
DETERMINANTS OF LAPLACIANS
ON RANDOM HYPERBOLIC SURFACES

By
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Abstract. For sequences (Xj) of random closed hyperbolic surfaces with
volume Vol(Xj) tending to infinity, we prove that there exists a universal constant
E > 0 such that for all ε > 0, the regularized determinant of the Laplacian satisfies

log det(�Xj )

Vol(Xj)
∈ [E − ε,E + ε]

with high probability as j → +∞. This result holds for various models of random
surfaces, including the Weil–Petersson model.

1 Introduction and results

1.1 On determinants. Let X = �\H2 be a compact connected hyperbolic
surface obtained as a quotient of the hyperbolic plane H2 by a discrete co-compact
torsion-free group of orientation-preserving isometries. The hyperbolic Lapla-
cian �X on L2(X) has a pure point spectrum which we denote by

0 = λ0 < λ1 ≤ · · · ≤ λj ≤ · · · .
For all s ∈ C with Re(s) large enough, we know by Weyl’s law that the spectral
zeta function

ζX(s) =
∞∑
j=1

1
λs

j

is well defined and holomorphic. The regularized determinant is then usually
defined by

log det(�X) := −ζ ′
X(0),

provided one can prove an analytic extension to s = 0 of ζX . Practically, one
performs a meromorphic continuation by noticing that for large Re(s) we have

ζX(s) =
1
�(s)

∫ ∞

0
ts−1(Tr(e−t�X) − 1)dt,
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where e−t�X is the heat semi-group. The small time asymptotics at t ∼ 0 of the heat
kernel is the main tool which allows to “renormalize" the divergent behavior at t = 0
and obtain the meromorphic continuation; see, for example, Chavel [11, p. 156].

In the literature, Polyakov’s string theory [35, 14] has emphasized the role of
determinants on Riemann surfaces. In particular, the computation of “partition
functions” in perturbative string theory involves formal sums over all genera of
averages of determinants over the moduli space which have proved since then to
be divergent; see Wolpert [41]. Several authors have provided [5, 13, 36] some
explicit formulas for regularized determinants for various Laplace-like operators
on Riemann surfaces. In small genus, it is possible to compute accurately such
determinants by reducing to certain sums over closed geodesics which provide a
fast convergence; see [34, 38]. In variable curvature, the behavior of determinants
in a conformal class has been studied by Osgood, Phillips and Sarnak [30], in
particular the constant curvature metric maximizes the determinant.

In higher dimensions, determinants of Laplacians on differential forms are
related to the so-called analytic torsion, which in turn is related to important
topological invariants by results of Cheeger and Müller [12, 28]. In particular the
work of Bergeron–Venkatesh [3] establishes exponential growth of the analytic
torsion for certain families of covers of arithmetic manifolds.

In the case of Riemann surfaces, if� is a co-compact arithmetic Fuchsian group
derived from a quaternion algebra, one can define congruence covers

XP := �(P)\H2

of X = �\H2 by looking at prime ideals P in the ring of integers of the corre-
sponding number field. We denote by ‖P‖ the norm of ideals. Using the uniform
spectral gap of these surfaces proved by Sarnak and Xue in [37], together with
the fact that the injectivity radius goes to infinity as ‖P‖ → ∞, see in [19], one
can readily show (for example by using the arguments from [2] or as a direct
application of Theorem 3.1) that

lim‖P‖→∞
log det�XP

Vol(XP)
= E,

where E > 0 is some universal constant. Arithmetic surfaces being highly non-
generic, it is therefore natural to ask if this behavior is typical among larger families
of surfaces whose volume (equivalently genus) goes to infinity.

1.2 Models of random surfaces In this paper we will focus on the
behaviour of determinants of the Laplacian in the large volume (equivalently large
genus) regime, using probabilistic tools. The first historical model of random
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compact Riemann surfaces in the mathematics literature is perhaps the model
of Brooks–Makover [9] which is based on random 3-regular graphs as follows.
Consider Gn a 3-regular graph on 2n vertices, endowed with an orientation O.1 On
the (finite) set of all possible pairs (Gn,O), one can put a probability measure (which
is not the uniform measure) introduced first by Bollobás [4]; see [9, Section 5] for
a summary on this construction which allows tractable computations in the large
n regime. By glueing 2n ideal hyperbolic triangles according to (Gn,O) in such a
way that the feet of the altitudes in adjacent triangles match up, one then obtains
a random finite area hyperbolic surface SO

n := SO(Gn,O) with Vol(Sn) = 2πn. It is
possible to show, see [8], that all surfaces in SO

n are actually (non ramified) covers
of the modular surface PSL2(Z)\H2.

One can then conformally compactify SO
n by cutting cusps and filling them

with discs. Provided that SO
n has genus at least 2, we then denote by SC

n the
unique hyperbolic surface in the conformal class of this compactification; see [9,
Section 3]. In §4 of the same paper they also show that there exists a constant
C0 > 0 such that with high probability as n → +∞,

Vol(SC
n ) ≥ C0n.

Most of the geometric properties of SO
n (and then SC

n , after a mild loss) can be read
off from the combinatorics of Gn.

Another more recent discrete model of random surfaces is the so-called random
cover model which has been studied and used recently in [21, 26, 29]. In what
follows, we fix a compact surface X = �\H2, “the base surface”. Let φn : � → Sn

be a group homomorphism, where Sn is the symmetric group of permutations of
[n] := {1, . . . , n}. The discrete group � acts on H

2 × [n] by

γ.(z, j) := (γ(z), φn(γ)(j)).

The resulting quotient Xn := �\(H2 × [n]) is then a finite cover of degree n of X,
possibly not connected. By considering the (finite) space of all homomorphisms
φn : � → Sn, endowed with the uniform probability measure, we obtain a notion
of random covering surfaces of degree n, Xn → X. Let us remark that we can
also view (up to isometry) the random cover Xn as

Xn =
p⊔

k=1

�k\H2,

where each �k is the (a priori non-normal) subgroup of � given by

�k = Stab�(ik) = {γ ∈ � : φn(γ)(ik) = ik},
1an orientation on a graph is a function which assigns to each vertex v of the graph a cyclic ordering

of the edges emanating from v .
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where i1, . . . , ip ∈ [n] are representatives of the orbits of � (acting on [n] via φn).
In general, the cover Xn is not connected, but it follows directly from [20] that
the probability that this cover is connected tends to 1 as n goes to infinity. In this
model, we have Vol(Xn) = nVol(X).

A smooth model of random hyperbolic surfaces is given by the moduli
space Mg of closed hyperbolic surfaces with genus g, up to isometry. It is
often defined as the quotient

Mg = Tg/MCG,

where Tg is the Teichmüller space of hyperbolic metrics on a surface S of genus g

and

MCG = Diff(S)/Diff0(S)

is the group of isotopy classes of diffeomorphisms on S, aka the mapping class
group. We refer the reader, for example, to [10], chapter 6 for more details. A
symplectic form ωWP lives naturally on Tg and descends to the moduli space,
endowing it with a natural notion of volume, Weil–Petersson volume. The moduli
space is a non-compact finite-dimensional orbifold, but as a consequence of Bers’
theorem on pants decomposition, see [10, Theorem 5.1.2], it has a finite volume
with respect to this Weil–Petersson volume. We can therefore normalize this
measure and obtain a probability measure on Mg. Notice that in this case if
X ∈ Mg, Vol(X) = 4π(g−1) by Gauss–Bonnet. The calculation of Weil–Petersson
volumes of the moduli space by Mirzakhani [24] has made possible [25] the large
genus asymptotic analysis of various geometric and spectral quantities; see, for
example, [27, 43, 42] for recent works in that direction.

For all of the previous models, we will denote by P the associated probability
measure,which depends either on n or g, which are both proportional to the volume.
We say that an event A is asymptoticaly almost sure (a.a.s.), or holds with high
probability, if P(A) tends to 1 as the volume of surfaces tends to infinity. The
expectation of any relevant random variable will also be denoted by E.

1.3 Main result.

Theorem 1.1. There exists a universal constant E > 0 such that for all the
above models of random surfaces, for all ε > 0 we have

log det(�X)
Vol(X)

∈ [E − ε,E + ε],

a.a.s. as Vol(X) → +∞.
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The constant E is actually explicit and is approximately 0.0538; see §2 for an
exact description. This result shows that exponential growth of the determinant is
typical when the genus goes to infinity. This low dimensional result is consistent,
in a much simpler setting, with the conjectures on the exponential growth of
the analytic torsion and the torsion homology for higher dimensional hyperbolic
manifolds; see, for example, the paper of Bergeron–Venkatesh [3] and references
therein.

Note that the above statement says that the random variable log det(�X)
Vol(X) converges

in probability to the constant E. What about other modes of convergence? It
is possible to derive from Theorem 1.1 a convergence result for the expectation
of | log det(�)|β; see §5, Theorem 5.1: for both models of random covers and
Weil–Petersson, we show the existence of exponents β > 0 such that

lim
Vol(X)→∞E

( | log det(�X)|β
Vol(X)β

)
= Eβ.

The paper is organized as follows. In §2 we recall how one establishes an
identity for log det(�X) which involves infinite sums over closed geodesics via the
Heat trace formula. In §3 we prove an abstract Theorem which guarantees the
exponential growth of determinants as long as a certain natural list of assumptions
are satisfied. These hypotheses turn out to be valid a.a.s. for the probabilisticmodels
listed above, and this is established in §4. In §5, we derive from Theorem 1.1 a
convergence result for the expectation, based on some moments estimates for the
systole and the smallest positive eigenvalue.

Acknowledgement. It is a pleasure to thank my neighbor Bram Petri for
several discussions around this work. Thanks to Yuhao Xue and an anonymous
referee for pointing out an improvement of Theorem3.1. I also thank ZeevRudnick
for his reading and comments. Finally, Yunhui Wu and Yuxin He have recently
shown to me that Theorem 5.1 can also be refined in the Weil–Petterson case; see
in §5 for details.

2 Heat kernels and determinants

In this section, we recall some standard calculations on regularized determinants
mostly taken from [5, Appendix B]. Our goal is to show how the heat trace formula
allows to derive an identity for log det�X.
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On the hyperbolic plane H
2, the heat kernel pt(x, y) (see, for example, [10,

chapter 7]) has an explicit formula given by

pt(x, y) =

√
2e−t/4

(4πt)3/2

∫ ∞

d(x,y)

re−r2/4tdr√
cosh r − coshd(x, y)

,

where d(x, y) denotes the hyperbolic distance in H
2. On the quotient X = �\H2,

we can recover the heat kernel by summing over the group, i.e.,

hX
t (x, y) =

∑
γ∈�

pt(x, γy).

Convergence of the above series on any compact subset of H2 is guaranteed by the
lattice counting bound

(1) N�(x, y,T) := #{γ ∈ � : d(γx, y) ≤ T} = O(eT),

which is standard and follows from a basic volume argument. The semi-group of
operators e−t�X is then of trace class and one has the explicit “heat trace formula”

(2)

Tr(e−t�X) =
∑

j

e−tλj = Vol(X)
e−t/4

(4πt)3/2

∫ ∞

0

re−r2/4t

sinh(r/2)
dr

+
e−t/4

(4πt)1/2
∑
k≥1

∑
γ∈P

�(γ)
2 sinh(k�(γ)/2)

e−(k�(γ))2/4t,

where P stands for the set of primitive conjugacy classes in � (i.e., oriented
primitive closed geodesics on X) and if γ ∈ P, �(γ) is the length. For more details
on the calculation of this trace and more generally Selberg’s formula, see [17, 10].
Setting

SX(t) :=
e−t/4

(4πt)1/2
∑
k≥1

∑
γ∈P

�(γ)
2 sinh(k�(γ)/2)

e−(k�(γ))2/4t,

it is easy to see from the spectral side of the trace formula that |SX(t) − 1| is
exponentially small as t → +∞. We also observe that SX(t) is exponentially small
as t → 0. We now write (for Re(s) large)

ζX(s) =
1
�(s)

∫ ∞

0
ts−1(Tr(e−t�X) − 1)dt = ζ(1)

X (s) + ζ(2)
X (s),

where we have set

ζ(1)
X (s) =: Vol(X)

1
4π�(s)

∫ ∞

0
ts−1 e−t/4

√
4πt3/2

∫ ∞

0

re−r2/4t

sinh(r/2)
drdt,
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and
ζ(2)
X (s) =:

1
�(s)

∫ ∞

0
ts−1(SX(t) − 1)dt.

Writing (for Re(s) large)

ζ(2)
X (s) =

1
�(s)

∫ 1

0
ts−1(SX(t) − 1)dt +

1
�(s)

∫ ∞

1
ts−1(SX(t) − 1)dt

=
−1

�(s + 1)
+

1
�(s)

∫ 1

0
ts−1SX(t)dt +

1
�(s)

∫ ∞

1
ts−1(SX(t) − 1)dt,

we notice that the last two integrals make sense for all s ∈ C. Therefore ζ(2)
X (s) has

an analytic extension to C and using elementary facts on the gamma function (in
particular that it has a simple pole at s = 0 with residue 1), we have that

− d
ds

∣∣∣∣
s=0
ζ(2)
X (s) = −�′(1) −

∫ 1

0

SX(t)
t

dt −
∫ ∞

1

(SX(t) − 1)
t

dt.

On the other hand, for large Re(s) we use that2

e−t/4

√
4πt3/2

∫ ∞

0

re−r2/4t

sinh(r/2)
dr =

∫ +∞

−∞
x tanh(πx)e−(x2+1/4)tdx,

see [5, p. 593], and one can compute the Mellin transform to obtain (again for
Re(s) large)

ζ(1)
X (s) =

2Vol(X)
4π

∫ ∞

0

u tanh(πu)
(u2 + 1/4)s

du.

This function can be analytically continued to s = 0, see for example [5, Appendix
B], and the value can be actually computed as

− d
ds

∣∣∣∣
s=0
ζ(1)
X (s) =

Vol(X)
4π

(4ζ ′(−1) − 1/2 + log(2π)) := Vol(X)E,

with ζ ′(−1) = 1/12−log(A) and A is the so-calledGlaisher–Kinkelin constant,
which is for example defined by

A = lim
n→∞

∏n
k=1 kk

e−n2/4nn2/2+n/2+1/12
.

We have E ≈ 0, 0538. Using in addition that �′(1) = −γ0, where

γ0 = lim
n→+∞

n∑
k=1

1
k

− log(n)

2For example, one can use the identity valid for x ∈ R

tanh(πx) =
1
π

∞∑
k=0

2x

x2 + (k + 1/2)2
=

1
π

∫ ∞

0

sin(ux)
sinh(u/2)

du.
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is the Euler constant, we have obtained the celebrated identity

(3) log det�X = Vol(X)E + γ0 −
∫ 1

0

SX(t)
t

dt −
∫ ∞

1

(SX(t) − 1)
t

dt.

This formula can be interpreted multiplicatively the via Selberg zeta function at
s = 1; see [5, 13, 36].

3 An abstract deterministic statement

Theorem 1.1 actually follows from a more general deterministic result for se-
quences of compact surfaces satisfying certain hypotheses denoted by H1 and H2.
More precisely, if (Xk) is a sequence of compact connected hyperbolic surfaces
with Vol(Xk) → +∞, let Pk denote the set of oriented primitive closed geodesics
on Xk, and let �k be the hyperbolic Laplacian on Xk. We also denote by �0(Xk)
the length of the shortest closed geodesic on Xk. Let C > 0, η > 0, L > 0 and
0 < α < 1/2 be some constants.

We say that the sequence (Xk) satisfies hypothesis H1(η) if for all k ∈ N we
have

(4) λ1(�k) ≥ η.

We say that the sequence (Xk) satisfies hypothesis H2(C,L, α) if for all k ∈ N we
have the following bound on the number of closed geodesics:

(5) Nk(L) := NXk (L) := #{(γ,m) ∈ Pk × N : m�(γ) ≤ L} ≤ CVol(Xk)
α.

In this paper N = {1, 2, . . .} is the set of natural integers starting at 1. We point out
that exponential growth of Laplace determinants is established in the literature for
families of covers for which a uniform spectral gap holds and the injectivity radius
of the manifolds goes to infinity; see, for example, [3] and [2]. Typical examples
are congruence covers of arithmetic hyperbolic manifolds and Laplacians twisted
by a “strongly acyclic” representation which ensures a uniform spectral gap. In
random models of surfaces, having the injectivity radius grow to infinity is atypical
and we establish the result under the weaker assumption of small growth of the
number of closed geodesics with bounded length.

Theorem 1.1 will follow from the following deterministic result.

Theorem 3.1. Fix some η > 0 and 0 < α < 1. Assume that (Xk) satis-

fies H1(η) and H2(C0,L0, α) with L0 = 2arcsinh(1) for some C0 > 0. Then for
all ε > 0, there exists Lε > 0 such that if in addition (Xk) satisfies H2(Cε,Lε, α)
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for some Cε > 0, then uniformly for all Vol(Xk) large,

log det(�Xk)
Vol(Xk)

∈ [E − ε,E + ε],

where E > 0 is the universal constant from above.

All the positive constants denoted by C1,C2, . . . ,Cj below depend only
on C0,L0. Before we give a proof of Theorem 3.1, we will need a preliminary
Lemma which is needed to control uniformly sums over closed geodesics.

Lemma 3.2. Under hypothesis H2(C0,L0, α) where L0 = 2arcsinh(1), there

exists C1 > 0 such that for all k and all T ≥ 0,

Nk(T) ≤ C1Vol(Xk)e
T .

Proof. A result of Buser ([10] Lemma 6.6.4) says that for any compact con-
nected hyperbolic surface of genus g, the number of oriented closed geodesics
with length ≤ T which are not iterates of primitive closed geodesics of length
≤ 2arcsinh(1) is bounded from above by

(g − 1)eT+6.

Therefore we have

Nk(T) ≤ Vol(Xk)
4π

eT+6 + #{(γ,m) ∈ Pk × N : m�(γ) ≤ T and �(γ) ≤ 2arcsinh(1)}.
On the other hand we have

#{(γ,m) ∈ Pk × N : m�(γ) ≤ T and �(γ) ≤ 2arcsinh(1)} ≤ ∑
�(γ)≤arcsinh(1)

T
�(γ)

.

We can observe that by definition of Nk(L), we have

Nk(L) =
∑

m�(γ)≤L

1 =
∑
�(γ)≤L

[ L
�(γ)

]
,

where [.] is the integer part. Hence we can write

(6)
∑
�(γ)≤L

1
�(γ)

≤ 2
L

NXk(L).

Going back to the estimate of NXk(T) and using H2(C0,L0, α) with L0 = arcsinh(1),
we get

Nk(T) ≤ Vol(Xk)e
T e6

4π
+

2
arcsinh(1)

NXk(arcsinh(1))

≤ C1Vol(Xk)e
T ;

the proof is done. �
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Lemma3.3. Under hypothesesH1(η) andH2(C0,L0, α)whereL0 is as above,

there exists C2 > 0 such that for all k and all t ≥ 1,

|SXk (t) − 1| ≤ C2Vol(Xk)e
−η0t,

where η0 = min(η, 1/4).

Proof. In this proof we will use Vinogradov’s notation A � B, meaning that
A ≤ CB where C > 0 is a universal constant. By formula (2) we have

Tr(e−t�Xk ) − 1 = Vol(Xk)
e−t/4

(4πt)3/2

∫ ∞

0

re−r2/4t

sinh(r/2)
dr + SXk(t) − 1,

and therefore we get

|SXk(t) − 1| � Vol(Xk)e
−t/4 +

∞∑
j=1

e−tλj(Xk),

for all t ≥ 1. On the other hand, using the uniform spectral gap we have

∞∑
j=1

e−tλj(Xk) =
∞∑
j=1

e−(t−1)λj−λj ≤ e−(t−1)ηtr(e−�Xk ).

Going back to formula (2) with t = 1, we have also

tr(e−�Xk ) � Vol(Xk) + SXk (1)

and

SXk(1) � ∑
m≥1

∑
γ∈Pk

�(γ)
2 sinh(m�(γ)/2)

e−(m�(γ))2/4

�
∫ ∞

0

u
2 sinh(u/2)

e−u2/4dNk(u),

where we have used the Stieltjes integral notation with the measure dNk associated
to the counting function Nk. We can use Lemma 3.2 to bound Nk(u) as

Nk(u) ≤ C1Vol(Xk)e
u,

and a summation by parts shows that∫ ∞

0

u
2 sinh(u/2)

e−u2/4dNk(u) = −
∫ ∞

0
Nk(u)

d
du

{ u
2 sinh(u/2)

e−u2/4
}
du

� C1Vol(Xk),

which ends the proof. �



DETERMINANTS OF LAPLACIANS 275

Proof of Theorem 3.1. First notice that by formula (3), we have

∣∣∣ log det(�Xk)
Vol(Xk)

− E
∣∣∣ ≤ O(Vol(Xk)

−1) + D
(1)
Xk

+ D
(2)
Xk
,

where

D
(1)
Xk

=
1

Vol(Xk)

∫ ∞

1

|SXk(t) − 1|
t

dt, D(2)
Xk

=
1

Vol(Xk)

∫ 1

0

SXk(t)
t

dt.

Let us fix ε > 0. We first investigate D(1)
Xk

. Using H1(η) and H2(C0, α,L0), we can
use Lemma 3.3 and write∫ ∞

1

|SXk (t) − 1|
t

dt ≤
∫ R

1

SXk (t)
t

dt + log(R) + C2Vol(Xk)
∫ ∞

R

e−η0t

t
dt,

for any R > 1. Fixing R = R(ε) so large that

C2

∫ ∞

R

e−η0t

t
dt ≤ ε,

we have

D
(1)
Xk

≤ 1
Vol(Xk)

∫ R

1

SXk(t)
t

dt +
log(R)
Vol(Xk)

+ ε.

We now pick L1 > 1 (to be adjusted later on) and write

∫ R

1

SXk(t)
t

dt =
∫ R

1

SL1,−
Xk

(t)

t
dt +

∫ R

1

SL1,+
Xk

(t)

t
dt,

where

SL1,−
Xk

(t) =
e−t/4

(4πt)1/2
∑

m�(γ)≤L1

�(γ)
2 sinh(m�(γ)/2)

e−(m�(γ))2/4t,

SL1,+
Xk

(t) =
e−t/4

(4πt)1/2
∑

m�(γ)>L1

�(γ)
2 sinh(m�(γ)/2)

e−(m�(γ))2/4t.

Clearly we have

∫ R

1

SL1,+
Xk

(t)

t
dt ≤ C3

∑
m�(γ)>L1

�(γ)
2 sinh(m�(γ)/2)

e−(m�(γ))2/4R,

for some universal constant C3 > 0. Using Lemma 3.2 and a summation by parts,
we deduce that∫ R

1

SL1,+
Xk

(t)

t
dt ≤ C4Vol(Xk)

∫ ∞

L1

∣∣∣ d
du

( u
sinh(u/2)

e−u2/(4R)
)∣∣∣eudu.
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We now take L1 = L1(ε) so large that

C4

∫ ∞

L1

∣∣∣ d
du

( u
sinh(u/2)

e−u2/(4R)
)∣∣∣eudu < ε.

We now observe that if H2(C,L1, α) holds, we have

∫ R

1

SL,−
Xk

(t)

t
dt =

∑
m�(γ)≤L1

�(γ)
2 sinh(m�(γ)/2)

∫ R

1
e−(m�(γ))2/4t e−t/4

√
4πt3/2

dt

≤ C5L1Nk(L1) ≤ C5CL1Vol(Xk)
α ≤ C6(L1,C)Vol(Xk)

α,

for some possibly large constant C6(L1,C) > 0. In a nutshell, we have obtained,
provided that H2(C,L1, α) is satisfied with L1 = L1(ε) taken large enough,

lim sup
Vol(Xk)→+∞

D
(1)
Xk

≤ 2ε.

We now turn our attention to D
(2)
Xk

, and this is where a good control of sums over
short geodesics is required. We first use the same idea as above by writing

D
(2)
Xk

=
1

Vol(Xk)

∫ 1

0

SXk (t)
t

dt =
1

Vol(Xk)

∫ 1

0

SL2,−
Xk

(t)

t
dt +

1
Vol(Xk)

∫ 1

0

SL2,+
Xk

(t)

t
dt.

Writing for t > 0,

SL2,+
Xk

(t) ≤ C7t
−1/2

∑
m�(γ)>L2

�(γ)
2 sinh(m�(γ)/2)

e−(m�(γ))2/4t,

where C7 > 0 is universal, we have by Fubini

∫ 1

0

SL2,+
Xk

(t)

t
dt ≤ C7

∑
m�(γ)>L2

�(γ)
2 sinh(m�(γ)/2)

G(m�(γ)),

where for u > 0,

G(u) =
∫ 1

0
t−3/2e−u2/4tdt.

Notice that u �→ G(u) is a decreasing function and by a change of variable we have
actually for all u > 0,

G(u) =
4
u

∫ ∞

u/2
e−x2

dx.

We have therefore the bound

G(u) =
4
u

∫ ∞

u/2
e−x2/2−x2/2dx ≤ 4

u
e−u2/8

∫ ∞

0
e−x2/2dx =

2
√

2π
u

e−u2/8.
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As a consequence we get for L2 > 1

∫ 1

0

SL2,+
Xk

(t)

t
dt ≤ C8

∑
m�(γ)>L2

�(γ)
2 sinh(m�(γ)/2)

e−(m�(γ))2/8,

and by using Lemma 3.2 and a summation by parts, we can definitely fix L2 = L2(ε)
large enough so that

∫ 1

0

SL2,+
Xk

(t)

t
dt ≤ C8

∑
m�(γ)>L2

�(γ)
2 sinh(m�(γ)/2)

e−(m�(γ))2/8 ≤ Vol(Xk)ε.

From the above bound on G(u) we also deduce

∫ 1

0

SL2,−
Xk

(t)

t
dt ≤ C9

∑
m�(γ)≤L2

�(γ)
sinh(m�(γ)/2)

1
m�(γ)

≤ C′
9

∑
m�(γ)≤L2

1
m2�(γ)

.

By writing

∑
m�(γ)≤L2

1
m2�(γ)

=
∞∑

m=1

1
m2

∑
�(γ)≤L2/m

1
�(γ)

≤ π2

6

∑
�(γ)≤L2

1
�(γ)

,

we can use estimate (6) and H2(C,L2(ε), α) and we have again as above

∫ 1

0

SL2,−
Xk

(t)

t
dt ≤ C10(L2,C)Vol(Xk)

α,

where C10(L2,C)> 0 is some (possibly very large) constant depending on L2,C
and 0<α<1. We have therefore shown that whenever (Xk) satisfies H2(C,L(ε), α)
for some C > 0 and with L(ε) = max{L1,L2}, we have

lim sup
Vol(Xk)→+∞

∣∣∣ log det(�Xk)
Vol(Xk)

− E
∣∣∣ ≤ 3ε.

Theorem 3.1 is proved. �

4 Hypotheses H1 and H2 hold with high probability

Theorem 1.1 follows immediately from Theorem 3.1 if one can establish for the
three models of random hyperbolic surfaces considered here that there exists η > 0
and such that H1(η) holds a.a.s. and also that there exists 0 < α < 1 such that for
all L large, one can find C > 0 such that H2(C,L, α) also holds a.a.s.
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Indeed we then have for all ε > 0, and all Vol(X) large enough,

P

( log det(�X)
Vol(X)

∈ [E − ε,E + ε]
)

≥ P(X ∈ H1(η) ∩ H2(C0,L0, α) ∩ H2(C,L(ε), α)),

with
lim

Vol(X)→∞P(X ∈ H1(η) ∩ H2(C0,L0, α) ∩ H2(C,L(ε), α)) = 1.

4.1 Random covers. First we recall that the cover Xn → X may not be
connected but we know from [20] that

lim
n→+∞P(Xn connected) = 1.

We can therefore either restrict ourselves to connected surfaces Xn or modify the
definition of the regularized determinant by setting

ζXn(s) =
1
�(s)

∫ ∞

0
ts−1(Tr(e−t�X) − dn)dt,

where dn is the number of connected components of Xn and use the fact that dn = 1
with high probability.

It was recently shown in [21] that there exists a uniform spectral gap for
random covers Xn a.a.s. as n → +∞. More precisely we have for all 0 < η <

min{3/16, λ1(X)},
lim

n→+∞P(λ1(Xn) ≥ η) = 1.

Therefore H1(η) holds a.a.s. provided η is taken small enough. On the other hand,
property H2 is less obvious from the existing litterature and will require some
explanations. We recall that given a random homomorphism φn : � → Sn, one can
define a unitary representation ρn of � by setting

ρn(γ)(f ) := f ◦ φn(γ)
−1,

where f ∈ L2([n]), and the representation space is L2([n]) � C
n. The main

interest of this representation is the following fact, often called the “Venkov–
Zograf induction formula”. For all Re(s) > 1, one can define the Selberg zeta
function of Xn by

ZXn(s) :=
∏
m≥0

∏
γ∈PXn

(1 − e−(s+m)�(γ)).

One can also look at the twisted Selberg zeta function of the base X = �\H2 defined
for Re(s) > 1 by

ZX,ρn(s) :=
∏
m≥0

∏
γ∈PX

det(I − ρn(γ)e
−(s+m)�(γ)).
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It turns out that we have for all s, ZXn(s) = ZX,ρn(s); see [40, p. 51]. By computing
logarithmic derivatives we have, for all Re(s) > 1,

Z′
Xn

(s)

ZXn(s)
=
∑
γ∈PXn

∑
q≥1

�(γ)e−sq�(γ)

1 − e−q�(γ)
=
∑
γ∈PX

∑
q≥1

�(γ)tr(ρn(γq))e−sq�(γ)

1 − e−q�(γ)
.

Let φ ∈ C∞
0 (R+) be a compactly supported smooth test function, and set

ψ(s) :=
∫ ∞

0
esxφ(x)dx.

One can check that ψ(s) is actually analytic on C and by the Fourier inversion
formula we have, for all A > 1,

1
2iπ

∫ A+i∞

A−i∞
Z′

Xn
(s)

ZXn(s)
ψ(s)ds =

∑
γ∈PXn

∑
q≥1

�(γ)
1 − e−q�(γ)

φ(q�(γ))

=
∑
γ∈PX

∑
q≥1

�(γ)tr(ρn(γq))
1 − e−q�(γ) φ(q�(γ)).

See, for example, [18] §3 for more details on the derivation of this formula. By
carefully choosing the test function φ we deduce that for all L ∈ R+, we recover
the identity ∑

γ∈PXn

∑
q≥1

q�(γ)=L

�(γ) =
∑
γ∈PX

∑
q≥1

q�(γ)=L

�(γ)tr(ρn(γ
q)).

Notice that this formula can be proved directly by group theoretic arguments; see,
for example, in [16], in the proof of theorem 7.1. From this identity we deduce
that for all L > 0, we have∑

γ∈PXn

∑
q≥1

q�(γ)≤L

�(γ) =
∑
γ∈PX

∑
q≥1

q�(γ)≤L

�(γ)tr(ρn(γ
q)).

In particular we have

�0(Xn)NXn(L) ≤ L
∑
γ∈PX

∑
q≥1

q�(γ)≤L

tr(ρn(γ
q)),

where �0(Xn) denotes the shortest closed geodesic length on Xn. We point out that
we have actually tr(ρn(γq)) = Fix(φn(γq)), where Fix(σ) denotes the number of
fixed points of the permutation σ acting on [n]. From the combinatorial analysis
of Magee–Puder [22, 21], we know that for all primitive γ ∈ � and q ≥ 1, we have

lim
n→∞E(Fix(φn(γ

q))) = d(q),



280 F. NAUD

where d(q) stands for the number of divisors of q. Noticing that in the random
cover model we have always �0(Xn) ≥ �0(X), this is enough to conclude that for
all L, we have

lim
n→∞E(NXn(L)) ≤ C(�,L),

where C(�,L) > 0 is some (possibly large) constant. Applying Markov’s inequal-
ity, we get that for all ε > 0 and L fixed,

lim
n→∞P(NXn(L) ≤ Vol(Xn)

ε) = 1.

As a conclusion, in the random cover model, H2(C,L, α) is satisfied a.a.s. for all L

large and all α > 0.

4.2 Brooks–Makover model. In the paper [9, Theorem 2.2], they show
that there exists a constant C1 > 0 such that as n → ∞,

P(λ1(S
C
n ) ≥ C1) → 1.

In other words, property H1(η) is satisfied a.a.s. for some η > 0.
We point out that contrary to the model of random covers, the systole of SC

n

can be arbitrarily small, but we actually know that there exists C2 > 0 such that as
n → +∞,

P(�0(S
C
n ) ≥ C2) → 1.

Counting results for closed geodesics follow from the later work of Petri [32].
More precisely, one can derive from [32] the following fact.

Proposition 4.1. For all L > 0 fixed, we can find an integer NL and a finite

set of words
WL ⊂ {l, r}NL,

such that with high probability as n → ∞,

Nn(L) := #{(γ,m) ∈ PSC
n
× N

∗ : m�(γ) ≤ L} ≤ ∑
w∈WL

Zn,w,

where Zn,w are integer-valued random variables. In addition, each Zn,w converges
in the sense of moments (and hence in distribution) as n → ∞ to a Poisson variable

with expectation λw > 0.

By applying Markov’s inequality, one deduces readily that for all ε > 0 we
have a.a.s. ∑

w∈WL

Zn,w ≤ nε ≤ CLVol(SC
n )ε.
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This is enough to conclude that for all ε > 0, with high probability as n → ∞, we
have

Nn(L) ≤ CVol(SC
n )ε,

and therefore property H2(C, α,L) holds for any choice of α > 0, just like in the
previous model.

Let us now give some details on the proof of Proposition 4.1. The first step
is to reduce the problem to a counting bound for SO

n . In [9, Section 3], they
introduce the notion of a “large cusps” condition for SO

n . This condition is satisfied
a.a.s. for SO

n as n → ∞; see [9, Theorem 2.1]. The main interest of this condition
is [9, Theorem 3.2], see also [32, Lemma 2.5], which allows to show that provided
this “large cusps” condition is satisfied, one can bound

Nn(L) ≤ #{(γ,m) ∈ PS0
n
× N

∗ : m�(γ) ≤ 2L} =: NO
n (2L).

As explained in [9], §4, closed geodesics and their length in SO
n can be described

via the combinatorial data of (Gn,O): any closed geodesic in SO
n corresponds to a

word w ∈ {l, r}N , for some N > 0. To this word one can associate a matrix Mw

in SL2(N) via the rule
Mw = W1 · · ·WN,

where Wj = L if wj = l and Wj = R if wj = r, where

L =

(
1 1
0 1

)
, R =

(
1 0
1 1

)
.

The length �w of the corresponding geodesic on SO
n is then given by

tr(Mw) = 2 cosh(�w/2).

All we need to check is that fixing L implies finiteness of the corresponding set
of words (by bounding their word length). This is done in [33, Lemma 3.1]. One
obtains therefore that L being fixed, there exists a finite subset WL ⊂ {l, r}NL for
some large NL > 0, such that for all n, all closed geodesics with length ≤ 2L
on SO

n are given by words w ∈ WL. Proposition 4.1 now follows directly from [32,
Theorem B].

4.3 Weil–Petersson model. If f is a measurable non-negative function on
moduli space Mg, we will denote by

∫
Mg

f (X)dX the corresponding integral with
respect to Weil–Petersson volume. In the latter Vg will denote the Weil–Petersson
volume of Mg so that the expectation of f is given by

Eg(f ) :=
1
Vg

∫
Mg

f (X)dX.
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In [25], the following fact was proved. There exists η > 0 such that as g → +∞,
we have

P(λ1(X) ≥ η) → 1.

The constant η given by Mirzakhani follows from Cheeger’s inequality and an
estimate a.a.s. of Cheeger’s isoperimetric constant. It was shown independently in
[42, 43] that one can actually take η = 3/16 − ε, and more recently η = 2/9 − ε by
Anantharaman and Monk [1]. This shows that H1(η) holds with high probability
as g → +∞ for some universal η > 0. In [25, Theorem 4.2] and the remark after,
Mirzakhani proved that there exists a universal ε0 > 0 such that for all 0 < ε ≤ ε0,
one has for all g large

P(�0(X) ≤ ε) ≤ Cε2,

where C is uniform in g. In particular for all ε > 0, we get for all g large

P(�0(X) ≥ Vol(X)−ε) ≥ 1 − O(Vol(X)−2ε).

On the other hand, in the paper [26], Mirzakhani and Petri showed that for all
L > 0 fixed, the random variable

N0
g (L) := #{γ ∈ PX : �(γ) ≤ L}

converges in distribution as g → +∞ to a Poisson variable ZλL with parameter

λL :=
∫ L

0

et + e−t − 2
2t

dt.

Moreover, we have also convergence of all moments with p ∈ N

lim
g→∞E((N0

g(L))p) = E(Zp
λL

).

An application of Markov’s inequality then shows that for all ε > 0, for all g large
enough

P(N0
g (L) ≤ Vol(X)ε) ≥ 1 − CLVol(X)−ε.

To control the counting function

Ng(L) := #{(γ,m) ∈ PX × N
∗ : m�(γ) ≤ L},

we write

Ng(L) ≤
[L/�0(X)]+1∑

m=1

N0
g(L/m) ≤ N0

g (L)
(
1 +

L
�0(X)

)
.

For all ε > 0, we have with high probability as g → +∞
Ng(L) ≤ Vol(X)ε + LVol(X)2ε = OL(Vol(X)2ε),

and thus for all L large, there exists CL > 0 such that H2(CL,L, α) holds with high
probability for all α > 0 on Mg as g → +∞.
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5 Convergence results for moments of log det(�X).

In this last section, we give the proof of the following fact.

Theorem 5.1. In the Weil–Petersson model, for all 0 < β < 1 we have

lim
g→∞

1
Vg(4π(g − 1))β

∫
Mg

| log det(�X)|βdX = Eβ.

In the random cover model, let χ0 = 1{Xn connected}. Then as n → +∞, for all β > 0,
we have

lim
n→∞E

( | log det(�Xn)|β
Vol(Xn)β

χ0

)
= Eβ.

Proof for the Weil–Petterson model. The proof for the Weil–Petersson
model is a rather direct consequence of Theorem 1.1 and some estimates of Mirza-
khani [24]. We first need an a priori estimate for | log det(�X)| which follows
from similar ideas as in Theorem 3.1, without the probabilistic input. We use
Vinogradov’s notation � where the implied constant is universal.

By using Buser’s counting bound [10], as in the proof of Lemma 3.2, we have
the following universal bound for the number of closed geodesics of a surface with
genus g:

(7)
NX(L) ≤ (g − 1)eL+6 +

L
�0(X)

(3g − 3)

� Vol(X)eL
(
1 +

1
�0(X)

)
,

for some universal constant A1 > 0. We now prove an a priori upper bound
for | log det(�X)|. Following ideas of Wolpert [41], it is convenient to write for
all Re(s) large

ζX(s) =
∑

0<λj<1/4

λ−s
j +

1
�(s)

∫ ∞

0
ts−1

(
tr(e−t�X) − ∑

0≤λj<1/4

e−tλj

)
dt,

which can be rewritten as

ζX(s) =
∑

0<λj<1/4

λ−s
j − ∑

0≤λj<1/4

H(s, λj) + ζ(1)
X (s)

+
1
�(s)

∫ ∞

1
ts−1

(
SX(t) − ∑

0≤λj<1/4

e−tλj

)
dt +

1
�(s)

∫ 1

0
ts−1SX(t)dt,

where we have set for Re(s) large

H(s, λ) :=
1
�(s)

∫ 1

0
ts−1e−λtdt.
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By integration by parts and elementary properties of the Euler gamma function,
we then observe that for all λ ∈ [0, 1/4], s �→ H(s, λ) has an analytic extension
to s = 0. Morevover, if we set

C(λ) :=
d
ds

∣∣∣∣
s=0

H(λ, s),

then there exists a universal constant A1 > 0 such that for all λ ∈ [0, 1/4],

|C(λ)| ≤ A1.

This formula leads to the identity

log det(�X) =
∑

0<λj<1/4

log(λj) +
∑

0<λj<1/4

C(λj) − d
ds

∣∣∣∣
s=0
ζ(1)
X (s)

−
∫ 1

0

SX(t)
t

dt −
∫ ∞

1

(SX(t) −∑
0≤λj<1/4 e−λjt)

t
dt.

By mimicking the proof of Lemma 3.3 and using the above counting bound, we
deduce that for all t ≥ 1,∣∣∣∣SX(t) − ∑

0≤λj<1/4

e−tλj

∣∣∣∣ � Vol(X)
(
1 +

1
�0(X)

)
e−t/4.

By Fubini and the estimate on u �→ G(u) we have also∫ 1

0

SX(t)
t

dt �∑
m,γ

e−(m�(γ))2/8

m�(γ)
� ∑

m�(γ)≤1

1
m�(γ)

+
∑

m�(γ)>1

e−(m�(γ))2/8

� ∑
m�(γ)≤1

1
m�(γ)

+ Vol(X)
(
1 +

1
�0(X)

)
.

By noticing that we have

∑
m�(γ)≤1

1
m�(γ)

� log+ �−1
0 (X)

�0(X)
N0

X(1),

where log+(x) = max{0, log(x)} and N0
X(L) is the counting function for primitive

closed geodesics, we have obtained the estimate

| log det(�X)| � Vol(X)
(
1 + | log(λ∗(X))| + 1

�0(X)
+
)

+
log+ �−1

0 (X)
�0(X)

N0
X(1),

where we have set λ∗(X) = min{λ1(X), 1/4}, and we have used the rough bound
of Buser [10]:

#{λj < 1/4} ≤ 4g − 3 = 1 +
Vol(X)
π

.
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Notice that the optimal bound of Otal–Rosas [31],

#{λj < 1/4} ≤ 2g − 2,

won’t make any difference here.
This estimate of | log det(�X)| is consistent with the fact that det(�X) has expo-

nential growth when X approaches certain boundary points of the (compactified)
moduli space, a fact that was rigorously established by Wolpert in [41]. In partic-
ular, the so-called “bosonic Polyakov integral” involving the determinant over the
moduli space is indeed infinite; see [41].

Using the inequality for all β > 0 and all aj ≥ 0

( 4∑
j=1

aj

)β
≤ 4β(max

j
aj)

β ≤ 4β
( 4∑

j=1

aβj

)
,

we end up with the estimate

| log det(�X)|β
Vol(X)β

�
(
1+ | log(λ∗(X))|β +

1
�0(X)β

+Vol(X)−β
( log+ �−1

0 (X)
�0(X)

N0
X(1)

)β)
.

From Mirzakhani [24, Corollary 4.3], we know that∫
Mg

1
�0(X)

dX ≤ CVg,

where C > 0 is independent of g, from which we can deduce easily that for all
0 < α < 1, we have ∫

Mg

( log+ �−1
0 (X)

�0(X)

)α
dX ≤ CVg,

for some C > 0 uniform in g. Indeed, for all 0 < α < 1, there exists a universal
constant r0 > 0 such that 0 < x ≤ r0 implies

( | log x|
x

)α ≤ 1
x
.

By integrating over {X ∈ Mg : �0(X) ≤ r0} and using Mirzakhani’s bound we get
the desired bound, while on the complementary set

X �→
( log+ �−1

0 (X)
�0(X)

)α
is uniformly bounded.

On the other hand, Cheeger’s inequality says that

λ1(X) ≥ h2
X

4
,
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where hX is the so-called Cheeger constant of X, which is defined by an isoperi-
metric quantity; see, for example, in [10], chapter 8. Again by Mirzakhani [24,
Theorem 4.8], we know that for all 0 ≤ α < 2, we have∫

Mg

1
(hX)α

dX ≤ CVg,

where C > 0 is again uniform with respect to g. In particular, we deduce that for
all β > 0 ∫

Mg

| log(λ∗(X))|βdX ≤ CVg.

Assuming that β < 1, we choose p > 1 such that β < pβ < 1 and let q be such
that 1/p + 1/q = 1. By Hölder’s inequality we get

Eg

(( log+ �−1
0 (X)

�0(X)
N0

X(1)
)β) ≤

[
Eg

(( log+ �−1
0 (X)

�0(X)

)βp)]1/p
[Eg(N

0
X(1)βq)]1/q,

which by the convergence of moments in Mirzakhani–Petri [26] and the above
remarks is uniformly bounded as g → +∞. We therefore have shown that for all
β < 1, there exists C > 0 independent of g such that

(8)
∫

Mg

| log det(�X)|β
Vol(X)β

dX ≤ CVg.

We now fix ε > 0, and 0 < β < 1. By Theorem 1.1, there exists a subset
Ag(ε) ⊂ Mg, with P(Ag(ε)) → 1 as g → +∞, such that for all X ∈ Ag(ε),

(E − ε)β ≤ | log det(�X)|β
Vol(X)β

≤ (E + ε)β.

Therefore we have

1
Vg

∫
Mg

| log det(�X)|β
Vol(X)β

dX ≤ (E + ε)β +
1
Vg

∫
Ag(ε)c

| log det(�X)|β
Vol(X)β

dX,

while

(E − ε)βP(Ag(ε)) ≤ 1
Vg

∫
Mg

| log det(�X)|β
Vol(X)β

dX.

We now apply Hölder’s inequality and estimate (8). Since 0 < β < 1, let q > 1 be
chosen such that 0 < qβ < 1 and let 0 < p < ∞ be such that 1/p + 1/q = 1, we
have

1
Vg

∫
Ag(ε)c

| log det(�X)|β
Vol(X)β

dX ≤ (P(Ag(ε)
c))1/p

(
1
Vg

∫
Mg

| log det(�X)|qβ
Vol(X)qβ

dX
)1/q

≤ C(P(Ag(ε)
c)1/p.
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Since limg→+∞ P(Ag(ε)c) = 0, we definitely have for all g large enough

(E − ε)β − ε ≤ 1
Vg

∫
Mg

| log det(�X)|β
Vol(X)β

dX ≤ (E + ε)β + ε,

and the proof is done for the Weil–Petterson case. �
We would like to mention that in this smooth Weil–Petterson model, it is very

likely that by using finer estimates one can improve the result to the following
statement: for any β ∈ (0, 2) we have

lim
g→∞

1
Vg(4π(g − 1))β

∫
Mg

| log det(�X)|βdX = Eβ,

while for all β ≥ 2, ∫
Mg

| log det(�X)|βdX = +∞.

This fact was pointed out to the author by Yunhui Wu and Yuxin He in a private
communication and will be published in a separate paper.

Proof for the random covers model. We recall that we have
χ0 = 1{Xn connected}. In this model, the systole is bounded uniformly from below, so
the a priori bound for log det(�Xn), whenever Xn is connected, is actually

| log det(�Xn)|β
Vol(Xn)β

≤ A(1 + | log(λ∗(X))|β),

for some constant A > 0 independent of n. Using the same arguments as above
based on Hölder’s inequality, the result follows directly from the next fact.

Proposition 5.2. Assuming that Xn is connected, then we have for all n large,

λ1(Xn) ≥ C�
n3/2

,

where C� depends only on the base surface X = �\H2. Consequently for every

exponent β with 0 < β,
E(| log(λ∗(X))|βχ0) ≤ C,

where C > 0 is uniform with respect to n.

We first need to prove a deterministic lower bound on λ1(Xn), provided that Xn

is connected. We know that the spectrum of�Xn coincides, with multiplicity, with
the spectrum of �ρn , which is the Laplacian on the base surface twisted by the
unitary representation ρn of � defined previously. See, for example, [40, p. 51].
If Xn is connected, then

λ1(Xn) = min{λ1(X), λ0(�ρ0
n
)},
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where ρ0
n is the representation given by

ρ0
n(γ)U := Uφ−1

n (γ),

where

U ∈ V0
n :=

{
U ∈ C

n :
n∑

j=1

U(j) = 0
}

and
Uφ−1

n (γ)(j) = U(φ−1
n (γ)(j)).

Notice that ρ0
n is just the orthogonal complement to the trivial representation in ρn.

Let us fix a system of generators of �, denoted by S. A result of Sunada [39] then
says that there exists CS depending only on X and S such that

λ0(�ρ0
n
) ≥ CS inf

U∈V0
n‖U‖=1

max
γ∈S

‖ρ0
n(γ)U − U‖.

Let us take U ∈ V0
n such that ‖U‖ = 1. We therefore have

1 = ‖U‖2 ≤ n max
j

(Re(U(j))2 + Im(U(j))2),

and we can assume without loss of generality that we have Re(U(j0)) ≥ 1√
2n

for
some j0 ∈ [n]. Because we have in addition∑

j

Re(U(j)) = 0,

there exists also j1 ∈ [n] such that Re(U(j1)) ≤ 0. If Xn is connected, then �
acts transitively on [n] via φn and there exists γ0 ∈ � such that φn(γ0)−1(j0) = j1.
To bound the word length of γ0, consider the graph with set of vertices [n] and
define edges by connecting i to j if there exists g ∈ S such that φn(g)(i) = j.
By transitivity of the action, this graph is connected and thus has diameter less
than n − 1. Therefore we can choose γ0 with word length (with respect to S) less
than n − 1. We now have

1√
2n

≤ |Re(U(j0)) − Re(U(j1))| ≤ ‖ρ0
n(γ0)U − U‖.

Writing
γ0 = g1g2 · · · gm,

with gj ∈ S and m ≤ n − 1, we have therefore

‖ρ0
n(γ0)U − U‖ ≤

m∑
j=1

‖ρ0
n(gj)U − U‖ ≤ (n − 1) max

g∈S
‖ρ0

n(g)U − U‖,
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which yields

max
g∈S

‖ρ0
n(g)U − U‖ ≥ 1

(n − 1)
√

2n
.

The first claim of the proposition is proved. Alternatively, one can use directly
a result of Brooks [7] which relates λ1(Xn) to the Cheeger constants of Schreier
graphs of the covers (with a choice of generators of �) to obtain a similar lower
bound λ1(Xn) ≥ C�n−2 which is slightly worse but good enough for our purpose.

From the proof of the uniform spectral gap in [21] one can directly derive that
for all 1/4 > r > 0, for all ε > 0, as n → ∞,

P(λ1(Xn) ≤ r) ≤ Cε
n4

√
(1/4−r)−1−ε .

From that we deduce that for all α < 1 we can find rα > 0 such that

P(λ1(Xn) ≤ rα) ≤ Cα
nα
.

We now fix any β > 0 and fix some 0 < α < 1. We can use the fact that we have
(by the lower bound on λ∗(X))

| log(λ∗(X))|β = O((log(n))β),

where the implied constant is uniform with respect to n. We therefore get, as
n → ∞,

E(| log(λ∗(X))|βχ0) ≤ | log(rα)|β(1 + O(n−α)) + O(n−α| log(n)|β) = O(1)

and the proof is done. �
We conclude with some comments.
• It would be interesting to know if a similar type of result can be proved for

the Brooks–Makover model, in particular can one show that

E

( 1
�0(SC

n )

)

is finite and uniformly bounded with respect to n ? This will require
an effective version of the compactification procedure; see the paper of
Mangoubi [23].

• It is likely that our results can be extended to finite area surfaces (see Efrat
[15] for the definition and properties of determinants in this context), or
even geometrically finite surfaces where a notion of determinant also holds;
see [6].
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