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By
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Abstract. In the first paper of this series we established new upper bounds
for multi-variable exponential sums associated with a quadratic form. The present
study shows that if one adds a linear term in the exponent, the estimates can be
further improved for almost all parameter values. Our results extend the bound for
one-variable theta sums obtained by Fedotov and Klopp in 2012.

1 Introduction

For M > 0, a real n x n symmetric matrix X, and x,y € R”, we define a theta
sum as the exponential sum

1
(1.1) oM, X, x, )= > f(M~'(m +x))e<2mX’m +m’y),
meZ"
where f : R” — C is a rapidly decaying cut-off and e(z) = e*"% for any complex z.
If f = x5 is the characteristic function of a bounded set B C R” we have the finite
sum

1
(1.2) O/(M, X, x,y) = Z e( mX’m+mty).
meZ'"N(MB—x)
In this case we will also use the notation 6y = 3. In this paper we will focus on
the case when

(1.3) B=(0,by) x---x(0,b,) C R" withb = (by,...,b,) € RL,.

The theorems below remain valid if f = yg is replaced by any function f in the
Schwartz class S(R") (infinitely differentiable, with rapid decay of all derivatives).
The results in the latter case follow from a simpler version of the argument for the
sharp truncation, so we do not discuss them here.

The principal result of part I [11] in this series is the following.
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Theorem 1.1. Fix a compact subset X C R, and let y : [0, c0) — [1, 00)

be an increasing function such that

(1.4) /0 h w(H) 2" dt < .

Then there exists a subset X(y) C R of full Lebesgue measure such that

(1.5) 05 (M, X, x,y) = Ox(M? y(log M))

forallM > 1,b = (by,...,b,) € K, X € X(yw), x,y € R". The implied constants

are independent of M, b, x and y.

For example, for any € > 0, the function w(x) = (x + 1)2»11+2+€ satisfies the
condition (1.4), which produces the bound M g(logM) 22*€ for almost every X
and any x and y. This improved the previously best bound due to Cosentino and
Flaminio [3] by a factor of (logM)". Moreover, in the case n = 1, Theorem 1.1
recovers the optimal result obtained by Fiedler, Jurkat and K&rner [5]; cf. also the
extension of this result via nilflows by Flaminio and Forni [6].

In what follows we establish a stronger bound than (1.5), for example
M 3(10gM)2111+4+‘, but now only valid for almost every y. In the case n = 1,
Theorem 1.2 recovers the upper bound in Theorem 0.1 of Fedotov and Klopp [4].

Theorem 1.2. Fix a compact subset X = X; x X, ¢ R?; x R", and let
w1 [0, 00) = [1, 00) be an increasing function such that

(1.6) / w() ™" *dr < 0.

0
Then there exists a subset X( W) C Rg’yﬁ: x R" of full Lebesgue measure such that
(1.7) 05 (M, X, x,y) = Oxy (M y(log M)

forallM > 1, (b,x) € X, and (X,y) € X( w). The implied constants are indepen-
dent of M, b and x.

The paper is organized as follows. In Section 2 we review some basic properties
of theta functions and the Jacobi group. The Jacobi group is defined as the
semi-direct product H x G of the Heisenberg group H and the symplectic group
G = Sp(n, R), and, following a construction due to Lion and Vergne [9], the theta
function associated to a Schwartz function f € S(R") is a function @y : Hx G — C
that, for appropriate g € G and h € H, is a simple rescaling of the theta sums ;.
The theta functions ®; satisfy an automorphy equation, Theorem 3.1, under a
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certain subgroup I" € H x G. This subgroup, defined in Section 3, projects to the
discrete subgroup I' = Sp(n, Z) C G.

In order to exploit additional savings from the linear term parameterized by y,
we found it necessary to have a better understanding of the shape of the cusp of
I'\ G than in the first paper in this series [11]. For this reason we define in Section
3.1 anew fundamental domain for I'\ G which has “box-shape” cusps, as explicated
in Section 3.2.

Section 4 contains the proof of Theorem 1.2, which is based on a Borel-Cantelli
type argument together with a multi-dimensional dyadic decomposition of the
characteristic function of the open unit cube (0, 1)" that is naturally realized as an
action of the diagonal subgroup of G. The execution of the Borel-Cantelli argument
rests on a kind of “uniform continuity” property of a certain height function on
H x G that controls the theta function ®, see Corollary 4.1. The required property is
provedin Section 4.1, see Lemma 4.4, whose proof is the motivation for the creation
of the fundamental domain and the study of its cuspidal regions in Sections 3.1
and 3.2. We remark that the interaction of the dyadic decomposition with the H
coordinate in the Jacobi group leads to additional complications not seen in [11],
see Section 4.2.

2 Theta functions and the Jacobi group

The theta function ©, associated to a Schwartz function f € S(R") is a complex-
valued function defined on the Jacobi group H x G, the semi-direct product of the
Heisenberg group H with the rank n symplectic group G = Sp(n, R). Here H is the
set R” x R" x R with multiplication given by

1
2.1)  xLynL ),y 0)= (xl +Xx2,y1+y2,t1 +r + 20’1 'x, —x tJ’z)),

and G is the group of 2n x 2n real matrices g preserving the standard symplectic
form:

0 —I 0 —I
(2.2) g(, O)’g=<l 0)

with [ the n x n identity. Alternatively, writing g in n x n blocks,

A B
(2.3) GZ{(C D):AtB=BtA, C’D:D’C,A’D—BT:I}.
We note that G acts on H by automorphisms via

A B
(2.4) h® = (xA+yC,xB+yD,t), whereh=(x,y,1), g= (c D) ’
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so we may define the semi-direct product H x G, the Jacobi group, with multipli-
cation

(2.5) (h1, g1)(ha, g2) = (K5, g12).

The theta function is defined by

(2.6) Os(h,8)= Y (WRR(Q))(m),

mez"

where W is the Schrodinger representation of H and R is the Segal-Shale—Weil
(projective) representation of G. We refer the reader to [11] for details regarding
these representations, including the slightly non-standard definition of W and the
unitary cocycle p : G x G — C satisfying R(g182) = p(g1, 82)R(g1)R(g2). We
recall here that for

I X\ [Y: 0
@7 g=<0 1)(0 fré)EG’

we have

Op(x,y,1),8)

(2.8) = (det Y)+ e(—t+ ;xty)

x Zf((m +x)Y5)e(;(m +x)X ' '(m +x)+m’y).

meZ"

For f(x) = exp(—n'x ’x) and i = (0, 0, 0), we recover (det Y)flt times the classical
Siegel theta series that is holomorphic in the complex symmetric matrix Z = X +iY.
Here we choose Y2 to be the upper-triangular matrix with positive diagonal entries
such that Y2 Y2 = Y , and we emphasize that Y=o is always interpreted as (Yé )1
and not (Y~ 1)2.

For general g € G we have the Iwasawa decomposition,

2.9 (A B\ (1 x\(r: o0 Re(Q) —Im(Q)
‘ = \lc p/7\o 1)\o v !)m@ Reo) )

where X, Y are symmetric and Q is unitary. Explicitly, we have
Y=(C'C+DD)™!

(2.10) X=@A'C+BD)C'C+DD)!,
Q="Y:(D+iC).
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We often further decompose Y = UV 'U with U upper-triangular unipotent and V
positive diagonal, so Y: =UV:. Itis easy to express the Haar measure ¢ on G in
these coordinates,

(2.11) du(@=d0 [ dvy [ duy [ v, 7" duy,
1<i<j<n 1<i<j<n 1<j<n

where dQ is Haar measure on U(n) and dx;;, du;;, dv;; are respectively the Lebesgue
measures on the entries of X, U, V. We can also express the Haar measure on the
open, dense set of g which can be written as

1 xX\/A o\/[(I o
(2.12) g=<0 1) (0 ’A‘1> (T 1)

with A € GL(n, R) and X and T symmetric. In these coordinates we have
(2.13) du(g) = c(detA)™~" [ dxy [[ day ] dz
1<i<j<n 1<i,j<n 1<i<j<n

where ¢ is a positive constant and dx;;, daj;, df; are respectively the Lebesgue
measure on the entries of X, A, T, see [11]. We note that the Haar measure & on
the Jacobi group is simply

(2.14) dji(h, g) = dx dy drdu(g),

with & = (x,y, t) and dx, dy, and dr the Lebesgue measures.
We often make use of the following refinements of the Iwasawa decomposition.
For 1 <[ < n and the same Q as in (2.9), we write g € G as

1
I Rl Tl - Sl ’R, Sl l][‘/l2 0 O O
0 1 5, 0 0 Y 0 X'y, ?
0 O 1 0 -1y =2
e \g o w1 0 0 ‘wr'vit o0
! 0 0 0 Y,

o [Re(©@) —Im(Q)
Im(Q) Re(Q) )’

where R; and S; are [ x (n — ) matrices, T; is [ x [ symmetric, U; is [ x [ upper-
triangular unipotent, V; is [ x [ positive diagonal, X; is (n — [) x (n — [) symmetric,
and Y; is (n — [) x (n — [) positive definite symmetric. We note that for [ = n
we recover X = T; and the factorization Y = U,;V;'U,;. In what follows we use
g1 = gi(g) € Sp(n — [, R) to denote the matrix

1
.¢ Y? 0
(2.16) g = N I
0 I 0 tYl 2
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These decompositions are closely related to the Langlands decompositions of
the maximal parabolic subgroups P; of G. For 1 < [ < n, P; is the subgroup of
g € G which can be written in the form

I R[ Tl — Sl tRl Sl a[I 0 0 0 Ul 0 0 0

1 ! 1 A B

2.17) 0 S 0 0 ?1 0 0 ! t 0—1 I
0 0 I of[{o o a'r of[0 0o ‘Ut o0

0 0 —'R, 1 0O 0 o0 1[I 0 G 0 Dy

where R; and S; are [ x (n — [) matrices, T; is [ x [ symmetric, a; > 0, U; € GL(I, R)
withdet U; = 1, and g; = (‘é’l g’l) € Sp(n — [, R). The maximal parabolic P, is the
subgroup of g € G that can be written as

I T, (ad f
(2.18) . ?1 Y ,04
o 1)\0o a'1)\o0 ‘U,

where T, is n x n symmetric, a, > 0, and U, € GL(n, R) with detU,, = &=1. The
factorizations (2.17), (2.18) are in fact the Langlands decompositions of P;, P,.
The first paper in this series [11] contains more details on parabolic subgroups
and their Langlands decompositions, and we refer the readers to [13], particularly
Sections 4.5.3 and 5.1, [8], particularly section 7.7, and the authors’ lecture notes
[10] for further details.

3 The subgroups I' and T’

We denote by I' the discrete subgroup I' = Sp(n, Z) C G. Recalling the notation
of [11], for

A B
(3.1) y=<c D)eF,

we seth, = (r, s, 0) € H where the entries of r are O or é depending on whether the
corresponding diagonal entry of C'D is even or odd, and the entries of s are O or é
depending on whether the corresponding diagonal entry of A’B is even or odd. As
in [11], we now define the group I' ¢ H x G by

(3.2) f={((m,n,t)hy, NeHxG:yel,meZ" ,neZ",t eR}.

The relevance of the subgroup I" is made apparent by the following theorem, see
theorem 4.1 in [11].



BOUNDS FOR THETA SUMS IN HIGHER RANK. II 241

Theorem 3.1. For any (uh,,y) € I and (h, g) € H X G, there is a complex
number g(y) with |e(y)| = 1 such that

1
(3 Oy, k) = c(p(r, @) et + ym'n) Os(h, 2),
where u = (m,n,t).

A proof of this theorem is found in [9] but with I replaced by the finite index
subgroup for which 4, = (0, 0, 0). The automorphy under the full I is proved in
[12], but only for the special function f(x) = exp(—nx tx). It is shown in [9] that
this f is an eigenfunction for all the operators R(k(Q)), with R the Segal-Shale—
Weil representation and Q € U(n), and it can be seen from the theory built in [9]
that the automorphy for any Schwartz function follows from that for exp(—nx ’x) .
A self-contained proof along the lines of [9] is presented in the authors’ lecture
notes [10].

3.1 Fundamental domains. We say that a closed set D C G is a funda-
mental domain for I'\G if
e for all g € G there exists y € I" such that yg € D and
e iffor g € D thereis anon-identity y € I" suchthat yg € D, then g is contained
in the boundary of D.
Similarly a closed set D © H x G is a fundamental domain for I'\(H x G) if
e forall (i, g) € H x G there exists 7 € I such that j(h, g) € D and
e if for (h,g) € D there is a non-identity 5 e I" such that j(h, g) € D, then
(h, g) is contained in the boundary of D.
We note that if D is a fundamental domain for I'\G, then

- 1
(34 D={e.y.0eH:Ixllyl <} xD

is a fundamental domain for T'\(H x G).

In contrast to our previous paper [11], here we need to make careful use of the
shape of our fundamental domain D in the cuspidal regions. Drawing inspiration
for the fundamental domain for GL(n, Z)\GL(n, R) constructed in [7] as well as
from the reduction theory developed in [2] (see also [1]), we construct in this
section a new fundamental domain D = D, for I'\G. In the following section we
study the cuspidal region of D,,.
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For n = 1, we let D; C G denote the standard fundamental domain for
I'\G = SL(2, Z)\SL(2, R). That is,

m {(1 x) (yé 0 ) <cosq§ —sinc;S)
1= _1 . :
3.5) 0 1 0 y sing cos¢
1
x| < 2,x2+yz >1,0<¢ < 27[}.

We now define fundamental domains D, inductively using the decomposition
(2.15) for I = 1. Writing g € G as

1 r tl—sltrl S1 1 0 0 O
o 1 5, ollo 1 o x
=10 o 1 ollo o1 o
00 -7 1/J\0o0 o0 I
36 1
(3.6) 0> 0 0 0
3
«| 000 o),
0 0 v > 0

0O 0 0 'y,

wherer =r(g) e R, s =s(g) e R"!, 1; = t1(g) € R, X; = X,(g) is symmetric,
v; = v1(g) > 0, Y1 = Yi(g) is positive definite symmetric, and Q € U(n), we
define D, as the set of all g € G satisfying
o vi(g) > vi(yg)forall y e T,
o 21(g) € D,_1,see (2.16), and
e the entries of r;(g), s1(g), and 7,(g) are all less than or equal to é in absolute
value with the first entry of ; greater than or equal to 0.

Proposition 3.1. D, is a fundamental domain for I'\G.

Proof. We begin by showing that for g € G, sup, . v1(yg) is indeed obtained
by some y € I'. From (2.10), we have for

3 = (& p)er

that

(3.8) 0(ye) P =cYe+ (cX+d)Y V(X +d)
where

I X\ [y o0
(3.9) g=<0 1><0 ,Y_;>k(Q)
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and ¢, d are the first rows of C, D. Since Y is positive definite, there are only finitely
many c¢ such that ¢Y ¢, and hence v;(yg)~!, is below a given bound. Similarly, for
a fixed c, the positive definiteness of Y~! implies that there are only finitely many d
such that v;(yg)~! is below a given bound. It follows that there are only finitely
many y € I';\T" such that v(yg) is larger than a given bound, where I'} = ' N P,
and we recall Py is given by (2.17). As v1(yg) = v1(g) for y € TI'; it follows
that v(yg) is maximized for some y € I'.

Let yo be so that v1(yog) is maximal. We now decompose an arbitrary y € I'y
asin (2.17),

1 ri 1 —s; ’rl S1 +1 0 0 0
0 1 ! 0 0 A, 0 B
(3.10) y = 51 : !
0 0 1 0 0 0 =+1 0
0 0 —'r I 0 C 0 D
with
A B
3.11 = Sp(n — 1, 7).
(3.11) ya <C1 D1> eSp(n—1,2)

Proceeding inductively, there exists y; such that y;g1(y0g) = g1(yy08) € Du—1.
Now, we can change r1(y), s1(y), t1(y), and the &£, noting that this does not change

g1(y708), so that the entries of ri(yy0g), s1(yyog) and #;(yyog) are all < é in

absolute value and the first entry of #1(yyog) is nonnegative. Therefore yy,;g € D,
as required.

We now suppose that g € D,, and there is a non-identity y € I' such that
yg € D,. We set

A B I X\ [Y: 0
(3.12) y:(c D), g=<0 1><0 ty_£>k(Q).

By the maximality, we have v;(g) = v1(yg) and therefore
(3.13) o, ' =eYe+(cX+d)Y ' (cX +d)

where ¢ and d are the first rows of C and D. Let us first consider the case when
¢ #0. To show that g is on the boundary of D,, in this case, we consider

(1 x\ [{d-e:r: 0

for 0 < e < 1. We have v1(g¢) = (1 — €)v1(g) and
(gt =l —ecYe+ (1 —e) (eX+d)Y V(X +d)

3.15
G-I =((l—e—(—e) HeYe+vi(g)™
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by (3.13). Since v;(yg.) > v1(gc), we have that g, ¢ D,. As g, can be made
arbitrarily close to g, we conclude that g is on the boundary of D,,.
If ¢ = 0, then from (3.13) we have

(3.16) vi(e)~ =@V —d®'r)vi(e)” +dPy AP

whered = (dV  d®) are as above,

(317) y = 1 r D1 0 1 0
’ “\o 1 o v.)\iry 1)

This time we consider

1 x\ (v
(3.18) g = <0 1) <2 IYO_é>k(Q)

with

_ 1 r (1—6)1)1 0 1 0
A (A T T

We have v;(g¢) = (1 — €)v1(g) and

vi(rg) " = (1 — '@V —d? 'r)oi(9) " +dP Y AP

3.20
:20) =01(g) ' +(1 — (1 — &)~ HdPy, d?

from (3.16). If d® # 0, then v;(yg.) > vi(gc) and we conclude that g is on the
boundary of D,, as before.

When ¢ = 0 and d® = 0 we have dV) = £1, and so y € I';. We decompose y
as in (3.10) and define y; as in (3.11). By the construction of D,, we have
g1(g) € D,y and g1(yg) = y1£1(g) € D,—1. By induction, we have that either y,
is the identity or g;(g) is on the boundary of D,,_;. In the latter case we have that g
is on the boundary of D,,, and so it remains to consider

+1 r i Fris s

0 I 4, 0
321 _
3.2 1o o +1 0
0 0 Fr; 1

If any of the entries of ;(y) or s1(y) is not zero, then the corresponding entry
of ri(g) or s1(g) is :I:% and so g is on the boundary of D,,. Similarly if #,(y) # 0,
we have #,(g) = :I:; and again g is on the boundary of D,,. If all of ry, 51, #; are O,
the sign must be — as y is not the identity, and it follows that the first entry of r,(g)
is 0 and g is again on the boundary of D,,. (]
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The following proposition records some useful properties of D,,. It and its proof
are very similar to the analogous statement for the different fundamental domain
used in [11], see proposition 3.1 there.

Proposition 3.2. Let g € D, and write

I X\ [(y: o0 .
(3.22) g_<0 1><0 ty_é>k(Q), Y=UV'U,

where X is symmetric, Y is positive definite symmetric, U upper triangular unipo-
tent, V positive diagonal, and Q € U(n), and

o -+ 0

—_ . . . — 1 rl b1 0 1 0
(3.23) V=1: - Y‘(o 1) (0 Y1> (trl 1>'

0 - o,

Then we have
(1) v, > % andv; > 3o for1 <j<n—1,
(2) forallx = (xV x@)eR"

(3.24) xY'x =, 06?2 +xPy, x@.

Proof. For the first, we observe that by the inductive construction of D,,, we
have that

EDl‘

0 o, ?

1
1 xn—l(g) vy’ 0
0 1

(3.25) gn-1(8) = (

As D is the standard fundamental domain for SL(2, Z)\SL(2, R), we conclude
that v, > V.

To demonstrate that v; > il)j+], we note that by the construction of D,, it
suffices to consider only j = 1. We start with

(3.26) v, <eYe+(cX+d)Y (X +d)

forany (¢ d) € Z*" nonzero and primitive. Choosing

c=0 and d=0 1 0 --- 0),
we have
(3.27) 0,7 <o, D 0,7,
where ril) is the first entry of r;. Since 0 < ril) < ; we conclude that v; > 202-
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To demonstrate the second part of the proposition, we letyy, ..., y, denote the
rows of

(3.28) yi= (L ) (v 0.
0 I 0 Y

Setting y = xoy5 + - - - + X,.y,,, Where the x; are the entries of x, our aim is to prove
that for some constants 0 < ¢; < 1 < ¢, depending only on n,

(3.29) (112 + 111D < s +311°7 < eyl P63 + [yl %),

from which the lower bound in (3.24) follows as ||y;||> > v;. The upper bound
in (3.24) follows from (3.29) and v; > ||y,||?, which is verified below, see (3.35).
Expanding the expression in the middle of (3.29), we find that it is enough to show
that

(3.30) 21y1 'yl < (1 —e(yillPd + 111,
and
(3.31) 20x1y1 'y < (c2 — D12 + [ 11P).

The upper bound (3.31) is trivial if ¢; = 2, and the upper bound (3.30) would
follow from

(3.32) iyl < A —ceolyill Il

We let 0 < ¢; < 7 denote the angle between y; and y and 0 < ¢ < J
denote the angle between y; and the hyperplane span(y,,...,y,). We have
¢> < min(¢;, @ — ¢P1), and so | cosP;| < | cos@,|. We bound cos ¢, away from 1
by bounding sin ¢, away from 0.

We have

1
i A-Apall  _ v)?

3.33 ingy| = B
( ) |Sln¢2| ||y1|||b,2/\/\yn|| ||_)71||,

1
so it suffices to show that v,> > ||y:||. Here A denotes the usual wedge product
on R” and the norm on \* R is given by
a)
(3.34) llar Ao naglP=det| 1| (@ o ).

ai
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Using the inductive construction of D, and the fact that the entries of
ri(Y),ri(Yy), ... are at most ; in absolute value, we observe that U has entries
bounded by a constant depending only on n. We find that

(3.35) IDil? K op+-+v, L vy

with the implied constant depending on 7. O

3.2 Shape of the cusp. As explicated in [1] and [2], the cusp of '\G can
be partitioned into 2" — 1 box-shaped regions. These regions are in correspondence
with the conjugacy classes of proper parabolic subgroups of G and are formed as
K times the product of three subsets, one for each of the components—nilpotent,
diagonal, and semisimple—of the Langlands decomposition of P.

In what follows we use the fundamental domain D,, constructed in Section 3.1
to prove a variation of this fact, although only for the maximal parabolic subgroups
(2.17), (2.18). Our main result for this section is Proposition 3.5, which roughly
states that if g € G is close enough the boundary in a precise sense, then g can
be brought into D,, by an element y in some maximal parabolic subgroup which
depends on the way g approaches the boundary.

For1 <[ < nwe denote by I';; and I';» the subgroups of I'; = I' N P; given by

A O O O
0 1 0O O
3.36 ' = A eGL(,Z
(3.36) L1 0 0 4! o e GL(, Z2)
0O 0 O 1
and
I 0 0 O
0O A 0 B A B
3.37 I',= : S -1, Z
( ) 1,2 00 I 0 <C D)E p(n—1,7)
O C 0D

For ! = n, we set

A O
(3.38) Iy = {(0 ’A‘1> :A € GL(n, Z)} ,

and we let I, » be trivial. We now define,forge Gand1 <[ < n,

(3.39) 0i(T'g) = min vi(yg) = min vi(yg)
yel yel
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and, for1 <[ < n,
(3.40) vi1(I7g) := max vy (yg) = max vy 1(yg).
yely yeli2

Here v;(g) denotes the Ith diagonal entry of V in the decomposition of g, see (2.9).
Abusing notation, we also use v;(Y) to denote the /th diagonal entry of V, where for
a positive definite matrix ¥ (of any size at least [ x [), we decompose Y = UV U as
above. The quantities v;(g), v;(Y), and v;(U;V;'U,) of course agree when Y comes
from the Iwasawa decomposition of g and U, V; come from the refinement (2.15).

We also note that the second equalities in (3.39) and (3.40) follow from the
observation that for g as in (2.15) and y € I';, we have

I M L—-NM N\ (A O 0

0
o 1 v ollo a4 o B
=10 o I ollo o @) o
oo -m 1/\o c o D
I Rl Tl - Sl ZR[ Sl UZVZZ 0 0 0
0 I ] 0 0 YZZ 0 X[tYl_2
*lo o I 0 bty
t 0 0 Uty 0
0 0 _Rl 1 0 0 0 tYl—2
341
GAD (Re@ —Im(@)
Im(Q) Re(Q)
1
I x % x AUV} 0 0 0
o1 o« o0 0 AY; 0 (AX,+B)'Y;
0 0 1 0 0 0 t(A/UlVlz)—l 0
0.0 1 0o cyy 0 (CX,+ D)y}

« [Re(@ —Im(Q)
Im(Q) Re(Q) )’

and therefore only the part of y in I';; changes v;(yg) and only the part in I';,
changes vj;1(g).

Finally, we note that in the proof of Proposition 3.1, we saw that the maximum
in (3.40) does exist. As for the minimum in (3.39), we simply note that

(3.42) U[(AU[V[ZUIZA) :aU,VI’U,’a

where a is the last row of A € GL(I, Z), so the positive definiteness of U,V,;'U;
implies that there are only finitely many values of v;(AU;V;'U;'A) below a given
bound.
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We now define a fundamental domain D for the action of GL(/,Z) on [ x [
positive definite symmetric matrices. We set D} = {y > 0} and

1 r D1 0 1 0 ZOSFSI,}’2+0121 ’
0 1 0 v r 1 2 %)

the standard fundamental domain for GL(2, Z) acting on 2 x 2 positive definite

(343) D,

symmetric matrices. The domain Dj for ! > 2 is then defined inductively as the set
of all

(3.44) Y=<1 r> <z)1 0) <1 o)
0o 1)\0 r)\r 1

such that
(1) v1(Y) > 01(AY‘A) for all A € GL(l, Z),
2) Y, €Dj_,,and
3) Irjl < % and0 < r < % where r; are the entries of r.
This is in fact the set of ¥ such that Y~! is in Grenier’s fundamental domain, see [7]
and [13], so we do not prove that D; is a fundamental domain here. We do however
record the following properties of D).
Lemma 3.3. Let UV'U € Dj with
oy - 0
(3.45) V=1: .o
0 -
positive diagonal and U upper triangular unipotent. Then we have
1) v; > 2Dj+1f0’” 1<j<l|
(2) for anyx € R,

(3.46) xUV'U'x <xV'x
with implied constant depending only on I, and
3
(3.47) min_ 0 (AUV'U'A) < o (UV'U)

AeGL(L,Z)

with implied constant depending only on L.

Proof. The first and second parts are proved in proposition 3.1 of [11]. To
prove the third part, we note that with a the last row of A,

(3.48) v(AUV'U'A) =aUV'U'a > aV a,

by the second part of the lemma. Applying the first part of the lemma we have
aV'a > vla||> > v, and (3.47) follows. O
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As the proof is almost identical to the proof of the third part of Lemma 3.3, we
record the following lemma for later use.

Lemma 3.4. Ifg € D, thenforalll <1 <n,
(3.49) v(T1g) =< vi(g)
with the implied constant depending only on n.

Proof. We recall from the second part of Proposition 3.2 that for x € R/,

(3.50) xU,Vl’U,’x > le’x.

We have

(3.51) v)(I'g) = mineU;V;'U; e > mincV, .
ceZ! ce’Z
c#0 c#0

Now as ¢ # 0, we have cJ2 > 1 forsome 1 <j <[, and so
(3.52) vi(T1g) > vi(g) > vi(g)

by the first part of Proposition 3.2. (]

We are now ready to prove the main result for this section.

Proposition 3.5. For 1 < 1 n, there are constants a; > 0 such that
forl < n, if g € G satisfies v;)(1';g)
0,(I',8) > a,, then there exists y € T'; so that yg € D,. Moreover, for this y we

have vi(I'1g) < vi(yg) and, forl < n, v;1(I'1g) = v41(yg).

<
> a1 (1g), and for |l = n if g € G satisfies

We remark that this proposition can be extended to any of the parabolic sub-
groups Py, of G by taking intersections of the maximal parabolics. However, some
care needs to be taken regarding the possible non-uniqueness of the y bringing g
into D,,. Since it is unnecessary for our goals, we do not discuss this here.

Proof. By multiplying g by

A0 0 0

0 A 0 B
3.53 = Iy,
( ) 71 0 0 [(A,)_l 0 €l

0 C 0 D

which leaves v;(I';g) and v (I;g) unchanged, see also (3.41), we may assume
that U;V;'U; € D? and

>
(3.54) A N RGN I
0 I 0 tYl_z
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We recall that for y = (4 5),
(3.55) vi(ye) t=cYe+ (cX+d)Y V(cX +d)

where ¢, d are the first rows of C, D. Now, writing ¢ = (¢V ¢®),d = dV d®)
and

Ti+RX;'R; S;+RX
(356) X = tl I f I ! 1Al ,

Sl+X[Rl Xl

U R Vi O 'U; 0
3.57 Y= >
057 50 w) (e 0)

see (2.15), we obtain
01087 = VUV U e + (VR +¢P)Y (€ VR + @)
+ (T = SRY +c?'S+dV —dP Ry UV U
(3.58) x (€T — S;R) +¢c@'S, +dD — dP R))
+ (VS + RX) + DX +dP)y)!
x (DS, + RX) + ¢PX, +d?).

If ¢V # 0, then, since U;V;'U; € D), we have
(3.59) 01(yg) ™' = YUV U D > Ve >

by the second part of Lemma 3.3. Since, for/ < n,

;
(3.60) X (v 0 op
0 I 0 tYl_z

we have vy, > 1, see Proposition 3.2, and so v; >> a; by the hypothesis. For/ = n,
we directly have v, > a, by hypothesis. Since also v; > v; by Lemma 3.3, we
have v;0; > alz, so by taking a; to be a sufficiently large constant, it follows that

o1 > 01(yg).
Forl < n,ifcV =0but (c? d?) #0, then we have

3.61)  01(y9)7" = @Y, @+ (@X, +d®)Y (c@X, +dP) > v141(g) !

since g/(g) € D,—. We have v,7' > ap,”' > a7, so v,7' > v,7! for g
sufficiently large, and it follows that v; > v1(yg).
Now, if I = n or if ¢V, ¢®, and d® are all 0, then we have dV # 0 and

(3.62) oi(yg) L =dV'urtvituyt dt > 07!
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as U;V,'U; € Dj. We have verified that for any y € I', v; < v;(yg), which is the
first condition defining the fundamental domain D,,.

Restricting to y € I'1, which fixes v;(g), the same argument as above shows that
02(g) > va(yg) for all y € I';. Continuing this way, we find that the v;, 1 < j </
are all maximal (over I';»), and so, by the construction of D,,, thereis a y € I'; with
the form

A B
(3.63) y = <O ’A‘1>’

where A is upper-triangular unipotent (so y € I'; for all /) such that yg € D,. O

4 Proof of the main theorem

In the following subsection we gather some technical lemmas regarding the height
function needed in the proof of Theorem 1.2, see Section 4.2. This height function
is motivated by the following corollary from [11].

Corollary 4.1. For a Schwartz function f € $(R") and (h, g) € D, and A > 0,

we have
(4.1) Op(h, 8) Kpa (detY)i(1+xY )™
where

I X\ [(y: o
42 = 1 k
4.2) g <O I) (0 ty_2> Q)
and h = (x,y,t).

We remark that in [11] this is obtained as a consequence of full asymptotics of
the theta function in the various cuspidal regions. We also remark that in [11] we
use a slightly different fundamental domain, however an examination of the proof
there shows that the fundamental domain can be replaced by any set satisfying the
conclusions of Proposition 3.2. Finally, in [11] we use the term xV ‘x as opposed
toxY ‘x in (4.1). Up to constants, these are interchangeable by Proposition 3.2 and
we only prefer xY ‘x for its transformation properties, see the proof of Lemma 4.4.

4.1 Heights and volumes. ForafixedA > O sufficiently large depending
only on n, we define the function D : T\(H x G) — R. by

4.3) D(T'(h, g)) = det Y(yg)(1 +x(uh,h’” )Y (yg) 'x(uh,h’" )™
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where (uh,, y) € I is so that (uh,, y)(h, g) € D. Here we write h € H as

h = (x(h), y(h), t(h)).

For completeness, in case there are more than one (uh,,y) € I" such that
(uhy, y)(h, g) € D, then we define D(I'(h, g)) to be the largest of the finite num-
ber of values (4.3). This point is not essential as these values are within constant
multiples of each other; see the argument in Lemma 4.4 for how this can be proved.

We begin by analyzing the growth of the height function. We let & denote the
Haar probability measure on T'\(H x G), which is u, the Haar probability measure
on I'\G, times the Lebesgue measure on the entries of & = (x, y, ).

Lemma 4.2. For R > 1 we have
(4.4) AT (h,g) e T\(H % G): D(I'(h, g)) = R) < ™%
with the implied constant depending only on n.

Proof. We recall that g € D,, is written as

U x'u"\ (v: o0
4.5) g—<0 fU“)(O V—%>k(Q)

for U upper-triangular unipotent, X symmetric, Q € U(n), and

Ul PErY O
(4.6) V=V(g) = :
0 DY Dn

positive diagonal. The Haar measure 4 on G is then proportional to Lebesgue
measure with respect to the entries of X and the off-diagonal entries of U, U(n)-
Haar measure on Q, and the measure given by

4.7) o, "o, v, 2doydo, - - - do,

onV.
By Proposition 3.2, we observe that the set in (4.4) is contained in the set
of (h, g) satisfying v; > cvjy for all 1 < j < n and some ¢ > 0 in addition to

detY > Rand xY'x < R_/l\(det Y)Al. Moreover, the variables x,y, t as well as
U, X are constrained to compact sets, and so the measure of the set (4.4) is

3 1 5
_ —n—,+€ —n—,+€ —5+€
(4.8) <R f/---/ul 2, T, oy doy - - - doy,
0j > CVj+1
10, >R

P
where € = /.
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Changing variables v; = exp(u;), the integral in (4.8) is

R~€ // exp(—(n+;—e)u1—<n—;—e)u2

uj—ujr1 =loge
up+---+u, >log R

4.9)

_ (3 — e)u,,)duldbm -+ - du,.

We now make the linear change of variables s; = u; — u;j for j < n and
Sp = Uy + - - - + u,. This transformation has determinant » and its inverse is given
by

1 1
4.10 P=— E S E —0)s; -
( ) u; n 2 'lS + i (n—1i)s; + ns

We find that the exponent in (4.9) is then

.3 n+2 i(n — j)
4.11) — Z(n—]+ —E)Ltj=—< —E)Sn— Z J Jsj.
: 2 2 — 2
1<j<n 1<j<n
As 7" > 0 forj < n, the bound (4.4) follows. O

Lemma 4.4 below contains a key estimate, establishing a kind of ‘uniform
continuity’ for log D. The proof of this lemma is the primary motivation for defining
our new fundamental domain and studying the shape of its cusp in Sections 3.1
and 3.2. For the proof, we first establish a similar kind of ‘uniform continuity’ for
the functions v;(I';g) and vy, (I';¢) that are essential to Section 3.2.

Lemma 4.3. Let g, g0 € Gwith ||go — || < 1, then

(4.12) vi(g) < vi(ggo), vi(I'g) <vi(T'1880), vi1(11g) =< vi1(I'1880)

forall 1 <1 < nwith implied constants depending only on n.

Proof. We first note that we may in fact work with ||/ — g¢|| < € as then the
statement would follow by repeated application of the estimates. In fact, we may
assume ||/ — gg'!|| < € as well. Now write

I X\ [y 0 R —S
(4.13) g‘(o 1)(0 fY—é> <S R)’

with R + 1S € U(n), so in particular RR + S'S = I. With go = (4 B), we have
from (2.10) that

-1 _ ty—1} A K A K t ot t
Y(ggo) =Y 2(SAAS+RC'AS+SA C'R+RC'CR

(4.14) :
+SB'B'S+RD'B'S+SBDR+RDDR)Y 2.
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As [|go — I|| < €, we have

(4.15) 'Y(ggo)"> = 'Y 2(I + O(e)).
On the other hand, letting y; and y’, denote the rows of 'y=2 and ’Y(ggo)_é, we
have
(4.16) 01(@72 = yill,  vi(ggo) ™2 = [yl
and for2 <[ <n,
—t_ AiA- Al 1 A Ayl
(4.17) v(g) 2 = , vi(ggo) 2= AR
(i A Ayl Iy A Ayl

and so v;(g) = v;(ggo) follows.

Now let y € T'; be so that v)(I';g) = v;(yg). We have
(4.18) vi('1880) < vi(y880) K vi(yg) = vi(I'18),

and the reverse bound follows by switching the roles of g and ggg, and using
llgo I —J]| < e. The final estimate in (4.12) is proved in the same way. O

Lemma 4.4. If(h, g), (ho, g) € G with llgo = I]] <1 and hy = (x0,¥0, to)
satisfies ||xoll, |lyoll < 1, then

(4.19) D(T'(h, ) =< D(I'(h, g)(ho, g0))-
Proof. We observe as in Lemma 4.3, we may in fact assume
(4.20) llgo — Il <€, |lxoll <€, and |lyoll <e.

Moreover, it suffices to show that D(T"(4, g)(ho, g0)) > D(T(h, g)) as the other
inequality follows from switching (%, g) and (k, g)(ho, go) as we may assume in
addition that (ho, go) ™' = (hy*°, gg'") also satisfies (4.20).

Now let us suppose that (4, g) € D so that

(4.21) D(I'(h, 8)) = (det Y())(1 +x (W)Y (g) x () ™.

Let 1 <! < n be the largest index such that v;(g) > avy;1(g) (or v,(g) > a when
[ = n) where a is a constant determined by the constants in Proposition 3.5 and
Lemma 4.3. If no such / exists, then we have v;(g) =< 1 for all j, and Lemma 4.3
implies that v;(ggo) < 1 as well. The bounds

(4.22) D(I'(h, g)(ho, 80)) > 1> D(T'(h, g))

then follow immediately.
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Now assuming that such a maximal [ exists, we have that v;(g) < 1 for all
Jj > L. For these j, Lemma 4.3 then implies that v;(ggo) =< 1, and it follows
that v;(yggo) < 1 for y € I'; such that g/(yggo) € D,—;, see (2.16). By Lemma 3.4,
we have v;(I';g) > vi(g), and so

(4.23) vi(I'18) > avp(g) = avp 1 (1g)

since g;(g) € D,—;. Via Lemma 4.3, this implies that v,(I';ggo) > avi+1(I'1g2g0), SO
a can be chosen large enough so that ggy satisfies the hypotheses of Proposition 3.5,
and we let y € T'; be so that yggo € D.

We write
Al % % %
0 * * =%
4.24 = ,
(4.24) 1o o « o
0 * % =

where A; € GL(I, Z). From the estimates above, we have

det Y(yggo) =< det Uy(yggo)Vi(7ggo) 'Ur(yggo)
(4.25) = det U;(ggo)Vi(ggo) 'Ui(ggo)
= det U(g)Vi(g) 'Ui(g) = det Y(g),
where the equality follows from the fact that y € I'; normalizes the first matrix in
(2.15) and detA; = %1.

It now remains to consider the factors 1 + x(%)Y (%) 'x(%) in the definition
of the height function D. Let u = (m,n,0) with m,n € Z" be so that
(uh,, y)(h, g)(ho, g0) € D. Recalling the definition of &, = (7, s, 0) following (3.1),
we have that 7 = 0 where r = (P r?). Moreover, writing x = (x('  x?), we

have x(l)((hhg_l)fl) = x(l)(hhg_l)Al_l. Using Proposition 3.2 together with the fact

that ¥ minimizes the absolute values of the entries of .1|c(uh},(hhgl )3’_1), we have
s | + x(uhy (W )™)Y (7g80) x(uly (hhE )™)
< L+ x(y(hhg )™)Y (7ggo) x(hy(hhE '),

and from the estimates above on the v;(yggo) for j > I, we have
) L (hy ()™)Y (78g0) % (hy (B )™)

= 1+xO (kY ) Ui(7220)Vily220) ' Ui(y2g0) Xy (hh§ ) ™).
Using the expressions for £,, (hhg1 )V_l, and that

(4.28) Ui(yg80)Vi(yg80) 'Ui(ygg0) = A1U(880) Vi(ggo) 'Ui(ggo) Ay,
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the right side of (4.27) is equal to

(429, 1+xV(nh§ HUi(ggo)Vi(ggo) 'Ui(ggo) 'x V' (hh§ )
= 1 +x(hh§ )Y(ggo) x(hh )

by the above bounds on v;(ggo) forj > I.
Recalling that

(1 X\ (v 0
(4.30) g= (O ) )( 0 ,Y(g)_£>k<g>

with k(g) € K = G N SO(2n, R), we set iy = h® and note that

(4.31) e ()11 + 1y (R)I1* = 11x(Ro)I 1 + Ly (o)1
Since Y(ggo) = Y(g)* Y(k(g)g0) 'Y (g)* and x(hhf ) = x(h)+x(h})Y(g)~*, the right
side of (4.29) is equal to
1+x(h)Y(2): Y(k(2)g0) 'Y (g)~2 'x(h)
+2x (W)Y (2)? Y (k()g0) "X (hp) +x ()Y (k(2)go) "X (B,

We have that ||gg — I|| < € implies Y (k(g)go) = I + O(€) as in (4.14), so if (4.31) is
at most € as well, with € sufficiently small, then (4.32) is

(4.32)

(4.33) = 1+x(W)Y(g) x(h),
where we have used
20x(h)Y(8)* Y (k(g)g0) x ()|
< \Jx () Y (k(g)g0)? x(Hy)Ge(h)Y (8) (1) + 1) < €(e(I)Y(g) x(h) + 1)

to bound the third term in (4.32). The bound D(I'(%, g)(ho, go0)) > D(I'(h, g) now
follows. ]

4.2 Proof of Theorem 1.2. We recall the following lemma from [11].

Lemma 4.5. There exists a smooth, compactly supported function

f1 ‘R — RZO
such that
(4.35) 1) = (i@x +Ai(21 - X)),
Jj=0

where y is the indicator function of the open unit interval (0, 1).
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Now, following the method of [11], we define for a subset S C {1,...,n} and
JF=01,...,Jn) € Z" with j; > 0,

(4.36) 8.5 = (Ajfs AJ.—(I)ES> <G
where Eys is diagonal with (i, i) entry —1 ifi € S, +1 if i & §, and
o /I
4.37) Aj=1 .o
0O ... 2D
We also set hg = (x5, 0,0) € H where x5 has ithentry —1 if i € Sand O if i & S.

As in [11], we have

(4.38) 3@ =Y Y fu((xB™ +x5)AEs),

J=0 Sc{l1,....n}

where y g is the indicator function of the rectangular box B = (0, by) x - - - x (0, b,,),

B is the diagonal matrix with entries by, ..., b,
(4.39) e, x) = [ AG,
1<j<n

and the sums are overj € Z" with nonnegative entries.
Let w : [0, co) — [1, c0) be an increasing function. Then for C > 0 we define
Gj(w, C) to be the set of I'(h, g) € T'\(H x G) such that

9 -1 0 :
(4.40) D (T(h,g) <1, <e0 esl>> (hs, gj,s)> < Cy(s)

forall Sc {1,...,n}ands > 1.

Lemma 4.6. Suppose that y satisfies

(4.41) /0 w(x)~¥*dx < C,

for some C,, > 1. Then
4.42) A(T\(H x G) — Si(y, O) < ch—(2n+4)2j1+...+jn‘

Proof. Suppose that T'(h, g) ¢ Gi(w, C), so there exists S C {I,...,n}
and s > 1 such that

1

- =7 0 ¢
(4.43) D(r(h,g> <1,<eo esl))(hs,g,-,o) > Cy(s).
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We let k be a nonnegative integer such that

k k+1
(4.44) <s<Th
Kj Kj

where K; = K2/'*% with K a constant to be determined. We have

I 0 510
(4.45) (1, <e0 ev)) (hs, g.s) = (1, (e . 1)) (hs, g.5)(h1, 81,
e’

k

: /
where, with s’ = s — K

. el 0
(4.46) hy =((e" — 1)xSAjESa 0,0, g = < 0 es’]) :

As |s'| < Kj_l, we can make K sufficiently large so that (h;, g;) satisfies the
conditions of Lemma 4.4. From this and the fact that y is increasing, we have that

_ 510 i k
(4.47) D (F(h,g) (1, (e ! )) (hs. g,-,s)) > cw( K).
0 elT Jj

By Lemma 4.2 and the fact that right multiplication is volume preserving, we have
that the set of T'(h, g) satisfying (4.47) has ji-volume bounded by a constant times

(4.48) =ty ( 1]; )_2"_4.

Bounding the volume of the set I'\(H x G) — Gj(w, C) by summing (4.48) over
S c {1,...,n}and nonnegative k € Z, we obtain the bound

k \ —(2n+4) 0 X\ —(Q2n+4)
44 —(2n+4) —(2n+4) 0 / d}C
449 C ;l//(&) «C w(0) + ; g//(KJ)
as w(x) is increasing. The bound (4.42) follows by changing variables. ]
We now proceed to the proof of Theorem 1.2.
Proof of Theorem 1.2. From (4.38) we express 85(M, X, x,y) as

(4.50) Z Z an( ! (m +x+MxSB)B_1E5Aj)e(lmX’m+m’y).
Sc{l,....n} j>0 meZ" M 2

We break the sum in (4.50) into terms j such that 21"'19;1 < M for all i and terms j
such that 2jibjj1 > M for some i. Using (2.8), we write the first part as

1 n 4 .
@51 e xX'x)MiWetB): Y 27200 (h, g(MB, X))(hs, 85));
j>0
21'1'1%‘5M
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where i = (x,y — xX, 0) and

(I X\ (,B" O
(4.52) g(MB,X)_<O 1)( 0 MB).

Bounding this is the main work of the proof, but we first bound the contribution of
the termsj with a large index.

Suppose that L C {1,...,n} is not empty and that 2/ > bjyM for all [ € L.
Then the compact support of f; implies that the sum over m®, the vector of entries
of m with index in L, has a bounded number of terms. We write

(4.53) mX'm =mPxXED D 4 2D XEL) 1) 4 g B X EED 1y (LD

where L' is the complement of L, and X*1-L2) is the matrix of entries of X with row
and column indices in L; and L, respectively. We have (4.39) that f,,( Al/l(m +x +
MxsB)B~'EgA;) factors as

1
f#L( (m(L) +x® 4 ngL))(B(L,L))—l EgL,L) A;L,L))
(4.54) |
X far (M(m(L/) x4 Mx(SL ))(B(L/)L/))_IEL(S‘L ,L)A;L L )) ’

and so, by inclusion-exclusion and the boundedness of fy; , the termj of (4.50) with
Ji > b;M for some i is at most a constant times

(4.55) O (M, XL"L/’x(L')’ 15) +m(L)X(L,L/)) ’
B y
Lc{l,...,n} SCL m®
L

where the sum over m® has a bounded number of terms, BL) is the edge
of B associated to L', and we have used the decomposition (4.38) to express
Opar(M, XU x| y ) 4 @ xELL)) a5

1 L r L L L)N—1 (L',L') A (L',L
>3 :f#u< m™) +x ")+ Mx{YBE) T ES DAL >)
(456) s'cl jp mpy
l ’ oy ’ nit ’ ’
X e(zm(L IXELD) 1y () 4 g L) (y(L) +m(L)X(L’L))).

When L = {1,...,n}, the corresponding part of (4.55) is clearly bounded.
For any other L, we may apply Theorem 1.1 (emphasizing the importance of
the uniformity in y) to conclude for any € > O, there are full measure sets
X—#0) = X—#L)(¢) such that if XL € X*#*L) | the corresponding part of (4.55)
is <« M"7"* for any € > 0. It follows that (4.55) is <« M2 assuming that X is such
that XL e X—*D) for all nonempty L C {1, ..., n}.
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We now return to (4.51). We let X;(y, C) be the set of (X, y) with all entries in
the interval (— ; s é] such that there existu € (— ; s é)", A € GL(n,R)and T € R

sym

satisfying

(4.57) sup [|(BA)™' = DAjl| < e,
BEK[

[IT]] <€, and

- I X\ (A O I 0
(4.58) F<(u,y—uX, 0, <O I) (O ’A“) <T I) )(hs, gj.s) € Gi(y, O).

Here we let € > 0 be a sufficiently small constant, §;j(y, C) is defined in (4.40),
and X; C RZ is the compact subset from the statement of Theorem 1.2 identified
with the compact subset of positive diagonal matrices B in the obvious way. We
then set X(y) to be the set of (X, y) € RZX" x R” such that

sym

(X+R,yR+sgr+s) € U ﬂ Xi(y, C22U+4in))
C>0j>0

(4.59) N ﬂ (X1, y1) € R x R" :XiL/,L’) c x(n—#L)}

for some (R,s) € Z"" x 7", where sp € R”" has entries O or ; depending on
whether the corresponding diagonal entry of R is even or odd, and a > 0O is a
constant to be determined.

We first verify that X(y) has full measure, noting that it is enough to show that

(4.60) U ﬂ Xi(y, a1+

C>04>0

has full measure in the subset Xy of Riy x R” having all entries in the interval
(— é , é]. Let us suppose that the Lebesgue measure of the complement of X;(y, C)
in X is greater than some ¢ > 0, which we assume is small. Now, with respect to the
measure (detA)~>*~! [[, ;da;; on GL(n, R), the volume of the set of A € GL(n, R)
satisfying (4.57) is within a constant multiple (depending on X) of 277U+ i),

Then, using the expression (2.13), (2.14) for the Haar measure on H x G, we have
4.61) A(T\(H x G) — Gi(y, C)) >> 627"+,
with implied constant depending on K. From Lemma 4.6 it follows that

(4.62) meas(Xo — Xj(y, C)) & C, C~2n=420DGi+in)
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and we find that

meas (xo _ U ﬂ xj( v, C2a(/1+~~~+jn))>
(4.63) 20720
: —2n—4 (n+1)—a@n+4))(j1+--+jn) _
< lim C,C ; 2 i) = ()
J=

n+1
2n+4 "

Now let us suppose that (X,y) € X(w). By Theorem 3.1, the size of the theta

as long as a >

functions in (4.51) is invariant under the transformation on the left of (4.59), so
we may assume that X € Xy as well. In particular, we have that (X,y) is in
Xj(y, C24Ur+4m) for some C > 0 (independent of ) and allj > 0. We have from
Corollary 4.1 and the definition of the height function D that

(4.64) <M YN 2ma U D(E(h, g(MB, X)) (hs, gj.5)
Sc{l,..,n} j>0
211-1,;151\/1

bounds (4.51). Now for allj > O thereisa I'(%, g) € Gi(y, C24U1++4in)) with g of
the form

1 x\[(a o\/(I o
(4.65) g=<0 1) (0 ’A‘1> (T 1)

satisfying (4.57) and ||T|| < ¢, and A’ having the form (u,y — uX, 0) for some
uec (—;, é)”. ‘We have

. '1 0

(4.66) (H,9) (1, | M (hs, gj.s) = (h, g(MB, X))(hs, gj,s)(h1, &1,
0 MI
where
1
(4.67) hn = (—xsAEs +x5(BA) " AjEs + 4y = )B4 0, 0)
and
BA 0 I 0

4.68 =gis i 5
(4.68) §1=8)s (0 f(BA)—1> <A;2T 1) &S

Recalling that 2/i < M, the conditions (4.57) and ||T|| < € imply that (h;, g)
satisfies the conditions of Lemma 4.4 for all M, which then implies

. | . L7 0 :
D(I'(h, g(MB, X)(hs, gj,5))* < D (F(h’, 2) <1, (1‘6 MI)) (hs, gj,s)>

(4.69)
< Cza(il +4fn) l//(lOg M)
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since (i, g) € Gj(y, C29Ur*¥n). Taking a = 3"+ so that J*!, < a <}, it follows
that (4.64) is bounded by

(4.70) < CM: y(logM) Y~ 27Gma00+40) « CM% y(log M),
Jj=0

and Theorem 1.2 follows. O

Data access statement. No new data were generated or analysed during
this study.
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