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Abstract. In this article we study local and global properties of positive
solutions of −�mu = |u|p−1u+M|∇u|q in a domain� ofRN , with m > 1, p, q > 0
and M ∈ R. Following some ideas used in [7, 8], and by using a direct Bernstein
method combined with Keller–Osserman’s estimate, we obtain several a priori
estimates as well as Liouville type theorems. Moreover, we prove a local Harnack
inequality with the help of Serrin’s classical results.

1 Introduction

In this paper, we aim to investigate local and global properties of positive solutions
to the following equation

(1) −�mu = |u|p−1u + M|∇u|q in �,

where m > 1, �mu = div(|∇u|m−2∇u), p, q > 0, M ∈ R and � ⊂ R
N (N ≥ 1) is a

domain bounded or not and containing 0.
If M = 0, then (1) reduces to the generalized Lane–Emden equation

(2) −�mu = |u|p−1u in �,

which has been widely studied in the literature [1, 4, 9, 11, 14, 22, 23, 29, 30, 33,
34, 35, 38], both when� is bounded and when� is unbounded. Especially, in the
semilinear case m = 2, one of the celebrated results is given by Gidas and Spruck
[22]: if N > 2 and p ∈ [1, N+2

N−2), then any nonnegative solution of (2) in R
N is
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identically zero and the result is sharp. Very surprisingly in Gidas–Spruck’s result,
there is no a priori information assumption on the behavior of the solutions at
infinity. Additional results for the semilinear case, but with a nonlinearity similar
to that in (1) can be found in [15] and [21].

For the case of m > 1, radially symmetric positive solutions were studied by
Ni and Serrin [28, 29, 30], and further results in this direction were obtained by
Guedda and Véron [23] and Bidaut-Véron [1].

When one studies the so-called Liouville property of (2), namely whether all
positive C1 solutions of (2) in R

N are constant, two critical exponents appear

(3) m∗ =
N(m − 1)
N − m

, m∗ =
N(m − 1) + m

N − m
,

whenN > m, known as the Serrin exponent and the Sobolev exponent, respectively.
It is well known that the first is optimal for the Liouville property for the inequality

(4) −�mu ≥ |u|p−1u in R
N,

while the second is optimal for the corresponding equality. Indeed, Mitidieri and
Pohozaev [26] first proved that if N > m and p ∈ (0,m∗], or N ≤ m and p ∈ (0,∞),
then any nonnegative solution to (4) is zero. On the other hand, if N > m and
p ∈ (m∗,∞), then (4) possesses the following bounded positive solution

u(x) = C(1 + |x| m
m−1 )−

m−1
p−m+1 ,

for some C > 0, see [26, Remark 4] or [35]. For equation (2) in R
N , we refer to the

marvellous paper by Serrin and Zou [35] (cf. Corollary II), where also nonexistence
in the case N < m and p ∈ (0,∞) was solved. Of course, if M ≥ 0, every positive
solution of (1) is also a positive solution of the inequality (4).

If we consider the critical case of (2), that is when p = m∗, and we restrict our
attention to solutions belonging to the space

D1,m(RN) :=
{

u ∈ Lm∗
(RN) :

∫
RN

|∇u|m < ∞
}
,

then Damascelli et al. in [14], for 1 < m < 2, Sciunzi in [33], for m > 2 , and
Vétois in [38], for m > 1, showed that all positive solutions are radial and have the
following form

u(x) = Uλ,x0 (x) :=
[ λ 1

m−1 N
1
m (N−m

m−1 )
m−1
m

λ
m

m−1 + |x − x0| m
m−1

] N−m
m
, λ > 0, x0 ∈ R

N .
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Moving to exterior domains, Bidaut-Véron [1] proved that any nonnegative
solution of (2) is zero provided that N > m and p ∈ (m − 1,m∗], or N = m
and p ∈ (m−1,∞), while Bidaut-Véron and Pohozaev [3] showed that (4) admits
only the trivial solution u ≡ 0 whenever N > m and p ∈ (0,m∗], or N = m
and p ∈ (0,∞).

For the case with gradient terms, we first recall the Hamilton–Jacobi equation

(5) −�mu = |∇u|q in �.

The Liouville property of (5) was studied by Lions in [25] for m = 2, who proved
that any C2 solution to (5) with q > 1 in R

N has to be a constant by using
the Bernstein technique. Bidaut-Véron, Garcia-Huidobro and Véron [5] proved
that any C1 solution u of (5) in an arbitrary domain � of R

N with N ≥ m > 1
and q > m − 1 satisfies

(6) |∇u(x)| ≤ cN,m,q(dist(x, ∂�))−
1

q−m+1

for all x ∈ �. Estimates of this type, not only for the gradient but also for the
solutions are called by Serrin and Zou “universal a priori estimates”, because
they are independent of the solutions and do not need any boundary conditions. In
particular, they produce as a direct corollary theLiouville property, since dist(x, ∂�)
can be chosen arbitrarily large when the solution is defined on all RN . For a
detailed discussion in this direction we refer to the paper by Polacik, Quitter and
Souplet studied in [31] where new connections between Liouville-type theorems
and universal estimates were developed. Here “any solution” means there is no
any sign condition on the solution. Estimates of the gradient for more general
problems can be found in [24].

For the generalized case of (5) given by

(7) −�mu = up|∇u|q in �,

in [6] Bidaut-Véron, Garcia-Huidobro and Véron focused on positive solutions
of (7) for m = 2, p ≥ 0 and 0 ≤ q < 2. By using the pointwise Bernstein method
and the integral Bernstein method, they determined various regions of (p, q) for
which the Liouville property holds. Filippucci, Pucci and Souplet [19] solved the
case of m = 2, p > 0 and q > 2, and they proved that any positive bounded classical
solution of (7) in R

N is identically equal to a constant. Bidaut-Véron [2] obtained
the same Liouville-type results for (7) in the case N > m > 1, p ≥ 0 and q ≥ m

without the assumption of boundedness on the solution. Recently, the Liouville
property of (7) in R

N for N ≥ 1, m > 1, p ≥ 0 and 0 ≤ q < m was studied
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by Chang, Hu and Zhang [10]. For the case of radial solutions of the coercive
vectorial version of (7) in R

N we refer to [20].
If we consider the inequality version of (7)

(8) −�mu ≥ up|∇u|q in �,

it was proved in [6] for the case m = 2 that any positive solution of (8) in R
N must

be constant if N > 2, p ≥ 0, q ≥ 0 and

p(N − 2) + q(N − 1) < N.

The generalization of the above results to the case m 	= 2, even in the vectorial
case, can be found in [16, 17, 18, 27].

Recently, Sun, Xiao and Xu [36] dealt with (8) when � is a geodesically
complete noncompact Riemannian manifold, and they obtained the nonexistence
and existence of positive solutions to (8) in the range m > 1 and (p, q) ∈ R

2 via
the volume growth of geodesical ball.

The most important motivation of the present study is to extend the results
obtained for the semilinear equation

(9) −�u = |u|p−1u + M|∇u|q in �,

by Bidaut-Véron, Garcia-Huidobro and Véron; see [7, 8]. By using a delicate
combination of refined Bernstein techniques and the Keller–Osserman estimate,
they obtained a series of a priori estimates for any positive solution of (9) in an
arbitrary domain � of RN in the case p > 1, q ≥ 2p

p+1 and M > 0 ([7, Theorems
A, C, D]). In particular, the nonexistence of positive solutions of (9) in R

N was
obtained for the following cases:

(i) N ≥ 1, p > 1, 1 < q < 2p
p+1 , M > 0;

(ii) N ≥ 1, p > 1, q = 2p
p+1 , M > ( p−1

p+1 )
p−1
p+1 (N(p+1)2

4p )
p

p+1 ;
(iii) N ≥ 2, 1 < p < N+3

N−1 , 1 < q < N+2
N , M > 0;

(iv) N ≥ 3, 1 < p < N+2
N−2 , q = 2p

p+1 , |M| ≤ ε0,
where ε0 is a positive constant given in [7, Theorem E]. They also considered the
existence and nonexistence of “large solutions”, namely those solutions u(x) → ∞
as dist(x, ∂�) → 0, and radial solutions of (9).

In this paper, we follow the idea used in [7, 8], based on the Bernstein method,
to derive various a priori estimates concerning ∇u for positive solutions of (1) in
the cases q is less than, greater than or equal to mp

p+1 , and consequently we obtain
Liouville type theorems.

Our first result is devoted to the case q > mp
p+1 .
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Theorem 1.1. Let � ⊂ R
N, p > max{m − 1, 1} and q > mp

p+1 .

Then for any M > 0, there exists a positive constant cN,m,p,q such that any
positive solution of (1) in � satisfies

(10) |∇u(x)| ≤ cN,m,p,q(M
− p+1

(p+1)q−mp + (Mdist(x, ∂�))−
1

q−m+1 )

for all x ∈ �. Especially, any positive solution of (1) in R
N has at most a linear

growth at infinity

(11) |∇u(x)| ≤ cN,m,p,qM
− p+1

(p+1)q−mp , x ∈ R
N.

While in the case q < mp
p+1 , we obtain a nonexistence result.

Theorem 1.2. Let p > max{m − 1, 1} and max{m − 1, m
2 } < q < mp

p+1 .

Then for any M > 0, there exists a positive constant cN,m,p,q such that (1) does
not admit positive solutions in R

N satisfying

(12) u(x) ≤ cN,m,p,qM
m

mp−(p+1)q , x ∈ R
N .

Remark 1.3. Here assumption q > m
2 follows from the proof’s technique,

due to the use of Young’s inequality.

For the case q = mp
p+1 and M large enough, we have the following nonexistence

result in R
N .

Theorem 1.4. Let � ⊂ R
N, p > max{m − 1, 1} and q = mp

p+1 .

Then for any

(13) M >
N

p
p+1 (p + 1)

(4p)
p

p+1
(p − 1)

p−1
p+1 ,

there exists a positive constant cN,M,m,p,q such that any positive solution of (1) in�

satisfies

(14) |∇u(x)| ≤ cN,M,m,p,q(dist(x, ∂�))−
p+1

p−m+1

for all x ∈ �. Consequently, (1) does not admit positive solutions in R
N.

When M is allowed to be negative, we derive a nonexistence result for super-
solutions of (1) in an exterior domain.

Theorem 1.5. Let p > m − 1 if N = m or m − 1 < p < N(m−1)
N−m if N > m,

q = mp
p+1 and M > −μ∗(N) where

(15) μ∗(N) := (p + 1)
(N(m − 1) − p(N − m)

mp

) p
p+1
.

Then there exist no nontrivial nonnegative supersolutions of (1) in R
N \ BR for

any R > 0.
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Concerning large solutions, we prove the following.

Theorem 1.6. Let � be an open domain with Lipschitz boundary, p > m − 1
and q = mp

p+1 . If M ≥ −μ∗(m), then there exists no positive supersolution of (1)
in � satisfying

(16) lim
dist(x,∂�)→0

u(x) = ∞.

Inspired by [6, TheoremA], we derive an a priori estimate for positive solution u

of (1) in a neighborhood of 0 as follows. The proof relies on Serrin’s classical
Harnack inequality [34, Theorem 5] and the fact that every radial solution u(|x|)
of (1) is m-superharmonic when M ≥ 0.

Theorem 1.7. Let � ⊂ R
N (N ≥ 2) be a domain containing 0. Assume

1 < m < N, m − 1 < p < N(m−1)
N−m , m − 1 < q < N(m−1)

N−1 and M ≥ 0. If

u ∈ C2(�\{0}) is a positive solution of (1) in �\{0}, then

(17) u(x) + |x||∇u(x)| ≤ c|x|m−N
m−1

holds in a neighborhood of 0 for some c > 0.

Remark 1.8. Under the assumptions on N,m, p, q and M of Theorem 1.7, we
obtain a local Harnack inequality for positive solution u of (1), namely

max|x|=r
u(x) ≤ K min|x|=r

u(x), r ∈ (0, 1/2],(18)

for some K > 0. The Harnack inequality for a more general model

|u|p−1u − M|∇u|q ≤ −�mu ≤ c0|u|p−1u + M|∇u|q,(19)

where c0 ≥ 1 and M > 0, was obtained first by Ruiz [32] in the range

m − 1 < p <
N(m − 1)
N − m

and m − 1 < q <
mp

p + 1
.

Note here mp
p+1 <

N(m−1)
N−1 always holds if p satisfies the assumption of Theorem 1.7.

The final result is a Liouville-type theorem for a positive solution of (1) with a
less restrictive assumption on M but a more restrictive assumption on p compared
with Theorem 1.4. Actually, as emphasized before [6, Theorem B], the direct
Bernstein method allows to obtain pointwise estimates of the gradient without
any integration. In particular, in the next result, using cumbersome algebraic
manipulations and a rather demanding application of Young’s inequality, we obtain
an a priori estimate for the norm of the gradient of a power of a positive solution,
in the spirit of [6, Theorem B] devoted to elliptic inequality of the Laplacian type
with a superlinear absorption term.
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Theorem 1.9. Let � ⊂ R
N (N ≥ 2). Assume m − 1 < p < (N+3)(m−1)

N−1 and

m − 1 < q < (N+2)(m−1)
N . Then for any M > 0, there exist positive constants d

and cN,m,p,q such that any positive solution of (1) in � satisfies

(20) |∇ud(x)| ≤ cN,m,p,q(dist(x, ∂�))−1− md
p−m+1 , x ∈ �.

In particular, there exists no nontrivial nonnegative solution of (1) in R
N.

As a consequence of (20) the following holds:

Corollary 1.10. Let � be a smooth domain in R
N (N ≥ 2) with a bounded

boundary, and under the assumptions of Theorem 1.9. If u is a positive solution

of (1) in�, then there exists a positive constant d0 depending on� and cN,m,p,q > 0
such that

(21) u(x) ≤ c
(
(dist(x, ∂�))−

m
p−m+1 + max

dist(z,∂�)=d0

u(z)
)
, x ∈ �.

Remark 1.11. Recently some weak versions of the Bernstein method have
been exploited for quasilinear elliptic equations involving gradient terms. It is
expected that by using integral or other weak versions of the Bernstein method,
the results obtained here may be improved, see [12, 13].

Notations. In the above and below, the letters C,C′,C0,C1, c0, c1, . . . denote
positive constants whose values are unimportant and may vary at different occur-
rences, and Cx,...,z or C(x, . . . , z) denotes the positive constant whose value relies
on the choices of x, . . . , z.

2 Proof of Theorems 1.1, 1.2 and 1.4

We begin with the following lemma which plays a key role in our proofs.

Lemma 2.1. Let � ⊂ R
N, N ≥ 1 and m > 1. Assume that v is a C1 function

in � such that |∇v| > 0, and let w be a continuous and nonnegative function in �
with w ∈ C2(W+), where W+ = {x ∈ � : w(x) > 0}. Define the operator

w→ Av(w) := −�w− (m − 2)
〈D2w∇v,∇v〉

|∇v|2 .

If w satisfies, for some ξ > 1 and a real number c0,

Av(w) +wξ ≤ c0
|∇w|2
w

on each connected component of W+, then

w(x) ≤ cN,ξ,c0 (dist(x, ∂�))−
2
ξ−1 , ∀x ∈ �.

In particular, w ≡ 0 if � = R
N.
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Proof. This proof is a combination of [5, Proposition 2.1], and that of [2,
Lemma 3.1] in the special case β(x) = 0. In particular, the operator Av(w) was first
introduced in [5, Proposition 2.1]. For the reader’s convenience, we list the proof
here. First, write Av(w) as follows

Av(w) = −
N∑

i,j=1

aijwxixj ,(22)

where aij depends on the gradient, indeed aij = δij + (m−2)
vxivxj
|∇v|2 , and δij = 1 if i = j,

δij = 0 if i 	= j. Noting that (
vxivxj
|∇v|2 ) is nonnegative definite, then

min{1,m − 1}|η|2 ≤
N∑

i,j=1

aijηiηj ≤ max{1,m − 1}|η|2,(23)

for all η = (η1, . . . , ηN) ∈ R
N . Therefore, Av is uniformly elliptic in {|∇v| > 0}.

Consider a ball BR(x0) ⊂ �. Let r = |x − x0| and set

ψ(x) = λ(R2 − r2)−
2
ξ−1 ,

where λ > 0. Let G be a connected component of {x ∈ BR(x0) : w(x) > ψ(x)},
then G ⊂ W+ and G ⊂ BR(x0).

Let us define L(ψ) by

L(ψ) := Av(ψ) + ψξ − c0
|∇ψ|2
ψ

.(24)

A standard computation shows that

L(ψ) ≥ λ(R2 − r2)−
2ξ
ξ−1 (λξ−1 − cR2),(25)

where c = c(N, ξ, c0). By choosing λ = (cR2)
1
ξ−1 , we derive L(ψ) ≥ 0.

If x1 ∈ G satisfies

w(x1) − ψ(x1) = max{w(x) − ψ(x) : x ∈ G},
then ∇w(x1) = ∇ψ(x1), w(x1) > ψ(x1) > 0 and Av(w− ψ)(x1) ≥ 0. Thus,

0 ≥ L(w−ψ)(x1) = Av(w− ψ)(x1) + (wξ − ψξ)(x1) + c0

( |∇ψ|2
ψ

− |∇w|2
w

)
.

Since the last two terms are positive, we derive a contradiction. Therefore w ≤ ψ

in BR(x0). In particular,

w(x0) ≤ ψ(x0) = c′
N,ξ,c0

R− 2
ξ−1 .(26)

By letting R → dist(x, ∂�), we obtain (2.1). �
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The next lemma is the extension of formula (2.6) in [7]. The new formula,
valid for every m > 1, is rather tricky and requires cumbersome calculations since
we have to take into account several terms appearing when m 	= 2.

Lemma 2.2. Assume that v is a nonnegative C3 function in �. Let z = |∇v|2,
then we have

(27)

1
2

Av(z) +
1
N

z2−m(�mv)
2 + z1− m

2 〈∇�mv,∇v〉

≤ (N + 2)(m − 2)
2N

z− m
2�mv〈∇z,∇v〉 +

m − 2
4

|∇z|2
z

− (2N + m − 2)(m − 2)
4N

〈∇z,∇v〉2
z2

, on {z > 0}.

Proof. Using z = |∇v|2, ∇z = 2D2v∇v, and

�mv = |∇v|m−2�v + (m − 2)|∇v|m−4〈D2v∇v,∇v〉,

we obtain

�v = z1− m
2�mv − m − 2

2
〈∇z,∇v〉

z
, on {z > 0}.(28)

A routine computation yields that

(29)

(�v)2 = z2−m(�mv)
2 − (m − 2)z− m

2�mv〈∇z,∇v〉

+
(m − 2)2

4
〈∇z,∇v〉2

z2 ,

∇�v = z1− m
2 ∇�mv − m − 2

2
z− m

2�mv∇z

+
m − 2

2
〈∇z,∇v〉∇z

z2 − m − 2
2

∇〈∇z,∇v〉
z

,

and

(30)
〈∇�v,∇v〉 = z1− m

2 〈∇�mv,∇v〉− m − 2
2

z− m
2�mv〈∇z,∇v〉

+
m − 2

2
〈∇z,∇v〉2

z2
− m − 2

2
〈∇〈∇z,∇v〉,∇v〉

z
.

Noting that

∇〈∇z,∇v〉 = D2z∇v + D2v∇z,

and

〈D2v∇z,∇v〉 = 〈D2v∇v,∇z〉 =
1
2
|∇z|2,
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we get

〈∇〈∇z,∇v〉,∇v〉 = 〈D2z∇v,∇v〉 +
1
2
|∇z|2.(31)

Combining (31) with (30), we have

(32)

〈∇�v,∇v〉 = z1− m
2 〈∇�mv,∇v〉− m − 2

2
z− m

2 �mv〈∇z,∇v〉

+
m − 2

2
〈∇z,∇v〉2

z2 − m − 2
2

〈D2z∇v,∇v〉
z

− m − 2
4

|∇z|2
z
.

By the Böchner formula, we have

(33)

1
2
�|∇v|2 = |D2v|2 + 〈∇�v,∇v〉

≥ 1
N

(�v)2 + 〈∇�v,∇v〉.
Replacing (29) and (32) into (33), we deduce

1
2
�z ≥ −m − 2

2
〈D2z∇v,∇v〉

z
+

1
N

z2−m(�mv)
2

+ z1− m
2 〈∇�mv,∇v〉− (N + 2)(m − 2)

2N
z− m

2�mv〈∇z,∇v〉

+
(2N + m − 2)(m − 2)

4N
〈∇z,∇v〉2

z2
− m − 2

4
|∇z|2

z
.

The above inequality can be rewritten as

1
2

Av(z) +
1
N

z2−m(�mv)
2 + z1− m

2 〈∇�mv,∇v〉

≤ (N + 2)(m − 2)
2N

z− m
2�mv〈∇z,∇v〉 +

m − 2
4

|∇z|2
z

− (2N + m − 2)(m − 2)
4N

〈∇z,∇v〉2
z2 ,

which yields (27). �
The following Bernstein estimate for solutions of (1) is essential in the proofs

of Theorems 1.1, 1.2 and 1.4.

Lemma 2.3. Assume that u is a C1 solution of (1) in a domain�, with m > 1
and M, p, q arbitrary real numbers. Let z = |∇u|2. Then for any 0 < a < 1

N and

0 < b < M2

N , there exists a positive constant c1 = c1(N,M,m, q, a, b) such that

(34)

1
2

Au(z) + au2pz2−m +
2M
N

|u|p−1uz
q
2 −m+2 + bzq−m+2 − p|u|p−1z2− m

2

≤ c1
|∇z|2

z
, on {z > 0}.
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Remark 2.4. From the proof of Lemma 2.3, it is evident that when m = 2, the
constant a above can be allowed to satisfy 0 < a ≤ 1

N , while when
Nq = (N + 2)(m − 2), the constant b above can be chosen such that 0 < b ≤ M2

N .

Proof. As in Theorem 3.4.7 in [37], since u is a C1 solution of (1) in � then
u ∈ C2 in {x ∈ � : ∇u 	= 0}, that is for {z > 0}. Furthermore, we have

z2−m(�mu)2 = u2pz2−m + 2M|u|p−1uz
q
2 −m+2 + M2zq−m+2,

z1− m
2 〈∇�mu,∇u〉 = −p|u|p−1z2− m

2 − Mq
2

z
q−m

2 〈∇z,∇u〉,
and

z− m
2�mu〈∇z,∇u〉 = −|u|p−1uz− m

2 〈∇z,∇u〉− Mz
q−m

2 〈∇z,∇u〉.
Inserting these identities into (27), we arrive at

(35)

1
2

Au(z) +
1
N

u2pz2−m +
2M
N

|u|p−1uz
q
2 −m+2 +

M2

N
zq−m+2 − p|u|p−1z2− m

2

≤ − (N + 2)(m − 2)
2N

|u|p−1uz− m
2 〈∇z,∇u〉

+
(Mq

2
− M(N + 2)(m − 2)

2N

)
z

q−m
2 〈∇z,∇u〉 +

m − 2
4

|∇z|2
z

− (2N + m − 2)(m − 2)
4N

〈∇z,∇u〉2
z2

, on {z > 0}.
Nextwe estimate each term in the right-hand side of (35). By the Cauchy–Schwartz
inequality and then, thanks to Young’s inequality, we have for any ε, ε′ > 0

|u|p−1uz− m
2 |〈∇z,∇u〉| ≤ εu2pz2−m +

1
4ε

|∇z|2
z
,

and

z
q−m

2 |〈∇z,∇u〉| ≤ ε′zq−m+2 +
1

4ε′
|∇z|2

z
.

Note also that
〈∇z,∇u〉2

z2 ≤ |∇z|2
z
.

Let ε1 := (N+2)|m−2|
2N ε and ε2 := |Mq

2 − M(N+2)(m−2)
2N |ε′. We infer that

1
2

Au(z)+
( 1
N

− ε1
)
u2pz2−m +

2M
N

|u|p−1uz
q
2 −m+2

+
(M2

N
− ε2

)
zq−m+2 − p|u|p−1z2− m

2 ≤ c1
|∇z|2

z
,

where c1 = c1(N,m, ε1, ε2) > 0. Set a = 1
N − ε1 and b = M2

N − ε2. Taking ε1 and ε2
small enough such that a, b > 0, then (34) follows. �
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Now we step into the proof of Theorem 1.1.

Proof of Theorem 1.1. Let u be a positive solution of (1). Consider the
following change of variables

(36) u(x) = α
m

p−m+1 v(y), y = αx, x ∈ �,
with α = M− p−m+1

(p+1)q−mp .

Then |∇v| = |∇yv| = α− p+1
p−m+1 |∇u| and �mv = α− mp

p−m+1�mu so that v is a
positive C1 solution of

(37) −�mv = |v|p−1v + |∇v|q in �α,

where �α := {y ∈ R
N : y = αx, x ∈ �}.

Let z = |∇v|2, so that (34) becomes

1
2

Av(z) + av 2pz2−m +
2
N

|v|p−1vz
q
2 −m+2 + bzq−m+2 − p|v|p−1z2− m

2 ≤ c1
|∇z|2

z
,

on {z > 0},
indeed v is a positive solution of (1) with M = 1. In turn

1
2

Av(z) + av 2pz2−m + bzq−m+2 − p|v|p−1z2− m
2 ≤ c1

|∇z|2
z
, on {z > 0},(38)

with 0 < a, b < 1
N as in (34) and c1 = c1(N,m, q, a, b).

Suppose q > mp
p+1 . In this case, it immediately follows that q − m + 2 > 1 by

conditions assumed on p. By the Young’s inequality with exponents 2p/(p − 1)
and 2p/(p + 1), for ε3 > 0, we have

p|v|p−1z2− m
2 = p|v|p−1z

(2−m)(p−1)
2p z1+ 2−m

2p ≤ ε3v
2pz2−m + c2z

2p+2−m
p+1 .

Since 2p > m−2 and q(p+1) > mp, a further application of the Young’s inequality
with exponents (q −m +2)(p+ 1)/(2p+ 2 −m) and its conjugate gives, for ε4 > 0,

c2z
2p+2−m

p+1 ≤ ε4z
q−m+2 + c3,

where c2 = c2(p, ε3) > 0 and c3 = c3(m, p, q, c2, ε4) > 0. Hence by (38),

1
2

Av(z) + A1v
2pz2−m + A2z

q−m+2 ≤ c1
|∇z|2

z
+ c3,

where A1 = a − ε3 and A2 = b − ε4. Taking ε3 and ε4 small enough such that
A1,A2 > 0, then

1
2

Av(z) + A2z
q−m+2 ≤ c1

|∇z|2
z

+ c3.
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Letting z̃ = (z − ( c3
A2

)
1

q−m+2 )+, thus z ≥ z̃, and with q − m + 2 > 1, we obtain

1
2

Av(z̃) + A2z̃
q−m+2 ≤ c1

|∇z̃|2
z̃
, on

{
z >

( c3

A2

) 1
q−m+2

}
.

Using Lemma 2.1, we derive

z̃(y) ≤ c4(dist(y, ∂�α))
− 2

q−m+1 ,

where c4 = c4(m, q, c1,A2) > 0, and with z̃ = |∇v(y)|2 − c, c > 0, using that
(a + b)1/2 ≤ a1/2 + b1/2, it follows that

|∇v(y)| ≤ c′
4(1 + (dist(y, ∂�α))

− 1
q−m+1 ), y ∈ �α.(39)

In view of the change of variables (36), we finally obtain (10).
Now consider the case � = R

N and assume that u is a positive solution of (1)
in R

N . Fix y ∈ R
N such that |y| < 2n. Using (39) with �α = B2n(0), we see that

|∇v(y)| ≤ c′
4(1 + (2n − |y|)− 1

q−m+1 ), y ∈ B2n(0).

Taking n → ∞ yields

|∇v(y)| ≤ c′
4, y ∈ R

N,

so that (11) follows immediately thanks to the change of variables. �

Proof of Theorem 1.2. Let u be a positive solution of (1) and let v be the
function defined in (36) where now � = �α = R

N . If z = |∇v|2, since we have
max{m − 1, m

2 } < q < mp
p+1 , then for any ε5 > 0 we have

pv p−1z2− m
2 = pv p−1z

(2−m)(2q−m)
2q z

m(q−m+2)
2q ≤ ε5z

q−m+2 + c5v
2q(p−1)
2q−m z2−m,

where c5 = c5(m, p, q, ε5) > 0. Inserting this inequality into (38), we obtain

1
2
Av(z) + v 2pz2−m(a − c5v

2mp−2q(p+1)
2q−m ) + A3z

q−m+2 ≤ c1
|∇z|2

z
,

where A3 = b − ε5 with ε5 small enough such that A3 > 0. If

max v ≤ cN,m,p,q :=
( a

c5

) 2q−m
2mp−2q(p+1)

,

which is equivalent to (12) by virtue of (36), we get

1
2

Av(z) + A3z
q−m+2 ≤ c1

|∇z|2
z
.

From Lemma 2.1, applied with ξ = q − m + 2 > 1, we conclude that z ≡ 0 in R
N ,

in turn v is identically constant and thus v ≡ 0 in R
N from the equation (37). �
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Proof of Theorem 1.4. Let u be a positive solution of (1) in� and let q = mp
p+1

by assumption. For B > 0 to be chosen and a ∈ (0, 1/N) if m 	= 2 or a ∈ (0, 1/N]
if m = 2, consider the auxiliary function � defined for Z > 0 by

�(Z) = upZ2−m + BZq−m+2 −
√

p
a
u

p−1
2 Z2− m

2 .

In particular, �(Z) = Z2−mψ(Z) where

ψ(Z) = up + BZ
mp
p+1 −

√
p
a
u

p−1
2 Z

m
2

with

ψ(0) = up > 0 and ψ′(Z) =
mBp
p + 1

Z
m
2 −1

[
Z

m(p−1)
2(p+1) − p + 1

2
√

ap
u

p−1
2

]
,

so that ψ(Z) achieves its minimum at

Z0 =
( p + 1

2B
√

ap

) 2(p+1)
m(p−1)

u
p+1
m > 0,

and

ψ(Z) ≥ ψ(Z0) =
[
1 − p − 1

(4ap)
p

p−1

(p + 1
B

) p+1
p−1

]
up.

Denoting

M+ =
(p + 1)(p − 1)

p−1
p+1

(4ap)
p

p+1
> 0,

we obtain, choosing B ≥ M+, that ψ(Z0) ≥ 0 yielding ψ(Z) ≥ 0 for all Z > 0 and
consequently�(Z) ≥ 0 for all Z > 0.

Observing that condition (13) reads as M >
(
aN

) p
p+1 M+, we consider

(40)

1
2

Au(z) + a
(
upz1− m

2 +
M+

(Na)1/(p+1) z
1+ q−m

2

)2

+
[
b − a

M2
+

(Na)
2

p+1

]
zq−m+2 − pup−1z2− m

2

=
1
2

Au(z) + au2pz2−m + a
M2

+

(Na)
2

p+1

zq−m+2 + 2a
M+

(Na)
1

p+1

upz2−m+ q
2

+
(
b − a

M2
+

(Na)
2

p+1

)
zq−m+2 − pup−1z2− m

2

≤ 1
2
Au(z) + au2pz2−m +

2M
N

upz2−m+ q
2 + bzq−m+2 − pup−1z2− m

2 ,
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where in the last inequality we have used M ≥ (
aN

) p
p+1 M+. We have thus obtained

the left-hand side of inequality (34) for u positive, so in the set where |∇u| 	= 0 and
for b < M2/N, we get

1
2

Au(z) + a
(
upz1− m

2 +
M+

(Na)1/(p+1)
z1+ q−m

2

)2

+
[
b − a

M2
+

(Na)
2

p+1

]
zq−m+2 − pup−1z2− m

2 ≤ c1
|∇z|2

z
.

We claim that

(41) a
(
upz1− m

2 +
M+

(Na)1/(p+1) z
1+ q−m

2

)2 − pup−1z2− m
2 ≥ 0.

Indeed, noting that for any B ≥ M+, we have

(up|∇u|2−m + B|∇u|q−m+2)2 − p
a
up−1|∇u|4−m

=
(
up|∇u|2−m + B|∇u|q−m+2 +

√
p
a
u

p−1
2 |∇u|2− m

2

)
·�(|∇u|) ≥ 0,

where 0 < a ≤ 1
N , then (41) immediately follows choosing B = M+/(Na)1/(p+1),

with z = |∇u|2.
Consequently,

1
2
Au(z) +

[
b − a

M2
+

(Na)2/(p+1)

]
zq−m+2 ≤ c1

|∇z|2
z
.

Now, it is possible to choose a and b such that

a
M2

+

(Na)
2

p+1

< b <
M2

N
,

indeed the above condition is equivalent to

a > N
p−1
p+1

[ (p + 1)(p − 1)
p−1
p+1

M(4p)
p

p+1

]2
=

1
N

− ε

with

ε =
1
N

− N
p−1
p+1

[ (p + 1)(p − 1)
p−1
p+1

M(4p)
p

p+1

]2
> 0

by (13) and since N > N
p

p+1 .
By using again Lemma 2.1, with ξ = q − m + 2 > 1, we obtain

|∇u(x)| ≤ cN,M,m,p,q(dist(x, ∂�))−
1

q−m+1 ,

which is exactly (14) via q = mp
p+1 .
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3 Proof of Theorems 1.5, 1.6 and 1.7

Proposition 3.1. (A) Let M ≥ 0, m > 1, q ≥ 0 and either N ≤ m and p > 0
or N > m and 0 < p ≤ N(m−1)

N−m . Then, there exist no positive solutions of (1)
in R

N \ BR for R > 0.
(B) Let M > 0, m > 1, N > 1, p ≥ 0 and m − 1 < q ≤ N(m−1)

N−1 . Then there exist

no positive radial solutions of (1) in R
N \ BR for R ≥ 0.

(C) Let N > m, m > 1, M ≥ 0, q ≥ 0, p > N(m−1)
N−m and let u = u(|x|) = u(r) be a

positive radial solution of (1) in R
N \ BR. Then, there exists ρ > R such that

u(r) ≤ c0r
− m

p−m+1 , r > ρ,(42)

with c0 = [2N(1 − 2− m
m−1 )−(m−1)( m

p−m+1 )
m−1]

1
p−m+1 and

|ur(r)| ≤ c0
N − m
m − 1

r− p+1
p−m+1 , r > ρ.(43)

(D) Let N > 1, m > 1, M > 0, p ≥ 0, q > N(m−1)
N−1 , and let u(x) = u(r) be a

positive radial solution of (1) in R
N \ BR. There exists ρ > 2R such that

|ur(r)| ≤ c1r
− 1

q−m+1 , r >
ρ

2
,(44)

with

c1 =
(q(N − 1) − N(m − 1)

M(q − m + 1)

) 1
q−m+1

.

Moreover, if N(m−1)
N−1 < q < m,

u(r) ≤ c1
q − m + 1

m − q
r− m−q

q−m+1 , r >
ρ

2
.(45)

Proof. (A) When M ≥ 0, every solution u of (1) satisfies the inequality

−�mu ≥ |u|p−1u, in R
N \ BR.

Then, assertion (A) follows by [3, Theorems 3.3 (iii) and 3.4 (ii)] and [35, Theo-
rem I′].

(B) Let u be a radial positive solution of (1) in R
N \ BR, R ≥ 0. Thus,

u = u(r) = u(|x|) satisfies (1) in the radial form, that is

−r1−N(rN−1|ur|m−2ur)r = up + M|ur|q, r > R.(46)

It follows that
r �→ w(r) := −rN−1|ur|m−2ur
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is strictly increasing on (R,∞), thus it admits a limit l ∈ (−∞,∞]. If l ≤ 0,
then ur(r) > 0 on (R,∞). Hence u(r) ≥ u(s0) := c > 0 for some s0 > R and for
all r ≥ s0, so that

(rN−1um−1
r )r ≤ −cprN−1, r ≥ s0,

in turn, by integration from s to r, with s0 < s < r, we arrive at

(ur(r))
m−1 ≤ sN−1

rN−1 (ur(s))
m−1 − cp

N

(
r − sN

rN−1

)
,

which implies ur(r) → −∞, thus u(r) → −∞ as r → ∞, a contradiction.
Therefore, w(r) → l ∈ (0,∞] as r → ∞ and there exists rl > R such that
ur(r) < 0 on (rl,∞), so that w = rN−1|ur|m−1 > 0 on (rl,∞). By (46), we have
for M > 0

wr ≥ Mr− (N−1)(q−m+1)
m−1 w

q
m−1 ,

yielding

(w− q−m+1
m−1 )r ≤ −q − m + 1

m − 1
Mr− (N−1)(q−m+1)

m−1 .(47)

Integrating (47) on (s, r) with s > rl, if q = N(m−1)
N−1 , we obtain

w− 1
N−1 (r) −w− 1

N−1 (s) ≤ − M
N − 1

ln
r
s
,(48)

while if q < N(m−1)
N−1 , we have

(49)
w− q−m+1

m−1 (r) −w− q−m+1
m−1 (s)

≤ − M(q − m + 1)
N(m − 1) − q(N − 1)

(r
N(m−1)−q(N−1)

m−1 − s
N(m−1)−q(N−1)

m−1 ).

Letting r → ∞, we obtain that both right-hand sides of (48) and (49) tend to −∞,
with N(m − 1) − q(N − 1) > 0, namely

w− 1
N−1 (r), w− q−m+1

m−1 (r) → ∞ as r → ∞.

This contradicts limr→∞w(r) = l > 0, concluding the proof of (B).
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(C) Let u(x) = u(r) be a positive radial solution of (1) in R
N \ BR. Arguing as

in (B), there exists rl > R such that ur(r) < 0 on (rl,∞). By (46), with M ≥ 0, we
have for r > ρ1 := 2rl

rN−1|ur(r)|m−1 ≥
∫ r

r
2

τN−1up(τ)dτ ≥ rNup(r)
N

(
1 − 1

2N

)
≥ rNup(r)

2N
,

yielding

(u− p−m+1
m−1 )r ≥ p − m + 1

m − 1

( r
2N

) 1
m−1
.(50)

Integrating (50) on ( r
2, r) we obtain

u(r) ≤ c0r
− m

p−m+1 , r > 2ρ1,(51)

with

c0 = (2N)
1

p−m+1 (1 − 2− m
m−1 )−

m−1
p−m+1

( m
p − m + 1

) m−1
p−m+1

,

which yields (42).
To prove (43), we set

v(t) = u(t−
m−1
N−m )

with t ∈ (0, ρ
− N−m

m−1
1 ). By (51) we see that v(t) → 0 as t → 0+. By (46), using that

vt(t) = − m − 1
N − m

ur(r)r
N−1
m−1 ,

and r = t− m−1
N−m , we obtain

vtt(t) =
m − 1

(N − m)2
r

2(N−1)
m−1

[
(m − 1)urr +

N − 1
r

ur

]

=
m − 1

(N − m)2
r

(3−m)(N−1)
m−1 |ur|2−m(rN−1|ur|m−2ur)r ≤ 0.

Using the mean value theorem in (0, t), we derive, with vt increasing since ur < 0,

vt(t) ≤ v(t)
t
,

so that, replacing the expression of vt, we obtain the following

|ur(r)| ≤ N − m
m − 1

t
N−1
N−m
v(t)
t

=
N − m
m − 1

v(t)

t− m−1
N−m

=
N − m
m − 1

u(r)
r
, r > 2ρ1,

so that, using (42) with ρ = 2ρ1, then (43) follows immediately.
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(D) Let u be a radial positive solution of (1) in R
N \ BR, R > 0. Arguing as in

the first part of (B), but now assuming q > N(m−1)
N−1 , inequality (49) is still valid, so

that letting r → ∞ on both sides of (49), we obtain that there exists ρ such that
for all s > ρ

2

l−
q−m+1
m−1 −w− q−m+1

m−1 (s) ≤ − M(q − m + 1)
q(N − 1) − N(m − 1)

s− q(N−1)−N(m−1)
m−1 ,

hence

w(s) ≤
(q(N − 1) − N(m − 1)

M(q − m + 1)

) m−1
q−m+1

s
q(N−1)−N(m−1)

q−m+1 , s >
ρ

2
,

thus, from w(r) = rN−1|wr(r)|m−1, we get

|ur(r)| ≤
(q(N − 1) − N(m − 1)

M(q − m + 1)

) 1
q−m+1

r− 1
q−m+1 , r >

ρ

2
,

which yields (44). Then (45) follows by integrating (44) from r to ∞. �

Proof of Theorem 1.5. Let u be a positive supersolution of (1) in B
c
R for

some R > 0. By Proposition 3.1 (A), we know that when M ≥ 0, the result is
valid, even in a larger range for p. Thus, let us deal with the remaining case M < 0
and N = m with p > m − 1 or N > m with m − 1 < p < N(m−1)

N−m .
Setting u = v σ with σ > 1, we obtain

−�mv ≥ (σ− 1)(m − 1)
|∇v|m
v

+ σ1−mv m+σ(p−m+1)−1

+ Mσq−m+1v (σ−1)(q−m+1)|∇v|q,
and then setting z = |∇v|m yields

−�mv ≥ σ1−m�(z)
v

,(52)

where

�(z) = σm−1(σ− 1)(m − 1)z + Mσqv (σ−1)(q−m+1)+1z
q
m + v m+σ(p−m+1).

Since q = mp
p+1 , it is easy to see that �(z) achieves its minimum at

z0 =
( |M|pσ1− m

p+1

(σ− 1)(m − 1)(p + 1)

)p+1
v m+σ(p−m+1),

and

�(z0) =
[
1 −

( |M|
p + 1

)p+1( σp
(σ− 1)(m − 1)

)p]
v m+σ(p−m+1).(53)
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For the case of N > m, we choose σ such that

m + σ(p − m + 1) − 1 =
N(m − 1)
N − m

,

namely

σ =
m(m − 1)

(N − m)(p − m + 1)
,

in turn σ > 1 by p < N(m−1)
N−m and

�(z) ≥ �(z0) =
[
1 −

( |M|
p + 1

)p+1( mp
N(m − 1) − p(N − m)

)p]
v

N(m−1)
N−m +1.

We derive that if |M| < μ∗(N), where μ∗(N) is given in (15), then inequality (52)
gives

(54) −�mv ≥ δv
N(m−1)
N−m in R

N \ BR,

for some δ > 0. Hence, Proposition 3.1 (A) yields the required contradiction,
since no positive solutions of (54) can exist in exterior domains of RN .

If N = m, for a fixed σ > 1, if

|M| < (p + 1)
( (σ− 1)(m − 1)

σp

) p
p+1

:= μ∗
m,(55)

then, from (52) and (53), we have

−�mv ≥ δv m+σ(p−m+1)−1 in R
N \ BR

for some δ > 0. Since m+σ(p−m+1)−1 > 0, then the result follows immediately
from Proposition 3.1 (A). In particular,

μ∗
m → μ∗(m) = (p + 1)

(m − 1
p

) p
p+1

as σ → ∞,

thus, choosing σ large enough, condition M > −μ∗(N) holds also for N = m. �

Proof of Theorem 1.6. We perform the proof by a contradiction argument.
Let us assume that there exists a positive supersolution u of (1) satisfying (16).
Without loss of generality, let us assume that u > 1 in �, otherwise, we could
replace � with the set {u > 1}. Take v = log u, so that v is positive with u > 1.
By q = mp

p+1 , we obtain

−�mv ≥ F(|∇v|m),(56)

where
F(X) = (m − 1)X + e(p−m+1)v + Me(q−m+1)v X

p
p+1 .
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Obviously F(X) > 0 for any X ≥ 0 when M ≥ 0. On the other hand, in the case
M < 0, it is not hard to see that F(X) achieves its minimum at

X0 =
( |M|p

(m − 1)(p + 1)

)p+1
e(p−m+1)v ,

and

F(X) ≥ F(X0) =
[
1 −

( p
m − 1

)p( |M|
p + 1

)p+1]
e(p−m+1)v

for all X ≥ 0. Therefore, if

|M| ≤ (p + 1)
(m − 1

p

) p
p+1

= μ∗(m),(57)

where μ∗ is as in (15), then F(X0) ≥ 0, so that we see that v solves⎧⎨
⎩−�mv ≥ 0, in �,

limdist(x,∂�)→0 v(x) = ∞.
(58)

Clearly, when � is bounded, v is larger than the m-harmonic function with any
boundary value k > 0. Letting k → ∞ we derive a contradiction.

When � is an exterior domain, namely � = R
N \ BR, so that �c = BR, we may

assume BR1 ⊂ �c ⊂ BR2 for some R2 > R1 > 0. Define

d =
(N − 1)(R2 − R1)

(m − 1)R1
+ 1 > 0

and

w(x) = (R2 − |x|)d, in BR2\�c.

We have

−�mw = dm−1(R2 − |x|)d(m−1)−m
[
(N − 1)

R2 − |x|
|x| − (d − 1)(m − 1)

]
,

thus the choice of d and the decreasing monotonicity of (R2 − y)/y in (R1,R2) give
that w is a solution of ⎧⎪⎪⎨

⎪⎪⎩
−�mw ≤ 0, in BR2\�c,

w ≤ (R2 − R1)d, on ∂�,

w = 0, on ∂BR2 .

(59)

Hence by the weak comparison principle in [35, Lemma 2.2], we get v ≥ kw in
BR2\�c for any k > 0. Letting k → ∞ we derive a contradiction once again. �
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Proof of Theorem 1.7. Let u ∈ C2(� \ {0}) be a positive solution of (1)
in � \ {0}. Let B̄1 ⊂ �. By [1, Theorem 1.1],

um−1 ∈ M
N

N−m (B1), |∇u|m−1 ∈ M
N

N−1 (B1),

where Mr = Lr,∞ denotes the Marcinkiewicz space or Lorentz space of index
(r,∞). In order to fit with Serrin’s formalism, we write (1) as

−�mu = Dum−1 + E|∇u|m−1,

where D = up−m+1 and E = M|∇u|q−m+1. Then

D ∈ M
N(m−1)

(N−m)(p−m+1) (B1), E ∈ M
N(m−1)

(N−1)(q−m+1) (B1).

Since m − 1 < p < N(m−1)
N−m and m − 1 < q < N(m−1)

N−1 , we have

N(m − 1)
(N − m)(p − m + 1)

>
N
m
,

N(m − 1)
(N − 1)(q − m + 1)

> N.(60)

Since Mr(B1) ↪→ Lr−δ(B1) for any r > δ > 0, we infer that

D ∈ L
N
m +δ(B1), E ∈ LN+δ(B1).

Thus u verifies the Harnack inequality in B1\{0} by [34, Theorem 5]. This implies
that

max|x|=r
u(x) ≤ K min|x|=r

u(x), ∀r ∈ (0, 1/2],(61)

where K > 0 depends on the norms of D and E.
Moreover, since u(x) = u(r) on {x : |x| = r} is m-superharmonic when M ≥ 0,

i.e., −(rN−1|ur|m−2ur)r ≥ 0, there exists some k > 0 such that

(62) u(r) ≤ kr
m−N
m−1 .

Indeed, by monotonicity decreasing of rN−1|ur|m−2ur, there exists k0 > 0 such that

rN−1|ur|m−2ur ≥ −k0,

which yields

ur ≥ −k
1

m−1
0 r

1−N
m−1 , for r ∈ (0, 1].(63)

Integrating (63) on (r, 1), we obtain

u(1) − u(r) ≥ k(1 − r
m−N
m−1 ),
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where k = k
1

m−1
0

m−1
N−m . It follows that

u(r) ≤ u(1) − k + kr
m−N
m−1 ≤ k′r

m−N
m−1 ,(64)

in a suitable right neighborhood of 0, with m < N, so that (62) holds.

Combining with (61), we arrive

u(x) ≤ Kk|x|m−N
m−1 .

According to (60) and (3), we see that the function g := |u|p−1u + M|∇u|q satisfies
the (φ,m)-scaling-growthproperty definedby [37, Definition 3.1], thus the estimate
on the gradient is standard and follows [37, Lemma 3.3.2]. �

4 Proof of Theorem 1.9

Proof of Theorem 1.9. Let u be a positive solution of (1) . Set v = u− 1
β , with

β 	= 0 to be determined later and let z = |∇v|2. Then

�mv = (β + 1)(m − 1)
z

m
2

v
+

|β|2−m

β
vσ + M|β|q−mβvsz

q
2 ,(65)

where ⎧⎨
⎩σ = m − β(p − m + 1) − 1,

s = (β + 1)(m − q − 1).
(66)

By (65), we obtain

(67)

z2−m(�mv)
2 = (β + 1)2(m − 1)2

z2

v 2
+ β2(1−m)v 2σz2−m

+ M2β2(q−m+1)v 2szq−m+2 + 2M|β|q−2m+2v σ+sz
q
2 −m+2

+ 2M|β|q−mβ(β + 1)(m − 1)v s−1z
q−m

2 +2

+
2|β|2−m

β
(β + 1)(m − 1)v σ−1z2− m

2 ,

(68)

z1− m
2 〈∇�mv,∇v〉

= −(β + 1)(m − 1)
z2

v 2
+
σ|β|2−m

β
v σ−1z2− m

2 + sM|β|q−mβv s−1z
q−m

2 +2

+
q
2
M|β|q−mβv sz

q−m
2 〈∇z,∇v〉 +

m
2

(β + 1)(m − 1)
〈∇z,∇v〉

v
,
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and

(69)

z− m
2�mv〈∇z,∇v〉

= (β + 1)(m − 1)
〈∇z,∇v〉

v

+
|β|2−m

β
v σz− m

2 〈∇z,∇v〉

+ M|β|q−mβv sz
q−m

2 〈∇z,∇v〉.

Substituting (67), (68) and (69) into (27), we derive

(70)

1
2

Av(z) +
( (β + 1)(m − 1)

N
− 1

)
(β + 1)(m − 1)

z2

v 2

+
(
σ +

2(β + 1)(m − 1)
N

) |β|2−m

β
v σ−1z2− m

2

+
(
s +

2(β + 1)(m − 1)
N

)
M|β|q−mβv s−1z

q−m
2 +2

+
1

Nβ2(m−1)
v 2σz2−m +

M2β2(q−m+1)

N
v 2szq−m+2

+
2M|β|q−2m+2

N
v σ+sz

q
2 −m+2

− (N + 2)(m − 2)
2N

|β|2−m

β
v σz− m

2 〈∇z,∇v〉

+
(q
2

− (N + 2)(m − 2)
2N

)
M|β|q−mβv sz

q−m
2 〈∇z,∇v〉

+
(m

2
− (N + 2)(m − 2)

2N

)
(β + 1)(m − 1)

〈∇z,∇v〉
v

+
(2N + m − 2)(m − 2)

4N
〈∇z,∇v〉2

z2

− m − 2
4

|∇z|2
z

≤ 0, on {z > 0}.

Afterwards, set Y = v λz on {z > 0} for some parameter λ to be determined later.
In order to replace Av(z) by Av(Y), we first calculate

(71)
−�z = λv−λ−1Y�v − λ(λ + 1)v−2λ−2Y2

+ 2λv−λ−1〈∇v,∇Y〉− v−λ�Y,

where we have used that

v−2λ−2Y|∇v|2 = v−λ−2Y2.
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Furthermore, reading the m-Laplacian as �mv = div(z
m
2 −1∇v), we get

�v = z1− m
2�mv − m − 2

2
〈∇z,∇v〉

z
.

Then using

(72) 〈∇z,∇v〉 = −λv−2λ−1Y2 + v−λ〈∇v,∇Y〉,

and (65), we obtain

(73)
�v =

[λ(m − 2)
2

+ (β + 1)(m − 1)
]
v−λ−1Y +

|β|2−m

β
v σ−λ(1− m

2 )Y1− m
2

+ M|β|q−mβv s−λ( q−m
2 +1)Y

q−m
2 +1 − m − 2

2
〈∇v,∇Y〉

Y
.

Replacing (73) into (71), we obtain

(74)

−�z = λ
[
λ
(m

2
− 2

)
+ β(m − 1) + m − 2

]
v−2λ−2Y2

+
λ|β|2−m

β
v σ−λ(2− m

2 )−1Y2− m
2

+ λM|β|q−mβv s−λ( q−m
2 +2)−1Y

q−m
2 +2

+ λ
(
3 − m

2

)
v−λ−1〈∇v,∇Y〉− v−λ�Y.

Next, we focus on 〈D2z∇v,∇v〉
z . In view of (31), we have

(75) 〈D2z∇v,∇v〉 = 〈∇〈∇z,∇v〉,∇v〉− 1
2
|∇z|2,

and using (72) we get

〈∇〈∇z,∇v〉,∇v〉 = λ(2λ + 1)v−3λ−2Y3 − 3λv−2λ−1Y〈∇v,∇Y〉
+ v−λ〈∇〈∇v,∇Y〉,∇v〉,

and, as in (32) and using ∇z = 2D2v∇v, we arrive at

⎧⎨
⎩〈∇〈∇v,∇Y〉,∇v〉 = 〈D2Y∇v,∇v〉 + 1

2〈∇z,∇Y〉,
〈∇z,∇Y〉 = −λv−λ−1Y〈∇v,∇Y〉 + v−λ|∇Y|2.
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Then, by (75),

〈D2z∇v,∇v〉 = λ(2λ + 1)v−3λ−2Y3 − 7λ
2
v−2λ−1Y〈∇v,∇Y〉

+ v−λ〈D2Y∇v,∇v〉 +
1
2
v−2λ|∇Y|2 − 1

2
|∇z|2.

Thus

(76)

〈D2z∇v,∇v〉
z

= λ(2λ + 1)v−2λ−2Y2 − 7λ
2
v−λ−1〈∇v,∇Y〉

+
〈D2Y∇v,∇v〉

Y
+

1
2
v−λ |∇Y|2

Y
− 1

2
|∇z|2

z
.

Combining (74) and (76), we derive

(77)

Av(z) = −�z − (m − 2)
〈D2z∇v,∇v〉

z

= v−λAv(Y) + λ
[
λ
(
2 − 3m

2

)
+ β(m − 1)

]
v−2λ−2Y2

+
λ|β|2−m

β
v σ−λ(2− m

2 )−1Y2− m
2 + λM|β|q−mβv s−λ( q−m

2 +2)−1Y
q−m

2 +2

+ λ(3m − 4)v−λ−1〈∇v,∇Y〉− m − 2
2

v−λ |∇Y|2
Y

+
m − 2

2
|∇z|2

z
.

Replacing into (70) the following expressions,

z2

v 2
= v−2λ−2Y2,

v σ−1z2− m
2 = v σ−λ(2− m

2 )−1Y2− m
2 ,

v s−1z
q−m

2 +2 = v s−λ( q−m
2 +2)−1Y

q−m
2 +2,

v 2σz2−m = v 2σ−λ(2−m)Y2−m,

v 2szq−m+2 = v 2s−λ(q−m+2)Yq−m+2,

v σ+sz
q
2 −m+2 = v σ+s−λ( q

2 −m+2)Y
q
2 −m+2,

v σz− m
2 〈∇z,∇v〉 = −λv σ−λ(2− m

2 )−1Y2− m
2 + v σ−λ(1− m

2 )Y− m
2 〈∇v,∇Y〉,

v sz
q−m

2 〈∇z,∇v〉 = −λv s−λ( q−m
2 +2)−1Y

q−m
2 +2 + v s−λ( q−m

2 +1)Y
q−m

2 〈∇v,∇Y〉,
〈∇z,∇v〉

v
= −λv−2λ−2Y2 + v−λ−1〈∇v,∇Y〉,

〈∇z,∇v〉2
z2

= λ2v−2λ−2Y2 − 2λv−λ−1〈∇v,∇Y〉 +
〈∇v,∇Y〉2

Y2
,
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we get an estimate from above for Av(z), precisely

(78)

Av(z)≤
{
2(β+1)(m−1)

[
λ
(m

2
− (N + 2)(m − 2)

2N

)
−

( (β + 1)(m − 1)
N

− 1
)]

− λ2
(
m − 2 +

(m − 2)2

2N

)}
v−2λ−2Y2

−
[
2σ+

4(β+1)(m−1)
N

+λ
(N + 2)(m − 2)

N

] |β|2−m

β
v σ−λ(2− m

2 )−1Y2− m
2

−
[
2s +

4(β+1)(m−1)
N

− λ
(
q − (N + 2)(m − 2)

N

)]
× M|β|q−mβv s−λ( q−m

2 +2)−1Y
q−m

2 +2

− 2
Nβ2(m−1)

v 2σ−λ(2−m)Y2−m − 2
M2β2(q−m+1)

N
v 2s−λ(q−m+2)Yq−m+2

− 4M
N

|β|q−2m+2v σ+s−λ( q
2 −m+2)Y

q
2 −m+2

−
[
2(β + 1)(m − 1)

(
1 − m − 2

N

)
−λ(m − 2)

(
2 +

m − 2
N

)]
× v−λ−1〈∇v,∇Y〉

+
(N + 2)(m − 2)

N
|β|2−m

β
v σ−λ(1− m

2 )Y− m
2 〈∇v,∇Y〉

−
(
q − (N + 2)(m − 2)

N

)
M|β|q−mβv s−λ( q−m

2 +1)Y
q−m

2 〈∇v,∇Y〉

− (2N + m − 2)(m − 2)
2N

〈∇v,∇Y〉2
Y2

+
m − 2

2
|∇z|2

z
, for z > 0.

Replacing (77) in (78) we deduce that for some positive constant

c6 = c6(N,m, q, β, λ),

the following holds:

(79)

v−λAv(Y) + L1v
−2λ−2Y2 + L2v

σ−λ(2− m
2 )−1Y2− m

2

+ L3v
s−λ( q−m

2 +2)−1Y
q−m

2 +2 + L4v
2σ−λ(2−m)Y2−m

+ L5v
2s−λ(q−m+2)Yq−m+2 + L6v

σ+s−λ( q
2 −m+2)Y

q
2 −m+2

≤c6

{
(v−λ−1 + v σ−λ(1− m

2 )Y− m
2 )|〈∇v,∇Y〉| + 〈∇v,∇Y〉2

Y2
+ v−λ |∇Y|2

Y

}
+ L7v

s−λ( q−m
2 +1)Y

q−m
2 |〈∇v,∇Y〉|,
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where

L1 = λ2
( (m − 2)2

2N
− m

2

)
− λ(m − 1)

(
β + 2 − 2(β + 1)(m − 2)

N

)
+ 2(β + 1)(m − 1)

((β + 1)(m − 1)
N

− 1
)
,

L2 =
|β|2−m

β

{
λ
(
m − 1 +

2(m − 2)
N

)
+

4(β + 1)(m − 1)
N

+ 2σ
}
,

L3 = M|β|q−mβ
{
λ
(
m − q − 1 +

2(m − 2)
N

)
+

4(β + 1)(m − 1)
N

+ 2s
}
,

L4 =
2

Nβ2(m−1) , L5 =
2M2β2(q−m+1)

N
, L6 =

4M|β|q−2m+2

N
,

L7 =
(
q +

(N + 2)|m − 2|
N

)
M|β|q−m+1.

In particular, it results that L4, L5, L6, L7 > 0.

Multiplying (79) by v λ yields

(80)

Av (Y) + L1v
−λ−2Y2 + L2v

σ−λ(1− m
2 )−1Y2− m

2

+ L3v
s−λ( q−m

2 +1)−1Y
q−m

2 +2 + L4v
2σ+λ(m−1)Y2−m

+ L5v
2s−λ(q−m+1)Yq−m+2 + L6v

σ+s−λ( q
2 −m+1)Y

q
2 −m+2

≤c6

{
(v−1 + v σ+

mλ
2 Y− m

2 )|〈∇v,∇Y〉| + v λ 〈∇v,∇Y〉2
Y2

+
|∇Y|2

Y

}
+ L7v

s−λ q−m
2 Y

q−m
2 |〈∇v,∇Y〉|.

Now we estimate each term in the right-hand side of (80). For any ε > 0, using
that |∇v|2 = v−λY , we have

c6
|〈∇v,∇Y〉|

v
≤ v− λ

2 −1
√

Y|∇Y| ≤ εv−λ−2Y2 +
c2
6

4ε
|∇Y|2

Y

and
c6v

σ+ mλ
2 Y− m

2 |〈∇v,∇Y〉| ≤ c6v
σ+ λ

2 (m−1)Y
2−m

2 − 1
2 |∇Y|

≤ εv 2σ+λ(m−1)Y2−m +
c2
6

4ε
|∇Y|2

Y
.

Similarly, L5 being positive, we get

L7v
s−λ q−m

2 Y
q−m

2 |〈∇v,∇Y〉| ≤ L5

2
v 2s−λ(q−m+1)Yq−m+2 +

L2
7

2L5

|∇Y|2
Y

.

Note also that

v |!λ 〈∇v,∇Y〉2
Y2

≤ |∇Y|2
Y

.
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Hence, we obtain from (80) that

Av(Y) + H1 + H2 ≤ c7
|∇Y|2

Y
,(81)

where c7 = c7(N,m, q, β, λ) > 0, and

(82)

H1 := (L1 − ε)v−λ−2Y2 + L2v
σ−λ(1− m

2 )−1Y2− m
2

+ (L4 − ε)v 2σ+λ(m−1)Y2−m

= v−λ−2Y2[L1 − ε + L2v
σ+λ m

2 +1Y− m
2 + (L4 − ε)v 2σ+λm+2Y−m],

and

(83)
H2 := L3v

s−λ( q−m
2 +1)−1Y

q−m
2 +2 +

L5

2
v 2s−λ(q−m+1)Yq−m+2

+ L6v
σ+s−λ( q

2 −m+1)Y
q
2 −m+2.

Now fix
λ < −2, β > 0, 2(β + 1) + λ > 0.

By this choice, we immediately see that the positivity of H2 is ensured, indeed the
second and the third terms of H2 are positive, with L5, L6 > 0; it remains to prove
that L3 > 0. This latter follows by the positivity of

L′
3 = λ

(
m − q − 1 +

2(m − 2)
N

)
+

4(β + 1)(m − 1)
N

+ 2s.

Since s = (β + 1)(m− q − 1), by (66), and m − 1 < q < (N+2)(m−1)
N , by assumption,

then we obtain

L′
3 =

2λ(m − 2)
N

+
4(β + 1)(m − 1)

N
− (q − m + 1)[2(β + 1) + λ] > −2λ

N
> 0.

To estimate the term H1, we consider the following trinomial

Tε(t) = (L4 − ε)t2 + L2t + L1 − ε.

If its discriminant is strictly negative, then it is possible to find γ small enough
so that the discriminant of (L4 − ε − γ)t2 + L2t + L1 − ε − γ still remains strictly
negative; in turn we can conclude that there exists γ = γ(N,m, p, q, β, λ, ε) > 0
such that Tε(t) ≥ γ(t2 + 1), and hence

H1 = v−λ−2Y2Tε(v
σ+ mλ

2 +1Y− m
2 )

≥ γ(v−λ−2Y2 + v 2σ+λ(m−1)Y2−m).

Since λ < −2, we can define

S =
2σ + λ(m − 1)

λ + 2
= m − 1 +

p − m + 1
d

.

where d := −λ+2
2β > 0, by the choice of λ and β, so that S > m − 1.
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Since 2S−m+2
S+1 > 1, we have

Y
2S−m+2

S+1 = (v−λ−2Y2)
S

S+1 (v (λ+2)SY2−m)
1

S+1

≤ v−λ−2Y2 + v (λ+2)SY2−m

= v−λ−2Y2 + v 2σ+λ(m−1)Y2−m.

Therefore,

H1 ≥ γY
2S−m+2

S+1 .(84)

Combining with (81), (82), (83) and (84), we arrive at

Av(Y) + γY
2S−m+2

S+1 ≤ c7
|∇Y|2

Y
.(85)

By Lemma 2.1, we obtain

Y(x) ≤ c8(dist(x, ∂�))−
2(S+1)
S−m+1 = c8(dist(x, ∂�))−

2σ+mλ+2
σ−m+1 ,

where c8 = c8(S,m, γ, c7) > 0. It follows that

|∇ud(x)| ≤ c′
8(dist(x, ∂�))−

2σ+mλ+2
2(σ−m+1) = c′

8(dist(x, ∂�))−1− md
p−m+1 ,(86)

where c′
8 = c′

8(m, λ, β) > 0, which is exactly (20). The nonexistence of any
positive solution of (1) in R

N follows consequently.
It remains to prove that the discriminant of the trinomial Tε(t) is negative. The

discriminant is a polynomial of its coefficients. Hence it suffices to prove that the
discriminant of T0(t) is strictly negative to deduce the same property holds for Tε(t)
for small enough ε. Note that

T0(t) = L4t
2 + L2t + L1,

and its discriminant D = L2
2 − 4L1L4 satisfies

D = |β|2(1−m)
{[
λ
(
m − 1 +

2(m − 2)
N

)
+

4(β + 1)(m − 1)
N

+ 2σ
]2

− 8λ2

N

( (m − 2)2

2N
− m

2

)
+

8λ(m − 1)
N

(
β + 2 − 2(β + 1)(m − 2)

N

)
− 16

N
(β + 1)(m − 1)

( (β + 1)(m − 1)
N

− 1
)}
.

Using β + 1 = 2p+λ(m−1)−(λ+2)S
2(p−m+1) and σ = (λ+2)S−λ(m−1)

2 , we further compute

λ
(
m − 1 +

2(m − 2)
N

)
+

4(β + 1)(m − 1)
N

+ 2σ

=
1

N(p − m + 1)

× {4p(m − 1) + 2λ[m − 1 + p(m − 2)]

+ (λ + 2)S[N(p − m + 1) − 2(m − 1)]},
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β + 2 − 2(β + 1)(m − 2)
N

=
2p + λ(m − 1) − (λ + 2)S

2N(p − m + 1)
[N − 2(m − 2)] + 1,

and

(β + 1)(m − 1)
( (β + 1)(m − 1)

N
− 1

)
=

(m − 1)[2p + λ(m − 1) − (λ + 2)S]
4N(p − m + 1)2

× {(m − 1)[2p + λ(m − 1) − (λ + 2)S] − 2N(p − m + 1)}.

Thus

D =
β2(1−m)

N(p − m + 1)
{(λ + 2)2[N(p − m + 1) − 4(m − 1)]S2

+ 4(λ + 2)[λp(m − 2) + 2(m − 1)(p − 1)]S

+ 4λ2(p − m + 1) + 4(λ + 2)2p(m − 1)}.

Since λ + 2 	= 0, we set � = λ
λ+2 . By the choice of λ it follows that � > 1. In turn,

using also that 1/(λ + 2) = (1 − �)/2 < 0, we arrive at

D =
(λ + 2)2β2(1−m)

N(p − m + 1)
{[N(p − m + 1) − 4(m − 1)]S2 − 4(p − m + 1)�S

+ 4(m − 1)(p − 1)S + 4(p − m + 1)�2 + 4p(m − 1)},

which is equivalent to

D =
(λ + 2)2β2(1−m)

N(p − m + 1)

{
4(p − m + 1)

(
�− S

2

)2
+ D1(S)

}
,

where

D1(S) := [(N − 1)(p − m + 1) − 4(m − 1)]S2 + 4(m − 1)(p − 1)S + 4p(m − 1).

Fix � = S
2 , hence β = λ(m−3)+2(m−1)

2(p−m+1) . As the coefficient of S2 in D1(S) is negative if

p < (N+3)(m−1)
N−1 , we can choose S large enough, namely λ < −2 such that |λ + 2| is

small enough, to reach D1(S) < 0. In particular, condition 2(β + 1) + λ > 0 holds
true for λ → −2− being equivalent to (λ + 2)p − 2λ > 0. Consequently D < 0,
concluding the proof of the positivity of Tε.
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of quasilinear Hamilton–Jacobi equations, J. Funct. Anal. 267 (2014), 3294–3331.
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with reaction terms involving the function and its gradient, Math. Ann. 378 (2020), 13–56.
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