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Abstract. We study perturbations of non-recurrent parameters in the expo-
nential family. It is shown that the set of such parameters has Lebesgue measure
zero. This particularly implies that the set of escaping parameters has Lebesgue
measure zero, which complements a result of Qiu from 1994. Moreover, we show
that non-recurrent parameters can be approximated by hyperbolic ones.

1 Introduction and main results

In this paper we study the exponential family

fλ(z) = λez for λ ∈ C \{0}.
Regarded as the simplest transcendental functions, they have attracted a lot of
attention in transcendental dynamics since 1980s (see [Ber93] for an introduction
to the field). Considerable effort has been put to explore this family by Devaney
and his coauthors (see [Dev84, DK84] for instance), Baker and Rippon [BR84],
Rempe [Rem03], etc. Currently we have a good understanding of these functions
both in the dynamical and parameter spaces. Several challenging problems are,
however, still open up to now. For instance, it is unknown whether the bifurcation
locus of the exponential family has Lebesgue measure zero. Our paper can be
viewed as a contribution to this problem.

We will focus on parameters λ for which the only singular value 0 is in the
Julia set and the ω-limit set of 0 does not contain itself. Such parameters are
called non-recurrent. We first show that non-recurrent dynamics are rare in the
Lebesgue sense.

Theorem 1. The set of non-recurrent parameters in the exponential family
has zero Lebesgue measure.

We make several remarks on this result. Let J(fλ) be the Julia set of fλ.
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2 M. ASPENBERG AND W. CUI

Remark 1.

• Badeńska considered parameters in the exponential family with bounded
post-singular sets (called post-singularly bounded parameters) and
proved a similar result [Bad11, Theorem1] for such parameters. This implies
directly that such parameters are non-recurrent in the above sense. So our
theorem gives a generalization of her result.

• A parameter λ is escaping if f n
λ (0) → ∞ as n → ∞. Qiu proved in 1994

that the set of escaping parameters has Hausdorff dimension two [Qiu94]. It
was, however, unknown since then whether this set has Lebesgue measure
zero (which is the motivation of the present paper). Our result confirms this
and thus complements his result, since escaping parameters are also non-
recurrent. However, escaping parameters may not be rare in the above sense
for general families of transcendental functions. In [Qiu94] it is shown that
the set of escaping parameters in the sine family {λ sin(z) : λ ∈ C \{0}} has
positive Lebesgue measure.

• Non-recurrent parameters are considerably more general due to the non-
compactness of the phase space. In the above settings, the singular value
either has a bounded orbit or tends to ∞ under iterates. Non-recurrent
parameters, however, can be post-singularly unbounded without being es-
caping. In other words, the singular orbit could possibly oscillate between
some compact set and ∞. So in this sense our result is more general.

• For non-recurrent parameters, we note the following difference between
escaping and non-escaping ones. For non-escaping non-recurrent maps, the
singular value belongs to the radial Julia set (and hence can go from small
scales to large scales by univalent iterates); see [RvS11, Section 3] and
[Rem09] for a discussion and related results on this set, while for escaping
parameters, the singular value does not lie in this set. (We are grateful to
Lasse Rempe for making this comment.)

Remark 2. In the study of exponential dynamics, one is often led to a compar-
ison with the (complex) quadratic family z �→ z2 + c which gives rise to the famous
Mandelbrot set. For quadratic polynomials, non-recurrence is equivalent to requir-
ing the post-critical set to be a hyperbolic set. However, for exponential maps,
that the post-singular set is a hyperbolic set means that the map is post-singularly
bounded. Thus, the notion of non-recurrence is weaker in the exponential setting.

A parameter λ is hyperbolic if fλ has an attracting cycle. One of the main
problems in the dynamics of exponential maps is whether hyperbolic exponential
maps are dense in the parameter space (density of hyperbolicity). This is
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still widely open. Equivalently, one asks if every non-hyperbolic map can be
approximated by hyperbolic maps. As an application of the argument used in the
proof of Theorem 1, we show that this is true for all non-recurrent parameters.

Theorem 2. Every non-recurrent exponential map can be approximated by
hyperbolic maps.

The result was partially known for some non-recurrent parameters; see, for
instance, Devaney [Dev85], Zhou and Li [ZL89] and Ye [Ye94]. Indeed, rigidity
implies that such parameters can be approximated by hyperbolic ones. For post-
singularly finite exponential maps, rigidity was known; see Benini [Ben11]. For
escaping parameters this was proved by Rempe in [Rem06].

Remark 3. Dobbs proved a result for post-singularly bounded parameters
[Dob15, Main Theorem], saying that such parameters are Lebesgue density points
of the set of hyperbolic maps. It is plausible that this is also true for non-recurrent
parameters.

We have mainly focused on non-recurrent exponential maps and their relevant
properties in this paper. The parameter space of the exponential family has a rich
structure and has attracted a lot of attention. Without going into any further details,
we refer to [EL92, DFJ02, Qiu94, UZ07, RS09, BBS08, Ben15, Ben11, LPS16,
Ber17] and references therein.

2 Preliminaries

In this section we give some preliminary results for non-recurrent exponential
maps. These include uniform expansion on the post-singular set and the existence
of a holomorphic motion along this orbit.

First we give some notations which will be used throughout this paper. We
will use D(a, r) for a Euclidean disk of radius r centered at a. Let dist(z,A) be
the Euclidean distance of a point z to a set A. The term Df n

λ (z) will always mean
the derivative of f n

λ at the point z (i.e., the phase derivative). Sometimes we also
use (f n

λ )′(z) as the samemeaning forDf n
λ (z). On the other hand, ∂λfλ(z) will mean the

derivative in λ (i.e., the parameter derivative). The complex plane is always denoted
by C. Moreover, measA is the two-dimensional Lebesgue measure of a set A ⊂ C

and dens(A,B) is the density of A in B, i.e., dens(A,B) = meas(A ∩ B)/meas(B).
By a ∼ b we mean that there exists a constant C > 0 such that 1

Cb ≤ a ≤ Cb.
Let fλ be an exponential map. The post-singular set of fλ is defined as

P(fλ) :=
⋃
n≥0

f n
λ (0).
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Recall that λ is called non-recurrent if 0 ∈ J(fλ) and 0 �∈ ω(0). In other
words, there exists � > 0 such that

(2.1) P(fλ) ∩ D(0,�) = {0}.
Note that non-recurrent exponential maps cannot have attracting or parabolic

cycles. That Siegel disks do not exist was proved by Rempe and van Strien [RvS11,
Corollary 2.10]. So we see that non-recurrent exponential maps have empty Fatou
sets.

Definition 2.1. fλ is said to be �-non-recurrent if there exists � > 0 such
that (2.1) holds. Equivalently, we say that such a parameter λ is �-non-recurrent.

One of the ingredients in the proof of our theorem is the expansion along the
post-singular set of non-recurrentmaps. The following result was provedby Benini
[Ben15, Corollary A].

Lemma 2.1. Let λ be a non-recurrent parameter. Then there exist Ñ ∈ N

and γ̃ > 1 such that for any k ≥ Ñ and for any z ∈ P(fλ) we have

|Df k
λ (z)| > γ̃.

Let λ be a �-non-recurrent parameter. Let Ñ, γ̃ be as in the above lemma.
For any integer n there exist k and j ∈ N such that n = kÑ + j, where k ≥ 0 and
0 ≤ j < Ñ. So for any z ∈ P(fλ) we see from the above lemma that

(2.2)

|Df n
λ (z)| = |Df k ˜N+j

λ (z)| = |Df k ˜N
λ (f j

λ(z))||Df j
λ(z)|

=
k−1∏
m=0

|Df
˜N

λ (f m˜N+j
λ (z))||Df j

λ(z)|

≥ γ̃k|Df j
λ(z)| = γ̃k

j∏
i=1

|f i
λ(z)|.

Since fλ is �-non-recurrent, we have
∏j

i=1 |f i
λ(z)| ≥ �j. Put

C̃ = min
{
1,

(�

γ̃

)
˜N}

.

We obtain from (2.2) that

(2.3) |Df n
λ (z)| ≥ C̃γ̃k = C̃γ̃(n−j)/˜N ≥ C̃γ̃(n−˜N)/˜N =

C̃
γ̃

γ̃n/˜N =: C1γ
n
1,

where γ1 > 1 and C1 > 0.
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More generally, a parameter λ is said to be summable, if 0 ∈ J(fλ) and

∞∑
n=0

1
|Df n

λ (0)| < ∞.

See [UZ07]. Therefore, for non-recurrent parameter λ, by taking z = 0 in (2.3) we
see that ∞∑

n=0

1
|Df n

λ (0)| ≤
∞∑
n=0

1
C1γ

n
1

< ∞.

In other words, we have

Lemma 2.2. Non-recurrent parameters are summable.

Relationship (2.3) tells that fλ is uniformly expanding along P(fλ). (We say
that a map f is uniformly expanding on a closed set E ⊂ C (which could be
unbounded), if there exist C > 0 and γ > 1 such that |Df n(z)| ≥ Cγn for all n and
for all z ∈ E. If E is also bounded, then such a set is often called a hyperbolic set.)

Let λ0 be non-recurrent. Then there exists η > 0 such that |Df n
λ0

(z)| > C1γ
n
1 for

all z ∈ N0, whereN0 := D(P(fλ0 ), 100η) is a neighborhood of P(fλ0 ). By continuity,
parameters close to λ0 also enjoy this property (but with possibly a slightly smaller
exponent). So we have the following.

Lemma 2.3. Let λ0 be a non-recurrent parameter. Then there exist r0 suf-

ficiently small and constants C > 0, γ > 1 such that for all r ≤ r0 and for all
λ ∈ D(λ0, r), whenever f j

λ(z) ∈ N := D(P(fλ0 ), 50η) for all j ≤ n we have

|Df n
λ (z)| ≥ Cγn.

The uniform expansion also implies the existence of a holomorphic motion
over P(fλ0 ) in a neighborhood of the parameter λ0.

Lemma 2.4 (Holomorphic motion). Let λ0 be non-recurrent. Then for suffi-

ciently small r > 0 there exists a holomorphic motion

h : D(λ0, r) × P(fλ0 ) → C

such that hλ0 is identity, h is holomorphic inλ and injective in z. For allλ ∈ D(λ0, r),
we have

hλ ◦ fλ0 = fλ ◦ hλ

for z ∈ P(fλ0 ). Moreover, there exists a constant α > 0 such that

|hλ(z) − z| ≤ α|λ − λ0|
for any z ∈ P(fλ0 ) and λ ∈ D(λ0, r).
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Proof. Let N0 be the neighborhood of P(fλ0 ) as above. Then by the above
Lemma 2.3, we see that fλ is uniformly expanding in N, where λ ∈ D(λ0, r). By
taking r1 > 0 sufficiently small such that D(z, r1) ⊂ N for all z ∈ P(fλ0 ) and
using the expansion of fλ0 in N, we can choose a sufficiently small r such that the
following holds: For all λ ∈ D(λ0, r) and all z ∈ N we have

D(fλ0 (z), r1) ⊂ fλ(D(z, r1)).

This means that the pullback f−n
λ (D(z, r1)) of D(z, r1) under f n

λ shrinks exponen-
tially, where the inverse branch of fλ is taken suitably. Therefore, we can find for
each z ∈ P(fλ0 ) a unique point zλ such that f n

λ (zλ) ∈ D(f n
λ0

(z), r1) for all n. Put
hλ(z) := zλ. It follows from the construction of hλ that

hλ ◦ fλ0 = fλ ◦ hλ

for z ∈ P(fλ0 ). Moreover, hλ is injective in z. That h is holomorphic in λ can be
seen by looking at zn

λ := f−n
λ (f n

λ0
(z)). By the above argument zn

λ converges to zλ

uniformly as n → ∞. So h is indeed holomorphic in λ. To sum up, h(λ, z) thus
defined is a holomorphic motion.

The last statement of the lemma follows from the above construction. Observe
first that

(2.4) |w1
λ − w| = | log(λ/λ0)|

holds for any w ∈ P(fλ0 ). Let z and zλ be as above. So we have

(2.5)

|hλ(z) − z| = |zλ − z| ≤ |z1
λ − z| +

∞∑
n=1

|zn+1
λ − zn

λ|

≤ |z1
λ − z| +

∞∑
n=1

1
|Df n

λ (z)||f
n
λ0

(z) − f−1
λ (f n+1

λ0
(z))|

≤
(

1 +
∞∑
n=1

1
Cγn

)∣∣∣log
λ

λ0

∣∣∣
≤ α|λ − λ0|.

In the second inequality of the above estimate, we have taken the inverse branch
of fλ sending f n

λ0
(z) to f n+1

λ0
(z). In the third inequality, we used Lemma 2.3

and (2.4). Since r > 0 is taken sufficiently small, so we have the local ex-
pansion: | logλ/λ0| ∼ |λ − λ0|. This, together with the fact that γ > 1, gives the
constant α. �
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The holomorphic motion and the expansion together imply that any two points
inN will repel each other for all maps in D(λ0, r). Our analysis later tells that more
information can be drawn during this process. For this purpose, we will specify a
number δ > 0 such that the set of all points z satisfying dist(z, hλ(P(fλ0 ))) < 10δ is
contained in N for all λ ∈ D(λ0, r). For instance, one can choose δ < 2η so that
Lemmas 2.3 and 2.4 hold.

Using the above lemma, we have the following result.

Lemma 2.5. Let λ0 be non-recurrent. Then there exist r > 0 sufficiently

small, constants C and γ > 1 such that for any λ ∈ D(λ0, r) we have

|f n
λ (z) − f n

λ (w)| ≥ Cγn|z − w|,
if f j

λ(z), f j
λ(w) ∈ N and |f j

λ(z) − f j
λ(w)| ≤ δ for all j ≤ n.

3 Phase-parameter relation and distortions

In this section we prove some distortion results by using the expansion property
in the previous section. This, together with a transversality result of Urbański
and Zdunik [UZ07], gives us sufficiently good control over the distortion in the
parameter space.

3.1 Distortions. Define

(3.1) ξn(λ) := f n
λ (0).

Now we assume that λ0 is a �0-non-recurrent parameter for some �0 > 0. Let
D(λ0, r) be a disk of radius r around λ0 for some sufficiently small r > 0. For
simplicity we put �0 := P(fλ0 ). We also define

μn(λ) = hλ(ξn(λ0)),

where hλ is the holomorphic motion in Lemma 2.4.
We shall use the following simple lemma.

Lemma 3.1. Let ak ∈ C for 1 ≤ k ≤ n. Then∣∣∣∣
n∏

k=1

(1 + ak) − 1
∣∣∣∣ ≤ exp

( n∑
k=1

|ak|
)

− 1.

Lemma 3.2. Let λ0 be non-recurrent. For any ε > 0 there exist δ > 0
and r > 0 sufficiently small such that for any λ ∈ D(λ0, r), if ξj(λ), μj(λ) ∈ N

and |ξj(λ) − μj(λ)| ≤ δ for all 0 ≤ j ≤ n, then∣∣∣ (f n
λ )′(μ0(λ))

(f n
λ )′(ξ0(λ))

− 1
∣∣∣ < ε.
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Proof. By the chain rule,

(3.2)

∣∣∣ (f n
λ )′(μ0(λ))

(f n
λ )′(ξ0(λ))

− 1
∣∣∣ =

∣∣∣∣
n−1∏
j=0

f ′
λ(f

j
λ(μ0(λ)))

f ′
λ(f

j
λ(ξ0(λ)))

− 1
∣∣∣∣

=
∣∣∣∣
n−1∏
j=0

(
1 +

f ′
λ(f

j
λ(μ0(λ)))

f ′
λ(f

j
λ(ξ0(λ)))

− 1
)

− 1
∣∣∣∣.

We put

vj :=
f ′
λ(f

j
λ(μ0(λ)))

f ′
λ(f

j
λ(ξ0(λ)))

− 1 =
f ′
λ(μj(λ))
f ′
λ(ξj(λ))

− 1.

By Lemma 3.1, to show that (3.2) can be made arbitrarily small, it suffices to
prove that

∑n−1
j=0 |vj| is sufficiently small. Note first that

f ′
λ(ξj(λ)) = fλ(ξj(λ))) = ξj+1(λ) and f ′

λ(μj(λ)) = fλ(μj(λ)) = μj+1(λ).

So,
n−1∑
j=0

|vj| =
n−1∑
j=0

∣∣∣ f ′
λ(μj(λ))
f ′
λ(ξj(λ))

− 1
∣∣∣ =

n−1∑
j=0

∣∣∣μj+1(λ)
ξj+1(λ)

− 1
∣∣∣.

By the �0-non-recurrence of fλ0 and Lemma 2.3, we have

n−1∑
j=0

|vj| ≤ 2
�0

n−1∑
j=0

|μj+1(λ) − ξj+1(λ)|

≤ 2
�0

n−1∑
j=0

1
C

γj+1−n|μn(λ) − ξn(λ)|

≤ 2
�0

C1(γ)δ.

Here C1(γ) > 0 is a constant depending on γ. Now since δ can be made arbitrarily
small we see that (3.2) is also small. This completes the proof of the lemma. �

Lemma 3.3. Let λ0 be non-recurrent. For any ε > 0 there exist δ > 0
and r > 0 sufficiently small such that for any λ1, λ2 ∈ D(λ0, r), if ξj(λi), μj(λi) ∈ N

and |ξj(λi) − μj(λi)| ≤ δ for i = 1, 2 and all 0 ≤ j ≤ n, then∣∣∣ (f n
λ1

)′(0)

(f n
λ2

)′(0)
− 1

∣∣∣ < ε.

Proof. The proof is similar to the proof of the above lemma. First we note
that by Lemma 3.2 it suffices to show the following holds:

(3.3)
∣∣∣Df n

λ1
(μ0(λ1))

Df n
λ2

(μ0(λ2))
− 1

∣∣∣ =

∣∣∣∣
n−1∏
j=0

f ′
λ1

(μj(λ1))

f ′
λ2

(μj(λ2))
− 1

∣∣∣∣ =

∣∣∣∣
n−1∏
j=0

μj+1(λ1)
μj+1(λ2)

− 1

∣∣∣∣ < ε.
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With

wj =
μj+1(λ1)
μj+1(λ2)

− 1,

it is enough to show, by Lemma 3.1, that
∑n−1

j=0 |wj| is sufficiently small. By the
�0-non-recurrence of fλ0 and Lemma 2.4, we have

|wj| ≤ 2
�0

|μj+1(λ1) − μj+1(λ2)|

=
2

�0
|hλ1 (ξj+1(λ0)) − hλ2 (ξj+1(λ0))|

≤ 2
�0

(|hλ1 (ξj+1(λ0)) − hλ0 (ξj+1(λ0)| + |hλ2 (ξj+1(λ0)) − hλ0 (ξj+1(λ0)|)

≤ 2α

�0
(|λ1 − λ0| + |λ2 − λ0|).

So we have

(3.4)
n−1∑
j=0

|wj| ≤ 2α

�0
n(|λ1 − λ0| + |λ2 − λ0|).

Now it follows from Lemma 2.5, that for λ ∈ D(λ0, r) we also have

(3.5)

δ ≥ |ξn(λ) − μn(λ)| = |f n
λ (ξ0(λ)) − f n

λ (μ0(λ))|
≥ Cγn|ξ0(λ) − μ0(λ)|
= Cγn|hλ(0)|,

where hλ is the holomorphic motion and thus has the local expansion

(3.6) hλ(0) = aK(λ − λ0)
K + O((λ − λ0)

K+1)

for some constant aK and K ∈ N. Combining (3.5) with (3.6) we get an estimate
for the time n: For some constant C′ > 0 depending only on δ but not on n,

(3.7) n logγ ≤ −C′ log |λ − λ0|.
Putting (3.7) into (3.4), we see that

n−1∑
j=0

|wj| = O(|λ1 − λ0| log |λ1 − λ0| + |λ2 − λ0| log |λ2 − λ0|),

which can be made sufficiently close to 0 since r can be taken sufficiently small
and |λi − λ0| < r for i = 1, 2. Thus (3.3) holds. This finishes the proof of the
lemma. �
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3.2 Phase-parameter relations: transversality. In the following we
need to compare the phase and parameter derivatives. We start with some calcula-
tions. Recall from (3.1) that

ξn(λ) = f n
λ (0).

Now we write

ξn(λ) = f (λ, ξn−1(λ)),

αj(λ) = f ′
λ(ξj(λ))

and

ρj(λ) = ∂λf (λ, ξj(λ)).

Then for all n ≥ 0, we have, by induction,

ξ′
n+1(λ) = f ′

λ(ξn(λ)) · ξ′
n(λ) + ∂λf (λ, ξn(λ))

= αn(λ) · ξ′
n(λ) + ρn(λ)

= αn(λ)(αn−1(λ) · ξ′
n−1(λ) + ρn−1(λ)) + ρn(λ)

=
n∏

j=1

αj(λ) · ξ′
1(λ) +

n−1∑
j=1

( n∏
k=j+1

αk(λ)
)
ρj(λ) + ρn(λ)

=
n∏

j=1

αj(λ)
(
ξ′
1(λ) +

n∑
j=1

1

λj
∏j−1

k=0 eξk(λ)

)

=
n∏

j=1

αj(λ)
(
ξ′
1(λ) +

n∑
j=1

j∏
k=1

1
ξk(λ)

)
.

Since ξ′
1(λ) = 1 and

n∏
j=1

αj(λ) =
n∏

j=1

f ′
λ(ξj(λ)) = (f n

λ )′(λ),

we obtain immediately that

(3.8)

ξ′
n+1(λ) =

(
f n
λ

)′ (λ)
(

1 +
n∑

j=1

j∏
k=1

1
ξk(λ)

)

=
1
λ

(f n+1
λ )′(0)

(
1 +

n∑
j=1

1

(f j
λ)

′(0)

)

=
1
λ

(f n+1
λ )′(0)

n∑
j=0

1

(f j
λ)

′(0)
.
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We used that (f j
λ)

′(0) =
∏j

k=1 f k
λ (0) =

∏j
k=1 ξk(λ) and that f 0

λ is the identity map. The
sum appearing in the last line is actually a truncated term (after taking absolute
value) occurring in the summability condition. Therefore, for summable λ, the
limit

Lλ := lim
n→∞

n∑
j=0

1

(f j
λ)

′(0)
< ∞

exists. Actually, one can say more for non-recurrent parameters.

Lemma 3.4. Let λ be a non-recurrent parameter. Then Lλ exists and is not

equal to 0 or ∞.

Proof. By Lemma 2.2, λ is summable. It follows then from the work of
Urbański and Zdunik [UZ07, Sections 4 and 5] that Lλ �= 0,∞ for the non-recurrent
parameter λ. �

By using Lemma 3.4 and (3.8), we have a relation between phase and parameter
derivatives in the following sense: For non-recurrent λ0, there exists Lλ0 ( �= 0,∞)
such that

lim
n→∞

ξ′
n(λ0)

(f n
λ0

)′(0)
=

Lλ0

λ0
.

This relation is persistent for parameters λ which are sufficiently close to λ0 as long
as expansion on P(fλ0 ) is ensured and the singular orbit of fλ stays close to P(fλ0 ).
More precisely, we have:

Lemma 3.5. Let λ0 be non-recurrent. Then for any q ∈ (0, 1) there ex-

ist N1 > 0 and r > 0 sufficiently small such that the following holds. For
any λ ∈ D(λ0, r), if |ξj(λ) − ξj(λ0)| ≤ δ for some δ = δ(r) and for all j ≤ n

with n ≥ N1, we have ∣∣∣ ξ′
n(λ)

(f n
λ )′(0)

− Lλ0

λ0

∣∣∣ ≤ q
∣∣∣Lλ0

λ0

∣∣∣.
Proof. By (3.8) we have

ξ′
n(λ)

(f n
λ )′(0)

=
1
λ

n−1∑
j=0

1

(f j
λ)

′(0)
.

By taking N1 sufficiently large so that N1 > Ñ and using (2.3) and Lemma 2.3 we
can have

1
|λ|

∞∑
j=N1+1

1

|(f j
λ)

′(0)| ≤ q
2

∣∣∣Lλ0

λ0

∣∣∣.
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On the other hand, by continuity one can find some r > 0 such that if λ ∈ D(λ0, r),

∣∣∣∣1λ
N1∑
j=0

1

(f j
λ)

′(0)
− Lλ0

λ0

∣∣∣∣ ≤ q
2

∣∣∣Lλ0

λ0

∣∣∣.
Combining all the above we have

∣∣∣ ξ′
n(λ)

(f n
λ )′(0)

− Lλ0

λ0

∣∣∣ ≤
∣∣∣∣1λ

N1∑
j=0

1

(f j
λ)

′(0)
− Lλ0

λ0

∣∣∣∣ + 1
|λ|

∞∑
j=N1+1

1

|(f j
λ)

′(0)|
≤ q

∣∣∣Lλ0

λ0

∣∣∣. �

Lemma 3.5 and Lemma 3.3 together imply that the function ξn is an almost
affine map.

Lemma 3.6 (Strong distortion). Let λ0 be non-recurrent. For any ε > 0
there exist δ > 0 and r > 0 sufficiently small such that for any λ1, λ2 ∈ D(λ0, r),
if |ξj(λi) − μj(λi)| ≤ δ for i = 1, 2 and all 0 ≤ j ≤ n with n ≥ N1, then

∣∣∣ξ′
j(λ1)

ξ′
j(λ2)

− 1
∣∣∣ ≤ ε.

With this lemma we get that

(3.9) |ξn(λ1) − ξn(λ2)| ∼ |Df n−1
λ0

(0)||λ1 − λ2|
as long as ξj(λ1) and ξj(λ2) stay close in a neighborhood of the singular orbit of fλ0

for all j ≤ n. As |Df n
λ0

(0)| grows (at least) exponentially we obtain immediately
the following result.

Lemma 3.7 (Large scale). Let λ0 be non-recurrent. There exists a num-
ber S > 0 such that for all r > 0 sufficiently small, there is an integer n so

that D(ξn(λ0), S/4) ⊂ ξn(D(λ0, r)) ⊂ N and has diameter at least S.

Proof. Put S = δ/2 with δ in the above lemma. If ξn(D(λ0, r)) never reached
the large scale, i.e.,

diam ξn(D(λ0, r)) < S

for all n ≥ 0, then we have (3.9) satisfied for all n. So we see that, for some
constant C > 0,

S > diam ξn(D(λ0, r)) ≥ Cγn−1r.

But this is impossible since γ > 1 and n can be taken sufficiently large. Hence,
ξn(D(λ0, r)) ⊃ D(ξn(λ0), S/4) follows directly from Lemma 3.6. �
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4 Non-recurrent dynamics are rare

It follows from Lemma 3.7 that a small disk around a starting non-recurrent
parameter will finally grow to a definite size under the function ξn with bounded
distortion. As long as this happens, any compact set will finally be covered within
a few more iterates. For our purpose, we shall show that a definite portion of
parameters in the disk D(λ0, r) are not�-non-recurrent (i.e., those λ forwhich f n

λ (0)
belongs to D(0,�)).

Let NR and NR� be the set of non-recurrent and �-non-recurrent parameters
in the exponential family, respectively; see Definition 2.1. We prove the following
result, which implies directly Theorem 1, since NR =

⋃
�>0 NR� .

Proposition 4.1. Let λ0 be non-recurrent. For any � > 0 and for all suffi-

ciently small r > 0, we have

dens(NR�,D(λ0, r)) =
meas(D(λ0, r) ∩ NR�)

measD(λ0, r)
< 1.

We also need the following general result of Baker [Bak84, Lemma 2.2].

Lemma 4.1. Let f be a transcendental entire function. Let U be a neighbour-
hood of z ∈ J(f ). Then for any compact set K not containing an exceptional point

of f there exists n(K) ∈ N such that f n(U) ⊃ K for all n ≥ n(K).

An exceptional point is a point with finite backward orbit. Note that a transcen-
dental entire function has at most one exceptional point. In our case, exponential
functions have 0 as an exceptional point.

To begin with the proof, let us put D := D(λ0, r). Then by Lemma 3.7 for
all r > 0 sufficiently small one can find n such that diam ξn(D) ≥ S and

ξn(D) ⊃ D(ξn(λ0), S/4) =: V.

Now we consider the annulus A := A(�/4,�), centered at the origin with inner
and outer radii �/4 and � respectively. The closure of A is denoted by A. Then by
the above Lemma 4.1, there exists N such that f N

λ0
(V) ⊃ A. Put A′ = A(�/2, 3�/4).

Since N is a finite number depending only on fλ0 and V , we have, by decreasing r

if necessary, that for all λ ∈ ξ−1
n (V),

f N
λ (V) ⊃ A′.

With
V ′ = {z ∈ V : f N

λ (z) ∈ A′},
one can find a positive number c > 0 such that

measV ′ ≥ c measV.
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Let D̂ be the set of parameters in D which are mapped into V ′ by the map ξn.
Then by Lemma 3.6, there exists a constant c′ > 0 depending on c such that

meas D̂ ≥ c′ measD.

Therefore, there is a definite portion of parameters λ in D for which ξn+N(λ) ∈ A′.
In other words, such λ’s are not �-non-recurrent. This ends the proof of Proposi-
tion 4.1.

5 Non-recurrence and hyperbolicity

In the section we prove approximation of non-recurrent parameters by hyperbolic
ones. One of the key ingredients is to control derivatives along the singular orbit
up to at least time n, which is the time reaching the large scale.

We use some notations from the previous section. That is, we use D := D(λ0, r)
and V = D(ξn(λ0), S/4). Let D′ ⊂ D be such that ξn(D′) = V . Let n be as in
Lemma 3.7. Then by this lemma, ξn(D) has diameter at least S and contains V .
Moreover, it is almost round due to the strong distortion ensured by Lemma 3.6.
Now we consider the following disk

D1 := D(z1, 1)

such that
Im(z1) = −i arg(λ0) and Re(z1) ≥ M,

where arg(λ0)∈ [0, 2π) andM>0 is some sufficiently large number. Then similarly
as above, Lemma 4.1 ensures the existence of a number N such that f N

λ0
(V)⊃D1.

Now we see that fλ0 (D1) is a large set which intersects with the horizontal
line L := {z : Im(z) = −i arg(λ0)} knowing that M is chosen to be large at the
beginning. So we can choose a disk

D2 := D(z2, 1) ⊂ fλ0 (D1)

such that z2 ∈ L and Re z2 ≥ eM/2 > Re z1. Continuing in a similar way, we obtain
a sequence of points zn such that zn ∈ L and Re zn > exp(Re zn−1/2). Moreover,
with

Dn := D(zn, 1)

we have fλ0 (Dn) ⊃ Dn+1. By choosing zn in this way, we can actually make sure
that Re zn grows exponentially.

With
x0 := max

j≤n
{Re(z) : z ∈ ζj(D)} + 2S,
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there exists a smallest integer p such that

Re(zp) ≥ x0.

Then we see that fλ0 (Dp) will contain a disk D(zp+1, 3/2) satisfying

(5.1) zp+1 ∈ L + πi and Re(zp+1) > exp(Re(zp)/2).

Here L + πi is the translation of L by πi.

The above construction tells that f N+p
λ0

(V) ⊃ D(zp+1, 3/2). By decreasing r (if
necessary) we can make sure that for all λ ∈ D′,

f N+p
λ (V) ⊃ Dp+1 = D(zp+1, 1).

Let V̂ be the component of f−(N+p)
λ (Dp+1) that is contained in V and let D̂ be

the set of points in D′ which are mapped into V̂ under the map ξn. In other words,
D̂ = ξ−1

n (V̂) ⊂ D.

Now we claim that parameters in D̂ are hyperbolic parameters. This gives
the desired approximation of non-recurrent parameters by hyperbolic ones, since
D̂ ⊂ D′ ⊂ D(λ0, r) and r can be chosen arbitrarily small.

For any λ ∈ D̂, we see that f n+N+p
λ (0) ∈ Dp+1. Now we consider a disk

B := D(f n+N+p
λ (0), 1) centered at f n+N+p

λ (0) of radius 1. By Koebe’s one-quarter
theorem we have

f−(n+N+p)
λ (B) ⊃ D

(
0,

1

8|Df n+N+p
λ (0)|

)
,

where we choose the inverse branch sending f n+N+p
λ (0) to 0. On the other hand,

the image fλ(B) lies in some left half-plane by the choice of zp+1; see (5.1). More
precisely,

fλ(B) ⊂ {z : Re(z) ≤ −|λ|eRe(zp+1)−1}.
With

r1 :=
1

8|Df n+N+p
λ (0)| and r2 := exp{−|λ|eRe(zp+1)−1},

we want to show that r1 > r2, which means that a small disk around the singular
value 0 is mapped by f n+N+p+2

λ into itself. In other words, fλ has an attracting cycle
and thus is a hyperbolic map. Noting that

|Df n+N+p
λ (0)| =

n+N+p−1∏
j=0

|f ′
λ(f

j
λ(0))| =

n+N+p−1∏
j=0

|λeRe f j
λ(0)|

≤ |λ|n+N+pe(n+N+p) Re(zp),
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one can obtain the following estimate for r1:

r1 ≥ 1
8|λ|n+N+pe(n+N+p) Re(zp)

.

On the other hand, since Re(zp+1) = c′′|zp+1| = c′′|λ|eRe(zp) for a small constant c′′,
we get that

r2 ≤ 1
e|λ| exp(c′′ |λ| exp(Re(zp)−1)) .

This means that r2 is much smaller than r1. So we see that there is a neighborhoodU

of 0 which is mapped by f n+N+p+2
λ into itself. Therefore, fλ is a hyperbolic map.

This completes the proof of Theorem 2.
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