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Abstract. We study the subsets of metric spaces that are negligible for the
infimal length of connecting curves; such sets are called metrically removable. In
particular, we show that every closed totally disconnected set with finite Hausdorff
measure of codimension 1 is metrically removable, which answers a question raised
by Hakobyan and Herron. The metrically removable sets are shown to be related
to other classes of “thin” sets that appeared in the literature. They are also related
to the removability problems for classes of holomorphic functions with restrictions
on the derivative.

1 Introduction

The studies of removable sets have a long history in complex analysis andgeometric
function theory [16]. Removability may be defined in terms of either a function
class (e.g., bounded holomorphic functions) or of some geometric quantity (e.g.,
extremal distance as in [1]). Our starting point is a purely geometric concept of
removability, which makes sense in an abstract metric space.

Definition 1.1. Let (X, d ) be a metric space. A set E ⊂ X is metrically
removable if for any ε > 0, any two points a, b ∈ X can be connected by a curve
that is disjoint from E \ {a, b} and has length at most d (a, b) + ε.

Thus, the complement of a metrically removable set is C-quasiconvex for every
C > 1 (seeDefinition 2.2). Hakobyan andHerron [8] posed the following question:

Question 1.2. Suppose E ⊂ Rn is a totally disconnected compact set with
Hn−1(E) < ∞. Does it follow that its complement is quasiconvex?

Question 1.2 turns out to be equivalent to asking whether E is metrically
removable (Proposition 3.3). We answer it affirmatively:
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Theorem 1.3. If E ⊂ Rn is closed, totally disconnected, and Hn−1(E) < ∞,

then E is metrically removable.

Quantitative control on the length and shape of connecting curves is important
for recovering the properties of a holomorphic function f from its derivative f ′.
This is the subject of Sections 5 and 8, which concern the removability of sets for
holomorphic functionswith restrictions on either themodulus or the argument of f ′.
This line of investigation involves the comparison of different thinness conditions
in Section 6, such as intervally thin sets introduced by Tabor and Tabor [13] in
the context of convex analysis. Along the way we prove an extension theorem
for δ -monotone maps (Theorem 7.3) which is of independent interest. The paper
concludes with remarks and questions in section 9.

2 Notation and definitions

For a, b ∈ Rn, |a| is the Euclidean norm, 〈a, b〉 is the inner product, and [a, b]
is the line segment {(1 − t)a + tb : 0 ≤ t ≤ 1}. We write B(a, r) for the open
ball of radius r with center a, and B(a, r) for the corresponding closed ball. The
complement of a set E is denoted Ec.

A curve in a metric space X is a continuous map γ : [α, β] → X . Its length �(γ)
is the supremum of the sums

∑ |γ(t j ) − γ(t j−1)| over all finite partitions {t j } of
the interval [α, β]. We also write γ for γ([α, β]) when parameterization is not
important.

Definition 2.1. The intrinsic metric on a set A ⊂ X , written ρA(a, b), is
the infimum of the length of curves that connect a to b within A. This is indeed
a metric when A is connected by rectifiable curves; otherwise ρA may take on the
value ∞ although the other axioms of a metric still hold.

When a set E is metrically removable, ρEc(a, b) = d (a, b) for all a, b ∈ Ec.
The converse is also true when E has empty interior; see Lemma 3.1. The property
ρEc(a, b) = d (a, b) can be expressed by saying that Ec is a length space [4, p. 28].
It is also related to the concept of quasiconvexity.

Definition 2.2. A set A ⊂ X is quasiconvex if there exists a constant C such
that any two points a, b ∈ A can be joined by a curve that lies in A and has length
at most CdX (a, b).

We write Hs for the s-dimensional Hausdorff measure [11, pp. 55–56], that is

Hs(A) = lim
δ↓0

Hs
δ (A),
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where

Hs
δ (A) = inf

{ ∞∑
i =1

diam(Ei)
s : A ⊂

∞⋃
i =1

Ei, diam(Ei) ≤ δ

}
.

3 Basic properties of metrically removable sets

Lemma 3.1. A subset E of a metric space X is metrically removable if and

only if it has empty interior and ρEc(a, b) = d (a, b) for all a, b ∈ Ec.

Proof. If E is metrically removable, then any two points a, b ∈ X are con-
nected by a curve that is contained in Ec, except possibly for its endpoints. There-
fore, Ec is dense in X , which means E has empty interior. The equality ρEc = d is
immediate.

Conversely, suppose E has empty interior and ρEc = d . Given a, b ∈ X and
ε > 0, pick two sequences {ak} and {bk} in Ec such that d (ak, a) < ε/2k and
d (bk, b) < ε/2k for all k ∈ N. Note that

(3.1) d (a1, b1) < d (a, b) + ε, d (ak, ak+1) <
ε

2k−1
, d (bk, bk+1) <

ε

2k−1
.

Let γ0 ⊂ Ec be a curve from a1 to b1 such that �(γ0) ≤ (1+ε)d (a1, b1). For every k,
there is a path γk ⊂ Ec from ak to ak+1 with �(γk) ≤ (1 + ε)d (ak, ak+1). Similarly,
there is a path γ′

k ⊂ Ec from bk to bk+1 with �(γ′
k) ≤ (1 + ε)d (bk, bk+1).

Concatenating all the curves γk and γ′
k, and adding a, b as the endpoints, we

obtain a continuous curve that connects a to b and is disjoint from E \ {a, b}. Its
length is bounded from above by

(1 + ε)
(

d (a1, b1) +
∞∑

n=1

(d (ak, ak+1) + d (bk, bk+1))
)

which according to (3.1) is at most (1+ε)(d (a, b)+5ε), proving that E is metrically
removable. �

Metrically removable sets can be seen as “thin” in several ways.

Lemma 3.2. A metrically removable set E ⊂ R2 is totally disconnected.

Proof. Pick any point a ∈ E , without loss of generality a = 0. Since E has
empty interior by Lemma 3.1, there exist four points b1, . . . , b4 ∈ Ec, such that
each bk lies in the kth open quadrant of the plane and |bk| < ε. Connecting these
points by line segments [b1, b2], . . . , [b4, b1] we get a closed polygonal curve γ

with 0 in its interior domain. Let d = dist(0, γ) and replace each segment of γ by a
curve that is contained in Ec and is short enough to stay in the (d/2)-neighborhood
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of the segment. The resulting closed curve separates 0 from the circle |z| = 2ε.
Since ε was arbitrarily small, the lemma is proved. �

Since a line inRn is metrically removable for n ≥ 3, the statement of Lemma 3.2
does not extend to higher dimensions.

Any metrically removable set has quasiconvex complement, while the converse
is false: for example, a ball in Rn, n ≥ 2, has quasiconvex complement but is not
metrically removable. However, for closed sets of zero area these notions coincide.

Proposition 3.3. Suppose that E ⊂ Rn is a closed set such that Hn(E) = 0
and Ec is quasiconvex. Then E is metrically removable.

Proof. Fix distinct points a, b ∈ Ec and pick ε > 0 small enough so that
B(a, ε) and B(b, ε) are disjoint from E . By Fubini’s theorem, almost every line
parallel to [a, b] intersects E along a set of zero length. Thus we can choose
a′, b′ ∈ Ec such that |a − a′| < ε, |b − b′| < ε, and H1(E ∩ [a′, b′]) = 0.

Since E ∩ [a′, b′] is a compact set of zero length, it can be covered by finitely
many disjoint open intervals (pk, qk) of total length less than ε. For each k there is
a curve γk ⊂ Ec that joins pk to qk and has length at most C|pk −qk|, where C is the
constant of quasiconvexity of Ec. Removing [pk, qk] from [a′, b′] and inserting γk

instead, we obtain a curve γ that joins a′ to b′ and has length less than |a′ −b′|+Cε.
Then [a, a′] ∪ γ ∪ [b′, b] is a curve of length at most

|a′ − b′| + (C + 2)ε ≤ |a − b| + (C + 4)ε

which shows ρEc(a, b) = |a − b|. Since E has empty interior, Lemma 3.1 implies
it is metrically removable. �

Corollary 3.4. If A ⊂ R is a closed set and H1(A) = 0, then An is metrically

removable in Rn for all n ≥ 2.

Proof. By TheoremA [8], the setRn\An is quasiconvexwheneverA is a closed
subset of R with empty interior, and n ≥ 2. It remains to apply Proposition 3.3. �

For example, the product of two standard middle-third Cantor sets C

is metrically removable in R2 by Corollary 3.4. This shows that metric re-
movability cannot be characterized in terms of Hausdorff dimension: we have
dim(C × C) = log 4/ log 3 > 1, while a line segment is not metrically removable
in R2. An even more extreme example is given below.
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Proposition 3.5. For n ≥ 2 there exist metrically removable compact sets

E ⊂ Rn with Hn(E) > 0.

Proof. Let A ⊂ Rn be the union of all line segments with endpoints in Qn.
Since Hn(A) = 0, the complement Ac contains a compact set E of positive Hn

measure.

To show that E is metrically removable, fix distinct points a, b ∈ Ec and ε > 0
where ε < dist(E, {a, b}). There are points a′ ∈ Qn ∩B(a, ε) and b′ ∈ Qn ∩B(b, ε).
The polygonal curve [a, a′]∪ [a′, b′]∪ [b′, b] is disjoint from E and has length less
than |a − b| + 4ε. By Lemma 3.1, the set E is metrically removable. �

Hakobyan and Herron [8] constructed totally disconnected compact sets in Rn

with non-quasiconvex complement. Their sets have a prescribed Hausdorff dimen-
sion in [n − 1, n]. As a consequence, there is a rich supply of totally disconnected
compact sets which are not metrically removable in Rn.

In Proposition 3.3, the assumption that the set has zero measure is essential.
The following proposition provides examples of sets with quasiconvex comple-
ment which are not metrically removable, even though some of them are totally
disconnected.

Proposition 3.6. If A ⊂ R is a set of positive Lebesgue measure, then the
product A × A is not metrically removable in R2.

Proof. Since A contains a compact subset of positive measure, we may as-
sume A itself is compact. By the Lebesgue density theorem, there exists an
interval I such that H1(A ∩ I ) > 0.9H1(I ). We may assume I = (0, 1) and A ⊂ I

without loss of generality. Let E = A × A. Our goal is to prove that the set E is
not metrically removable. For this it suffices to show the existence of a constant
c >

√
2 such that any curve that connects the points (0, 0) and (1, 1) and is disjoint

from E has length at least c. The proof will show this with c = 1.8.

Let γ be a curve that connects the points (0, 0) and (1, 1) and is disjoint from E .
Let ρ be the distance from E to γ, which is positive. Let B ⊂ R be the set obtained
by adding to A all connected components of R \ A that have length less than ρ/2.
By construction, R \ B has finitely many connected components. Also, B × B is
contained in the open ρ-neighborhood of A × A and therefore is disjoint from γ.

Let m = H1(B). Define the function f : R → R by f (x) = 0 for x ≤ 0 and
f (x) = H1([0, x] ∩ B) for x > 0. This is a 1-Lipschitz function that maps R onto
[0,m]. Therefore, the map F (x, y) = ( f (x), f (y)) is also 1-Lipschitz and its range
is the square Q = [0,m] × [0,m].
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The set F (R2 \ (B × B)) consists of the boundary of Q and finitely many
horizontal and vertical segments connecting the opposite sides of Q. The set F (γ)
connects opposite corners of Q and is contained in F (R2 \ (B ×B)). Therefore, the
length of F (γ) is at least twice the sidelength of Q. Recalling that F is 1-Lipschitz,
we conclude that

�(γ) ≥ H1(F (γ)) ≥ 2m ≥ 2H1(A) > 1.8

completing the proof. �
The property of having quasiconvex complement is not inherited by subsets:

for example, a disk in R2 has quasiconvex complement but a line segment does
not. On the other hand, Definition 1.1 makes it clear that any subset of a metrically
removable set is metrically removable.

Lemma 3.7. If 	 is a domain in Rn and E ⊂ Rn is a metrically removable

set, then ρ	\E agrees with ρ	 on 	 \ E.

Proof. Given a, b ∈ 	 \ E and ε > 0, let γ be a polygonal curve which
connects a to b within 	 and has length less than |a − b| + ε/2. We may assume
that the vertices of γ are in Ec, since E has empty interior.

Let L1, . . . ,LN be the line segments of the polygonal curve γ. Also let
d = dist(γ,	c). For k = 1, . . . ,N replace Lk by a curve 
k that connects the
endpoints of Lk within Ec and satisfies �(
k) < �(Lk) + δ where δ < ε/(2N ) and
is small enough to ensure that 
k stays in the open d -neighborhood of Lk. The
concatenation of 
k is a curve of total length less than |a − b| + ε which connects
a to b within 	 \ E . �

Lemma 3.8. The countable union of metrically removable closed sets in Rn

is metrically removable.

Proof. Suppose E =
⋃∞

k =1 Ek where each Ek is closed and metrically remov-
able in Rn. Since each Ek has empty interior, their union E is a set of first category
and therefore also has empty interior. By virtue of Lemma 3.1, it remains to show
that ρEc(a, b) = |a − b| for a, b ∈ Ec.

Fix ε > 0. There is a polygonal curve γ1 of length less than |a −b|+ ε/2 which
connects a to b in Ec

1 . We may assume that the vertices of γ1 lie in Ec since they
can be moved slightly to avoid E .

Once a curve γk has been constructed, we construct γk+1 as follows. Let Nk

be the number of segments in γk, and let dk = dist(γk,
⋃

j≤k E j ). Also define
δk = 2−k−1 min j≤k d j . Since Ek+1 is metrically removable, we can replace each line
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segment L of γk with a polygonal curve that has vertices in Ec, is disjoint from Ek+1,
has length less than �(L) + 2−k−1ε/N , and is contained in the δk-neighborhood of L
(the latter is made possible by Lemma 3.7).

The resulting curve γk+1 has length less than |a − b| + ε. Consider its constant-
speed parameterization with [0, 1] as the domain. By the equicontinuity of these
parameterizations, the sequence γk has a subsequence that converges uniformly to
some curve γ of length at most |a − b| + ε.

It remains to check that γ is disjoint from E . To this end it suffices to show that
dist(γ,Ek) > 0 for all k. By construction, for m ≥ k the curve γm+1 is contained in
the δm-neighborhood of γm, where δm ≤ dk/2m+1. Therefore, γ is contained in the
(dk/2)-neighborhood of γk. This implies dist(γ,Ek) ≥ dk/2 > 0, completing the
proof. �

In Lemma 3.8 it is essential that the sets are assumed closed (although their
union need not be). For example, both [0, 1] ∩ Q and [0, 1] \ Q are metrically
removable in C, but their union is not.

4 Estimates for the intrinsic metric

The main tool for proving Theorem 1.3 is the following lemma of independent
interest.

Lemma 4.1. For any domain 	 ⊂ C we have

(4.1) ρ	(a, b) ≤ |a − b| +
π

2
H1(∂	)

for all a, b ∈ 	.

The proof of Lemma 4.1 involves the concept of Painlevé length from [7, p. 48].

Definition 4.2. The Painlevé length of a compact set K ⊂ C, denoted κ(K ),
is the infimum of numbers � with the following property: for every open set U
containing K there exists an open set V such that K ⊂ V ⊂ U and ∂V is a finite
union of disjoint analytic Jordan curves of total length at most �.

Instead of analytic curves, one could use smooth or merely rectifiable curves
in Definition 4.2 without changing the value of κ(K ). Indeed, if γ is a rectifiable
Jordan curve, let � be a conformal map of the exterior of the unit disk onto the
exterior domain bounded by γ. The images of circles |z| = r under � are analytic
Jordan curves, and their length converges to the length of γ as r → 1+.
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Proposition 4.3 ([6, p. 25]). The inequality κ(K ) ≤ πH1(K ) holds for every

compact set K ⊂ C.

Proof. We provide here an argument for the convenience of the reader.

Take ε > 0. Let U be an open set containing K and let {Ei}i∈N be a collection
of open subsets of U covering K such that

(4.2)
∑
i∈N

diam(Ei) < H1(K ) + ε

and diam(Ei) ≤ 1
2 dist(K,C \ U) for each i ∈ N.

Since K is compact, already finitely many Ei , i ∈ {1, . . . ,N }, will cover K .
We may replace each Ei with its convex hull without increasing the diameter.
Furthermore, we may replace each Ei with a slightly larger convex polygon so
that (4.2) still holds and Ei is still contained in U . Assume this done.

Since the length of the boundary of a planar convex set is at most π times its
diameter (e.g., item 7-17 (a) on p. 257 of [9]), we obtain

N∑
i =1

H1(∂Ei) ≤
N∑

i =1

π diam(Ei) < π(H1(K ) + ε).

By construction, the boundary of the union V =
⋃N

i =1 Ei is a finite union of line
segments of total length less than π(H1(K ) + ε). Surrounding each connected
component of V by an analytic Jordan curve as in the remark after Definition 4.2,
we obtain κ(K ) < π(H1(K ) + ε). �

Proof of Lemma 4.1. Let L = |a − b| + π
2 H

1(∂	) and K = ∂	 ∩ B(a,L).
It suffices to work with Kc instead of 	, because a path from a to b of length
sufficiently close to L cannot exit B(a,L). Note also that H1(K ) ≤ H1(∂	).

Fix ε > 0. Since Kc contains 	, there is a curve 
 connecting a and b in Kc.
Pick an open set U such that K ⊂ U and dist(U, 
) > 0. By Proposition 4.3 there
exists an open set V such that K ⊂ V ⊂ U and ∂V is a finite disjoint union of
analytic Jordan curves σ j , j = 1, . . . ,N , of total length at most πH1(K ) + ε. By
construction, each σ j is disjoint from K . Also, a and b are in the same connected
component of V

c
, being connected by the curve 
.

Let γ0(t) = (1 − t)a + tb be the line segment [a, b] parameterized by t ∈ [0, 1].
If γ0 does not meet ∂V , then it is contained in Kc and we are done. Otherwise,
let t1 = min{t : γ0(t) ∈ ∂V }. The point γ0(t1) belongs to some Jordan curve σ j .
If σ j has no other intersection point with γ0, then it separates a from b, which
is impossible. Let t2 = max{t : γ0(t) ∈ σ j }. The line segment γ0([t1, t2]) can be
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replaced by the shorter of two subarcs of the Jordan curve σ j determined by the
points γ0(t1) and γ0(t2). This adds at most �(σ j )/2 to the length.

The remaining part γ0([t2, 1]) no longer meets σ j . Therefore, repeating the
above process will result, in finitely many steps, in a curve γ connecting a to b
within Kc. This curve consists of parts of the segment [a, b] and arcs of the
curves σ j , and satisfies

�(γ) ≤ |a − b| +
N∑
j =1

�(σ j )
2

≤ |a − b| +
π

2
H1(K ) +

ε

2
.

This proves (4.1). �

Proof of Theorem 1.3. We consider the case n = 2 first. Let E ⊂ C be a
closed totally disconnected set with H1(E) = L < ∞. Fix distinct points a, b ∈ Ec

and pick ε > 0 small enough so that B(a, ε) and B(b, ε) are disjoint from E . Since
the length of E is finite, almost every line parallel to [a, b] has finite intersection
with E [11, Theorem 10.10]. Choose a′, b′ ∈ Ec such that |a−a′| < ε, |b−b′| < ε,
and E ∩ [a′, b′] = {z1, . . . , zN } is finite.

Choose r > 0 small enough so that
• r < ε/N ;
• |zk − z j | > 2r whenever k �= j ;
• H1(E ∩ B(zk, r)) < ε/N for each k = 1, . . . ,N .

By Lemma 4.1 for each k there exists a curve γk ⊂ B(zk, r) \ E which joins two
points of [a′, b′] ∩ B(zk, r) separated by zk and has length at most

2r +
π

2
H1(∂(B(zk, r) \ E)) ≤ 2r + π2r +

πε

2N
.

Using each γk as a detour around zk, we obtain a curve that joins a′ to b′ and has
length at most

|a′ − b′| + 2rN + π2rN +
πε

2
< |a − b| + (4 + π2 + π/2)ε

which proves the theorem since [a, a′] and [b, b′] are disjoint from E .
Now suppose n ≥ 3. Given a, b ∈ Ec and ε > 0, fix a two-dimensional plane P

containing a and b. By [11, Theorem 10.10], the intersection E ∩ (P + v) has finite
length for almost every vector v orthogonal to P. Since E is closed, we can choose
such v with |v | < min(ε, dist({a, b},E)). Applying the two-dimensional case to
E ∩ (P + v), we obtain a curve γ that joins a + v to b + v within (P + v) \ E and has
length less than |a − b| + ε. The concatenation of γ with the segments [a, a + v]
and [b, b + v] joins a to b in Ec and has length less than |a − b| + 3ε. �
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Unlike Theorem 1.3, Lemma 4.1 does not extend to higher dimensions: when
n ≥ 3, there is no universal constant C such that every domain 	 ⊂ Rn satisfies

ρ	(a, b) ≤ C(|a − b| + Hn−1(∂	)) for all a, b ∈ 	.

Indeed, we can connect two points a, b ∈ Rn by a very long circular arc and let 	

be a small tubular neighborhood of that arc; then Hn−1(∂	) is small.

5 Removable sets for functions with boundedderivative

Carleson [5] proved that sets of zero area are removable for Lipschitz functions, and
the converse was proved later by Uy [14]. A Lipschitz-continuous holomorphic
function has bounded derivative; however, the converse is in general false. The
following proposition shows that the class of removable sets for functions with
bounded derivative is much smaller than for Lipschitz functions.

Proposition 5.1. A connected compact set with more than one point is not
removable for holomorphic functions with bounded derivative.

Proof. Given such a set K , let 	 be the connected component of C \ K

containing ∞. There is a conformal map f : 	 → D such that f (∞) = 0. The
square of f is O(1/|z|2) as z → ∞ and therefore has zero residue at infinity. This
makes its antiderivative F (z) =

∫ z f (ζ )2 dζ a holomorphic function in 	. Extend F
to be 0 on bounded connected components of C \ K ; this makes it a holomorphic
function on the complement of K . Clearly, |F ′| = | f 2| < 1 in Kc. If F could be
extended to an entire function, F ′ would be a bounded entire function and therefore
constant. This is impossible since F ′(z) → 0 as z → ∞. �

However, in a quasiconvex domain the boundedness of a derivative implies
Lipschitz continuity, since one can integrate the derivative along paths of controlled
length. Therefore, every compact set of zero area with quasiconvex complement
is removable for functions with bounded derivative. This leads to the following
corollary of Theorem 1.3.

Corollary 5.2. If K ⊂C is a totally disconnected compact set andH1(K )<∞,

then K is removable for holomorphic functions with bounded derivative.

It is clear that a set of zero analytic capacity is removable for functions
with bounded derivative, since its complement does not support any nonconstant
bounded holomorphic functions. However, Corollary 5.2 also applies to some
sets of positive capacity, such as a totally disconnected compact subset of R with
positive length.
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6 Comparison of thinness conditions

Tabor and Tabor [13] introduced the concept of “intervally thin” sets, which is
related to removability of sets for convex functions [12, 13].

Definition 6.1 ([13]). A set E ⊂ Rn is intervally thin if for all a, b ∈ Rn

and ε > 0 there exist points a′, b′ such that |a − a′| < ε, |b − b′| < ε, and the line
segment [a′, b′] is disjoint from E .

This concept is closely related to metric removability: the reader may wish to
observe that the set constructed in Proposition 3.5 is intervally thin. Definition 6.1
can be rephrased as: any two open balls in Rn can be connected by a line segment
disjoint from E . The latter statement is made more precise by the following result.

Lemma 6.2. Suppose E ⊂ Rn is intervally thin. Let P and Q be distinct

(n − 1)-dimensional hyperplanes in Rn. Then for any two points p ∈ P, q ∈ Q and
any r > 0 the sets A = P ∩B(p, r) and B = Q ∩ B(q, r) can be connected by a line

segment disjoint from E.

Proof. Since both A and B are (n − 1)-dimensional disks not contained in
the same hyperplane, the difference set A − B = {a − b : a ∈ A, b ∈ B} is n-
dimensional. Therefore, there exist a ∈ A and b ∈ B such that the vector a − b is
not parallel to either P or Q. Let L be the line through a and b. Pick two points
a1, b1 ∈ L such that both a and b lie strictly between a1 and b1.

For sufficiently small ε > 0 any line segment connecting B(a1, ε) to B(b1, ε)
intersects both A and B . Since E is intervally thin, some of such line segments are
disjoint from E , proving the claim. �

In order to obtain a sufficient removability condition for holomorphic functions
with restricted argument of derivative (Theorem 8.1), we need the concept of a
Lipschitz-thin set, which is developed in the remainder of this section.

Definition 6.3. Let ε > 0. A curve γ : [α, β] → Rn is an ε-Lipschitz graph
if for every α ≤ t < s ≤ β the angle between the vectors γ(s)−γ(t) and γ(β)−γ(α)
is less than ε.

Definition 6.4. A set E ⊂ Rn is Lipschitz-thin if for any ε > 0, any two
points a, b ∈ Rn can be connected by an ε-Lipschitz graph that is disjoint from
E \ {a, b}.

The following result is a counterpart of Lemma 3.1 for Lipschitz-thin sets.
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Lemma 6.5. A set E ⊂ Rn is Lipschitz-thin if and only if it has empty interior

and any two points a, b ∈ Ec can be connected by an ε-Lipschitz graph within Ec.

The proof of Lemma 6.5 relies on a geometric fact which we isolate into a
lemma.

Lemma 6.6. For any distinct points a, b ∈ Rn and any ε > 0 there exists a

double-infinite sequence {xk : k ∈ Z} ⊂ [a, b] and positive numbers rk > 0 such
that

(a) xk → a as k → −∞ and xk → b as k → ∞,

(b) for any choice of points yk ∈ Bk := B(xk, rk), the angle between the vectors
yk − yk−1 and b − a is less than ε.

Proof. By translation and scaling in Rn we can achieve a = 0 and |b| = 1.
Let δ > 0 be a small number to be chosen later. Define

xk =

⎧⎨
⎩

δ−kb, k < 0;

(1 − δ k+1)b, k ≥ 0,
and rk =

⎧⎨
⎩

δ−2k, k < 0;

δ2k+2, k ≥ 0.

Observe that

(6.1) |xk − xk−1| =

⎧⎨
⎩

δ |k| − δ |k|+1, k �= 0;

1 − 2δ, k = 0.

For any choice of points yk ∈ Bk we have

|yk − yk−1| ≤ |xk − xk−1| + rk + rk−1.

On the other hand, writing P for the orthogonal projection onto the line through a
and b, we have

|P(yk) − P(yk−1)| ≥ |xk − xk−1| − rk − rk−1.

Comparing (6.1) with the definition of rk, we find that (rk + rk−1)/|xk − xk−1| ≤ Cδ

with C independent of k or δ . By choosing δ sufficiently small, we can make the
ratio |P(yk) − P(yk−1)|

|yk − yk−1| ≥ |xk − xk−1| − rk − rk−1

|xk − xk−1| + rk + rk−1
≥ 1 − Cδ

1 + Cδ

arbitrarily close to 1, which implies the conclusion of the lemma. �

Proof of Lemma 6.5. The necessity part is clear. To prove sufficiency,
fix a, b ∈ Rn and ε > 0, and let Bk be as in Lemma 6.6. For each k ∈ Z pick
yk ∈ Bk \ E which is possible because E has empty interior.
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Connect each yk to yk−1 by an ε-Lipschitz graph γk ⊂ Ec. The concatenation
of these curves is a curve from a to b that lies in Ec except possibly its endpoints.
By construction, this curve is a (2ε)-Lipschitz graph. �

As another application of Lemma 6.6, we relate the notions of “intervally thin”
and “Lipschitz-thin” on the plane.

Proposition 6.7. Any intervally thin set E ⊂ R2 is Lipschitz thin.

Proof. An intervally thin set has empty interior by definition. Fix ε > 0 and
distinct points a, b ∈ Ec. We may assume a = 0 and b = 1, identifying R2 with C.
Let Bk, k ∈ Z, be the disks provided by Lemma 6.6.

Since E is intervally thin, there exists a line segment L1 ⊂ Ec connecting
B0 to B1. By Lemma 6.2, there is a line segment L2 connecting L1 ∩ B1 to B2.
Continuing in this way, let Lk+1 ⊂ Ec be a line segment connecting Lk ∩Bk to Bk+1.
After erasing extraneous parts of segments Lk (namely, the part of Lk∩Bk extending
beyond the point Lk ∩ Lk+1) we obtain a curve that begins with L1 and ends at 1.

Similarly, let L0 ⊂ Ec be a line segment connecting L1 ∩ B0 to B−1 and erase
the part of L1 ∩B0 extending beyond L1 ∩L0, etc. This process results in the curve

γ = {0, 1} ∪ ⋃
k∈Z

Lk

which is the desired ε-Lipschitz graph connecting 0 to 1 within Ec. �
The proof of Proposition 6.7 breaks down in dimensions n > 2, where

Lemma 6.2 provides a way to connect (n − 1)-dimensional disks instead of 1-
dimensional line segments. However, we still have such a result for closed sets.

Proposition 6.8. If a closed set E ⊂ Rn is intervally thin, then it is Lipschitz-
thin.

Proof. Given distinct points a, b ∈ Ec and δ ∈ (0, 1), pick r > 0 such that
both B(a, r) and B(b, r) are disjoint fromE and r < δ |a−b|. Let u = (b−a)/|b−a|
and define

a1 = a + (1 − δ )ru and b1 = b − (1 − δ )ru.

The balls B(a1, rδ ) and B(b1, rδ ) are connected by some line segment [a′, b′] ⊂ Ec.
The piecewise linear curve aa′b′b is disjoint from E , and all three of its segments
are nearly parallel to vector u when δ is small enough. Thus, aa′b′b is the desired
ε-Lipschitz graph with small ε. �

The converse of Proposition 6.7 is false: a Lipschitz-thin set need not be
intervally thin, as the following two examples show.
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Example 6.9. In R2, let E = I1 ∪ I2 ∪ I3 where

I1 = {(x, 1) : x ∈ [−1, 1] \ Q};
I2 = {(x, 0) : x ∈ [−1, 1] ∩ Q};
I3 = {(x,−1) : x ∈ [−1, 1] \ Q}.

The set E is Lipschitz-thin, because all three sets Ik are easily avoided by a
polygonal path that can be made arbitrarily close to straight. On the other hand,
there is no line segment that connects a small neighborhood of (0, 2) to a small
neighborhood of (0,−2) while avoiding E . Indeed, such a line segment L would
contain two points (u, 1) and (v,−1) with u, v ∈ Q. Then ((u + v)/2, 0) ∈ L ∩ E ,
proving the claim.

The set E in Example 6.9 is not closed. A compact set with the same properties
can be constructed with the following iterative process.

Example 6.10. Let δ = 2−5. Define for every n, k ∈ N and i ∈ {0, 1, 2} a
similitude mapping fn,i,k : R2 → R2 by setting

fn,i,k(x) =

⎧⎨
⎩

(1 − 2δ )2−2nx + (i · 2−n, (k + δ ) · 2−2n), if i = 0, 1;

(1 − 2δ )2−2nx + (i · 2−n, (k + 1
2 + δ ) · 2−2n), if i = 2.

Given a set F ⊂ R2, let

Sn(F ) =
2⋃

i =0

22n−2⋃
k =0

fn,i,k(F )

and define a sequence of compact sets E7 ⊃ E8 ⊃ · · · as

En = S7 ◦ S8 ◦ · · · ◦ Sn([0, 1]2).

The final compact set is defined as

E =
∞⋂

n=7

En.

Let us then show that the set E is Lipschitz-thin, but not intervally thin.
In order to see that E is not intervally thin we prove

Claim 1. Any line passing through {0} × [2δ, 1 − 2δ ] making an angle at

most π/4 with the horizontal axis, must intersect the set E.

Assuming Claim 1, any line segment connecting a point in B((−1/2, 1/2), 1/4)
to a point in B((3/2, 1/2), 1/4) intersects E and thus E is not intervally thin.
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To prove that E satisfiesClaim 1, it is enough to show that for any setF ⊂ [0, 1]2

satisfying Claim 1 and for any n ≥ 7 also the set Sn(F ) satisfies Claim 1. Indeed,
assuming this is true, then since [0, 1]2 satisfies Claim 1, so does each En, and the
property carries over to the nested intersection E .

For showing that Sn(F ) satisfies Claim 1, let L be a line passing through
{0} × [2δ, 1 − 2δ ] and making an angle at most π/4 with the horizontal axis.
Suppose towards a contradiction that Sn(F ) ∩ L = ∅. Denote for i ∈ {0, 1, 2}
by yi ∈ [δ, 1 − δ ] the y-coordinate of the intersection of L with the vertical line
{i ·2−n}×R. Since n ≥ 7, we have δ < 2−n+1. Combining this with the assumption
that L passes through {0} × [2δ, 1 − 2δ ] and with the assumption that L makes
an angle of at most π/4 with the horizontal axis, we have that L intersects both
{2−n} × [δ, 1 − δ ] and {2−n+1} × [δ, 1 − δ ]. This together with the assumption
Sn(F ) ∩ L = ∅ and the definition of Sn implies that there exist k0, k1, k2 ∈ N such
that

(6.2) |yi − ki2
−2n| ≤ 3δ · 2−2n, for i = 0, 1,

and

(6.3)
∣∣∣y2 −

(
k2 +

1
2

)
2−2n

∣∣∣ ≤ 3δ · 2−2n.

Since L is a line, y2 = 2y1 − y0. Combining this with (6.2) gives the estimate

|y2 − (2k1 − k0)2
−2n| = |2y1 − y0 − (2k1 − k0)2

−2n|
≤ 2|y0 − k02

−2n| + |y1 − k12
−2n| ≤ 9δ · 2−2n.

Since δ = 2−5, this contradicts (6.3). Thus Sn(F ) ∩ L �= ∅ and Claim 1 holds.
It remains to show that E is Lipschitz-thin. Fix ε > 0. Observe that

Sn([0, 1]2) ⊂ [0, 2−n+2] × [0, 1]

which implies that Sn−1 ◦ Sn([0, 1]2) is contained in vertical strips of width 2−3n+4

separated by horizontal distances at least 2−n. Furthermore, each vertical strip
has holes of height at least δ · 2−2n+2 placed uniformly at vertical distance less
than 2−2n+2 from one another. These holes allow curves to pass through the
vertical strips with only a slight change of direction. Therefore, there exists n ∈ N

such that any two points x, y ∈ R2 with distance at least ε from Sn−1 ◦ Sn([0, 1]2)
can be connected by an ε-Lipschitz graph avoiding Sn−1 ◦ Sn([0, 1]2).

Subsequent application of Sn−2, . . . , S7 only replicates the above at smaller
scales, since the property of being an ε-Lipschitz graph is preserved under simili-
tudes. Therefore, any two points x, y ∈ R2 with distance at least ε from En can be
connected by an ε-Lipschitz graph avoiding En. Consequently, E is Lipschitz-thin.
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It is immediate that a Lipschitz-thin set is metrically negligible. The converse
is not true, as the following example, called “Holey Devil’s Staircase” in [12],
shows.

Example 6.11. Let C ⊂ [0, 1] be the standard middle-third Cantor set, and
let f : [0, 1] → [0, 1] be the associated “staircase” function, i.e., the continuous
function that is constant on each component of [0, 1] \ C, where it is equal to the
midpoint of the component. Let E = {(x, f (x)) : x ∈ C} be the part of the graph
of f that lies over C. This is a compact totally disconnected set which is metrically
removable but not Lipschitz-thin.

Proof. Since E is a subset of the graph of an increasing function, its H1

measure is finite. By Theorem 1.3, E is metrically removable.
Suppose that g : [0, 1] → [0, 1] is a strictly increasing function such that

g(0) > 0 and g(1) < 1. We claim that the graph of g meets E . Indeed, let
x0 = inf{x : g(x) = f (x)}; this infimum is defined because g(0) > f (0) and
g(1) < f (1). If x0 /∈ C, then consider x1 < x0 such that f (x1) = f (x0). Since
g(x1) < g(x0) = f (x0) = f (x1), the intermediate value theorem implies that g = f

at some point of (0, x1), contradicting the choice of x0.
Pick ε < tan−1(1/3) and let 
 be an ε-Lipschitz graph connecting the points

(0, 1/3) and (1, 2/3). We claim that 
 is the graph of a strictly increasing function.
Indeed, if it is not, then there exist distinct points P,Q ∈ 
 such that the line
segment PQ is either vertical or has nonpositive slope. Either way, PQ makes the
angle of at least tan−1(1/3) with the vector (1, 1/3), contradicting Definition 6.4.

Since 
 is the graph of a strictly increasing function, it must intersect E , proving
that E is not Lipschitz-thin. �

7 Extension of delta-monotone maps

The extension theorem of this section will be applied to holomorphic functions
in §8.

Definition 7.1 ([10]). Let 	 ⊂ Rn, n ≥ 2, and δ > 0. A map f : 	 → Rn is
called δ-monotone if

(7.1) 〈 f (x) − f (y), x − y〉 ≥ δ | f (x) − f (y)||x − y|
for all x, y ∈ 	.

Examples of δ -monotone maps are easy to find when n = 2, by taking 	 to be
a convex domain and f a holomorphic function such that | arg f ′| ≤ cos−1 δ . For
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example [10, Example 15], the function f (z) = −1/z is δ -monotone in the domain
	 = {z ∈ C : | arg z| < π/6}, with δ = 1/2. Observe that this function does not
have a continuous extension to 	, being unbounded near 0. The following theorem
shows this is the only obstruction to continuous extension.

Definition 7.2. An open set 	 ⊂ Rn is locally connected on the bound-
ary if for every b ∈ ∂	 and every r > 0 there exists an open set U such that
b ∈ U ⊂ B(b, r) and U ∩ 	 is connected.

Theorem 7.3. Suppose 	 ⊂ Rn, n ≥ 2, is open and locally connected on
the boundary. Let f : 	 → Rn be a δ -monotone map that is bounded on bounded

subsets of 	. Then f has a continuous extension to 	, which is also δ -monotone.

We need additional notation for the proof. Given a point p ∈ Rn, a nonzero
vector v ∈ Rn, and an angle θ ∈ (0, π/2), let

C(p, v, θ) = {x ∈ Rn : 〈x − p, v〉 ≥ cos θ|x − p||v |}
be the closed cone with vertex p, the axis parallel to v , and opening angle θ. Note
that if f : 	 → Rn is a δ -monotone map and α := θ + cos−1 δ < π/2, then

(7.2) f (C(p, v, θ) ∩ 	) ⊂ C( f (p), v, α)

for any p ∈ 	.
Let us say that p is a vertex of a set E ⊂ Rn if p ∈ E and there exist v �= 0 and

θ ∈ (0, π/2) such that E ⊂ C(p, v, θ).

Lemma 7.4. For any set E ⊂ Rn the set of vertices of E is countable.

Proof. Suppose p ∈ E ⊂ C(p, v, θ). Then for every vector y in the interior of
the dual cone C(0, v, π/2 − θ) the linear function x �→ 〈x, y〉 attains its minimum
on E at the point p and nowhere else. Therefore, the dual cones associated with
distinct vertices of E are disjoint. Since there can be only countably many disjoint
open subsets of Rn, the lemma is proved. �

Proof of Theorem 7.3. Fix b ∈ ∂	. For each k ∈ N let Uk be an open
subset of Rn such that b ∈ Uk ⊂ B(b, 1/k) and Uk ∩ 	 is connected. Define

E =
∞⋂
k =1

Ek, where Ek = f (Uk ∩ 	).

Then each set Ek is nonempty, compact and connected. The intersection of a
nested sequence of such sets is nonempty, compact, and connected as well [15,
Theorem 28.2].
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Choose α strictly between cos−1 δ and π/2. Fix y ∈ E and pick a sequence
x j → b such that f (x j ) → y. Passing to a subsequence, we may assume

(7.3)
b − x j

|b − x j | → u as j → ∞,

where u is some unit vector. For a fixed j , we have

B(b, r) ⊂ C(x j , b − x j , α − cos−1 δ )

when r > 0 is small enough. By (7.2) this implies f (B(b, r)) ⊂ C( f (x j ), b−x j , α),
hence E ⊂ C( f (x j ), b − x j , α).

Passing to the limit j → ∞ and using (7.3), we obtain E ⊂ C(y, u, α). Thus,
every point of E is a vertex. By Lemma 7.4 the set E is countable. Being also
nonempty and connected, E must consist of precisely one point, say E = {y}. This
implies limx→b f (x) = y, which provides the desired continuous extension of f to
the boundary. Finally, the extendedmap is δ -monotone because the inequality (7.1)
is preserved under taking limits. �

Corollary 7.5. Suppose 	 ⊂ Rn, n ≥ 2, is open, dense in Rn, and locally
connected on the boundary. Then every δ -monotone map f : 	 → Rn has a

continuous δ -monotone extension to Rn.

Proof. In view of Theorem 7.3 we only need to prove that f (B(0, r) ∩ 	) is
bounded for every r > 0. Choose α strictly between cos−1 δ and π/2. When R is
sufficiently large, we have

B(0, r) ⊂ C(x,−x, α − cos−1 δ )

for all x ∈ 	 with |x| ≥ R. Since 	 is open and dense, there is x ∈ 	 such that
−x ∈ 	 and |x| ≥ R. From (7.2) it follows that

f (B(0, r) ∩ 	) ⊂ C( f (x),−x, α) ∩ C( f (−x), x, α)

where the set on the right is bounded, proving the claim. �
The relevance of the δ -monotonicity condition to the extension theorem 7.3 is

emphasized by the following example.

Example 7.6. Let 	 = Rn \ {0} where n ≥ 2. Define f : 	 → Rn by
f (x) = x + x/|x|. An interested reader can check that 〈 f (x) − f (y), x − y〉 > 0 for
all pairs of distinct points x, y ∈ 	. Yet, f does not have a continuous extension
to 0. It narrowly fails the δ -monotonicity condition (7.1).
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Remark 7.7. Every quasiconvexdomain 	 is locally connected on the bound-
ary. In particular, whenE ⊂ Rn is closed andmetrically removable, its complement
	 = Ec satisfies the assumptions of Corollary 7.5.

Indeed, given b ∈ ∂	 and r > 0, one can use quasiconvexity to find sufficiently
small ρ < r/2 so that any two points of B(b, ρ) ∩ 	 are connected by a curve of
length less than r/2. Such a curve must lie within B(b, r). Therefore, B(b, ρ) ∩ 	

belongs to one connected component of B(b, r)∩	, which satisfies Definition 7.2.

8 Removable sets for functions with restricted argu-
ment of derivative

Theorem 8.1. Let K ⊂ C be a closed Lipschitz-thin set with H2(K ) = 0.
Suppose f : Kc → C is holomorphic and there exists α < π/2 such that

(8.1) | arg f ′(z)| ≤ α, z ∈ Kc

(in particular, f ′ �= 0). Then f extends to an entire function, which is in fact linear.

The first step toward the proof of Theorem 8.1, presented as a lemma below,
does not rely on K having zero measure.

Lemma 8.2. Let K ⊂ C be a closed Lipschitz-thin set. Suppose f : Kc → C

is holomorphic and satisfies (8.1) with α < π/2. Then f is δ -monotone with

δ = cosα.

Proof. Fix distinct z, w ∈ Kc. Pick ε < π/2 − α and let γ be an ε-Lipschitz
graph connectingw to z within Kc. When parameterized by its arclength, γ satisfies

∣∣∣ arg γ′(t)
z − w

∣∣∣ ≤ ε

for almost all t in its parameter interval. Using the inequality | arg f ′| < α we
obtain ∣∣∣ arg ( f ◦ γ)′

z − w

∣∣∣ < α + ε.

Since f ◦ γ is absolutely continuous, integration yields

∣∣∣ arg f (z) − f (w)
z − w

∣∣∣ < α + ε

which implies (7.1) with δ = cos(α+ε). Since ε can be arbitrarily small, the lemma
is proved. �
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Proof of Theorem 8.1. By Lemma 8.2, the map f is δ -monotone with
δ = cosα. Corollary 7.5 with Remark 7.7 provide its δ -monotone extension F to
the entire complex plane.

A δ -monotone map F : C → C is quasiconformal [10, Theorem 6], which
means that F is locally in the Sobolev space W 1,2 and satisfies the Beltrami
equation

∂F
∂z̄

= μ(z)
∂F
∂z

almost everywhere in C, with μ being a measurable complex-valued function such
that ess sup |μ| < 1.

Since F is holomorphic on Kc, its Beltrami coefficient μ is zero a.e. The
uniqueness theorem for the Beltrami equation ([2, Theorem V.B.1] or [3, Theorem
5.3.4]) implies that such F must be a linear function, as claimed. �

9 Remarks and questions

A homeomorphism of R2 does not preserve metric removability of sets in gen-
eral. Indeed, there exists a homeomorphism g : R → R that maps the standard
Cantor set C onto a Cantor-type set C ′ of positive measure. Let E = C × C and
f (x, y) = (g(x), g(y)). Then f : R2 → R2 is a homeomorphism, the set E is metri-
cally removable by Corollary 3.4 while f (E) = C ′ ×C ′ is not metrically removable
by Proposition 3.6. Note that the map f in this example is neither Lipschitz nor
quasiconformal.

Question 9.1. Are metrically removable sets preservedby bi-Lipschitz home-
omorphisms f : Rn → Rn? Or even by quasiconformal maps?

The property of having quasiconvex complement is obviously preserved by
bi-Lipschitz maps. So, the class of closed metrically removable sets E ⊂ Rn with
Hn(E) = 0 is indeed preserved by bi-Lipschitz homeomorphisms, by virtue of
Lemma 3.3.

Question 9.2. What is the best constant in (4.1)? It seems likely that π/2 can
be improved. The example of 	 = C \ [−1, 1] with a, b = ±εi shows that the
constant should be at least 1. Is the inequality

(9.1) ρ	(a, b) ≤ |a − b| + H1(∂	)

true?
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As is observed in [6, p. 26], Proposition 4.3 holds in the stronger form
κ(K ) ≤ πH1∞(K ), that is, with the Hausdorff measure H1 is replaced by the Haus-
dorff content H1∞. In the Hausdorff content version, the constant π cannot be im-
proved because for the unit disk D we have κ(D) = 2π and H1∞(D) = diamD = 2.
However, we do not know of such an example for Hausdorff measure.

Question 9.3. Can the constant π in Proposition 4.3 be improved? The best
constant cannot be less than 3 because a modification of Sierpinski gasket described
in [11, p. 75] has H1(K ) = 1 and κ(K ) = 3.

Question 9.4. Is every intervally thin set Lipschitz-thin? By the results of §6
this is true in two dimensions, and for closed sets in all dimensions.

Acknowledgment. We thank the referee for carefully reading themanuscript
and suggesting several improvements.

Note added in proof. Questions 9.2 and 9.3 were answered in a recent
preprint "Sharp estimate on the inner distance in planar domains" by Lučić,
Pasqualetto and Rajala.
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