g2 dx
.

Domain monotonicity implies that the Laplacian eigenvalue increases when we
restrict to a smaller sub-domain. This could also be seen from the variational



6 S. STEINERBERGER

characterization since the space of functions vanishing at the boundary becomes
strictly smaller when restricting to a subset. Since B(x0, r) ⊂ �, we have

4π2λ2 = λ1(�) ≤ λ1(B(x0, r)).

We now distinguish two cases: if r > 1/2, then trivially B(x0, 1/2) ⊂ B(x0, r).
In that case we can simply treat B(x0, 1/2) ⊂ [0, 1]d as a subset of Euclidean space.
Finding a function with a small Rayleigh–Ritz quotient on B(x0, 1/2) (vanishing
at the boundary) is strictly harder than finding such a function on � (because each
of the former is also an example for the latter). The first problem, however, can be
solved in closed form. In Euclidean space Rd we have

λ1(B(x0, r)) = r−2j2d
2 −1,1,

where jd/2−1,1 > 0 is the smallest positive zero of the Bessel function of index
d/2 − 1. If r > 1/2, then, using the Lemma, we deduce

4π2λ2 = λ1(�) ≤ 4j2d
2 −1,1 ≤ j20,1d

2

and thus

1 ≤ j0,1d
2πλ

.

In that case, we also conclude that, since f has mean value 0 and vanishes some-
where, r ≤ √

d/4 = diam(Td)/2 is certainly an admissible (albeit trivial) inequality.
We deduce that

r ≤
√

d
4

≤
√

d
4

j0,1

2π

d
λ

≤ d
3
2

λ
.

If r < 1/2, then, from a direct comparison with the Euclidean setting,

4π2λ2 = λ1(�) ≤ r−2λ1(B) = r−2j2d
2 −1,1.

Appealing to the Lemma,

r ≤ jd/2−1,1

2π

1
λ

≤ j0,1

4π

d
λ

≤ 1
2

d
λ

≤ d
3
2

λ
.

The case #	 ≥ 2. Let us now suppose #	 ≥ 2 and that the set 	 is given
by λ1 < λ2 < · · · < λn. Suppose now that there exists a function f : Td → R

supported on these frequencies such that, for some ball B of radius r(f ), we have,
without loss of generality, that f > 0. Our goal will be to transform f into a
function supported on the frequencies λ1, λ2, . . . , λn−1 which is positive on a ball
of not much smaller radius which then implies the result via induction (note that
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this overall structure is the same as in [17]). It remains to explain the construction.
We consider a new function gδ : Rd → R

gδ(x) = χ‖x‖≤δ

which we can identify with the periodic function hδ : Td → R via

hδ(x) =
∑
k∈Zd

gδ(x + k).

The function g is the characteristic function of a ball of radius δ centered at the
origin. There is an explicit formula for the Fourier coefficients of g and

ĝδ(ξ) = αd
Jd/2(2π‖ξ‖δ)
‖2πξδ‖d/2

,

where αd is some constant depending only on d and Jd/2 is the Bessel function of
order d/2. The same formula holds for the Fourier coefficient of h and

∀k ∈ Z
d ĥδ(k) = αd

Jd/2(2π‖k‖δ)
‖2πkδ‖d/2

.

Let now jd/2,1 > 0 be the smallest positive root of Jd/2, i.e. Jd/2(jd/2,1) = 0.

Then, choosing

δ∗ =
jd/2,1

2πλn

implies that the Fourier transform ĝδ∗ vanishes on all lattice points of size ‖k‖ = λn.
We now consider the convolution

(f ∗ hδ∗)(x) =
∫
Td

f (x − y)hδ∗(y) dy.

Convolution becomes multiplication on the Fourier side and thus if

f (x) =
∑
k∈S

ak exp(2πi〈x, k〉),

then
(f ∗ hδ∗)(x) =

∑
k∈S

ak · ĥδ∗(k) · exp(2πi〈x, k〉).

Now f ∗hδ∗ is a trigonometric polynomial with frequencies in λ1 < · · · < λn−1.
Simultaneously, if for some ball B(x0, r(f )) of radius r(f ), we have that f > 0, then
surely f ∗ hδ∗ has the same property on the ball B(x0, r(f ) − δ∗). We deduce

r(f ) ≤ r(f ∗ hδ∗) + δ∗.

Using the Lemma once more, we arrive at

δ∗ =
j0,1(d + 2)

4πλn
=

j0,1

4πλn

d + 2
d

d ≤ j0,1

2π

d
λn

≤ 1
2

d
λn

≤ d3/2

λn
. �
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f > 0

f ∗ hδ > 0

Figure 1. Induction step: if f > 0 on a ball of radius r and we convolve f with a
positive function supported on a ball of radius δ∗, then the convolution is positive
on a ball of radius r − δ∗.

Question. The only time the scaling d3/2 appears is when setting up the
induction case. This leads to a natural question: if −�f = λf is an eigenfunction (a
sum of trigonometric terms corresponding to the same frequency) on Td ∼= [0, 1]d,
is there a root in each ball of radius r = 100d · λ−1/2?

4 Proof of Theorem 2

We start by noting that it suffices to prove the result for d ≥ 3. The case d = 2
follows from Theorem 1 since S

d−1 = S
1 ≡ T and everything reduces to cosines.

An important new ingredient is the Funk–Hecke formula: it describes the effect of
convolution on the sphere in terms of having a multiplicative effect on spherical
harmonics. We refer to the exposition in Dai–Xu [9] for additional details.

Lemma 2 (Funk–Hecke Formula). If g : [−1, 1] → R is integrable and∫ 1

−1
|g(t)|(1 − t2)

d−3
2 dt < ∞,

then for every q ∈ Hd
k we have∫

Sd−1
g(〈x, y〉)q(y)dσ(y) = λk(g) · q(x),

where, Cλ
n denoting the Gegenbauer polynomials,

λk(g) =
ωd−1

C
d−2

2
k (1)

∫ 1

−1
g(t) · C

d−2
2

k (t) · (1 − t2)
d−3

2 dt.
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Proof of Theorem 2. We prove the result with induction on #S.
The case #S = 1. We start with the case where #S = 1 which corresponds to it
being a single harmonic polynomial f ∈ Hd

k . We will show that in that case there
is a root in each ball of radius

r ≤ 2π
d
k
.

Let us assume f ∈ Hd
k and let us assume it is positive on the (geodesic) ball

B(x0, r) ⊂ S
d−1 and then consider the associated nodal set B(x0, r) ⊂ �. The same

argument as in the proof of Theorem 1 implies

k2 ≤ k(k + d − 2) = λ1(�) ≤ λ1(B(x, r)).

Now B(x, r) is a (d − 1)-dimensional manifold with boundary, a spherical cap, and
we are interested in the ground state of the Laplace-Beltrami operator on such a
spherical cap. This problem has been considered by Borisov-Freitas [5] who prove

λ1(B(x, r)) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j20,1

r2 + 1
3 on S2

π2

r2 + 1 on S
3

j2(d−2)/2,1

r2 − (d−1)2

4 + (d−1)(d−3)
4 [ 1

s(r)2 − 1
r2 ] on Sd, d ≥ 4,

where s(r) = sin r. Since 0 ≤ r ≤ π, we can bound the first two terms from above
by 2π2/r2. This means that in dimension d ∈ {2, 3}, we have

1 ≤ k2 ≤ k(k + d − 2) = λ1(�) ≤ λ1(B(x, r)) ≤ 2π2

r2

and thus

r ≤ 2π

k
≤ 2π

d
k
.

It remains to deal with the case d ≥ 4. A little bit of computation shows that either

− (d − 1)2

4
+

(d − 1)(d − 3)
4

[ 1
s(r)2

− 1
r2

]
≤ 0 or r ≥ 2.

Using again domain monotonicity and the fact that these spherical caps get bigger
as r increases, we conclude that the eigenvalue has to be monotonically decreasing
in r and we can thus improve the third upper bound, for d ≥ 4, to

λ1(B(x, r)) ≤ max
{ j2(d−2)/2,1

r2
,
j2(d−2)/2,1

4

}
.

Using Lemma 1, this can be further simplified to

λ1(B(x, r)) ≤ j20,1 · d2

4
max

{ 1
r2

,
1
4

}
≤ 3d2

2
max

{ 1
r2

,
1
4

}
.
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Thus, combining the previous argument, we arrive at

k2 ≤ λ1(B(x, r)) ≤ 3d2

2
max

{ 1
r2

,
1
4

}
.

We distinguish two cases: if r ≥ 2, then

k2 ≤ 3d2

8
then

d
k

≥
√

3
8

≥ 3
5

and then

r ≤ π ≤ 2π
3
5

≤ 2π
d
k
.

If r ≤ 2, then we deduce

r ≤
√

3
2

d
k

≤ 2π
d
k

which establishes the desired result.
The case #S ≥ 2. Let us now assume that

f (x) =
∑
k∈S

akfk(x), where fk ∈ Hd
k ,

is given and that #S ≥ 2 with max S = m. We consider, for a suitable function
g : [−1, 1] → R that remains to be constructed, the new function

f ∗(x) =
∫
Sd−1

g(〈x, y〉)f (y)dσ(y).

The Funk–Hecke formula shows that

f ∗(x) =
∫
Sd−1

g(〈x, y〉)
∑
k∈S

akfk(y)dσ(y)

=
∑
k∈S

ak

∫
Sd−1

g(〈x, y〉)fk(y)dσ(y) =
∑
k∈S

akλk(g)fk(x).

Motivated by the proof of Theorem 1, it makes sense to design g in such a way that
its support is as close as possible to 1 while simultaneously satisfying λm(g) = 0.
Recalling that, for some constant αd,m ∈ R

λm(g) = αd,m

∫ 1

−1
g(t) · C

d−2
2

m (t) · (1 − t2)
d−3
2 dt,

there is a particularly canonical choice: if we define g to be a bump function
suitably localized around the largest root of the Gegenbauer polynomial, this is
guaranteed to lead to a function that is compactly supported with support close to 1
and λm(g) = 0. A result of Driver–Jordaan [12] (see also Nikolov [18]) shows that
the largest root of Cλ

m(x) satisfies

x1 > 1 − (λ + 3)2

m2
.
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0.0 0.2 0.4 0.6 0.8 1.0 0.90 0.92 0.94 0.96 0.98 1.00

Figure 2. Left: the function C(20)
50 (x)(1−x2)10 on [0, 1]where (1−x2)10 is multiplied

to emphasize the overall sign structure (note that C(20)
50 (1) �= 0). Right: the same

function shown close to 1 with a possible choice for g hinted (dashed).

The bounds in [12, 18] are slightly stronger than that (at the level of constants), we
have chosen a slightly algebraically easier form for simplicity of exposition.

The roots of the Gegenbauer polynomials are simple which means that C(λ)
m

changes sign in x1. At this point, we define the function g : [−1, 1] → R to be
a positive bump function compactly supported in a sufficiently small interval J
around x1, where J is chosen such that

1 − (λ + 3)2

m2
= inf J < x1 < sup J ≤ 1

and g is chosen in such a way that g ≥ 0 and∫
J
g(t) · C

d−2
2

m (t) · (1 − t2)
d−3
2 dt = 0.

Since we have no further requirements on g, this can be done in many different
ways: any arbitrary compactly supported bump function can be rescaled to be
supported on a sufficiently small interval and then sliding over the root and using
the intermediate value theorem produces an example. Recalling that λ = (d−2)/2,

J ⊆
(
1 − (d + 4)2

4m2 , 1
)
.

Observe that if a, b ∈ Sd−1 are two points on the sphere with inner product
〈a, b〉 = x1, then the Euclidean distance between these points satisfies

‖a − b‖2 = 2 − 2〈a, b〉 ≤ 2 − 2
(
1 − (d + 4)2

4m2

)
=

(d + 4)2

2m2

and thus

‖a − b‖ ≤ d + 4√
2

1
m

.
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We now return to the new function

f ∗(x) =
∫
Sd−1

g(〈x, y〉)f (y)dσ(y)

and conclude, from the computation above and λm(g) = 0, that

f ∗(x) =
∑

k∈S\{m}
akλk(g)fk(x).

We know that if there is a Euclidean ball B(x, r(f )) of radius r(f ) such that f does
not have a zero in B(x, r(f )) ∩ Sd−1, then f ∗ contains a ball of radius at least

r(f ∗) ≥ r(f ) − d + 4√
2

1
m

on which the function does not have a zero. By induction hypothesis, we have

r(f ) ≤ r(f ∗) +
d + 4√

2

1
m

≤ d + 4√
2

1
m

+ 2πd
∑

k∈S\{m}

1
k

≤ 2πd
∑
k∈S

1
k
.

This constant is with respect to measuring distances using the Euclidean norm
in Rd; switching to the geodesic distance incurs another factor of π/2 which then
proves the desired result. �

5 Proof of Theorem 3

Proof. We argue again using induction on n.

The case n = 1. We establish this case by proving the Corollary first. Let
−�φ = λφ be a smooth, global eigenfunction on Rd where d ∈ {2, 3}. The main
ingredient in our argument is the inhomogeneous wave equation

( ∂2

∂t2
− �

)
u(t, x) = φ(x)

with vanishing initial conditions

u
∣∣
t=0 = 0 and

∂u
∂t

∣∣
t=0 = 0.

An explicit computation shows that this equation has the closed-form solution

u(t, x) =
cos(

√
λt) − 1
λ

φ(x).
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We note, in particular, that at time t∗ = 2π/
√

λ we have u(t, x) = 0. However,
the inhomogeneous wave equation on R

d with d ∈ {2, 3} and vanishing initial
conditions has a nice closed-form solution as well. In R

2 this solution is

u(t, x) =
∫ t

0

1
2π(t − s)2

∫
B(x,t−s)

(t − s)2φ(y)
((t − s)2 − |y − x|2)1/2

dyds.

In R
3, the solution is

u(t, x) =
1
4π

∫
B(x,t)

φ(y)
‖y − x‖dx.

We set t∗ = 2π/
√

λ and see that φ has a root in each ball with radius r = 2πλ−1/2.

The case n ≥ 2. Let now

f (x) =
n∑

k=1

akφk(x)

and let us assume without loss of generality that λ1 ≤ λ2 ≤ · · · ≤ λn and ai �= 0
for all 1 ≤ i ≤ n. We again consider the inhomogeneous wave equation

( ∂2

∂t2
− �

)
u(t, x) = f (x)

with vanishing initial conditions u|t=0 = 0 and ut|t=0 = 0 and see that

u(t, x) =
n∑

k=1

ak
cos(

√
λkt) − 1
λk

φk(x).

At time t∗ = 2π/
√

λn the solution can be written as

g(x) = u(t∗, x) =
n−1∑
k=1

ak
cos(

√
λkt) − 1
λk

φk(x).

Suppose now that f (x) does not have a zero on the ball B(z, r(f )) and is either
positive or negative in that region. From the explicit solution formula of the wave
equation we see that, for all 0 ≤ t ≤ r(f ), the function

u(t, x) does not change sign on B(z, r(f ) − t).

We set t∗ = 2π/
√

λn and conclude that u(t∗, x) does not change sign on a ball of
radius r(f )−t∗ (note that if r(f ) ≤ t∗, then the desired result follows automatically).
However, by induction assumption we have that

u(t∗, x) must change sign on every ball of radius 2π
n−1∑
k=1

1√
λk
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and therefore

r(f ) − t∗ ≤ 2π
n−1∑
k=1

1√
λk

and the desired result follows. �

6 Proof of Theorem 4

Proof. Wewill assume, throughout the argument, thatn ≥ 3. Suppose f : Rn → R

satisfies −�f = λf in some neighborhood of the ball

B = B
(
x,

2π√
λ

)
.

We introduce the average value on a spherical shell of radius r centered around x,

Av(r) =
1

|∂B(x, r)|
∫

∂B(x,r)
f (y)dy,

where |∂B(x, r)| denotes the (n − 1)-dimensional surface area of the ball. Using
the Green identities in R

n in the formulation (see [14, §2.2.2])

∂

∂r

(
1

|∂B(x, r)|
∫

∂B(x,r)
u(y)dy

)
=

r
n

1
|∂B(x, r)|

∫
B(x,r)

�u(y)dy

we deduce that
∂

∂r
Av(r) =

r
n

1
ωnrn

∫
B(x,r)

�f dy.

We note that if ωn denotes the volume of the unit ball in R
n, then the surface area

of a spherical shell is given by nωnrn−1 since

ωnr
n =

∫
B(x,r)

1dy =
∫ r

0
nωns

n−1ds.

Since �f = −λf , we deduce, rewriting everything in terms of spherical averages,

∂

∂r
Av(r) = − λ

nωnrn−1

∫
B(x,r)

f (y)dy

= − λ

nωnrn−1

∫ r

0
ωnnsn−1Av(s)dy

= − λ

rn−1

∫ r

0
sn−1Av(s)dy.
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The final ingredient is the function

Q(r) =
∫

B(x,r)

f (y)
‖x − y‖n−2

dy.

We note that, since f is locally bounded for r small, we have

|Q(r)| �
∫

B(x,r)

‖f‖L∞
loc

‖x − y‖n−2
dy � ‖f‖L∞

loc
· r2

and therefore Q(0) = 0 and Q′(0) = 0. Using continuity of the eigenfunction, we
deduce that, as r → 0,

Q(r) =
∫

B(x,r)

f (y)
‖x − y‖n−2

dy = (f (x) + O(r))
∫

B(x,r)

1
‖x − y‖n−2

dy

= (f (x) + O(r))
∫ r

0

nωnsn−1

sn−2 ds = (f (x) + O(r))
nωn

2
r2

from which we deduce Q′′(0) = nωnf (x). By switching to polar coordinates,

Q(r) =
∫ r

0
nωnsAv(s)ds.

Differentiating on both sides leads to Q′(r) = nωnrAv(r) and differentiating again

Q′′(r) = nωnAv(r) + nωnr
(
− λ

nωnrn−1

∫
B(x,r)

f (y)dy
)

= nωnAv(r) − nωn
λr

nωnrn−1

∫
B(x,r)

f (y)dy

= nωnAv(r) − nωn
λ

rn−2

∫ r

0
sn−1Av(s)ds.

Therefore

rQ′′(r) = nωnrAv(r) − λ

rn−3

∫ r

0
Av(s)nωns

n−1ds.

Using the identity Q′(r) = nωnrAv(r) we can rewrite this as

rQ′′(r) = Q′(r) − λ

rn−3

∫ r

0
sn−2Q′(s)ds.

Integration by parts shows that∫ r

0
sn−2Q′(s)ds = Q(s)sn−2

∣∣r
0 − (n − 2)

∫ r

0
Q(s)sn−3ds

= Q(r)rn−2 − (n − 2)
∫ r

0
Q(s)sn−3ds.
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Therefore

rQ′′(r) = Q′(r) − λQ(r)r +
(n − 2)λ

rn−3

∫ r

0
Q(s)sn−3ds.

At this point we already see that Q(s) is governed by some sort of differential-
integral equation that is quite independent of the actual eigenfunction. The re-
mainder of the argument is dedicated to understanding what that equation is.
Multiplying with rn−3, we get

rn−2Q′′(r) = rn−3Q′(r) − λQ(r)rn−2 + (n − 2)λ
∫ r

0
Q(s)sn−3ds.

Differentiating in r leads to

rn−2Q′′′(r) + (n − 2)rn−3Q′′(r) = (n − 3)rn−4Q′(r) + rn−3Q′′(r) − λQ′(r)rn−2

− (n − 2)λQ(r)rn−3 + (n − 2)λQ(r)rn−3.

The last two terms cancel, so the equation simplifies to

rn−2Q′′′(r) + (n − 2)rn−3Q′′(r) = (n − 3)rn−4Q′(r) + rn−3Q′′(r) − λQ′(r)rn−2

which then further simplifies to

rn−2Q′′′(r) + (n − 3)rn−3Q′′(r) = (n − 3)rn−4Q′(r) − λQ′(r)rn−2.

At this point we make a case distinction. If n = 3, then the system simplifies
to rn−2Q′′′(r) = −λQ′(r)rn−2 and thus Q′′′(r) = −λQ′(r) from which we deduce,
together with the initial conditions, that

Q(r) = 4π
1 − cos (

√
λ · r)

λ
· φ(x).

We can now resume, for the remainder of the argument, that n ≥ 4 and thus, in
particular, divide by rn−4 to arrive at

r2Q′′′(r) + (n − 3)rQ′′(r) = (n − 3)Q′(r) − λQ′(r)r2.

Working instead with the derivative R(r) = Q′(r), we deduce that we are only
interested in solutions that satisfy R(0) = 0 as well as R′(0) = nωnf (x) together with
the equation

r2R′′(r) + (n − 3)rR′(r) − (n − 3)R(r) + λR(r)r2 = 0.

Two independent solutions of this equation are given in terms of the Bessel func-
tions of the first and the second kind,

r
4−n
2 J n−2

2
(
√

λ · r) and r
4−n
2 Yn−2

2
(
√

λ · r).
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We note that n ≥ 4 and thus the polynomial powers in r are either 1 or have a
singularity in the origin. Bessel functions of the second kind Y(n−2)/2 also have
a singularity at the origin which tells us, since R(0) = 0, that the solution we are
interested in has to be a multiple of the first solution which we can thus write as

R(r) = αλ
n−4
4 (

√
λ · r)

4−n
2 J n−2

2
(
√

λ · r).

We note that

S(r) = r
4−n
2 J n−2

2
(r) satisfies lim

r→0
S′(r) =

2− n−2
2


(n/2)
.

Therefore

nωnf (x) = R′(0) = α
2− n−2

2


(n/2)
λ

n−2
4

from which it follows that

α =
2

n−2
2 
(n/2)nωn

λ
n−2
4

.

Therefore

R(r) = αλ
n−4
4 (

√
λ · r)

4−n
2 J n−2

2
(
√

λ · r)

=
2

n−2
2 
(n/2)nωn

λ
n−2
4

λ
n−4
4 (

√
λ · r)

4−n
2 J n−2

2
(
√

λ · r)

= 2
n−2
2 
(n/2)nωn

1√
λ

(
√

λ · r)
4−n
2 J n−2

2
(
√

λ · r)

=
1√
λ

Sn(
√

λ · r),

where

Sn(s) = 2
n−2
2 
(n/2)nωns

4−n
2 J n−2

2
(s).

Introducing the antiderivative

Tn(s) =
∫ s

0
Sn(z)dz,

we deduce

Q(r) =
1√
λ

Tn(
√

λ · r)
1√
λ

=
1
λ

· Tn(
√

λ · r). �
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