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Abstract. For periodic graph operators, we establish criteria to determine
the overlaps of spectral band functions based on Bloch varieties. One criterion
states that for a large family of periodic graph operators, the irreducibility of
Bloch varieties implies no non-trivial periods for spectral band functions. This
particularly shows that spectral band functions of discrete periodic Schrödinger
operators on Z

d have no non-trivial periods, answering positively a question asked
by Mckenzie and Sabri [Quantum ergodicity for periodic graphs, Comm. Math.
Phys. 403 (2023), 1477–1509].

1 Introduction and main results

Algebraic and analytic properties of both Bloch and Fermi varieties play a crucial
role in the study of spectral theory of periodic Schrödinger operators and related
models. We refer readers to a recent review [18] which focuses on techniques
arising from Bloch and Fermi varieties. In the continuous setting, Bloch and Fermi
varieties are often analytic. For discrete periodic graph operators, both Bloch and
Fermi varieties are algebraic in appropriate coordinates.

Recently there have been remarkable developments in using various tools such
as algebraicmethods, techniques in geometric combinatorics and theory in complex
analysis of multi-variables to study the (ir)reducibility of Bloch and Fermi varieties,
isospectrality, density of states, and critical points of spectral band functions of
periodic graph operators [4, 5, 7, 8, 10, 11, 13, 17, 19, 20, 21, 22, 23, 24, 26, 27].

The main goal of this paper is to develop tools from algebraic geometry arising
from Bloch varieties to understand overlaps and periods of spectral band functions
of periodic graph operators. One of our motivations comes from a recent arxiv
preprint of Mckenzie and Sabri [25], where they proved the quantum ergodicity for
a family of periodic graph operators under an assumption on overlaps and periods
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of the spectral band functions.1 As corollaries, we give criteria to verify for which
periodic graphs, the assumption is satisfied.

Our main results are general and independent of periodic graph operators.
Assume that A = A(z) is a Q × Q matrix and each entry of A(z) is a Laurent
polynomial of z = (z1, z2, . . . , zd) ∈ (C�)d, where C� = C\{0}. Let zj = e2πikj ,
j = 1, 2, . . . , d and A(k) = A(z) with k = (k1, k2, . . . , kd).

Obviously, A(k) is periodic with respect to k. In the following, A(z) and A(k)
are always the same (with respect to different variables). Assume that for any
k ∈ Rd, A(k) is Hermitian. Denote by λj

A(k), k ∈ Rd, j = 1, 2, . . . , d, eigenvalues
of A(k) in the non-decreasing order:

(1) λ1
A(k) ≤ λ2

A(k) ≤ · · · ≤ λQ
A (k), k ∈ R

d.

For any η = (η1, η2, . . . , ηd) ∈ Cd and ζ = (ζ1, ζ2, . . . , ζd) ∈ Cd, let

η � ζ = (η1ζ1, η2ζ2, . . . , ηdζd).

Denote by 0d and 1d the zero vector and unit element in C
d: 0d = (0, 0, . . . , 0) and

1d = (1, 1, . . . , 1).

Definition 1. We say the spectral band functions of A(k) have no non-trivial
periods if the following statement holds. If for someα∈R

d and s, w∈{1, 2, . . . ,Q},
the set

(2) {k ∈ R
d : λs

A(k + α) = λw
A (k)}

has positive Lebesgue measure, then we must have α = 0d mod Z
d and s = w.

Since there are only finitely many choices of s, w ∈ {1, 2, . . . ,Q}, the spectral
band functions of A(k) have no non-trivial periods if and only if for any α ∈ Rd

with α �= 0d mod Z
d, the set

(3) S1(α) = {k ∈ R
d : there exist s and w such that λs

A(k + α) = λw
A (k)}

has Lebesgue measure zero, and the set

(4) S2 = {k ∈ R
d : there exist distinct s and w such that λs

A(k) = λw
A (k)}

has Lebesgue measure zero.

1In July 2022, Mostafa Sabri asked me a question (see Question 1 below) whether or not discrete
periodic Schrödinger operators on Z

d satisfy the assumption, which he and Theo McKenzie need to
establish quantum ergodicity. I became interested in this problem and finally wrote this paper.
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Let

(5) PA(z, λ) = det(A(z) − λIQ×Q).

Note thatPA(z, λ) is a Laurent polynomial in z and a polynomial in λ. LetPl
A(z, λ),

l = 1, 2, . . . ,K be the non-trivial irreducible2 factors of PA(z, λ):

(6) PA(z, λ) = (−1)Q
K∏
l=1

Pl
A(z, λ).

It is easy to see that Pl
A(z, λ) must depend on λ. Since PA(z, λ) is a polynomial

in λ with the highest degree term (in λ) (−1)QλQ, we can normalize Pl
A(z, λ) in

the following way: Pl
A(z, λ) is a Laurent polynomial in z and a polynomial in λ,

and the coefficient of highest degree term of λ is 1.
We say PA(z, λ) is square-free if for all distinct l1 and l2 in {1, 2, . . . ,K},

(7) Pl1
A(z, λ) �≡ Pl2

A(z, λ).

Given α ∈ Rd with α �= 0d mod Zd, we say PA(z, λ) satisfies condition Cα if
for all l1 and l2 in {1, 2, . . . ,K},
(8) Pl1

A(z, λ) �≡ Pl2
A(ζ � z, λ),

where ζ = (e2πiα1, e2πiα2, . . . , e2πiαd).

Theorem 1.1. The following statements hold:

(1) For all α �= 0d mod Z
d,PA(z, λ) satisfies Cα if and only if S1(α) has Lebesgue

measure zero;

(2) PA(z, λ) is square-free if and only if S2 has Lebesgue measure zero.

Remark 1.1. From the proof of Theorem 1.1, one can see that
• for any α ∈ R

d with α �= 0d mod Z
d, either S1(α) = R

d or Leb(S1(α)) = 0;
• either S2 = R

d or Leb(S2) = 0.

Theorem 1.1 immediately implies

Corollary 1.2. Assume that PA(z, λ) is square-free, and for any

ζ = (ζ1, ζ2, . . . , ζd) ∈ C
d\{1d}

with |ζj| = 1, j = 1, 2, . . . , d, and any l1 and l2 in {1, 2, . . . ,K},
(9) Pl1

A(z, λ) �≡ Pl2
A(ζ � z, λ).

Then the spectral band functions of A(k) have no non-trivial periods.
2Non-trivial Laurent polynomials mean non-monomials, that is, monomials are units in the Laurent

polynomial ring.
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Let Ld
N = {0, 1, . . . ,N − 1}d.

Corollary 1.3. Given any m = (m1,m2, . . . ,md) ∈ Ld
N\{0d}, let

ζ(m,N) = (e2πi
m1
N , e2πi

m2
N , . . . , e2πi

md
N ).

Assume that there exists N0 such that for any N ≥ N0, any m ∈ Ld
N\{0d}, and any

l1, l2 in {1, 2, . . . ,K},
(10) Pl1

A(z, λ) �≡ Pl2
A(ζ(m,N) � z, λ).

Then for any s, w ∈ {1, 2, . . . ,Q},

(11) lim
N→∞ sup

m∈Ld
N

m�=0d

#{r ∈ Ld
N : λs

A( rj+mj

N ) − λw
A ( rj

N ) = 0}
Nd

= 0,

where r = (r1, r2, . . . , rd).

For the Laurent polynomial, irreducibility implies square-free, so Corollaries
1.2 and 1.3 imply

Corollary 1.4. Assume that PA(z, λ) is irreducible and for any

ζ = (ζ1, ζ2, . . . , ζd) ∈ C
d\{1d}

with |ζj| = 1, j = 1, 2, . . . , d,

(12) PA(z, λ) �≡ PA(ζ � z, λ).

Then the spectral band functions of A(k) have no non-trivial periods and for any

s, w ∈ {1, 2, . . . ,Q},

lim
N→∞ sup

m∈Ld
N

m�=0d

#{r ∈ Ld
N : λs

A( rj+mj

N ) − λw
A ( rj

N ) = 0}
Nd

= 0.

Theorem 1.5. Assume PA(z, λ) is irreducible. Then for any a �= 0 and any

α ∈ R
d, the set

(13) {k ∈ R
d : there exist s and w such that λs

A(k + α) = λw
A (k) + a}

has Lebesgue measure zero.

In [25], under the assumption (11), Mckenzie and Sabri proved the quantum
ergodicity for periodic graph operators. Roughly speaking, quantum ergodicity
means that most eigenfunctions on periodic graphs are equidistributed. We refer
readers to [25] for the precise description of quantum ergodicity.
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Nowwe want to discuss the applications of ourmain results to quantum ergodic-
ity. In this paper, we focus on Corollary 1.4. The requirement (12) is easy to verify.
So the only restriction of applying Corollary 1.4 is the irreducibility of PA(z, λ). In
applications, starting with a periodic graph operator H and Floquet–Bloch bound-
ary condition (depends on k ∈ Rd or z ∈ (C�)d), we obtain a matrix A(k) (A(z)).
The irreducibility of P(z, λ) in Corollary 1.4 essentially (up to multiplicity) means
the irreducibility of the Bloch variety of H (modulo periodicity):

(14) B = {(k, λ) ∈ C
d+1 : zj = e2πikj ,PA(z, λ) = 0}.

Recently, the author applied algebraic methods to obtain more general proofs of
irreducibility for Laurent polynomials, including proving the irreducibility ofBloch
and Fermi varieties (Fermi variety is the level set of the Bloch variety) for discrete
periodic Schrödinger operators in arbitrary dimension [20], which previously were
only studied in two and three dimensions [1, 14, 2, 16, 3]. The approach in [20]
has been developed by Fillman, Matos and the author to prove the irreducibility of
Bloch varieties for a large family of periodic graph operators [10]. So Corollary 1.4
may be applicable to many models (see Remark 1.2). In the following, we only
discuss one case in detail: discrete periodic Schrödinger operators on Zd. In [25]
Mckenzie and Sabri asked a question:

Question 1. Do discrete periodic Schrödinger operators on Z
d satisfy the

assumption (11)?

As an application of Corollary 1.4, we answer Question 1 positively.
Let us give the precise definition of discrete periodic Schrödinger operators

on Zd. Given positive integers qj, j = 1, 2, . . . , d, let � = q1Z ⊕ q2Z ⊕ · · · ⊕ qdZ.
We say that a function V : Zd → R is �-periodic (or just periodic) if for any γ ∈ �,
V(n + γ) = V(n).

Let 
 be the discrete Laplacian on Z
d, namely

(
u)(n) =
∑

||n′−n||1=1

u(n′),

where n = (n1, n2, . . . , nd) ∈ Z
d, n′ = (n′

1, n′
2, . . . , n

′
d) ∈ Z

d and

||n′ − n||1 =
d∑

i=1

|ni − n′
i|.

Consider the discrete Schrödinger operator on Zd,

(15) H = 
 + V,

where V is �-periodic.
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Let {ej}, j = 1, 2, . . . , d, be the standard basis in Z
d:

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, 0, . . . , 0, 1).

Let us consider the equation

(16) (
u)(n) + V(n)u(n) = λu(n), n ∈ Z
d,

with the so-called Floquet–Bloch boundary condition

(17) u(n + qjej) = zju(n) = e2πikju(n), j = 1, 2, . . . , d, and n ∈ Z
d.

Let DV (k) (DV(z)) be the periodic operator 
 + V with the Floquet–Bloch
boundary condition (17) with respect to variables k (variables z). DV(k) can be
realized as a Q × Q matrix, where Q = q1q2 · · · qd. Let λ

j
V (k), j = 1, 2, . . . ,Q be

the standard spectral band functions of 
 + V (applying (1) with A(k) = DV(k)).

Corollary 1.6. For any discrete periodic Schrödinger operators 
 + V, we
have that for any s, w ∈ {1, 2, . . . ,Q},

(18) lim
N→∞ sup

m∈Ld
N

m�=0d

#{r ∈ Ld
N : λs

V( rj+mj

N ) − λw
V ( rj

N ) = 0}
Nd

= 0.

Remark 1.2. • Corollary 1.6 answers Question 1 positively.
• Following the proof of Corollary 1.6 step by step, one can show that Schrö-

dinger operators with periodic potentials on the triangular lattice (see [10]
for the precise definition) satisfy (18).

Finally, we remark that in this paper, we discuss (see Theorems 1.1 and 1.5)
overlaps between two spectral band functions by shifting the quasi-momenta and
locations of bands, namely λs

A(k + α) and λw
A (k) + a. Overlaps between two spec-

tral bands [mink λs
A(k),maxk λs

A(k)] and [mink λw
A (k),maxk λw

A (k)] (related to the
discrete Bethe–Sommerfeld conjecture) have been studied in [12, 15, 6, 9].

2 Proof of Theorem 1.1, Corollary 1.3 and Theorem 1.5

Proof of Theorem 1.1. Recall that α �= 0d mod Zd, ζj = e2πiαj and zj = e2πikj ,
j = 1, 2, . . . , d. Let

PA(k, λ) = PA(z, λ) = det(A(k) − λI).

Note that PA(k, λ) is analytic.
If PA does not satisfy Cα, then there exist l1 and l2 in {1, 2, . . . ,K} (l1 may

equal l2) such that

(19) Pl1
A(z, λ) ≡ Pl2

A(ζ � z, λ).
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This implies that for any k, A(k) and A(k +α) have at least one common eigenvalue
and hence there exist s, w such that λs

A(k + α) = λw
A (k). Therefore, S1(α) = R

d.
Simple calculations imply that

(20)

S1(α) = {k ∈ R
d : there exist s, w such that λs

A(k + α) = λw
A (k)}

= {k ∈ R
d : and there exists λ such that PA(k, λ) = PA(α + k, λ) = 0}

= Projk{(k, λ) ∈ R
d+1 : PA(k, λ) = PA(α + k, λ) = 0},

where Projk is the projection to k variables.
If PA satisfies Cα, we have that for any l1 and l2 in {1, 2, . . . ,K},

{(z, λ) ∈ (C�)d ×C : Pl1
A(z, λ) = 0} and {(z, λ) ∈ (C�)d ×C : Pl2

A(ζ � z, λ) = 0} are
not identical, where ζ = (e2πiα1, e2πiα2, . . . , e2πiαd), and hence the algebraic variety
{(z, λ) : Pl1

A(z, λ) = Pl2
A(ζ � z, λ) = 0} has algebraic dimension d −1. We conclude

that the algebraic variety {(z, λ) : PA(z, λ) = PA(ζ � z, λ) = 0} has algebraic
dimension d − 1. This implies that {(k, λ) ∈ R

d+1 : PA(k, λ) = PA(α + k, λ) = 0}
has real (analytic) dimension at most d−1. By (20), one has that S1(α) (as a subset
in R

d) has Lebesgue measure zero. We finish the proof of part 1.
If PA is not square-free, then there exist distinct l1 and l2 in {1, 2, . . . ,K} such

that

(21) Pl1
A(z, λ) ≡ Pl2

A(z, λ).

This implies that for any k, A(k) has repeated eigenvalues and hence there exist
distinct s, w ∈ {1, 2, . . . ,Q} such that λs

A(k) = λw
A (k). Therefore, S2 = R

d.
It is clear that

(22)

S2 = {k ∈ R
d : there exist distinct s, w such that λs

A(k) = λw
A (k)}

= {k ∈ R
d : A(k) has repeated eigenvalues}

= {k ∈ R
d : there exists λ such that PA(k, λ) = ∂λPA(k, λ) = 0}

= Projk{(k, λ) ∈ R
d+1 : PA(k, λ) = ∂λPA(k, λ) = 0}.

If PA is square-free, then the algebraic variety

{(z, λ) : PA(z, λ) = ∂λPA(z, λ) = 0}
has algebraic dimension d − 1. This implies that

{(k, λ) ∈ R
d+1 : PA(k, λ) = ∂λPA(k, λ) = 0}

has real (analytic) dimension at most d − 1. By (22), one has that S2 (as a subset
in Rd) has Lebesgue measure zero. We finish the proof of part 2. �
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Proof of Corollary 1.3. Let

U =
⋃

N≥N0

⋃
m∈Ld

N
m�=0d

S1

(m
N

)
.

Applying Part 1 of Theorem 1.1 with all α = m
N with m ∈ Ld

N\{0d} and N ≥ N0, U

has Lebesgue measure zero. Therefore, for any s, w ∈ {1, 2, . . . ,Q} one has that

(23)
lim

N→∞ sup
m∈Ld

N
m�=0d

#{r ∈ Ld
N : λs

A( rj+mj

N ) − λw
A ( rj

N ) = 0}
Nd

≤ lim
N→∞

1
Nd

∑
r∈Ld

N

χU

( rj

N

)

= 0,

where χU is the characteristic function. �

Proof of Theorem 1.5. From the proof of Part 1 of Theorem 1.1, it suffices
to show that for any a �= 0 and any ζ ∈ C

d with |ζj| = 1, j = 1, 2, . . . , d,

(24) PA(z, λ) �≡ PA(ζ � z, λ + a).

Simple calculations imply that

(25) PA(z, λ) = (−λ)Q + TrA(z)(−λ)Q−1 + l.o.t

and

(26) PA(ζ � z, λ + a) = (−λ)Q + (−Qa + TrA(ζ � z))(−λ)Q−1 + l.o.t,

where l.o.t contains terms of λ with degree less than or equal to Q− 2. Obviously,
constant terms in both TrA(z) and TrA(ζ � z) are the same. Then TrA(z) and
−Qa + TrA(ζ � z) are different functions. Now (24) follows from (25) and (26).�

3 Proof of Corollary 1.6

In this section, we first recall some basics. We refer readers to [20] for details.
For n = (n1, n2, . . . , nd), let zn = zn1

1 · · · znd
d . By abusing the notation, denote

q = (q1, q2, . . . , qd). Let V̂(n), n ∈ Z
d be the discrete Fourier transform of {V(n)}.

Define

(27) D̃V(z) = DV (zq),

and

(28) P̃V(z, λ) = det(D̃V(z, λ) − λI) = PV(zq, λ).
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Let
ρj

nj
= e

2πi
nj
qj ,

where 0 ≤ nj ≤ qj − 1, j = 1, 2, . . . , d.
By the standard discrete Floquet transform (e.g., [20, 18]), one has

Lemma 3.1. D̃V (z) is unitarily equivalent to B0 + BV, where B0 is a diagonal

matrix with entries

B0(n; n′) =
( d∑

j=1

(
ρj

nj
zj +

1

ρ
j
nj zj

))
δn,n′,(29)

BV(n; n′) = V̂(n1 − n′
1, n2 − n′

2, . . . , nd − n′
d),(30)

and

0 ≤ nj ≤ qj − 1, 0 ≤ n′
j ≤ qj − 1, j = 1, 2, . . . , d.

In particular,

P̃V(z, λ) = det(B0 + BV − λI).

Let

(31) h(z, λ) =
∏

0≤nj≤qj−1
1≤j≤d

(( d∑
j=1

ρj
nj
zj

)
− λ

)
.

Proof of Corollary 1.6. Recall that PV(z, λ) is irreducible [20, 10]. By
Corollary 1.4, it suffices to verify that for any ζ = (ζ1, ζ2, . . . , ζd) ∈ Cd\{1d} with
|ζj| = 1, j = 1, 2, . . . , d,

(32) PV(z, λ) �≡ PV(ζ � z, λ).

It suffices to prove that for any ζ = (ζ1, ζ2, . . . , ζd) ∈ C
d with |ζj| = 1, j = 1, 2, . . . , d

and ζq �= 1d, one has that

(33) P̃V(z, λ) �≡ P̃V(ζ � z, λ).

By (31) and Lemma 3.1, h(z, λ) is the highest degree component of P̃V(z, λ).
Therefore, to prove (33), it suffices to show that for any ζ = (ζ1, ζ2, . . . , ζd) ∈ C

d

with |ζj| = 1, j = 1, 2, . . . , d and ζq �= 1d, one has that

(34) h(z, λ) �≡ h(ζ � z, λ).

Assume that

(35) h(z, λ) ≡ h(ζ � z, λ).
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Substituting λ =
∑d

j=1 zj in (35), one has that h(z, z1 + z2 + · · · + zd) ≡ 0 and hence

h(ζ � z, z1 + z2 + · · · + zd) ≡ 0.

Then there exist nj, j = 1, 2, . . . , d with 0 ≤ nj ≤ qj − 1 such that

d∑
j=1

zj ≡
d∑

j=1

ρj
nj
ζjzj.

This implies ζj = e
−2πi

nj
qj , j = 1, 2, . . . , d and hence ζq = 1d. We reach a

contradiction. �
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