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Abstract. In the first paper of this series we established new upper bounds
for multi-variable exponential sums associated with a quadratic form. The present
study shows that if one adds a linear term in the exponent, the estimates can be
further improved for almost all parameter values. Our results extend the bound for
one-variable theta sums obtained by Fedotov and Klopp in 2012.

1 Introduction

For M > 0, a real n × n symmetric matrix X, and x, y ∈ Rn, we define a theta
sum as the exponential sum

(1.1) θf (M,X,x, y) =
∑
m∈Zn

f (M−1(m + x)) e
(1
2
mX tm + m ty

)
,

where f : Rn → C is a rapidly decaying cut-off and e(z) = e2πiz for any complex z.
If f = χB is the characteristic function of a bounded set B ⊂ R

n we have the finite
sum

(1.2) θf (M,X,x, y) =
∑

m∈Zn∩(MB−x)

e
(1
2
mX tm + m ty

)
.

In this case we will also use the notation θf = θB. In this paper we will focus on
the case when

(1.3) B = (0, b1) × · · · × (0, bn) ⊂ R
n with b = (b1, . . . , bn) ∈ R

n
>0.

The theorems below remain valid if f = χB is replaced by any function f in the
Schwartz class S(Rn) (infinitely differentiable, with rapid decay of all derivatives).
The results in the latter case follow from a simpler version of the argument for the
sharp truncation, so we do not discuss them here.

The principal result of part I [11] in this series is the following.
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236 J. MARKLOF AND M. WELSH

Theorem 1.1. Fix a compact subset K ⊂ R
n
>0, and let ψ : [0,∞) → [1,∞)

be an increasing function such that

(1.4)
∫ ∞

0
ψ(t)−2n−2dt < ∞.

Then there exists a subset X(ψ) ⊂ R
n×n
sym of full Lebesgue measure such that

(1.5) θB(M,X,x, y) = OX(M
n
2ψ(logM))

for all M ≥ 1, b = (b1, . . . , bn) ∈ K, X ∈ X(ψ), x, y ∈ Rn. The implied constants

are independent of M, b, x and y.

For example, for any ε > 0, the function ψ(x) = (x + 1)
1

2n+2 +ε satisfies the
condition (1.4), which produces the bound M

n
2 (logM)

1
2n+2 +ε for almost every X

and any x and y. This improved the previously best bound due to Cosentino and
Flaminio [3] by a factor of (logM)n. Moreover, in the case n = 1, Theorem 1.1
recovers the optimal result obtained by Fiedler, Jurkat and Körner [5]; cf. also the
extension of this result via nilflows by Flaminio and Forni [6].

In what follows we establish a stronger bound than (1.5), for example
M

n
2 (logM)

1
2n+4 +ε, but now only valid for almost every y. In the case n = 1,

Theorem 1.2 recovers the upper bound in Theorem 0.1 of Fedotov and Klopp [4].

Theorem 1.2. Fix a compact subset K = K1 × K2 ⊂ Rn
>0 × Rn, and let

ψ : [0,∞) → [1,∞) be an increasing function such that

(1.6)
∫ ∞

0
ψ(t)−2n−4dt < ∞.

Then there exists a subset X̃(ψ) ⊂ Rn×n
sym × Rn of full Lebesgue measure such that

(1.7) θB(M,X,x, y) = OX,y(M
n
2ψ(logM))

for all M ≥ 1, (b,x) ∈ K, and (X, y) ∈ X̃(ψ). The implied constants are indepen-

dent of M, b and x.

The paper is organized as follows. In Section 2 we review some basic properties
of theta functions and the Jacobi group. The Jacobi group is defined as the
semi-direct product H � G of the Heisenberg group H and the symplectic group
G = Sp(n,R), and, following a construction due to Lion and Vergne [9], the theta
function associated to a Schwartz function f ∈ S(Rn) is a function�f : H�G → C

that, for appropriate g ∈ G and h ∈ H, is a simple rescaling of the theta sums θf .
The theta functions �f satisfy an automorphy equation, Theorem 3.1, under a



BOUNDS FOR THETA SUMS IN HIGHER RANK. II 237

certain subgroup �̃ ⊂ H � G. This subgroup, defined in Section 3, projects to the
discrete subgroup � = Sp(n,Z) ⊂ G.

In order to exploit additional savings from the linear term parameterized by y,
we found it necessary to have a better understanding of the shape of the cusp of
�\G than in the first paper in this series [11]. For this reason we define in Section
3.1 a new fundamental domain for�\G which has “box-shape” cusps, as explicated
in Section 3.2.

Section 4 contains the proof of Theorem 1.2, which is based on a Borel–Cantelli
type argument together with a multi-dimensional dyadic decomposition of the
characteristic function of the open unit cube (0, 1)n that is naturally realized as an
action of the diagonal subgroup ofG. The execution of theBorel–Cantelli argument
rests on a kind of “uniform continuity” property of a certain height function on
H�G that controls the theta function�f , seeCorollary 4.1. The required property is
proved in Section 4.1, see Lemma4.4, whose proof is the motivation for the creation
of the fundamental domain and the study of its cuspidal regions in Sections 3.1
and 3.2. We remark that the interaction of the dyadic decomposition with the H

coordinate in the Jacobi group leads to additional complications not seen in [11],
see Section 4.2.

2 Theta functions and the Jacobi group

The theta function �f associated to a Schwartz function f ∈ S(Rn) is a complex-
valued function defined on the Jacobi group H �G, the semi-direct product of the
Heisenberg group H with the rank n symplectic group G = Sp(n,R). Here H is the
set Rn × R

n × R with multiplication given by

(2.1) (x1, y1, t1)(x2, y2, t2) =
(
x1 + x2, y1 + y2, t1 + t2 +

1
2
(y1

tx2 − x1
ty2)

)
,

and G is the group of 2n × 2n real matrices g preserving the standard symplectic
form:

(2.2) g

(
0 −I
I 0

)
tg =

(
0 −I
I 0

)

with I the n × n identity. Alternatively, writing g in n × n blocks,

(2.3) G =

{(
A B

C D

)
: A tB = B tA, C tD = D tC, A tD − B tC = I

}
.

We note that G acts on H by automorphisms via

(2.4) hg = (xA + yC,xB + yD, t), where h = (x, y, t), g =

(
A B

C D

)
,
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so we may define the semi-direct product H � G, the Jacobi group, with multipli-
cation

(2.5) (h1, g1)(h2, g2) = (h1h
g−1

1
2 , g1g2).

The theta function is defined by

(2.6) �f (h, g) =
∑
m∈Zn

(W(h)R(g)f )(m),

where W is the Schrödinger representation of H and R is the Segal–Shale–Weil
(projective) representation of G. We refer the reader to [11] for details regarding
these representations, including the slightly non-standard definition of W and the
unitary cocycle ρ : G × G → C satisfying R(g1g2) = ρ(g1, g2)R(g1)R(g2). We
recall here that for

(2.7) g =

(
I X
0 I

)(
Y

1
2 0

0 tY− 1
2

)
∈ G,

we have

(2.8)

�f ((x, y, t), g)

= (detY)
1
4 e
(
−t +

1
2
x ty

)
× ∑

m∈Zn

f ((m + x)Y
1
2 ) e

(1
2
(m + x)X t(m + x) + m ty

)
.

For f (x) = exp
(−πx tx

)
and h = (0, 0, 0), we recover (detY)

1
4 times the classical

Siegel theta series that is holomorphic in the complex symmetric matrix Z = X+iY .
Here we choose Y

1
2 to be the upper-triangular matrix with positive diagonal entries

such that Y
1
2 tY

1
2 = Y , and we emphasize that Y− 1

2 is always interpreted as (Y
1
2 )−1

and not (Y−1)
1
2 .

For general g ∈ G we have the Iwasawa decomposition,

(2.9) g =

(
A B

C D

)
=

(
I X

0 I

)(
Y

1
2 0

0 tY− 1
2

)(
Re(Q) −Im(Q)
Im(Q) Re(Q)

)
,

where X,Y are symmetric and Q is unitary. Explicitly, we have

(2.10)

Y = (C tC + D tD)−1

X = (A tC + B tD)(C tC + D tD)−1,

Q = tY
1
2 (D + iC).
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We often further decompose Y = UV tU with U upper-triangular unipotent and V

positive diagonal, so Y
1
2 = UV

1
2 . It is easy to express the Haar measure μ on G in

these coordinates,

(2.11) dμ(g) = dQ
∏

1≤i≤j≤n

dxij

∏
1≤i<j≤n

duij

∏
1≤j≤n

v
−n+j−2

j dvjj,

where dQ is Haar measure on U(n) and dxij, duij, dvjj are respectively the Lebesgue
measures on the entries of X, U, V . We can also express the Haar measure on the
open, dense set of g which can be written as

(2.12) g =

(
I X
0 I

)(
A 0
0 tA−1

)(
I 0
T I

)

with A ∈ GL(n,R) and X and T symmetric. In these coordinates we have

(2.13) dμ(g) = c(detA)−2n−1
∏

1≤i≤j≤n

dxij

∏
1≤i,j≤n

daij

∏
1≤i≤j≤n

dtij

where c is a positive constant and dxij, daij, dtij are respectively the Lebesgue
measure on the entries of X, A, T , see [11]. We note that the Haar measure μ̃ on
the Jacobi group is simply

(2.14) dμ̃(h, g) = dx dy dt dμ(g),

with h = (x, y, t) and dx, dy, and dt the Lebesgue measures.
We often make use of the following refinements of the Iwasawa decomposition.

For 1 ≤ l ≤ n and the same Q as in (2.9), we write g ∈ G as

(2.15)

⎛
⎜⎜⎜⎝

I Rl Tl − Sl
tRl Sl

0 I tSl 0
0 0 I 0
0 0 − tRl I

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

UlV
1
2
l 0 0 0

0 Y
1
2
l 0 Xl

tY
− 1

2
l

0 0 tU−1
l V

− 1
2

l 0
0 0 0 tYl

− 1
2

⎞
⎟⎟⎟⎟⎟⎠

×
(

Re(Q) −Im(Q)
Im(Q) Re(Q)

)
,

where Rl and Sl are l × (n − l) matrices, Tl is l × l symmetric, Ul is l × l upper-
triangular unipotent, Vl is l × l positive diagonal, Xl is (n − l) × (n − l) symmetric,
and Yl is (n − l) × (n − l) positive definite symmetric. We note that for l = n
we recover X = Tl and the factorization Y = UlVl

tUl. In what follows we use
gl = gl(g) ∈ Sp(n − l,R) to denote the matrix

(2.16) gl =

(
I Xl

0 I

)⎛
⎝Y

1
2
l 0

0 tY
− 1

2
l

⎞
⎠ .
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These decompositions are closely related to the Langlands decompositions of
the maximal parabolic subgroups Pl of G. For 1 ≤ l < n, Pl is the subgroup of
g ∈ G which can be written in the form

(2.17)

⎛
⎜⎜⎜⎝

I Rl Tl − Sl
tRl Sl

0 I tSl 0
0 0 I 0
0 0 − tRl I

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

alI 0 0 0
0 I 0 0
0 0 a−1

l I 0
0 0 0 I

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

Ul 0 0 0
0 Al 0 Bl

0 0 tU−1
l 0

0 Cl 0 Dl

⎞
⎟⎟⎟⎠

where Rl and Sl are l× (n− l) matrices, Tl is l× l symmetric, al > 0, Ul ∈ GL(l,R)
with detUl = ±1, and gl = ( Al Bl

Cl Dl
) ∈ Sp(n− l,R). The maximal parabolic Pn is the

subgroup of g ∈ G that can be written as

(2.18)

(
I Tn

0 I

)(
anI 0
0 a−1

n I

)(
Un 0
0 tUn

−1

)

where Tn is n × n symmetric, an > 0, and Un ∈ GL(n,R) with detUn = ±1. The
factorizations (2.17), (2.18) are in fact the Langlands decompositions of Pl, Pn.
The first paper in this series [11] contains more details on parabolic subgroups
and their Langlands decompositions, and we refer the readers to [13], particularly
Sections 4.5.3 and 5.1, [8], particularly section 7.7, and the authors’ lecture notes
[10] for further details.

3 The subgroups � and �̃

We denote by � the discrete subgroup � = Sp(n,Z) ⊂ G. Recalling the notation
of [11], for

(3.1) γ =

(
A B

C D

)
∈ �,

we set hγ = (r, s, 0) ∈ H where the entries of r are 0 or 1
2 depending on whether the

corresponding diagonal entry of C tD is even or odd, and the entries of s are 0 or 1
2

depending on whether the corresponding diagonal entry of A tB is even or odd. As
in [11], we now define the group �̃ ⊂ H � G by

(3.2) �̃ = {((m,n, t)hγ, γ) ∈ H � G : γ ∈ �,m ∈ Z
n,n ∈ Z

n, t ∈ R}.

The relevance of the subgroup �̃ is made apparent by the following theorem, see
theorem 4.1 in [11].
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Theorem 3.1. For any (uhγ, γ) ∈ �̃ and (h, g) ∈ H � G, there is a complex

number ε(γ) with |ε(γ)| = 1 such that

(3.3) �f ((uhγ, γ)(h, g)) = ε(γ)ρ(γ, g) e
(
−t +

1
2
m tn

)
�f (h, g),

where u = (m,n, t).

A proof of this theorem is found in [9] but with � replaced by the finite index
subgroup for which hγ = (0, 0, 0). The automorphy under the full �̃ is proved in
[12], but only for the special function f (x) = exp

(−πx tx
)
. It is shown in [9] that

this f is an eigenfunction for all the operators R(k(Q)), with R the Segal–Shale–
Weil representation and Q ∈ U(n), and it can be seen from the theory built in [9]
that the automorphy for any Schwartz function follows from that for exp

(−πx tx
)
.

A self-contained proof along the lines of [9] is presented in the authors’ lecture
notes [10].

3.1 Fundamental domains. We say that a closed set D ⊂ G is a funda-
mental domain for �\G if

• for all g ∈ G there exists γ ∈ � such that γg ∈ D and
• if for g ∈ D there is a non-identity γ ∈ � such that γg ∈ D, then g is contained

in the boundary of D.

Similarly a closed set D̃ ⊂ H � G is a fundamental domain for �̃\(H � G) if

• for all (h, g) ∈ H � G there exists γ̃ ∈ �̃ such that γ̃(h, g) ∈ D̃ and
• if for (h, g) ∈ D̃ there is a non-identity γ̃ ∈ �̃ such that γ̃(h, g) ∈ D̃, then

(h, g) is contained in the boundary of D̃.

We note that if D is a fundamental domain for �\G, then

(3.4) D̃ =
{
(x, y, 0) ∈ H : |xj|, |yj| ≤ 1

2

}
× D

is a fundamental domain for �̃\(H � G).

In contrast to our previous paper [11], here we need to make careful use of the
shape of our fundamental domain D in the cuspidal regions. Drawing inspiration
for the fundamental domain for GL(n,Z)\GL(n,R) constructed in [7] as well as
from the reduction theory developed in [2] (see also [1]), we construct in this
section a new fundamental domain D = Dn for �\G. In the following section we
study the cuspidal region of Dn.
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For n = 1, we let D1 ⊂ G denote the standard fundamental domain for
�\G = SL(2,Z)\SL(2,R). That is,

(3.5)
D1 =

{(
1 x

0 1

)(
y

1
2 0

0 y− 1
2

)(
cosφ − sinφ
sinφ cosφ

)
:

|x| ≤ 1
2
, x2 + y2 ≥ 1, 0 ≤ φ < 2π

}
.

We now define fundamental domains Dn inductively using the decomposition
(2.15) for l = 1. Writing g ∈ G as

(3.6)

g =

⎛
⎜⎜⎜⎝

1 r1 t1 − s1
tr1 s1

0 I ts1 0
0 0 1 0
0 0 − tr1 I

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

1 0 0 0
0 I 0 X1

0 0 1 0
0 0 0 I

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝
v

1
2

1 0 0 0

0 Y
1
2
1 0 0

0 0 v
− 1

2
1 0

0 0 0 tY1
− 1

2

⎞
⎟⎟⎟⎟⎟⎠ k(Q),

where r = r(g) ∈ Rn−1, s = s(g) ∈ Rn−1, t1 = t1(g) ∈ R, X1 = X1(g) is symmetric,
v1 = v1(g) > 0, Y1 = Y1(g) is positive definite symmetric, and Q ∈ U(n), we
define Dn as the set of all g ∈ G satisfying

• v1(g) ≥ v1(γg) for all γ ∈ �,
• g1(g) ∈ Dn−1, see (2.16), and
• the entries of r1(g), s1(g), and t1(g) are all less than or equal to 1

2 in absolute
value with the first entry of r1 greater than or equal to 0.

Proposition 3.1. Dn is a fundamental domain for �\G.

Proof. We begin by showing that for g ∈ G, supγ∈� v1(γg) is indeed obtained
by some γ ∈ �. From (2.10), we have for

(3.7) γ =

(
A B
C D

)
∈ �

that

(3.8) v1(γg)−1 = cY tc + (cX + d)Y−1 t(cX + d)

where

(3.9) g =

(
I X

0 I

)(
Y

1
2 0

0 tY− 1
2

)
k(Q)
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and c, d are the first rows of C, D. Since Y is positive definite, there are only finitely
many c such that cY tc, and hence v1(γg)−1, is below a given bound. Similarly, for
a fixed c, the positive definiteness of Y−1 implies that there are only finitely many d
such that v1(γg)−1 is below a given bound. It follows that there are only finitely
many γ ∈ �1\� such that v1(γg) is larger than a given bound, where �1 = � ∩ P1

and we recall P1 is given by (2.17). As v1(γg) = v1(g) for γ ∈ �1 it follows
that v1(γg) is maximized for some γ ∈ �.

Let γ0 be so that v1(γ0g) is maximal. We now decompose an arbitrary γ ∈ �1

as in (2.17),

(3.10) γ =

⎛
⎜⎜⎜⎝

1 r1 t1 − s1
tr1 s1

0 I ts1 0
0 0 1 0
0 0 − tr1 I

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

±1 0 0 0
0 A1 0 B1

0 0 ±1 0
0 C1 0 D1

⎞
⎟⎟⎟⎠

with

(3.11) γ1 =

(
A1 B1

C1 D1

)
∈ Sp(n − 1,Z).

Proceeding inductively, there exists γ1 such that γ1g1(γ0g) = g1(γγ0g) ∈ Dn−1.
Now, we can change r1(γ), s1(γ), t1(γ), and the ±, noting that this does not change
g1(γγ0g), so that the entries of r1(γγ0g), s1(γγ0g) and t1(γγ0g) are all ≤ 1

2 in
absolute value and the first entry of r1(γγ0g) is nonnegative. Therefore γγ1g ∈ Dn

as required.
We now suppose that g ∈ Dn and there is a non-identity γ ∈ � such that

γg ∈ Dn. We set

(3.12) γ =

(
A B

C D

)
, g =

(
I X

0 I

)(
Y

1
2 0

0 tY− 1
2

)
k(Q).

By the maximality, we have v1(g) = v1(γg) and therefore

(3.13) v −1
1 = cY tc + (cX + d)Y−1 t(cX + d)

where c and d are the first rows of C and D. Let us first consider the case when
c 	= 0. To show that g is on the boundary of Dn in this case, we consider

(3.14) gε =

(
I X

0 I

)(
(1 − ε)

1
2 Y

1
2 0

0 (1 − ε)− 1
2 tY− 1

2

)
k(Q)

for 0 < ε < 1. We have v1(gε) = (1 − ε)v1(g) and

(3.15)
v1(γgε)

−1 = (1 − ε)cY tc + (1 − ε)−1(cX + d)Y−1 t(cX + d)

= ((1 − ε) − (1 − ε)−1) cY tc + v1(gε)
−1
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by (3.13). Since v1(γgε) > v1(gε), we have that gε 	∈ Dn. As gε can be made
arbitrarily close to g, we conclude that g is on the boundary of Dn.

If c = 0, then from (3.13) we have

(3.16) v1(g)−1 = (d(1) − d(2) tr1)
2v1(g)−1 + d(2)Y−1

1
td(2)

where d = (d(1) d(2)) are as above,

(3.17) Y =

(
1 r1

0 I

)(
v1 0
0 Y1

)(
1 0

tr1 I

)
.

This time we consider

(3.18) gε =

(
I X

0 I

)(
Y

1
2
ε 0
0 tYε−

1
2

)
k(Q)

with

(3.19) Yε =

(
1 r1

0 I

)(
(1 − ε)v1 0

0 Y1

)(
1 0

tr1 I

)
.

We have v1(gε) = (1 − ε)v1(g) and

(3.20)
v1(γgε)

−1 = (1 − ε)−1(d(1) − d(2) tr1)
2v1(g)−1 + d(2)Y−1

1
td(2)

= v1(gε)
−1 + (1 − (1 − ε)−1)d(2)Y1

td(2)

from (3.16). If d(2) 	= 0, then v1(γgε) > v1(gε) and we conclude that g is on the
boundary of Dn as before.

When c = 0 and d(2) = 0 we have d(1) = ±1, and so γ ∈ �1. We decompose γ
as in (3.10) and define γ1 as in (3.11). By the construction of Dn, we have
g1(g) ∈ Dn−1 and g1(γg) = γ1g1(g) ∈ Dn−1. By induction, we have that either γ1

is the identity or g1(g) is on the boundary of Dn−1. In the latter case we have that g

is on the boundary of Dn, and so it remains to consider

(3.21) γ =

⎛
⎜⎜⎜⎝

±1 r1 ±t1 ∓ r1
ts1 s1

0 I ± ts1 0
0 0 ±1 0
0 0 ∓r1 I

⎞
⎟⎟⎟⎠ .

If any of the entries of r1(γ) or s1(γ) is not zero, then the corresponding entry
of r1(g) or s1(g) is ±1

2 and so g is on the boundary of Dn. Similarly if t1(γ) 	= 0,
we have t1(g) = ±1

2 and again g is on the boundary of Dn. If all of r1, s1, t1 are 0,
the sign must be − as γ is not the identity, and it follows that the first entry of r1(g)
is 0 and g is again on the boundary of Dn. �
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The following proposition records some useful properties ofDn. It and its proof
are very similar to the analogous statement for the different fundamental domain
used in [11], see proposition 3.1 there.

Proposition 3.2. Let g ∈ Dn and write

(3.22) g =

(
I X
0 I

)(
Y

1
2 0

0 tY− 1
2

)
k(Q), Y = UV tU,

where X is symmetric, Y is positive definite symmetric, U upper triangular unipo-

tent, V positive diagonal, and Q ∈ U(n), and

(3.23) V =

⎛
⎜⎜⎝
v1 · · · 0
...

. . .
...

0 · · · vn

⎞
⎟⎟⎠ , Y =

(
1 r1

0 I

)(
v1 0
0 Y1

)(
1 0

tr1 I

)
.

Then we have

(1) vn ≥
√

3
2 and vj ≥ 3

4vj+1 for 1 ≤ j ≤ n − 1,
(2) for all x = (x(1) x(2)) ∈ Rn

(3.24) xY tx �n v1(x
(1))2 + x(2)Y1

tx(2).

Proof. For the first, we observe that by the inductive construction of Dn, we
have that

(3.25) gn−1(g) =

(
1 xn−1(g)
0 1

)⎛⎝v 1
2

n 0

0 v
− 1

2
n

⎞
⎠ ∈ D1.

As D1 is the standard fundamental domain for SL(2,Z)\SL(2,R), we conclude
that vn ≥

√
3

2 .
To demonstrate that vj ≥ 3

4vj+1, we note that by the construction of Dn, it
suffices to consider only j = 1. We start with

(3.26) v −1
1 ≤ cY tc + (cX + d)Y−1 t(cX + d)

for any (c d) ∈ Z2n nonzero and primitive. Choosing

c = 0 and d = (0 1 0 · · · 0),

we have

(3.27) v −1
1 ≤ v −1

1 (r(1)
1 )2 + v −1

2 ,

where r(1)
1 is the first entry of r1. Since 0 ≤ r(1)

1 ≤ 1
2 , we conclude that v1 ≥ 3

4v2.
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To demonstrate the second part of the proposition, we let y1, . . . , yn denote the
rows of

(3.28) Y
1
2 =

(
1 r1

0 I

)⎛⎝v 1
2

1 0

0 Y
1
2
1

⎞
⎠ .

Setting y = x2y2 + · · · + xnyn, where the xj are the entries of x, our aim is to prove
that for some constants 0 < c1 < 1 < c2 depending only on n,

(3.29) c1(||y1||2x2
1 + ||y||2) ≤ ||x1y1 + y||2 ≤ c2(||y1||2x2

1 + ||y||2),

from which the lower bound in (3.24) follows as ||y1||2 ≥ v1. The upper bound
in (3.24) follows from (3.29) and v1 � ||y1||2, which is verified below, see (3.35).
Expanding the expression in the middle of (3.29), we find that it is enough to show
that

(3.30) 2|x1y1
ty| ≤ (1 − c1)(||y1||2x2

1 + ||y||2),

and

(3.31) 2|x1y1
ty| ≤ (c2 − 1)(||y1||2x2

1 + ||y||2).

The upper bound (3.31) is trivial if c2 = 2, and the upper bound (3.30) would
follow from

(3.32) |y1
ty| ≤ (1 − c1)||y1|| ||y||.

We let 0 < φ1 < π denote the angle between y1 and y and 0 < φ2 <
π
2

denote the angle between y1 and the hyperplane span(y2, . . . , yn). We have
φ2 ≤ min(φ1, π− φ1), and so | cosφ1| ≤ | cosφ2|. We bound cosφ2 away from 1
by bounding sinφ2 away from 0.

We have

(3.33) | sinφ2| =
||y1 ∧ · · · ∧ yn||

||y1|| ||y2 ∧ · · · ∧ yn|| =
v

1
2

1

||y1|| ,

so it suffices to show that v
1
2

1 � ||y1||. Here ∧ denotes the usual wedge product
on Rn and the norm on

∧k
Rn is given by

(3.34) ||a1 ∧ · · · ∧ ak||2 = det

⎛
⎜⎜⎝

a1
...
ak

⎞
⎟⎟⎠
(

ta1 · · · tak

)
.



BOUNDS FOR THETA SUMS IN HIGHER RANK. II 247

Using the inductive construction of Dn and the fact that the entries of
r1(Y), r1(Y1), . . . are at most 1

2 in absolute value, we observe that U has entries
bounded by a constant depending only on n. We find that

(3.35) ||y1||2 � v1 + · · · + vn � v1

with the implied constant depending on n. �

3.2 Shape of the cusp. As explicated in [1] and [2], the cusp of �\G can
be partitioned into 2n −1 box-shaped regions. These regions are in correspondence
with the conjugacy classes of proper parabolic subgroups of G and are formed as
K times the product of three subsets, one for each of the components—nilpotent,
diagonal, and semisimple—of the Langlands decomposition of P.

In what follows we use the fundamental domain Dn constructed in Section 3.1
to prove a variation of this fact, although only for the maximal parabolic subgroups
(2.17), (2.18). Our main result for this section is Proposition 3.5, which roughly
states that if g ∈ G is close enough the boundary in a precise sense, then g can
be brought into Dn by an element γ in some maximal parabolic subgroup which
depends on the way g approaches the boundary.

For 1 ≤ l < n we denote by �l,1 and �l,2 the subgroups of �l = �∩ Pl given by

(3.36) �l,1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

A 0 0 0
0 I 0 0
0 0 tA−1 0
0 0 0 I

⎞
⎟⎟⎟⎠ : A ∈ GL(l,Z)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and

(3.37) �l,2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

I 0 0 0
0 A 0 B
0 0 I 0
0 C 0 D

⎞
⎟⎟⎟⎠ :

(
A B
C D

)
∈ Sp(n − l,Z)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

For l = n, we set

(3.38) �n,1 =

{(
A 0
0 tA−1

)
: A ∈ GL(n,Z)

}
,

and we let �n,2 be trivial. We now define, for g ∈ G and 1 ≤ l ≤ n,

(3.39) vl(�lg) := min
γ∈�l

vl(γg) = min
γ∈�l,1

vl(γg)
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and, for 1 ≤ l < n,

(3.40) vl+1(�lg) := max
γ∈�l

vl+1(γg) = max
γ∈�l,2

vl+1(γg).

Here vl(g) denotes the lth diagonal entry of V in the decomposition of g, see (2.9).
Abusing notation, we also use vl(Y) to denote the lth diagonal entry of V , where for
a positive definite matrix Y (of any size at least l× l), we decompose Y = UV tU as
above. The quantities vl(g), vl(Y), and vl(UlVl

tUl) of course agree when Y comes
from the Iwasawa decomposition of g and Ul, Vl come from the refinement (2.15).

We also note that the second equalities in (3.39) and (3.40) follow from the
observation that for g as in (2.15) and γ ∈ �l, we have

(3.41)

γg =

⎛
⎜⎜⎜⎝

I M L − N tM N

0 I tN 0
0 0 I 0
0 0 − tM I

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

A′ 0 0 0
0 A 0 B
0 0 t(A′)−1 0
0 C 0 D

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

I Rl Tl − Sl
tRl Sl

0 I tSl 0
0 0 I 0
0 0 − tRl I

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

UlV
1
2
l 0 0 0

0 Y
1
2
l 0 Xl

tY
− 1

2
l

0 0 tU−1
l V

− 1
2

l 0

0 0 0 tYl
− 1

2

⎞
⎟⎟⎟⎟⎟⎠

×
(

Re(Q) −Im(Q)
Im(Q) Re(Q)

)

=

⎛
⎜⎜⎜⎝

I ∗ ∗ ∗
0 I ∗ 0
0 0 I 0
0 0 ∗ I

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

A′UlV
1
2
l 0 0 0

0 AY
1
2
l 0 (AXl + B) tY

− 1
2

l

0 0 t(A′UlV
1
2
l )−1 0

0 CY
1
2
l 0 (CXl + D) tY− 1

2

⎞
⎟⎟⎟⎟⎟⎠

×
(

Re(Q) −Im(Q)
Im(Q) Re(Q)

)
,

and therefore only the part of γ in �l,1 changes vl(γg) and only the part in �l,2

changes vl+1(g).
Finally, we note that in the proof of Proposition 3.1, we saw that the maximum

in (3.40) does exist. As for the minimum in (3.39), we simply note that

(3.42) vl(AUlVl
tUl

tA) = aUlVl
tUl

ta

where a is the last row of A ∈ GL(l,Z), so the positive definiteness of UlVl
tUl

implies that there are only finitely many values of vl(AUlVl
tUl

tA) below a given
bound.
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We now define a fundamental domain D′
l for the action of GL(l,Z) on l × l

positive definite symmetric matrices. We set D′
1 = {y > 0} and

(3.43) D′
2 =

{(
1 r
0 1

)(
v1 0
0 v2

)(
1 0
r 1

)
: 0 ≤ r ≤ 1

2
, r2 +

v1
v2

≥ 1

}
,

the standard fundamental domain for GL(2,Z) acting on 2 × 2 positive definite
symmetric matrices. The domain D′

l for l > 2 is then defined inductively as the set
of all

(3.44) Y =

(
1 r
0 I

)(
v1 0
0 Y1

)(
1 0
r 1

)

such that
(1) v1(Y) ≥ v1(AY tA) for all A ∈ GL(l,Z),
(2) Y1 ∈ D′

l−1, and
(3) |rj| ≤ 1

2 and 0 ≤ r1 ≤ 1
2 where rj are the entries of r.

This is in fact the set of Y such that Y−1 is in Grenier’s fundamental domain, see [7]
and [13], so we do not prove that D′

l is a fundamental domain here. We do however
record the following properties of D′

l.

Lemma 3.3. Let UV tU ∈ D′
l with

(3.45) V =

⎛
⎜⎜⎝
v1 · · · 0
...

. . .
...

0 · · · vl

⎞
⎟⎟⎠

positive diagonal and U upper triangular unipotent. Then we have
(1) vj ≥ 3

4vj+1 for 1 ≤ j < l,

(2) for any x ∈ R
l,

(3.46) xUV tU tx � xV tx

with implied constant depending only on l, and
(3)

(3.47) min
A∈GL(l,Z)

vl(AUV tU tA) � vl(UV tU)

with implied constant depending only on l.

Proof. The first and second parts are proved in proposition 3.1 of [11]. To
prove the third part, we note that with a the last row of A,

(3.48) vl(AUV tU tA) = aUV tU ta � aV ta,

by the second part of the lemma. Applying the first part of the lemma we have
aV ta � vl||a||2 ≥ vl, and (3.47) follows. �
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As the proof is almost identical to the proof of the third part of Lemma 3.3, we
record the following lemma for later use.

Lemma 3.4. If g ∈ Dn, then for all 1 ≤ l < n,

(3.49) vl(�lg) � vl(g)

with the implied constant depending only on n.

Proof. We recall from the second part of Proposition 3.2 that for x ∈ R
l,

(3.50) xUlVl
tUl

tx � xVl
tx.

We have

(3.51) vl(�lg) = min
c∈Zl

c	=0

cUlVl
tUl

tc � min
c∈Zl

c	=0

cVl
tc.

Now as c 	= 0, we have c2
j ≥ 1 for some 1 ≤ j ≤ l, and so

(3.52) vl(�lg) � vj(g) � vl(g)

by the first part of Proposition 3.2. �
We are now ready to prove the main result for this section.

Proposition 3.5. For 1 ≤ l ≤ n, there are constants al > 0 such that

for l < n, if g ∈ G satisfies vl(�lg) ≥ alvl+1(�lg), and for l = n if g ∈ G satisfies
vn(�ng) ≥ an, then there exists γ ∈ �l so that γg ∈ Dn. Moreover, for this γ we

have vl(�lg) � vl(γg) and, for l < n, vl+1(�lg) = vl+1(γg).

We remark that this proposition can be extended to any of the parabolic sub-
groups PL of G by taking intersections of the maximal parabolics. However, some
care needs to be taken regarding the possible non-uniqueness of the γ bringing g

into Dn. Since it is unnecessary for our goals, we do not discuss this here.

Proof. By multiplying g by

(3.53) γ1 =

⎛
⎜⎜⎜⎝

A′ 0 0 0
0 A 0 B

0 0 t(A′)−1 0
0 C 0 D

⎞
⎟⎟⎟⎠ ∈ �l,

which leaves vl(�lg) and vl+1(�lg) unchanged, see also (3.41), we may assume
that UlVl

tUl ∈ D′
l and

(3.54)

(
I Xl

0 I

)(
Y

1
2
l 0
0 tYl

− 1
2

)
∈ Dn−l.
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We recall that for γ = ( A B
C D ),

(3.55) v1(γg)−1 = cY tc + (cX + d)Y−1 t(cX + d)

where c, d are the first rows of C, D. Now, writing c = (c(1) c(2)), d = (d(1) d(2))
and

X =

(
Tl + RlXl

tRl Sl + RlXl
tSl + Xl

tRl Xl

)
,(3.56)

Y =

(
Ul Rl

0 I

)(
Vl 0
0 Yl

)(
tUl 0
tRl I

)
,(3.57)

see (2.15), we obtain

(3.58)

v1(γg)−1 = c(1)UlVl
tUl

tc(1) + (c(1)Rl + c(2))Yl
t
(c(1)Rl + c(2))

+ (c(1)(Tl − Sl
tRl) + c(2) tSl + d(1) − d(2) tRl)

tU−1
l V−1

l U−1
l

× t
(c(1)(Tl − Sl

tRl) + c(2) tSl + d(1) − d(2) tRl)

+ (c(1)(Sl + RlXl) + c(2)Xl + d(2))Y−1
l

× t
(c(1)(Sl + RlXl) + c(2)Xl + d(2)).

If c(1) 	= 0, then, since UlVl
tUl ∈ D′

l, we have

(3.59) v1(γg)−1 ≥ c(1)UlVl
tUl

tc(1) � c(1)Vl
tc(1) � vl

by the second part of Lemma 3.3. Since, for l < n,

(3.60)

(
I Xl

0 I

)(
Y

1
2
l 0

0 tYl
− 1

2

)
∈ Dn−l,

we have vl+1 � 1, see Proposition 3.2, and so vl � al by the hypothesis. For l = n,
we directly have vn � an by hypothesis. Since also v1 � vl by Lemma 3.3, we
have v1vl � a2

l , so by taking al to be a sufficiently large constant, it follows that
v1 ≥ v1(γg).

For l < n, if c(1) = 0 but (c(2) d(2)) 	= 0, then we have

(3.61) v1(γg)−1 ≥ c(2)Yl
tc(2) + (c(2)Xl + d(2))Y−1

l
t
(c(2)Xl + d(2)) ≥ vl+1(g)−1

since gl(g) ∈ Dn−l. We have v −1
l+1 ≥ alv

−1
l � alv

−1
1 , so v −1

l+1 ≥ v −1
1 for al

sufficiently large, and it follows that v1 ≥ v1(γg).
Now, if l = n or if c(1), c(2), and d(2) are all 0, then we have d(1) 	= 0 and

(3.62) v1(γg)−1 = d(1) tU−1
l V−1

l U−1
l

td(1) ≥ v −1
1
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as UlVl
tUl ∈ D′

l. We have verified that for any γ ∈ �, v1 ≤ v1(γg), which is the
first condition defining the fundamental domain Dn.

Restricting to γ ∈ �1, which fixes v1(g), the same argument as above shows that
v2(g) ≥ v2(γg) for all γ ∈ �1. Continuing this way, we find that the vj, 1 ≤ j ≤ l
are all maximal (over�j,2), and so, by the construction of Dn, there is a γ ∈ �l with
the form

(3.63) γ =

(
A B

0 tA−1

)
,

where A is upper-triangular unipotent (so γ ∈ �l for all l) such that γg ∈ Dn. �

4 Proof of the main theorem

In the following subsection we gather some technical lemmas regarding the height
function needed in the proof of Theorem 1.2, see Section 4.2. This height function
is motivated by the following corollary from [11].

Corollary 4.1. For a Schwartz function f ∈ S(Rn) and (h, g) ∈ D̃, and A > 0,

we have

(4.1) �f (h, g) �f,A (detY)
1
4 (1 + xY tx)−A

where

(4.2) g =

(
I X

0 I

)(
Y

1
2 0

0 tY− 1
2

)
k(Q)

and h = (x, y, t).

We remark that in [11] this is obtained as a consequence of full asymptotics of
the theta function in the various cuspidal regions. We also remark that in [11] we
use a slightly different fundamental domain, however an examination of the proof
there shows that the fundamental domain can be replaced by any set satisfying the
conclusions of Proposition 3.2. Finally, in [11] we use the term xV tx as opposed
to xY tx in (4.1). Up to constants, these are interchangeable by Proposition 3.2 and
we only prefer xY tx for its transformation properties, see the proof of Lemma 4.4.

4.1 Heights and volumes. For a fixed A > 0 sufficiently large depending
only on n, we define the function D : �̃\(H � G) → R>0 by

(4.3) D(�̃(h, g)) = detY(γg)(1 + x(uhγh
γ−1

)Y(γg) tx(uhγh
γ−1

))−A
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where (uhγ, γ) ∈ �̃ is so that (uhγ, γ)(h, g) ∈ D̃. Here we write h ∈ H as

h = (x(h), y(h), t(h)).

For completeness, in case there are more than one (uhγ, γ) ∈ �̃ such that
(uhγ, γ)(h, g) ∈ D̃, then we define D(�̃(h, g)) to be the largest of the finite num-
ber of values (4.3). This point is not essential as these values are within constant
multiples of each other; see the argument in Lemma 4.4 for how this can be proved.

We begin by analyzing the growth of the height function. We let μ̃ denote the
Haar probability measure on �̃\(H�G), which is μ, the Haar probability measure
on �\G, times the Lebesgue measure on the entries of h = (x, y, t).

Lemma 4.2. For R ≥ 1 we have

(4.4) μ̃({�̃(h, g) ∈ �̃\(H � G) : D(�̃(h, g)) ≥ R}) � R− n+2
2

with the implied constant depending only on n.

Proof. We recall that g ∈ Dn is written as

(4.5) g =

(
U X tU−1

0 tU−1

)(
V

1
2 0

0 V− 1
2

)
k(Q)

for U upper-triangular unipotent, X symmetric, Q ∈ U(n), and

(4.6) V = V(g) =

⎛
⎜⎜⎝
v1 · · · 0
...

. . .
...

0 · · · vn

⎞
⎟⎟⎠

positive diagonal. The Haar measure μ on G is then proportional to Lebesgue
measure with respect to the entries of X and the off-diagonal entries of U, U(n)-
Haar measure on Q, and the measure given by

(4.7) v −n−1
1 v −n

2 · · · v −2
n dv1dv2 · · · dvn

on V .
By Proposition 3.2, we observe that the set in (4.4) is contained in the set

of (h, g) satisfying vj ≥ cvj+1 for all 1 ≤ j < n and some c > 0 in addition to
detY ≥ R and xY tx ≤ R− 1

A (detY)
1
A . Moreover, the variables x, y, t as well as

U, X are constrained to compact sets, and so the measure of the set (4.4) is

(4.8) � R−ε
∫

· · ·
∫

vj≥cvj+1
v1···vn≥R

v
−n− 3

2 +ε
1 v

−n− 1
2 +ε

2 · · · v − 5
2 +ε

n dv1dv2 · · · dvn,

where ε = n
2A .
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Changing variables vj = exp
(
uj
)
, the integral in (4.8) is

(4.9)

R−ε
∫

· · ·
∫

uj−uj+1≥log c
u1+···+un≥logR

exp
(
−
(
n +

1
2

− ε
)
u1 −

(
n − 1

2
− ε

)
u2

...

−
(3

2
− ε

)
un

)
du1du2 · · · dun.

We now make the linear change of variables sj = uj − uj+1 for j < n and
sn = u1 + · · · + un. This transformation has determinant n and its inverse is given
by

(4.10) uj = −1
n

∑
1≤i<j

isi +
1
n

∑
j≤i<n

(n − i)si +
1
n
sn.

We find that the exponent in (4.9) is then

(4.11) − ∑
1≤j≤n

(n − j +
3
2

− ε)uj = −
(n + 2

2
− ε

)
sn − ∑

1≤j<n

j(n − j)
2

sj.

As j(n−j)
2 > 0 for j < n, the bound (4.4) follows. �

Lemma 4.4 below contains a key estimate, establishing a kind of ‘uniform
continuity’ for logD. The proof of this lemma is the primarymotivation for defining
our new fundamental domain and studying the shape of its cusp in Sections 3.1
and 3.2. For the proof, we first establish a similar kind of ‘uniform continuity’ for
the functions vl(�lg) and vl+1(�lg) that are essential to Section 3.2.

Lemma 4.3. Let g, g0 ∈ G with ||g0 − I|| ≤ 1, then

(4.12) vl(g) � vl(gg0), vl(�lg) � vl(�lgg0), vl+1(�lg) � vl+1(�lgg0)

for all 1 ≤ l ≤ n with implied constants depending only on n.

Proof. We first note that we may in fact work with ||I − g0|| ≤ ε as then the
statement would follow by repeated application of the estimates. In fact, we may
assume ||I − g−1

0 || ≤ ε as well. Now write

(4.13) g =

(
I X
0 I

)(
Y

1
2 0

0 tY− 1
2

)(
R −S
S R

)
,

with R + iS ∈ U(n), so in particular R tR + S tS = I. With g0 = ( A B
C D ), we have

from (2.10) that

(4.14)
Y(gg0)

−1 = tY− 1
2
(
SA tA tS + RC tA tS + SA tC tR + RC tCR

+ SB tB tS + RD tB tS + SB tD tR + RD tD tR
)
Y− 1

2 .
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As ||g0 − I|| ≤ ε, we have

(4.15) tY(gg0)
− 1

2 = tY− 1
2 (I + O(ε)).

On the other hand, letting yj and y′
J denote the rows of tY− 1

2 and tY(gg0)−
1
2 , we

have

(4.16) v1(g)−
1
2 = ||y1||, v1(gg0)

− 1
2 = ||y′

1||
and for 2 ≤ l ≤ n,

(4.17) vl(g)−
1
2 =

||y1 ∧ · · · ∧ yl||
||y1 ∧ · · · ∧ yl−1|| , vl(gg0)

− 1
2 =

||y′
1 ∧ · · · ∧ y′

l||
||y′

1 ∧ · · · ∧ y′
l−1||

,

and so vl(g) � vl(gg0) follows.
Now let γ ∈ �l be so that vl(�lg) = vl(γg). We have

(4.18) vl(�lgg0) ≤ vl(γgg0) � vl(γg) = vl(�lg),

and the reverse bound follows by switching the roles of g and gg0, and using
||g−1

0 − I|| ≤ ε. The final estimate in (4.12) is proved in the same way. �

Lemma 4.4. If (h, g), (h0, g0) ∈ G with ||g0 − I|| ≤ 1 and h0 = (x0, y0, t0)
satisfies ||x0||, ||y0|| ≤ 1, then

(4.19) D(�̃(h, g)) � D(�̃(h, g)(h0, g0)).

Proof. We observe as in Lemma 4.3, we may in fact assume

(4.20) ||g0 − I|| ≤ ε, ||x0|| ≤ ε, and ||y0|| ≤ ε.

Moreover, it suffices to show that D(�̃(h, g)(h0, g0)) � D(�̃(h, g)) as the other
inequality follows from switching (h, g) and (h, g)(h0, g0) as we may assume in
addition that (h0, g0)−1 = (h−g0

0 , g−1
0 ) also satisfies (4.20).

Now let us suppose that (h, g) ∈ D̃ so that

(4.21) D(�̃(h, g)) = (detY(g))(1 + x(h)Y(g) tx(h))−A.

Let 1 ≤ l ≤ n be the largest index such that vl(g) ≥ avl+1(g) (or vn(g) ≥ a when
l = n) where a is a constant determined by the constants in Proposition 3.5 and
Lemma 4.3. If no such l exists, then we have vj(g) � 1 for all j, and Lemma 4.3
implies that vj(gg0) � 1 as well. The bounds

(4.22) D(�̃(h, g)(h0, g0)) � 1 � D(�̃(h, g))

then follow immediately.
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Now assuming that such a maximal l exists, we have that vj(g) � 1 for all
j > l. For these j, Lemma 4.3 then implies that vj(gg0) � 1, and it follows
that vj(γgg0) � 1 for γ ∈ �l such that gl(γgg0) ∈ Dn−l, see (2.16). By Lemma 3.4,
we have vl(�lg) � vl(g), and so

(4.23) vl(�lg) � avl+1(g) = avl+1(�lg)

since gl(g) ∈ Dn−l. Via Lemma 4.3, this implies that vl(�lgg0) � avl+1(�lgg0), so
a can be chosen large enough so that gg0 satisfies the hypotheses of Proposition 3.5,
and we let γ ∈ �l be so that γgg0 ∈ D.

We write

(4.24) γ =

⎛
⎜⎜⎜⎝

A1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 ∗ ∗ ∗

⎞
⎟⎟⎟⎠ ,

where A1 ∈ GL(l,Z). From the estimates above, we have

(4.25)

detY(γgg0) � detUl(γgg0)Vl(γgg0)
tUl(γgg0)

= detUl(gg0)Vl(gg0)
tUl(gg0)

� detUl(g)Vl(g) tUl(g) � detY(g),

where the equality follows from the fact that γ ∈ �l normalizes the first matrix in
(2.15) and detA1 = ±1.

It now remains to consider the factors 1 + x(∗)Y(∗) tx(∗) in the definition
of the height function D. Let u = (m,n, 0) with m,n ∈ Z

n be so that
(uhγ, γ)(h, g)(h0, g0) ∈ D̃. Recalling the definition of hγ = (r, s, 0) following (3.1),
we have that r(1) = 0 where r = (r(1) r(2)). Moreover, writing x = (x(1) x(2)), we

have x(1)((hhg−1

0 )γ
−1

) = x(1)(hhg−1

0 )A−1
1 . Using Proposition 3.2 together with the fact

that u minimizes the absolute values of the entries of x(uhγ(hhg−1

0 )γ
−1

), we have

(4.26)
1 + x(uhγ(hhg−1

0 )γ
−1

)Y(γgg0)
tx(uhγ(hhg−1

0 )γ
−1

)

� 1 + x(hγ(hhg−1

0 )γ
−1

)Y(γgg0)
tx(hγ(hhg−1

0 )γ
−1

),

and from the estimates above on the vj(γgg0) for j > l, we have

(4.27)
1+x(hγ(hhg−1

0 )γ
−1

)Y(γgg0)
tx(hγ(hhg−1

0 )γ
−1

)

� 1 + x(1)(hγ(hhg−1

0 )γ
−1

)Ul(γgg0)Vl(γgg0)
tUl(γgg0)

tx(hγ(hhg−1

0 )γ
−1

).

Using the expressions for hγ, (hhg−1

0 )γ
−1

, and that

(4.28) Ul(γgg0)Vl(γgg0)
tUl(γgg0) = A1Ul(gg0)Vl(gg0)

tUl(gg0)
tA1,
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the right side of (4.27) is equal to

(4.29)
1 + x(1)(hhg−1

0 )Ul(gg0)Vl(gg0)
tUl(gg0)

tx(1)(hhg−1

0 )

� 1 + x(hhg−1

0 )Y(gg0)
tx(hhg−1

0 )

by the above bounds on vj(gg0) for j > l.
Recalling that

(4.30) g =

(
I X(g)
0 I

)(
Y(g)

1
2 0

0 tY(g)− 1
2

)
k(g)

with k(g) ∈ K = G ∩ SO(2n,R), we set h′
0 = hk(g)−1

0 and note that

(4.31) ||x(h′
0)||2 + ||y(h′

0)||2 = ||x(h0)||2 + ||y(h0)||2.
Since Y(gg0) = Y(g)

1
2 Y(k(g)g0) tY(g)

1
2 and x(hhg−1

0 ) = x(h) +x(h′
0)Y(g)− 1

2 , the right
side of (4.29) is equal to

(4.32)
1 + x(h)Y(g)

1
2 Y(k(g)g0)

tY(g)−
1
2 tx(h)

+ 2x(h)Y(g)
1
2 Y(k(g)g0)

tx(h′
0) + x(h′

0)Y(k(g)g0)
tx(h′

0).

We have that ||g0 − I|| ≤ ε implies Y(k(g)g0) = I + O(ε) as in (4.14), so if (4.31) is
at most ε2 as well, with ε sufficiently small, then (4.32) is

(4.33) � 1 + x(h)Y(g) tx(h),

where we have used

(4.34)
2|x(h)Y(g)

1
2 Y(k(g)g0)

tx(h′
0)|

≤
√

x(h′
0)Y(k(g)g0)2 tx(h′

0)(x(h)Y(g) tx(h) + 1) � ε(x(h)Y(g) tx(h) + 1)

to bound the third term in (4.32). The bound D(�̃(h, g)(h0, g0)) � D(�̃(h, g) now
follows. �

4.2 Proof of Theorem 1.2. We recall the following lemma from [11].

Lemma 4.5. There exists a smooth, compactly supported function

f1 : R → R≥0

such that

(4.35) χ1(x) =
∑
j≥0

(f1(2
jx) + f1(2

j(1 − x))),

where χ1 is the indicator function of the open unit interval (0, 1).
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Now, following the method of [11], we define for a subset S ⊂ {1, . . . , n} and
j = (j1, . . . , jn) ∈ Z

n with ji ≥ 0,

(4.36) gj,S =

(
AjES 0

0 A−1
j ES

)
∈ G

where ES is diagonal with (i, i) entry −1 if i ∈ S, +1 if i 	∈ S, and

(4.37) Aj =

⎛
⎜⎜⎝

2j1 · · · 0
...

. . .
...

0 · · · 2jn

⎞
⎟⎟⎠ .

We also set hS = (xS, 0, 0) ∈ H where xS has ith entry −1 if i ∈ S and 0 if i 	∈ S.
As in [11], we have

(4.38) χB(x) =
∑
j≥0

∑
S⊂{1,...,n}

fn((xB−1 + xS)AjES),

where χB is the indicator function of the rectangular boxB = (0, b1)×· · ·×(0, bn),
B is the diagonal matrix with entries b1, . . . , bn,

(4.39) fn(x1, . . . , xn) =
∏

1≤j≤n

f1(xj),

and the sums are over j ∈ Z
n with nonnegative entries.

Let ψ : [0,∞) → [1,∞) be an increasing function. Then for C > 0 we define
Gj(ψ,C) to be the set of �̃(h, g) ∈ �̃\(H � G) such that

(4.40) D

(
�̃(h, g)

(
1,

(
e−sI 0
0 esI

))
(hS, gj,S)

) 1
4

≤ Cψ(s)

for all S ⊂ {1, . . . , n} and s ≥ 1.

Lemma 4.6. Suppose that ψ satisfies

(4.41)
∫ ∞

0
ψ(x)−(2n+4)dx ≤ Cψ

for some Cψ ≥ 1. Then

(4.42) μ̃(�̃\(H � G) − Gj(ψ,C)) � CψC−(2n+4)2j1+···+jn .

Proof. Suppose that �̃(h, g) 	∈ Gj(ψ,C), so there exists S ⊂ {1, . . . , n}
and s ≥ 1 such that

(4.43) D

(
�̃(h, g)

(
1,

(
e−sI 0
0 esI

))
(hS, gj,S)

) 1
4

≥ Cψ(s).
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We let k be a nonnegative integer such that

(4.44)
k
Kj

≤ s <
k + 1
Kj

,

where Kj = K2j1+···+jn with K a constant to be determined. We have

(4.45)

(
1,

(
e−sI 0
0 esI

))
(hS, gj,S) =

⎛
⎝1,

⎛
⎝ e

− k
Kj I 0

0 e
k
Kj I

⎞
⎠
⎞
⎠ (hS, gj,S)(h1, g1),

where, with s′ = s − k
Kj

,

(4.46) h1 = (( es′ − 1)xSAjES, 0, 0), g1 =

(
e−s′

I 0
0 es′

I

)
.

As |s′| ≤ K−1
j , we can make K sufficiently large so that (h1, g1) satisfies the

conditions of Lemma 4.4. From this and the fact that ψ is increasing, we have that

(4.47) D

⎛
⎝�̃(h, g)

⎛
⎝1,

⎛
⎝ e

− k
Kj I 0

0 e
k
Kj I

⎞
⎠
⎞
⎠ (hS, gj,S)

⎞
⎠

1
4

� Cψ
( k

Kj

)
.

By Lemma 4.2 and the fact that right multiplication is volume preserving, we have
that the set of �̃(h, g) satisfying (4.47) has μ̃-volume bounded by a constant times

(4.48) C−2n−4ψ
( k
Kj

)−2n−4
.

Bounding the volume of the set �̃\(H � G) − Gj(ψ,C) by summing (4.48) over
S ⊂ {1, . . . , n} and nonnegative k ∈ Z, we obtain the bound

(4.49) C−(2n+4)
∑
k≥0

ψ
( k

Kj

)−(2n+4) � C−(2n+4)
(
ψ(0) +

∫ ∞

0
ψ
( x
Kj

)−(2n+4)
dx
)

as ψ(x) is increasing. The bound (4.42) follows by changing variables. �
We now proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2. From (4.38) we express θB(M,X,x, y) as

(4.50)
∑

S⊂{1,...,n}

∑
j≥0

∑
m∈Zn

fn
( 1

M
(m + x + MxSB)B−1ESAj

)
e
(1
2
mX tm + m ty

)
.

We break the sum in (4.50) into terms j such that 2jib−1
ji ≤ M for all i and terms j

such that 2jib−1
ji > M for some i. Using (2.8), we write the first part as

(4.51) e
(1
2
xX tx

)
M

n
2 (detB)

1
2

∑
j≥0

2ji b−1
ji

≤M

2− 1
2 (j1+···+jn)�fn((h, g(MB,X))(hS, gj,S)),
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where h = (x, y − xX, 0) and

(4.52) g(MB,X) =

(
I X

0 I

)(
1
MB−1 0

0 MB

)
.

Bounding this is the main work of the proof, but we first bound the contribution of
the terms j with a large index.

Suppose that L ⊂ {1, . . . , n} is not empty and that 2jl > bjlM for all l ∈ L.
Then the compact support of f1 implies that the sum over m(L), the vector of entries
of m with index in L, has a bounded number of terms. We write

(4.53) mX tm = m(L)X(L,L) tm(L) + 2m(L)X(L,L′) tm(L′) + m(L′)X(L′,L′) tm(L′),

where L′ is the complement of L, and X(L1,L2) is the matrix of entries of X with row
and column indices in L1 and L2 respectively. We have (4.39) that fn( 1

M (m + x +
MxSB)B−1ESAj) factors as

(4.54)
f#L

( 1
M

(m(L) + x(L) + Mx(L)
S )(B(L,L))−1E(L,L)

S A(L,L)
j

)
× f#L′

( 1
M

(m(L′) + x(L′) + Mx(L′)
S )(B(L′,L′))−1E(L′,L′)

S A(L′,L′)
j

)
,

and so, by inclusion-exclusion and the boundedness of f#L, the term j of (4.50) with
jl > bjiM for some i is at most a constant times

(4.55)
∑

L⊂{1,...,n}
L 	=∅

∑
S⊂L

∑
m(L)

|θB(L′ ) (M,XL′,L′
,x(L′), y(L′) + m(L)X(L,L′))|,

where the sum over m(L) has a bounded number of terms, B(L′) is the edge
of B associated to L′, and we have used the decomposition (4.38) to express
θB(L′ ) (M,XL′,L′

,x(L′), y(L′) + m(L)X(L,L′)) as

(4.56)

∑
S′⊂L′

∑
jL′

∑
mL′

f#L′
( 1

M
(m(L′) + x(L′) + Mx(L′)

S )(B(L′,L′))−1E(L′,L′)
S A(L′,L′)

j

)

× e
(1
2
m(L′)X(L′,L′) tm(L′) + m(L′) t

(y(L′) + m(L)X(L,L′))
)
.

When L = {1, . . . , n}, the corresponding part of (4.55) is clearly bounded.
For any other L, we may apply Theorem 1.1 (emphasizing the importance of
the uniformity in y) to conclude for any ε > 0, there are full measure sets
X(n−#L) = X(n−#L)(ε) such that if X(L′,L′) ∈ X(n−#L), the corresponding part of (4.55)
is � M

n−#L
2 +ε for any ε > 0. It follows that (4.55) is � M

n
2 assuming that X is such

that X(L′,L′) ∈ X(n−#L) for all nonempty L ⊂ {1, . . . , n}.



BOUNDS FOR THETA SUMS IN HIGHER RANK. II 261

We now return to (4.51). We let Xj(ψ,C) be the set of (X, y) with all entries in
the interval (−1

2 ,
1
2 ] such that there exist u ∈ (−1

2 ,
1
2 )

n, A ∈ GL(n,R) and T ∈ R
n×n
sym

satisfying

(4.57) sup
B∈K1

||((BA)−1 − I)Aj|| ≤ ε,

||T|| ≤ ε, and

(4.58) �̃

(
(u, y − uX, 0),

(
I X

0 I

)(
A 0
0 tA−1

)(
I 0
T I

))
(hS, gj,S) ∈ Gj(ψ,C).

Here we let ε > 0 be a sufficiently small constant, Gj(ψ,C) is defined in (4.40),
and K1 ⊂ R

n
>0 is the compact subset from the statement of Theorem 1.2 identified

with the compact subset of positive diagonal matrices B in the obvious way. We
then set X(ψ) to be the set of (X, y) ∈ R

n×n
sym × R

n such that

(4.59)

(X + R, yR + sR + s) ∈ ⋃
C>0

⋂
j≥0

Xj(ψ,C2a(j1+···+jn))

∩ ⋂
L⊂{1,...,n}

L 	=∅

{(X1, y1) ∈ R
n×n × R

n : X(L′,L′)
1 ∈ X(n−#L)}

for some (R, s) ∈ Z
n×n × Z

n, where sR ∈ R
n has entries 0 or 1

2 depending on
whether the corresponding diagonal entry of R is even or odd, and a > 0 is a
constant to be determined.

We first verify that X(ψ) has full measure, noting that it is enough to show that

(4.60)
⋃
C>0

⋂
j≥0

Xj(ψ,C2a(j1+···+jn))

has full measure in the subset X0 of Rn×n
sym × R

n having all entries in the interval
(−1

2 ,
1
2 ]. Let us suppose that the Lebesgue measure of the complement of Xj(ψ,C)

inX0 is greater than some δ > 0, whichwe assume is small. Now, with respect to the
measure (detA)−2n−1∏

i,j daij on GL(n,R), the volume of the set of A ∈ GL(n,R)
satisfying (4.57) is within a constant multiple (depending on K) of 2−n(j1+···+jn).
Then, using the expression (2.13), (2.14) for the Haar measure on H �G, we have

(4.61) μ̃(�̃\(H � G) − Gj(ψ,C)) � δ2−n(j1+···+jn),

with implied constant depending on K. From Lemma 4.6 it follows that

(4.62) meas(X0 − Xj(ψ,C)) � CψC−2n−42(n+1)(j1+···+jn),
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and we find that

(4.63)

meas
(
X0 − ⋃

C>0

⋂
j≥0

Xj(ψ,C2a(j1+···+jn))
)

� lim
C→∞ CψC−2n−4

∑
j≥0

2((n+1)−a(2n+4))(j1+···+jn) = 0

as long as a > n+1
2n+4 .

Now let us suppose that (X, y) ∈ X(ψ). By Theorem 3.1, the size of the theta
functions in (4.51) is invariant under the transformation on the left of (4.59), so
we may assume that X ∈ X0 as well. In particular, we have that (X, y) is in
Xj(ψ,C2a(j1+···+jn)) for some C > 0 (independent of j) and all j ≥ 0. We have from
Corollary 4.1 and the definition of the height function D that

(4.64) � M
n
2

∑
S⊂{1,...,n}

∑
j≥0

2ji b−1
ji

≤M

2− 1
2 (j1+···+jn)D(�̃(h, g(MB,X))(hS, gj,S))

1
4

bounds (4.51). Now for all j ≥ 0 there is a �̃(h′, g) ∈ Gj(ψ,C2a(j1+···+jn)) with g of
the form

(4.65) g =

(
I X

0 I

)(
A 0
0 tA−1

)(
I 0
T I

)

satisfying (4.57) and ||T|| ≤ ε, and h′ having the form (u, y − uX, 0) for some
u ∈ (−1

2 ,
1
2 )

n. We have

(4.66) (h′, g)

(
1,

(
1
M I 0
0 MI

))
(hS, gj,S) = (h, g(MB,X))(hS, gj,S)(h1, g1),

where

(4.67) h1 =
(
−xSAjES + xS(BA)−1AjES +

1
M

(u − x)B−1AjEj, 0, 0
)

and

(4.68) g1 = g−1
j,S

(
BA 0
0 t(BA)−1

)(
I 0

1
M2 T I

)
gj,S.

Recalling that 2ji ≤ M, the conditions (4.57) and ||T|| ≤ ε imply that (h1, g1)
satisfies the conditions of Lemma 4.4 for all M, which then implies

(4.69)
D(�̃(h, g(MB,X)(hS, gj,S))

1
4 � D

(
�̃(h′, g)

(
1,

(
1
M I 0
0 MI

))
(hS, gj,S)

) 1
4

� C2a(j1+···+jn)ψ(logM)
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since (h′, g) ∈ Gj(ψ,C2a(j1+···+jn)). Taking a = 2n+3
4n+8 so that n+1

2n+4 < a < 1
2 , it follows

that (4.64) is bounded by

(4.70) � CM
n
2ψ(logM)

∑
j≥0

2−( 1
2 −a)(j1+···+jn) � CM

n
2ψ(logM),

and Theorem 1.2 follows. �
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this study.
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Boston, MA, 1980.

[10] J. Marklof and M. Welsh, Segal–Shale–Weil representation, theta functions, and applications, in
preparation.

[11] J. Marklof and M. Welsh, Bounds for theta sums in higher rank I, J. Anal. Math. 150 (2023),
325–358.

[12] D. Mumford, Tata Lectures on Theta. I, Birkhäuser Boston, Boston, MA, 1983.
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