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Abstract. We answer in the affirmative a question of Sarnak’s from 2007,
confirming that the Patterson–Sullivan base eigenfunction is the unique square-
integrable eigenfunction of the hyperbolic Laplacian invariant under the group of
symmetries of the Apollonian packing. Thus the latter has a maximal spectral gap.
We prove further restrictions on the spectrum of the Laplacian on a wide class of
manifolds coming from Kleinian sphere packings.

1 Introduction

In 2007, Sarnak [Sar07] asked whether the Patterson–Sullivan base eigenvalue
(see §2 for definitions and background) exhausts the discrete spectrum of the
hyperbolic Laplacian of the Apollonian 3-fold, so that this manifold has maximal
“spectral gap”; he suggested that this may indeed be the case. The purpose of this
paper is to answer this question in the affirmative:

Theorem 1 (Spectral Gap for the Apollonian Group). Let � < Isom(H3)
be the symmetry group of an Apollonian circle packing. Then the base eigen-

value λ0 ≈ 0.9065 . . . is the only discrete eigenvalue of the Laplacian acting
on L2(�\H3).

This result implies an improved counting estimate on the number of circles
in an Apollonian packing with curvature bounded by a growing parameter (see
[KL22, Theorem 1]).
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Corollary 1.1. For a fixed bounded Apollonian circle packing, P, the number

N(T) of circles in P with curvature bounded by T has the following asymptotic
form:

N(T) = cP Tδ + O(Tη(logT)2/5),

as T → ∞. Here δ ≈ 1.30 . . . is the Hausdorff dimension of the residual set of P,

the error exponent is

η =
3
5
δ +

2
5

≈ 1.18 . . . ,

and cP > 0 is a constant depending on P.

In general, to each transitive Kleinian packing (see §2 for definitions), one can
associate a lattice (the supergroup). Theorem 1 is a consequence of the following
more general theorem.

Theorem 2. Let P be a transitive Kleinian sphere packing with symmetry

group � < Isom(Hn+1) and associated supergroup �̃. Let k (resp., k̃) denote
the number of discrete eigenvalues of the Laplacian acting on L2(�\Hn+1) (resp.,

L2(�̃\Hn+1)) below n − 1; then k ≤ k̃.

Theorem 1 then follows from combining two facts: (a) that for circle packings
(that is, when n = 2), n − 1 = (n/2)2 = 1, and (b) that in the Apollonian case, �̃

is a double cover of PSL(Z[i]); the latter satisfies Selberg’s eigenvalue conjecture.
The same argument applies to several other packings appearing in the literature to
prove maximal spectral gaps.

To illustrate the methodology, we give an alternate proof of the theorem of
Phillips–Sarnak [PS85] that infinite volume Hecke “triangle” groups similarly
have only the base eigenvalue in their discrete Laplace spectrum.

Theorem 3 ([PS85, Theorem 6.1]). For μ > 2, let

�μ := 〈( 1 μ
0 1

)
,
(

0 −1
1 0

)〉 < Isom(H2)

be an infinite co-volume Hecke triangle group. Then the base eigenvalue λ0(μ) is
the unique discrete eigenvalue of the Laplacian acting on L2(�μ\H2).

One of the key ideas is to replace Dirichlet boundary conditions and nodal
domains with Neumann boundary conditions and carefully chosen reflective walls,
and to appeal to the fact that the Hecke triangle group with μ = 2 (which is a con-
gruence subgroup of the modular group) is known to satisfy Selberg’s eigenvalue
conjecture. After some preliminaries in §2, we give the proofs of these theorems
in §3.
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2 Preliminaries

Figure 1. An Apollonian circle packing. (Image by Iván Rasskin.)

2.1 Kleinian packings. The classical Apollonian circle packing is shown
in Figure 2.1. More generally, by a sphere packing P of the n-sphere, Sn, we mean
an infinite collection of round balls B in Sn with pairwise disjoint interiors, such
that their closure is all of Sn. We treat Sn as the ideal boundary of the ball model
for hyperbolic spaceHn+1. A ball B in Sn is the boundary at infinity of a half-space
bounded by a hyperplane H in Hn+1; we denote by RB ∈ Isom(Hn+1) the isometry
of Hn+1 corresponding to reflection through H. Given any packing P, we define
the reflection group

�P < Isom(Hn+1)

of P, to be the group (infinitely) generated by the reflections RB, for all balls B

in P.
We are interested in those packingsP which admit a large group of symmetries.

In particular, a packing is defined (in [KK21]) to be Kleinian if the residual set
of P agrees with the limit set of some such discrete, geometrically finite group �;
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the latter is called a symmetry group of P. When � is generated by reflections
in finitely-many hyperplanes, we say that P is crystallographic; the study of
this latter subclass was initiated in [KN19]. In either setting, there is a Structure
Theorem describing how such arise. Given a Kleinian packing P with symmetry
group �, we let �̃ denote the so-called supergroup of P, which is the group
generated by both the symmetry group � and the reflection group �P of P.

Theorem 4 (Structure Theorem [KN19, KK21]). Suppose that we are given
a lattice �̃ < Isom(Hn+1) containing at least one reflection, with a convex funda-

mental polyhedron D for the action of �̃, and a minimal set S̃ of generators for �̃

whose elements correspond to face-pairing transformations of D. Let T ⊂ S̃ be a
nonempty subset consisting of some reflections in hyperplanes Hα, with α running

over some indexing set A. The ideal boundary of each Hα is a ball Bα; we assume
the interiors of these balls are pairwise disjoint, and that the hyperplanes Hα meet

the other bounding walls of D either tangentially or orthogonally or not at all. Let
S := S̃ \ T be the generators of �̃ which are not in T, and let �S := 〈S〉. Then the

orbit of the balls Bα, α ∈ A, under the group �S, is a Kleinian packing. (Conversely,
every Kleinian packing arises via this construction.)

W0

W1

W4

W2

W3

Figure 2. The Structure Theorem as applied to the Apollonian packing.

To see how this theorem applies in practice, recall the following construction
of the Apollonian packing (which will be relevant to our main theorem). The lines
and circles {Wα, α = 0, . . . , 4} illustrated in Figure 2 show the boundaries in the
plane (identified with S2 by stereographic projection and compactification with a
point at infinity) of hyperplanes Hα; let S̃ denote the set of reflections RHα

in these
hyperplanes. The group �̃ := 〈S̃〉 generated by these reflections is well-known
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to be a reflective double cover of the Picard group PSL2(Z[i]), in the same way
that the (2, 3,∞) Hecke triangle group is a reflective double cover of the modular
group PSL2(Z). Following the recipe in the Structure Theorem, we set T to be the
singleton consisting of inversion in H0; the boundary of H0, namely, W0, is shown
in blue in Figure 2. The set S := S̃ \T of inversions through the other Wα generates
the well-known “Apollonian group” �S := 〈S〉, and the orbit of W0 under �S is the
classical Apollonian packing.

A packing is called transitive if its symmetry group takes any sphere to any
other (or equivalently, the subset T ⊂ S̃ is a singleton). The above construction
shows that the Apollonian packing is transitive.

2.2 SpectralTheory. Let n≥1 and letHn+1 ={(x1, . . . , xn, y) :xj∈R, y>0}
denote the upper half-space model of hyperbolic (n+1)-spacewith volume element
dV = dxdy

yn+1 . Further, let � denote the (positive-semidefinite) hyperbolic Laplace–
Beltrami operator, which in these coordinates is given by

� = −y2
( ∂2

∂y2 +
∂2

∂x2
1

+ · · · +
∂2

∂x2
n

)
+ (n − 1)y

∂

∂y
.

Let� be a discrete, geometrically finite group of isometries ofHn+1, let 	� ⊆ ∂Hn+1

denote the limit set of �, that is, the set of limit points in the ideal boundary of a
�-orbit, and let δ = δ� be the Hausdorff dimension of 	�. We are interested in
the spectrum of the Laplacian acting on the space L2(�\Hn+1) of square-integrable
�-invariant functions.

When � is a non-lattice, that is, it acts on Hn+1 with infinite co-volume, the
work of Lax–Phillips [LP82] shows that there are at most finitely many discrete
eigenvalues of � below (n/2)2, and that the spectrum above (n/2)2 is purely
continuous. The bottom discrete eigenvalue is given by the Patterson-Sullivan
formula [Pat76, Sul84]:

λ0 = δ(n − δ),

and only exists if δ > n/2; otherwise, the discrete spectrum is empty. In general,
if we are given a domain D ⊂ Hn+1 so that the Laplace spectrum (possibly with
some specified boundary conditions) below (n/2)2 is empty, we say that D is
eigenvalue-free. For example, a result of Phillips–Sarnak [PS85, Theorem 3.7]
states that if D is the region bounded by exactly m geodesic hyperplanes, and

(2.1) m ≤ 
(n + 4)/2�,
then D is eigenvalue-free for the Laplacian with Neumann boundary, that is, having
vanishing normal derivatives across the boundary of D. (Here the floor function
returns the integer part of its argument.)
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When δ� > n/2, so that the base eigenvalue λ0 exists, let λ1 denote either
the next smallest eigenvalue above the base, or (n/2)2 if none such exist; we call
the difference λ1 − λ0 the spectral gap for �. When λ1 = (n/2)2, we say the
spectral gap is maximal. As a point of reference, note that the Selberg Eigenvalue
Conjecture states, in the context of � being a (finite-volume) congruence subgroup
of the modular group (for which n = 1, δ� = 1, and λ0 = 0, corresponding to the
constant function), that the spectral gap is maximal, that is, it is equal to 1/4. This
maximal gap is known to hold for many congruence groups [Hux96, BSV06] inH2,
and also for a number of Biachni groups acting on H3. By the latter, we mean
groups PSL2(Od), where, for d > 0, Od is the ring of integers of the imaginary
quadratic field Q(

√−d). For example, in [EGM98, Prop. 6.2, p. 407] it is shown
that

(2.2) λ1(PSL2(Od)) ≥ 1,

for d = 1, 2, 3, and 7; that is, these groups all have a maximal gap.

2.3 Calculus of variations. Our last preliminaries involve recording some
well-known results from the calculus of variations applied to eigenvalue
problems in the setting of domains in hyperbolic space with its Laplacian. Let D
be an open connected subdomain of Hn+1 with “nice” boundary, and let
W1(D) := {f ∈ L2(D) : ∇f ∈ L2(D)}. Suppose that a hyperplane H splits a do-
main D into two pieces

D = D1 � D2 � (H ∩ D),

with Dj both open, connected, and nonempty. Let λi(D), i = 0, 1, . . . , k, denote the
eigenvalues of the hyperbolic Laplacian on D with some specified (say, Neumann
or Dirichlet) conditions on the boundary. Similarly, let λi(Dj), i = 0, 1, . . . , kj,
denote the eigenvalues on Dj, j = 1, 2 with Neumann boundary conditions along
the common boundary of Dj with H. Then a simple application of the min-max
principle yields the following inequality (see, e.g., [CH53, p. 409, Theorem 4]):

Theorem 5. For any κ > 0,

#{i ≤ k : λi(D) < κ} ≤ #{i ≤ k1 : λi(D1) < κ} + #{i ≤ k2 : λi(D2) < κ}.(2.3)

That is, the number of eigenvalues on D below a parameter κ is at most the
sum of the number of eigenvalues below κ on the two regions remaining after a
Neumann cut. Note further that the Neumann condition arises naturally in the
context of reflections in hyperplanes: an eigenfunction invariant under such a
reflection must have vanishing normal derivative across the hyperplane.
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3 Proofs of Theorems 2 and 3

3.1 Heckegroups. The original approachof Phillips–Sarnak to Theorem3
is to study the topology of a hypothetical eigenfunction’s nodal domain, along the
boundary of which the eigenfunction of course satisfies the Dirichlet condition
(that is, vanishes); see [PS85, Fig. 6.3]. This approach seems to become rather
cumbersome in the Apollonian setting, as the nodal domain can interact with
a fundamental domain for the group action in rather complicated ways. But
Theorem 5, together with some carefully chosen additional reflective hyperplanes,
solves both problems with ease.

Proof of Theorem 3. Fix μ > 2 and let �μ be a Hecke triangle group as
in the statement of the theorem. Consider the group � < Isom(H2) generated by
reflection across the y-axis, the unit circle, and the line x = μ/2. Then �μ is the
orientation-preserving (index-two) subgroup of �; in particular, if the latter has no
eigenvalues besides the Patterson–Sullivan, the same holds for the former. Let D

denote the domain bounded by these three reflections generating �. We cut D with
the hyperline x = 1, splitting it into two domains: D1 bounded by the y-axis, unit
circle, and line x = 1, and D2 bounded only by x = 1 and x = μ/2; see Figure 3.

μ

D2

x = 1

D1

Figure 3. The regions D1 and D2 in the proof of Theorem 3.

We apply Theorem 5 with κ = 1/4. The region D1 with Neumann boundary
is the fundamental domain of a congruence lattice, namely, it contains the level-2
principal congruence subgroup of the modular group. As above (2.2), this is well-
known to satisfy Selberg’s Eigenvalue Conjecture, so the number of eigenvalues
below 1/4 is exactly one, corresponding to the constant function. On the other
hand, D2 is bounded by exactly two hyperplanes; by (2.1), D2 is eigenvalue-free.
Therefore Theorem 5 tells us that D itself has at most one eigenvalue below 1/4,
which we know to be the Patterson-Sullivan base eigenvalue. �
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3.2 Proof of Theorem2. We follow a similar strategy for sphere packings.
Let P be a transitive Kleinian sphere packing with symmetry group �. Recall from
the Structure Theorem 4 that � is obtained from its supergroup �̃ by removing
from a minimal set of generators the reflection through a single hyperplane H0 (see
Figure 2 for the Apollonian example). Moreover, we have a fundamental domain F̃

for �̃ so that H0 only intersects the other walls of F̃ at right angles.

W0

W1

W2

W3

W4

W5

F̃

W0

W1

W2

W4

D

Figure 4. The regions F̃ and D in the proof of Theorem 2.

Let F denote the corresponding fundamental domain for �, so that H0 splits F
into the fundamental domain F̃ for �̃, and a region D, say; see Figure 4 for an
example. Thus using Theorem 5 with κ = n − 1, we can upper-bound the number
of eigenvalues of � below n − 1 by

#{i : λi(F) < n − 1} ≤ #{i : λi(F̃) < n − 1} + #{i : λi(D) < n − 1}.(3.1)

Thus it remains to show that #{i : λi(D) < n − 1} = 0.
For this, notice that, by construction, D is a fundamental domain for the action

of the stabilizer, �0, say, of H0 in �. But by the Structure Theorem, �0 preservesH0

and acts on it as a discrete lattice; hence the limit set of �0 must be equal to the
ideal boundary, W0, of H0. Therefore the Hausdorff dimension δ�0 of this limit set
is equal to the dimension of W0, which is n − 1. Applying the Patterson–Sullivan
formula shows that D has no eigenvalues below δ�0 (n−δ�0 ) = n−1, as claimed. �
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