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Abstract. It is known that up to certain pathologies, a compact metric graph
with standard vertex conditions has a Baire-generic set of choices of edge lengths
such that all Laplacian eigenvalues are simple and have eigenfunctions that do not
vanish at the vertices, [16, 12]. We provide a new notion of strong genericity, using
subanalytic sets, that implies both Baire genericity and full Lebesgue measure. We
show that the previous genericity results for metric graphs are strongly generic.
In addition, we show that generically the derivative of an eigenfunction does not
vanish at the vertices either. In fact, we show that generically an eigenfunction fails
to satisfy any additional vertex condition. Finally, we show that any two different
metric graphs with the same edge lengths do not share any non-zero eigenvalue,
for a generic choice of lengths, except for a few explicit cases where the graphs
have a common edge-reflection symmetry. The paper concludes by addressing
three open conjectures for metric graphs that can benefit from the tools introduced
in this paper.

1 Introduction

A metric graph (�, �) is a finite graph � of N edges and a positive vector
� = (�1, . . . , �N), assigning a positive length �j to every edge ej. Each edge ej

is identified with the interval [0, �j]. That is, we fix an (arbitrary) orientation
on ej and then parameterize ej by arc-length parameter xj ∈ [0, �j]. In this way,
(�, �) is a one-dimensional Riemannian manifold with singularities equipped with
a uniform metric dxj on each edge ej. Given a function f : (�, �) → C we consider
its restriction to each edge ej as a function on the interval, f |ej : [0, �j] → C. The
(one-dimensional) Laplacian � acts edgewise,

(�f )|ej(xj) := − d2

d2
xj

f
∣∣∣
ej

(xj).

We require the functions to satisfy standardmatching conditions on the vertices (see
Definition 2.1), in which case the Laplacian has a discrete non-negative spectrum
and each eigenspace is spanned by real eigenfunctions. We refer to the eigenvalues
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730 L. ALON

and eigenfunctions of the Laplacian as the eigenvalues and eigenfunctions of (�, �).
Consider

spec(�, �) := {k ∈ R≥0 : k2 is an eigenvalue of (�, �)},
which we treat as a multiset where each eigenvalue is repeated according to its
multiplicity. In this paper we analyze the eigenvalues and eigenfunctions of (�, �),
while � is fixed and � varies along RN

+ , and point out some properties that hold
generically in �.

Generic spectral properties formetric graphswerefirst studied by Friedlander in
2005 [16]. Motivated by the Sturm–Liouville theory on intervals and the genericity
works of Albert [2] and Uhlenbeck [31] on compactmanifolds, Friedlander showed
that with one exception,1 for any graph � of N edges and a generic � ∈ RN

+ , all
eigenvalues of (�, �) are simple. The next result was due to Berkolaiko and Liu [12]
in 2017. Their motivation was a series of works on zeros of eigenfunctions, where
the repeated assumption is that the eigenvalue is simple and the eigenfunction does
not vanish at any vertex; see [20, 9] and the references therein. Berkolaiko and
Liu [12] showed that for any graph � that has no loops,2 and for a generic �, any
eigenfunction of (�, �) would not vanish at any vertex. Let us remark that the
result of [12] also treats graphs with loops and other vertex conditions. In both
[16] and [12], the term “generic �” means that � belongs to a set G ⊂ RN

+ that is
Baire generic; namely, G contains a countable intersection of open dense sets. A
Baire-generic set is generic in a topological sense but may be very small in terms
of measure theory. In fact, a Baire-generic set can have a zero Lebesgue measure.3

If, for example, we choose � ∈ (0,T)N uniformly at random for some T � 1, one
may ask:

Does (�, �) satisfy these generic properties with high probability?

We would like to say that the “good” set G is both Baire generic and has full
Lebesgue measure, in which case the above question can be answered in the af-
firmative. To this end, we define a new notion of strong genericity, which
classifies G in terms of subanalytic sets (see [17, 14] or Definition 2.2). Heuris-
tically, a subanalytic set is a set that locally can be defined as a projection of a level
set (or sub-level set) of a real analytic function.

1The exceptional graphs are polygons, i.e., the circle S1 with finitely many degree-two vertices,
which are removable singularities.

2If we neglect degree-two vertices (which are removable singularities), then a loop is an edge
connecting a vertex to itself.

3For example, number the rational points in RN
+ and let Bj,ε be the open ball of volume ε2−j centered

at the j-th rational point. The set Oε =
⋃

j∈N Bj,ε is open dense and has Lebesgue measure at most ε.
Then G =

⋂
n∈N O 1

n
is Baire generic and has measure zero. By contrast, its complement Gc is a full

measure set which is not Baire generic.
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Definition 1.1 (Strong genericity). We say that G ⊂ RN
+ is strongly generic

if its complement in RN
+ is a countable union of closed subanalytic sets of positive

codimension.

We will show later that a strongly generic G is both Baire generic and has full
Lebesgue measure. We believe that strong genericity should appear in various
eigenvalue problems for operators that depend analytically on finitely many pa-
rameters. For example, generic sets of similar nature appear in genericity results
for Laplacian eigenvalues of planar polygons and hyperbolic triangles [22, 23].

Another type of genericity result is of an ergodic nature. We say that � is
Q-independent if � · q �= 0 for every non-zero rational vector q ∈ QN \ {0}.
The behavior of the spectrum of (�, �) when � is Q-independent is believed to be
“almost chaotic” [25, 8].

Definition 1.2 (Ergodic genericity). Suppose P is some property and that any
(k2, f ) eigenpair of (�, �) either satisfies P or not. Define the set spec(�, �,P)
of square root eigenvalues k ∈ spec(�, �) with a corresponding eigenfunction f

such that (k2, f ) satisfies P. We say that P is ergodically generic, if, for any
Q-independent �,

lim
T→∞

| spec(�, �,P) ∩ [0,T]|
| spec(�, �) ∩ [0,T]| = 1.

Namely, for any Q-independent �, almost every eigenpair of (�, �) satisfies P.

The Baire generic results of [16, 12] were shown to be ergodically generic
(without using this term) in [4]. As the term “ergodic” suggests, there is an ergodic
system in the background. Let TN be the subset of z ∈ CN with |zj| = 1 for all j.
The secular manifold of a graph � with N edges is a hypersurface �(�) ⊂ TN

such that for any � ∈ RN
+ and k ≥ 0,

exp(ik�) := (eik�1, eik�2, . . . , eik�N ) ∈ �(�) ⇐⇒ k ∈ spec(�, �).

If � is Q-independent, the sequence of exp(ik�) for k ∈ spec(�, �) equidistributes
with respect to a certain measure on �(�) [8, 13, 15]. In this ergodic case, certain
averages over spec(�, �) can replaced by integration over �(�) [4, 8, 18, 19].

In this paper we extend the previous genericity results for metric graphs. Con-
sider the properties discussed so far:
(1) the eigenvalue k2 is simple,
(2) the eigenfunction f does not vanish at any vertex,

and the following additional property,
(3) the derivative of f does not vanish at vertices of degree larger than two.4

4On vertices of degree one the derivative vanishes due to the vertex condition. We will assume there
are no vertices of degree two, as these are removable singularities.
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InTheorem3.2,we show that properties (1), (2), and (3) are strongly and ergodically
generic, if we assume that the graph has no loops. The case of graphs with loops
is treated later by excluding eigenfunctions that are supported on a single loop.

At this point, we may observe that properties (2) and (3) can be interpreted
as additional (scaling-independent) vertex conditions. Intuitively, adding another
vertex condition should make the system over-determined and so we do not expect
to see, generically, eigenfunctions that satisfy the additional condition. However,
certain conditions, such as f (v) = f (u) for different vertices, may appear infinitely
often in the presence of �-independent reflection symmetries. Excluding such sym-
metries leads to a dichotomy, as Theorem 3.5 suggests. Every scaling-independent
condition is either satisfied for all eigenfunctions of all simple eigenvalues for
every �, or it is (both strongly and ergodically) generically never satisfied. This
dichotomy extends to polynomial scaling-invariant vertex conditions.

Next, we go back to a well known theorem on the spectrum of metric graphs,
whereby (�, �) can be constructed from the spectrum, as long as � isQ-independent
[21, 27]. In particular, two different metric graphs have different spectra
spec(�, �) �= spec(�′, �′) under the assumption that � and �′ are Q-independent.
However, a priori spec(�, �) and spec(�′, �′) may only disagree for a small set of
eigenvalues. In Theorem 3.3, we compare the spectra of distinct graphs � and �′

with equal edge lengths � = �′. We show that except for some pathological cases,
for any two distinct graphs of N edges, there is a strongly generic set of �’s forwhich

spec(�, �) ∩ spec(�′, �) = {0}.
Moreover, for any Q-independent �,

lim
T→∞

| spec(�, �) ∩ spec(�′, �) ∩ [0,T]
| spec(�, �) ∩ [0,T]| = 1.

The general strategy in the genericity proofs of all the theorems mentioned
above is similar. Consider the torus subset

�(�) := {exp(ik�) ∈ TN : k ∈ spec(�, �)}, exp(ik�) := (eik�1, eik�2, . . . , eik�N ).

Amain fact being used (seeLemma6.1), is thatwheneverB ⊂ �(�) is a subvariety5

of �(�) with positive codimension, then it is strongly and ergodically generic to
have exp(ik�) /∈ B. Hence, to prove that a certain property P is generic, we first
need to construct a “bad” subvariety B that captures the negation of P. We then
need to show that B has a positive codimension in �(�). Let us elaborate on these
two steps.

5By “subvariety of �(�)” we mean the intersection of �(�) ⊂ C
N with a common zero set of

finitely many polynomials in CN .
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First step: Constructing a subvariety B for a given property P. For the multi-
plicity of eigenvalues, B will be the singular set of �(�). To capture properties of
eigenfunctions we introduce the trace space. To every eigenpair (f, k2) of (�, �) we
associate a vector trk(f ) ∈ C4N , called the scale-invariant trace, which consists
of a 4-tuple (Aj,Bj,Cj,Dj) for every edge j. These are the amplitudes for which
the restriction of f to ej is

f |ej (tj) = Aj cos(ktj) + Bj sin(ktj) = Cj cos(k(�j − tj)) + Dj sin(k(�j − tj)).

The collection of A’s and C’s is often called the Dirichlet trace and the Neumann
trace is the collection of B’s and D’s, scaled by k. The trace space is defined as

T(�) := {(exp(ik�), trk(f )) ∈ �(�) × C4N : (k2, f ) is an eigenpair of (�, �)}.

Denoting the points in T(�) by (z,x) = (exp(ik�), trk(f )), we show that the x
fiber above any regular point z ∈ �(�) is a one-dimensional complex vector
space (spanned by a real vector), and we analyze its z dependence. Properties of
eigenfunctions are then carried over to properties ofxfibers, which can be projected
down to z ∈ �(�). This general procedure associates a “bad” subvariety B to a
given property P.

Second step: Showing that B has a positive codimension. To this end, we use the
irreducible structure of �(�), which was conjectured by Colin de Verdière [15] and
recently proved by Kurasov and Sarnak [26, 29]. Neglecting some pathologies for
the moment, this result provides the needed dichotomy; any B subvariety of �(�)
is either equal to �(�) or it has a positive codimension in �(�).

The structure of the paper is as follows. Section 2 provides some necessary
preliminaries to Section 3, in which the main results are presented. In Section 4
we construct and analyze the secular manifold �(�) and the trace space T(�).
Section 5 deals with the irreducible structure of �(�) as shown by Kurasov and
Sarnak [26, 29]. In Section 6 we prove the main results. In Section 7 we suggest
future work. In particular, three open conjectures regarding metric graphs that may
benefit from the trace space and genericity concepts are introduced.

Acknowledgments. The author would like to thank Peter Sarnak, Mark
Goresky, Karen Uhlenbeck, Pavel Kurasov, and Ram Band for insightful dis-
cussions, important remarks and relevant references. The author was supported by
the Ambrose Monell Foundation and the Institute for Advanced Study.
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2 Preliminaries and notation

2.1 Metric graphs. Let (�, �) be a metric graph with N edges. It is
convenient to describe functions on (�, �) in terms of their restrictions to edges.
Using the arc-length parameter tj ∈ [0, �j] along each edge ej, we can write the
restrictions of a function f : (�, �) → C to edges as univariate functions, i.e.,

f |ej : [0, �j] → C, j = 1, 2, . . . ,N.

In this way, we can associate an L2 Hilbert space and an H2 = W2,2 Sobolev space
to each edge to get

L2(�, �) :=
N⊕
j=1

L2([0, �j]), and H2(�, �) :=
N⊕
j=1

H2([0, �j]).

It is a standard result that functions in H2([0, �j]) are C1 (i.e., have a continuous
derivative). Given f ∈ H2(�, �) we denote its derivative along each edge by f ′|ej . Its
second derivative f ′′|ej is defined as a weak derivative. The non-negative Laplacian
� : H2(�, �) → L2(�, �) acts edgewise by

(�f )|ej = −f ′′|ej , j = 1, 2, . . . ,N.

To get a self-adjoint operator we need to specify a choice of vertex conditions
(in analogy with boundary conditions). The Dirichlet and Neumann traces of f |ej

are defined by

γD(f |ej ) := (f |ej (0), f |ej(�j)) ∈ C2,

and

γN(f |ej ) := (f ′|ej (0),−f ′|ej (�j)) ∈ T0C × T�jC = C2.

The sign in the last derivative reflects that it is a normal (or incoming) derivative.
Given f ∈ H2(�, �), its Dirichlet trace γD(f ) ∈ C2N is the collection of the Dirichlet
traces γD(f |ej ) for all edges. The Neumann trace γN(f ) ∈ C2N is defined in the
same manner. Given f, g ∈ H2(�, �) we calculate, using integration by parts,

〈�f, g〉L2(�,�) − 〈f,�g〉L2(�,�) = 〈γN(f ), γD(g)〉C2N − 〈γD(f ), γN(g)〉C2N .

Hence, � is self-adjoint when restricted to a dense domain in H2(�, �) on which
the above right-hand side vanishes. To this end, we impose vertex conditions;
a restriction of the traces (γD(f ), γN(f )) to a 2N-dimensional subspace of C4N on
which the sesquilinear form on the right-hand side vanishes.6 We only consider
the standard vertex conditions (also known as Neumann or Kirchhoff).

6If we restrict to R
4N instead of CN , then this bi-linear form is the standard symplectic form on R

4N

and a 2N-dimensional subspace on which it vanishes is called Lagrangian; see [11].



GENERIC LAPLACIAN EIGENFUNCTIONS ON METRIC GRAPHS 735

Definition 2.1 (Standard Vertex Conditions). Let v be a vertex and let Ev,o be
the set of edges whose origin is v, such that tj = 0 at v. Let Ev,t be the edges that
terminate at v, such that tj = �j at v. The standard vertex conditions at v are

Continuity : ∀ej ∈ Ev,o,∀ei ∈ Ev,t, f |ej (0) = f |ei (�i) =: f (v),

and

Balanced derivatives :
∑

ej∈Ev,o

f ′|ej(0) +
∑

ei∈Ev,t

(−f ′|ei(�i)) = 0.

We define Dstandard(�, �) ⊂ H2(�, �) to be the subspace of functions that satisfy
the standard vertex conditions at every vertex.

The Laplacian, restricted toDstandard(�, �), is self-adjoint, non-negative, and has
a discrete7 spectrum with eigenvalues of finite multiplicity and real eigenfunctions;
see [10, 19] for a thorough review of the subject. Also, zero is a simple eigenvalue
whenever � is connected. From here on, we focus on the eigenvalue problem

�f = k2f, f ∈ Dstandard(�, �).

We refer to solutions (k2, f ) ∈ R≥0×Dstandard(�, �) as eigenpairs of (�, �), where k2

is an eigenvalue and f an eigenfunction (�, �). By a common abuse of terminology,
we refer to the set of non-negative square roots of eigenvalues as the spectrum,

spec(�, �) = {k ∈ R≥0 : k2 is an eigenvalue of (�, �)},

that should be understood as a multi-set where each k is repeated according to its
multiplicity. The multiplicity of k is the dimension of the associated eigenspace

Eig(�, �, k) := {f ∈ Dstandard(�, �) : �f = k2f }.
Aneigenvalue is called simplewhen dim(Eig(�, �, k))=1, andmultiplewhen>1.

If we scale a graph
(�, �) �→ (�, r�)

by some positive factor r > 0, the functions in Dstandard(�, �) are mapped to
Dstandard(�, r�) by f �→ r.f with (r.f )|ej(rtj) = f |ej (tj). The spectrum and the traces
are scaled as follows:

spec(�, r�) =
{k

r
: k ∈ spec(�, �)

}
,

(γD(r.f ), γN(r.f )) =
(
γD(f ),

1
r
γN(f )

)
.

7Here we assume that the graph is finite.
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Definition 2.2. Given an eigenpair (k2, f ) of (�, �), define its scale-invariant
trace by

trk(f ) :=
(
γD(f ),

1
k
γN

)
.

In the case k = 0, the only eigenfunctions are constant8 and we define 1
kγN = 0.

Unless stated otherwise, from now on, when referring to the trace of a function,
we will always consider the scale-invariant trace.

Remark 2.3. The definition of trk(f ) in the Introduction agrees with Defini-
tion 2.2, up to a reordering of the coordinates (change of basis). In the Introduction,
trk(f ) is defined as the collection of 4-tuples (Aj,Bj,Cj,Dj) per edge ej, such that
the restriction of f to ej is given by

f |ej (tj) = Aj cos(ktj) + Bj sin(ktj)

= Cj cos(k(�j − tj)) + Dj sin(k(�j − tj)).

Remark 2.4. The fact that the standard vertex conditions are decoupled into
equations on γD and on γN separately makes them scaling-invariant. This means
that (γD(f ), γN(f )) satisfies the vertex conditions if and only if trk(f ) does.

We may consider the trace as a map trk : Dstandard → C4N . This is a linear map
and its restriction to an eigenspace Eig(�, �, k) is injective with an explicit inverse,
as can be seen in Remark 2.3. A solution (�, k, f ) such that (k2, f ) is an eigenpair
of (�, �) can be parameterized by the vector (�, k, trk(f )). The space of solutions
associated to a graph �, ranging over all possible � ∈ RN

+ , may be parameterized
as

X(�) := {(�, k, trk(f )) ∈ RN
+ × R≥0 × C4N : k ∈ spec(�, �), f ∈ Eig(�, �, k)}.

The space of solutions X(�) has the following symmetry, denoting

exp(ik�) := (eik�1, . . . , eik�N ),

we have

exp(ik�) = exp(ik′�′) ⇒ trk(Eig(�, �, k)) = trk(Eig(�, �′, k′)),

which can be derived from the explicit expression of f in terms of trk(f ) in Re-
mark 2.3. We define the trace space of � as the quotient of X(�) by this symmetry.

8We assume that the graph is connected.
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Definition 2.5. Given a graph � of N edges, we define the trace space of �

by

T(�) := {(exp(ik�), trk(f )) ∈ TN × C4N : k ∈ spec(�, �), f ∈ Eig(�, �, k2)}.
The secular manifold (a manifold with singularities) is the projection of T(�)
onto the TN coordinates, i.e.,

�(�) := {exp(ik�) ∈ TN : k ∈ spec(�, �)}.
Remark 2.6. It is common to work with RN/2πZN instead of TN , in which

case the term “secular manifold” refers to {x ∈ RN/2πZN : exp(ix) ∈ �(�)}.

2.2 Semianalytic and subanalytic sets. Consider a property P and a
polynomial p : C5N → C such that an eigenpair (k2, f ) of (�, �) satisfies P if and
only if p(exp(ik�), trk(f )) �= 0. The “bad” set of �’s would be the set of � ∈ RN

+ such
that (�, �) has an eigenpair (k2, f ) for which p(exp(ik�), trk(f )) �= 0. We would like
to argue that such a set is “nice”, in the sense that it has integer valued Hausdorff
dimension, and that it has zero Lebesgue measure if and only if its complement
is Baire generic. A family of subsets of RN that answer these requirements is the
family of subanalytic sets [14]. To define subanalytic setswefirst need to define
semianalytic sets. We borrow the definitions from [17] and [14], but restrict to
subsets of Rn (and not of an arbitrary real analytic manifold) for simplicity. We
remark that the structure of subanalytic sets [14, 17] was later generalized to
what is known today as o-minimal theory [32]. To have an example in mind,
consider a polynomial p : CN → C, a compact interval I ⊂ R, and the two sets

X = {x ∈ RN : p(exp(ix)) = 0},(2.1)

and

Y = {� ∈ RN
+ : ∃k ∈ I, p(exp(ik�)) = 0}.(2.2)

Both X and Y are subanalytic sets. The set X is, in particular, semianalytic.

Definition 2.1 ([14] Semianalytic Set). A set X ⊂ Rn is called semianalytic
if any point x ∈ X has a neighborhood 	 such that X ∩ 	 is a finite union and
intersection of subsets

X ∩ 	 =
m⋃
j=1

l⋂
i=1

Xi,j,

with Xi,j = {x′ ∈ 	 : fi,j(x′) = 0} or Xi,j = {x′ ∈ 	 : fi,j(x′) < 0} for some fi,j real
analytic on 	.
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The set X in (2.1) is semianalytic, as it is the common zero set of the real and
imaginary parts of p(exp(ix)). A relatively compact set is a set whose closure is
compact.

Definition 2.2 ([14] Subanalytic Set). A set X ⊂ Rn is subanalytic if any
point x ∈ X has a compact neighborhood 	 and integer m ≥ 0 such that X ∩ 	 is
the projection from 	×Rm to 	 of a relatively compact semianalytic set in 	×Rm.

Notice that a semianalytic set is also subanalytic. To illustrate Definition 2.2,
we show that Y in (2.2) is subanalytic. Consider a point � ∈ Y ⊂ RN

+ and a
box 	 = [ 1

K ,K]N for large enough K > 0 so that � ∈ 	. Say that I = [a, b] so
the set of (�, k) such that k ∈ I is semianalytic, defined using the functions k − b
and a − k. Similarly, the set of (�, k) such that � ∈ 	 is semianalytic. Hence, the
following set is compact and semianalytic

X̃ = {(�, k) ∈ 	 × I : p(exp(ik�)) = 0}.
The projection of X̃ to the first N coordinates is

Y ∩ 	 = {� ∈ 	 : ∃k ∈ I, p(exp(ik�)) = 0}.

3 Main results

Given a graph � and some property of eigenpairs denoted by P, let G be the set
of � ∈ RN

+ for which every eigenpair of (�, �) satisfies P. Here and throughout,
the term “every eigenpair” excludes the eigenpair with k = 0 and constant f . Let
spec(�, �,P) be the subset of spec(�, �) of k values for which there is an eigenpair
(k2, f ) satisfying P.

Definition 3.1 (Strong and Ergodic Genericity). We say that the property P

is
(1) Strongly generic: if the complement Gc = RN

+ \ G is a countable union
of closed subanalytic sets of positive codimension in RN

+ . We also call G a
strongly generic subset of RN

+ in such a case.
(2) Ergodically generic: if for any Q-independent � ∈ RN

+ ,

lim
T→∞

| spec(�, �,P) ∩ [0,T]|
| spec(�, �) ∩ [0,T]| = 1.
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Remark 3.1 (Strong genericity implies Baire genericity and full measure).
The reason that strongly generic G is also Baire generic and has full measure is as
follows. A subanalytic set has a well-defined integer-valued Hausdorff dimension
[14, Remark 3.5], and therefore a closed subanalytic set of positive codimension
in RN is a closed nowhere dense set of zero Lebesgue measure. Hence, a countable
union of closed subanalytic sets of positive codimension has a complement that is
both Baire generic and of full measure.

Assumption 1. The graph � is finite, connected, has no vertices of degree

two (removable singularities), and is not a loop graph (i.e., has a vertex of degree
different than two).

Under Assumption 1, a loop is an edge connecting a vertex to itself (not to be
confusedwith a simple closed path). We say that a trace trk(f ) is non-vanishing if
it has no zeros, except for entries corresponding to derivatives at vertices of degree
one.

Theorem 3.2 (Non-vanishing trace). If � is a graph satisfying Assumption 1,

then the following properties of eigenpairs are both strongly and ergodically
generic:

(1) k2 is a simple eigenvalue, and
(2) either trk(f ) is non-vanishing, or f is supported on a single loop (if such

exists).
In particular, if � has no loops, then generically trk(f ) is non-vanishing.

In Theorem 3.2 we distinguish graphs with loops from other graphs. For the
next theorem we will also introduce two special types of graphs. A mandarin9

graph has only two vertices and each edge connects the two. A flower graph has
only one vertex, and every edge is a loop. See Figure 3.1 for examples.

Figure 3.1: Left: A Mandarin graph with five edges. Middle: A flower graph
with four loops. Right: A graph with one loop.

9Mandarin graphs are sometimes referred to as pumpkin or watermelon graphs.
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Theorem 3.3 (No common spectrum). Except for two cases, given any pair

of non-isomorphic graphs � and �′, both have N edges and satisfy Assumption 1:
(1) There is a strongly generic set G ⊂ RN

+ such that for any � = �′ ∈ G,

spec(�, �) ∩ spec(�′, �) = {0}.
(2) For any Q-independent �, the joint spectrum has density zero in spec(�, �),

i.e.,

lim
T→∞

| spec(�, �) ∩ spec(�′, �) ∩ [0,T]|
| spec(�, �) ∩ [0,T]| = 0.

The two exceptional cases are,

(i) If � and �′ share a common loop, say ej, then for any choice of � = �′ ∈ RN
+ ,

{
k =

2π

�j
n : n ∈ N

}
⊂ spec(�, �) ∩ spec(�′, �),

which means that the common spectrum has positive density,

lim inf
T→∞

| spec(�, �) ∩ spec(�′, �) ∩ [0,T]|
| spec(�, �) ∩ [0,T]| ≥ 2L

�j
, L =

N∑
j=1

�j.

(ii) If � is a mandarin graph and �′ is a flower (or vice versa), then for any

choice of � = �′ ∈ RN
+ , the two graphs share at least half of their spectrum,

i.e.,

lim inf
T→∞

| spec(�, �) ∩ spec(�′, �) ∩ [0,T]|
| spec(�, �) ∩ [0,T]| ≥ 1

2
.

Remark 3.4. We mention that the spectra of graphs with equal edge lengths
share the same linear growth rate due to Weyl’s law

| spec(�, �) ∩ [0,T]| � | spec(�′, �) ∩ [0,T]| =
π

L
T + O(1), T → ∞

where L :=
∑N

j=1 �j; see [10, p. 95].

The above two theorems descend from a dichotomy of scale-invariant vertex
conditions, i.e., linear equations in trk(f ). Heuristically, up to some technicalities,
a scale-invariant vertex condition either is always satisfied or it is (strongly and
ergodically) generically never satisfied. This dichotomy can be generalized to
any q(trk(f )) = 0 condition, with q homogeneous polynomial. In fact, it can be fur-
ther generalized to polynomial conditions on the trace space, q(exp(ik�), trk(f )) = 0
where q is a polynomial that is homogeneous in the trk(f ) variables. The homo-
geneity makes these conditions independent of the eigenfunction’s normalization.
The next two theorems rigorously state this dichotomy.
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Theorem 3.5 (Trace space genericity). Let � be a graph satisfying Assump-

tion 1 that is not a mandarin. Let q be a polynomial on CN ×C4N that is homoge-
neous in the C4N coordinates. If there exist an � ∈ RN

+ and an eigenpair (k2, f ) of

(�, �) such that
(i) k2 is a non-zero simple eigenvalue,

(ii) f is not supported on a loop, and q(exp (ik�), trk(f )) �= 0,
then, the following properties of eigenpairs are both strongly and ergodically

generic:
(1) k2 is a simple eigenvalue, and

(2) q(exp (ik�), trk(f )) �= 0 when f is not supported on a single loop.

Mandarin graphs are excluded in Theorem 3.5 due to a certain reflection sym-
metry. A mandarin graph is symmetric to the reflection of all edges simultaneously,
resulting in the swapping of the two vertices [6]. A function is called symmet-
ric if it is invariant under this reflection, and anti-symmetric if f �→ −f . The
orthonormal set of eigenfunctions can be chosen such that all eigenfunctions are
either symmetric or anti-symmetric.

Theorem 3.6 (Trace space genericity for mandarins). Let � be a mandarin
graph of N ≥ 3 edges. Let q be any polynomial on CN ×C4N that is homogeneous

in the C4N coordinates. If there exist an � ∈ RN
+ and an eigenpair (k2, f ) of (�, �)

such that

(i) k2 is a non-zero simple eigenvalue,
(ii) f is symmetric (resp. anti-symmetric), and q(exp (ik�), trk(f )) �= 0,

then, the following properties of eigenpairs are both strongly and ergodically

generic:
(1) k2 is a simple eigenvalue, and

(2) q(exp (ik�), trk(f )) �= 0 when f is symmetric (resp., anti-symmetric).

Remark 3.7. Notice that Theorem 3.5 distinguishes between symmetric and
anti-symmetric eigenfunctions formandarin graphs, andTheorem3.5 distinguishes
between eigenfunctions that are supported on a loop and the rest of the eigenfunc-
tions whenever a graph has loops. Both cases reflect a certain algebraic property
of�(�); it is reducible formandarin graphs and for graphswith loops. We elaborate
on that in Section 5.

4 The trace space and the secular manifold

In this section we construct the trace space T(�) and the secular manifold �(�)
as zero sets of polynomials, establishing their algebraic structure. We use the
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notation (z,x) for points in TN × C4N ⊂ CN × C4N so that (z,x) ∈ T(�) implies
there exists � ∈ RN

+ and some (k2, f ) eigenpair of (�, �), such that

z = exp(ik�) and x = trk(f ).

Remark 4.1. We may assume that k �= 0. To see that, recall that k = 0 is
a simple eigenvalue for any (connected) (�, �) and its eigenfunction is constant
f ≡ A. The corresponding point (z,x) in such case has z = (1, 1, . . . , 1) and x
with all Dirichlet entries equal to A and zero Neumann entries. We get the same
point (z,x) if we choose � = (2π, 2π, . . . , 2π) with k = 1 and eigenfunction f

whose restrictions are

f |ej (tj) = A cos(tj), j = 1, 2, . . . ,N.

The standard vertex conditions (see Definition 2.1) can be written as a linear
equation

Pstd trk(f ) = 0,

where Pstd is a 2N × 4N matrix of rank 2N. Recall the notation (Aj,Bj,Cj,Dj) for
the restriction of x = trk(f ) to the edge ej, such that

(4.1) f |ej (tj) = Aj cos(ktj) + Bj sin(ktj) = Cj cos(k(�j − tj)) + Bj sin(k(�j − tj)).

Lemma 4.2. Let � be a graph with N edges. Then its trace space T(�) is
equal to the set of (z,x) ∈ TN × C4N which satisfies the following multi-linear10

equations:
(1) Vertex conditions: Pstdx = 0.

(2) Edge conditions:

Aj + iBj − zj(Cj − iDj) = 0,(4.2)

Cj + iDj − zj(Aj − iBj) = 0,(4.3)

for every edge ej.

In particular, T(�) is an algebraic subvariety of TN × C4N. Furthermore, the x
fiber above a base point z ∈ �(�), i.e.,

Tz(�) := {x ∈ C4N : (z,x) ∈ T(�)},
is a subspace of CN that has a basis of real vectors.

See Figure 4.1 for an example of the trace space coordinates assigned to a
graph.

10A multi-linear function is a multi-variable polynomial of degree one in each variable.
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Figure 4.1: An example of a possible assignment of the parameters zj and
(Aj,Bj,Cj,Dj) to the edges of a graph.

Proof of Lemma 4.2. Observe that any (z,x) ∈ TN ×C4N has some choice
of � ∈ RN

+ , k ∈ R+ and f ∈ H2(�, �) such that (z,x) = (exp(ik�), trk(f )). By
definition (z,x) ∈ T(�) if and only if (k, f ) is an eigenpair of (�, �). Hence,
we want to show that a pair (k2, f ) ∈ R+ × H2(�, �) is an eigenpair of (�, �) if
and only if (z,x) = (exp(ik�), trk(f )) satisfy conditions (1) and (2) in Lemma 4.2.
Condition (1) is equivalent to f satisfying the standard vertex conditions on every
vertex, so it is necessary. Assuming that f satisfies the vertex conditions, then
(k2, f ) is an eigenpair of (�, �) if and only if

−f ′′|ej = k2f |ej , for all j = 1, 2, . . . ,N.

For every edge ej, a general solution to the ODE above can be written in two ways:
(i) f |ej (tj) = Aj cos(ktj) + Bj sin(ktj),
(ii) f |ej (tj) = Cj cos(k(�j − tj)) + Dj sin(k(�j − tj)).

By comparing the two equivalent solutions we see that

(4.4)

(
Aj

Bj

)
=

(
cos(k�j) sin(k�j)
sin(k�j) − cos(k�j)

)(
Cj

Dj

)
.

If we left-multiply (4.4) by the invertible matrix(
1 i

zj −izj

)
, with zj = eik�j,
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and rearrange, we get the two needed equations,

Aj + iBj − zj(Cj − iDj) = 0,

Cj + iDj − zj(Aj − iBj) = 0.

This proves that a point (z,x) lies in T(�) if and only if it satisfies conditions (1)
and (2).

In the above proofwe have seen that condition (2) is equivalent to satisfying (4.4)
for all edges. Fix z ∈ �(�), so that Tz(�) is the set of vectors x ∈ C4N that satisfy
Pstdx = 0 and (4.4) for all edges. These are linear equations with real coefficients
and therefore Tz(�) is a subspace of C4N that has a basis of real vectors. �

Remark 4.3. The fact that Tz(�) has a basis of real vectors reflects the fact
that the Laplacian and the standard vertex conditions are real and therefore any
eigenspace has a basis of real eigenfunctions. If we consider the magnetic Lapla-
cian, then the eigenspaces are no longer spanned by real eigenfunctions and there-
fore so do their traces. A possible future generalization of the trace space to
a magnetic Laplacian would probably require to replace zj �→ eiαj zj in (4.2) and
zj �→ e−iαj zj in (4.3), in which case Tz(�) will no longer have a basis of real vectors.

Remark 4.4. A solution to (4.2) and (4.3), given a fixed zj with |zj| = 1,
satisfies

‖(Aj,Bj)‖ = ‖(Cj,Dj)‖.

If Aj = Bj = Cj = Dj = 0, the solution is independent of zj.

At this point, we can see that the secular manifold

�(�) := {z ∈ TN : ∃x ∈ C4N s.t. (z,x) ∈ T(�)}

is the projection of an algebraic variety (i.e., common zero set of polynomials) but
it is not clear that �(�) is itself a zero set of a polynomial. However, the standard
construction of �(�) is as a zero set of a polynomial P� restricted to TN , as was
first done in [8]. We will refer to this construction as the “unitary approach”, and
we will now show how the trace space is described in that language. The unitary
approach was motivated by scattering systems of propagating waves [25]. Given
an eigenpair (k2, f ), the restriction of f to the edge ej can be written in another
equivalent form

(4.5) f |ej (tj) = aje
−ik(�j−tj) + bje

−iktj,
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which is interpreted as incoming and outgoing waves with complex amplitudes aj

and bj. Denote the vector of amplitudes f by a := (a1, . . . , aN, b1, . . . , bN) ∈ C2N .
There exists a real orthogonal 2N × 2N matrix S such that

(4.6) diag(z, z)Sa = a ⇐⇒ f ∈ Eig(�, �, k), z = exp(ik�).

See [19] or Section 2.1 of [10] for a proof. In the above, diag(z, z) is a diagonal
2N × 2N matrix with (z, z) = (z1, . . . , zN, z1, . . . , zN) along the diagonal.

Remark 4.5. The fixed matrix S is often called the bond scattering matrix
of � and is given explicitly in [10, 19]. The fact that it is real orthogonal and k

independent is due to the standard vertex conditions. For general vertex conditions,
S is unitary and k dependent.

Definition 4.6. Given a graph � and its associated S matrix, let

U(z) := diag(z, z)S.

The characteristic polynomial or secular polynomial of the graph � is
defined by

P�(z) := det(I2N − U(z)),

where I2N is the 2N × 2N identity matrix.

Lemma 4.7 ([8, 13, 15]). The secular manifold is the zero set of P�(z) re-

stricted to TN, i.e.,
�(�) = {z ∈ TN : P�(z) = 0}.

It is a subvariety of TN of real dimension N−1. We partition �(�) into two subsets,

�sing(�) := {z ∈ TN : P�(z) = 0, ∇P�(z) = 0},
�reg(�) := {z ∈ TN : P�(z) = 0, ∇P�(z) �= 0}.

This partition captures the multiplicity of the eigenvalues. An eigenvalue k2 �= 0
of (�, �) is simple when exp(ik�) ∈ �reg(�), and has multiplicity when

exp(ik�) ∈ �sing(�).

The statements of this lemma can be found, for example, in [15, Theorem 1.1],
up to working with the flat torus RN/2πZN instead of TN . Nevertheless we will
provide a proof later using the trace space, for completeness.

Remark 4.8. As a subvariety �(�) can have singular points. The set �sing(�)
is the set of singular points of �(�). This is not immediate from ∇P�(z) = 0 but
requires the fact that P� has no square factors, which we will show in Theorem 5.3.
The complement �reg(�) is the set of regular points of �(�) and is therefore a real
analytic manifold.
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Lemma 4.7 characterizes �(�) as the set of z ∈ TN for which U(z) has eigen-
value equal to 1. We will show that the trace space is “essentially” the pairs (z,a)
such that U(z)a = a. To this end, we need to relate a to a trace x. We define the
following 2N × 2N and 4N × 2N matrices,

J :=

(
0 IN

IN 0

)
, M :=

(
S + J

i(S − J)

)
,

where IN is the N dimensional identity matrix.

Lemma 4.9. Given a graph � of N edges, its trace space is equal to

T(�) = {(z,Ma) : z ∈ �(�) and U(z)a = a}.
Equations (4.6) and (4.5) provide an isomorphism between an eigenspace

Eig(�, �, k) and the kernel ker(I2N − U(z)) for z = exp(ik�), and as a corollary
of the above lemma, both are isomorphic to the corresponding fiber.

Corollary 4.10. Let k2 > 0 be an eigenvalue of (�, �) and let z = exp(ik�).
The x fiber above z was defined as Tz(�) := trk(Eig(�, �, k)). According to

Lemma 4.9,
Tz(�) = M(ker(I2N − U(z))).

The maps M : ker(I2N − U(z)) → Tz(�) and trk : Eig(�, �, k) → Tz(�) are

isomorphisms.

Proof of Corollary 4.10. It is enough to show that trk : Eig(�, �, k) → C4N

and M : C2N → C4N are injective. The injectivity of trk follows from (4.1). For M,
let a ∈ C2N such that Ma = 0. Since J2 = I2N , the equation JMa = 0 can be written
as

JSa + a = 0, and

i(JSa − a) = 0,

namely a = JSa = −JSa so a = 0. �

Proof of Lemma 4.9. Let z ∈ �(�) and consider a choice of an � ∈ RN
+ and

a non zero eigenvalue k2 of (�, �) such that z = exp(ik�). We need to show that

Tz(�) = M(ker(I2N − U(z))).

By definition, Tz(�) = trk(Eig(�, �, k)) so it is enough to show that for any eigen-
function f ∈ Eig(�, �, k) with amplitudes vector a given by (4.5), the following
relation holds:

trk(f ) = Ma.
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By comparing (4.5) and (4.1) which describe the same restriction f |ej in terms of
(Aj,Bj,Cj,Dj) and (aj, bj), we get the following relation:

(4.7)

⎛
⎜⎜⎜⎝

Aj

Bj

Cj

Dj

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ajz−1
j + bj

iajz−1
j − ibj

aj + bjz−1
j

−iaj + ibjz−1
j

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

z−1
j 1

iz−1
j −i
1 z−1

j

−i iz−1
j

⎞
⎟⎟⎟⎠
(

aj

bj

)
.

Since a satisfies diag(z, z)Sa = a, then for any j = 1, 2, . . . ,N

(Sa)j = z−1
j aj, (Sa)j+N = z−1

j bj,

(Ja)j = bj, and (Ja)j+N = aj,

and so (4.7) can be written, for all edges simultaneously, as

x = trk(f ) = Ma.
�

We may now prove Lemma 4.7 using Corollary 4.10.

Proof of Lemma 4.7. The fact that �(�) is the zero set of

P�(z) = det(I2N − U(z))

follows from (4.6).
Let k2 > 0 be an eigenvalue of (�, �) and let z = exp(ik�). Let

d = dim(ker(I2N − U(z))).

By Corollary 4.10, we know that d ≥ 1, and that k2 is simple if d = 1 and is multiple
if d > 1. We need to show that d > 1 if and only if both P� and ∇P� vanish at z.
To compute the derivatives of P�(z) := det(1 − U(z)), we use the Jacobi formula
for the derivative of a determinant det(A) in terms of the adjugate matrix adj(A),

∇P�(z) = Trace[adj(1 − U(z))∇(1 − U(z))].

The adjugate matrix adj(A) is a matrix whose entries are minors of A and it
satisfies A adj(A) = adj(A)A = det(A)I where I is the identity matrix. In particular,
it satisfies
(1) If dim(ker(A)) = 0, then adj(A) = det(A)A−1.
(2) If dim(ker(A)) > 1, then adj(A) = 0.
(3) If dim(ker(A)) = 1 then adj(A) is a rank one matrix proportional to the

orthogonal projection on ker(A).
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By substituting A = I2N −U(z), Property (2) provides one side of the if and only if,
namely that∇P�(z) = 0 when d > 1. For the other side, we want to show that d = 1
implies ∇P�(z) �= 0. Assume that d = dim(ker(I2N − U(z))) = 1 and let a be the
(unique up to a phase) normalized vector in ker(I2N − U(z)). By property (3),

(4.8) adj(I2N − U(z)) = czaa∗, cz ∈ C \ {0}.
Since a �= 0, then |aj|2 + |bj|2 �= 0 for some j = 1, 2, . . .N. We calculate

∂

∂zj

P�(z) = Trace
(

adj(1 − U(z))
( ∂

∂zj

diag(z, z)
)
S
)

= cza∗
( ∂

∂zj

diag(z, z)
)
Sa

= cz(āj(Sa)j + b̄j(Sa)j+N)

=
cz

zj
(|aj|2 + |bj|2) �= 0,

where in the last equality we used that (Sa)j = aj

zj
and (Sa)j+N = bj

zj
, as we

assumed that diag(z, z)Sa = a. This argument proves that ∇P� �= 0 when
dim(ker(I2N − U(z))) = 1. �

In the proof of Lemma 4.7 we have shown that

∂

∂zj

P�(z) =
cz

zj
(|aj|2 + |bj|2), cz

zj
�= 0.

This leads to the next lemma.

Lemma 4.11. Let f be an eigenfunction of (�, �) with a simple non-zero

eigenvalue k2, so that z = exp(ik�) ∈ �reg(�). Then, for any edge ej,

f |ej ≡ 0 ⇐⇒ ∂

∂zj

P�(z) = 0.

The statement of Lemma 4.11 can be attributed11 to [7, 15]. This lemma
describes a property of the trace vector in terms of the z coordinates. The next
lemma provides a stronger statement, constructing a rank-one matrix A(z), for
z ∈ �reg(z), that is proportional to the orthogonal projection onto the x fiber T(�)z.

Lemma4.12. Consider the matrix M as in Lemma 4.9. Define the z dependent
matrix

A(z) := M adj(1 − U(z))M∗.

The 4N × 4N matrix A(z) has the following properties:

11Both [7] and [15] showed that if (k2, f ) is an eigenpair of (�, �) and k2 is simple, then ∂
∂�j

k2 = 0 if

and only if f |ej ≡ 0. This statement can be shown to be equivalent to Lemma 4.11.
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(1) Its entries are polynomials in z.
(2) If z ∈ �sing(�), then A(z) = 0.
(3) If z ∈ �reg(�), then A(z) is proportional to the rank-one matrix xx∗, for any

x �= 0 such that (z,x) ∈ T(�). That is,

A(z) = cz,xxx∗, cz,x ∈ C \ {0}.

Proof. Since M is constant, the entries of A(z) are linear in the entries
of adj(I2N − U(z)) which are minors of (I2N − U(z)) = (I2N − diag(z, bz)S)
and hence polynomials in z. If z ∈ �sing(�) then dim(ker(I2N − U(z))) > 1
and hence adj(I2N − U(z)) = 0, so A(z) = 0. Now assume that z ∈ �reg(�) so
dim(ker(I2N − U(z))) = 1, and let x �= 0 such that (z,x) ∈ T(�). According to (4.8),
given a normalized vector a ∈ ker(I2N − U(z)),

adj(I2N − U(z) = c̃zaa∗,

for some non-zero scalar c̃z. Since ker(I2N − U(z)) is spanned by a, then by
Lemma 4.9,

x = Mc′
xa,

for some non-zero scalar c′
x, and setting cz,x := |c′

x|2
c̃z

gives

xx∗ = |c′
x|2Maa∗M∗ = cz,xA(z). �

5 Graph reflection symmetries and the irreducible
structure of the secular manifold

Consider the notation Z(p) for the zero set in CN of a given polynomial p. The
secular manifold, according to Lemma 4.7, can be written as

�(�) = Z(P�) ∩ TN,

in terms of the characteristic polynomial P�. We will show in this section that
wheneverP� is irreducible (in the ring of polynomialsC[z1, z2 . . . , zN]), any subva-
riety Z(q)∩�(�) either has positive codimension in �(�) or it is equal to �(�). We
say in such case that �(�) is irreducible. It was conjectured by Colin de Verdière
that �(�) is irreducible if and only if (�, �) admits no �-independent isometries
(see the question prior to Proposition 1.1. in [15]). The main purpose of this section
is to present a recent result of Kurasov and Sarnak [26, 29] which characterizes
the irreducible structure of P� and proves the irreducibility conjecture mentioned
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above. This result is presented in Theorem 5.3. To state it, let us first characterize
the �-independent isometries in terms of reflection symmetries. Given a map
R : (�, �) → (�, �) that sends every edge to itself, its restriction to every edge ej is
a map R|ej : [0, �j] → [0, �j].

Definition 5.1. We say that R : (�, �) → (�, �) is a reflection symmetry
of � if:
(1) R sends every edge ej to itself, either by the identity map or by a reflection

R|ej (xj) = �j − xj.

(2) R preserves the graph structure, i.e., if an edge e is adjacent to a vertex v,
then R(e) is adjacent to R(v).

It is not hard to show, as was already mentioned [15], that an �-independent
isometry is a reflection symmetry, and can only happen if a graph has loops or is a
mandarin graph.

Lemma 5.2 ([15, 29]). An �-independent isometry of (�, �) is a reflection

symmetry, and vice versa. Furthermore, there are only two types of graphs that
satisfy Assumption 1 and have non-trivial reflection symmetries:

(1) Mandarin graphs: If � is a mandarin, then it has exactly one non-trivial
reflection symmetry R. It is a reflection on every edge.

(2) Graphs with loops: If � has loops, then for any loop ej there is a reflection
symmetry Rj acting by reflection on ej and identity on all other edges. The

group of reflection symmetries of � is generated by the loop reflections Rj for

ej ∈ Eloops.

We present a short proof for completeness.

Proof. Let R : (�, �) → (�, �) be an �-independent isometry. As an isometry
between one-dimensional Riemannian manifolds with singularities,R sends singu-
lar points to singular points and line segments to line segments of the same lengths.
Hence, R sends vertices to vertices and each edge is mapped to an edge of the same
length. Since R is � independent then it must send each edge to itself. In particular,
for any edge ej, the restriction R|ej : [0, �j] → [0, �j] is an isometry, and is therefore
either the identity or a reflection. To conclude that R is a reflection symmetry, let e

be an edge adjacent to a vertex v, and take a sequence of points xn ∈ e converging
to v. Then, the sequence R(xn) lies in R(e) and converges to R(v) by the isometry,
and hence R(e) is adjacent to R(v). We conclude that R is a reflection symmetry.

Now, let � satisfy Assumption 1. Assume that R is a reflection symmetry that
acts by reflection on an edge e, and let us deduce the action on the rest of the edges.
We consider two cases.
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(1) If e is not a loop, let v, u be its distinct vertices and notice that R(v) = u

and vice-versa. We may conclude that every edge adjacent to one of the
vertices u, v is adjacent to both of them. For example, if e′ is adjacent to u

then R(e′) = e′ is adjacent to R(u) = v. It follows that u and v are connected
one to the other and cannot be connected to any other vertex. As we assume
the graph is connected, � has only two vertices, and the previous argument
shows that every edge of � connects u to v, so � is a mandarin graph, and R

acts by reflection on all edges.
(2) If e is a loop, then R|ej is the identity for every ej which is not a loop, by (1).

On any other loop e′, R|e′ can be either a reflection or identity, independently
of its action on e. �

The irreducibility theorem of Kurasov and Sarnak can now be stated.

Theorem 5.3 ([26, 29]). Let � be a graph that satisfies Assumption 1, then
P� ∈ C[z1, . . . , zN] is irreducible if and only if � has no reflection symmetries.

Moreover, if � has a reflection symmetry, then P� factors as follows:
(1) If � has loops, then

(5.1) P�(z) = P�,sym(z)
∏

ej∈Eloops

(1 − zj),

where Eloops is the set of loops, and P�,sym(z) is irreducible.

(2) If � is a mandarin graph, then

(5.2) P�(z) = PM,s(z)PM,as(z),

where both PM,s and PM,as are irreducible multi-linear polynomials,

PM,s(z) :=
E∑

j=1

(zj − 1)
∏
i �=j

(zi + 1), PM,as(z) :=
E∑

j=1

(zj + 1)
∏
i �=j

(zi − 1).

Remark 5.4. For later use we mention that P� has degree 2 in every zj (as
shown in [26, 29] for example). Therefore, if � has loops, then the degree of
P�,sym(z) in zj is one when ej is a loop and two otherwise.

The notations P�,sym,PM,s and PM,as do not appear in [26, 29]. We intro-
duce these notations to emphasize that the symmetry type of eigenfunctions in
Eig(�, �, k) is dictated by the P� factors that vanish at z = exp(ik�). We elaborate
on that in Subsection 5.2, but first, let us discuss some applications of Theorem 5.3.

5.1 Applications of the irreducibility. Recall that given a polynomial
p : CN → C we let Z(p) denote its zero set in CN .
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Lemma5.5. Let � be a graph satisfying Assumption 1. Let p be an irreducible

factor of P�, or p = P� in the case that P� is irreducible. Then,
(1) The torus zero set Z(p) ∩ TN is Zariski dense in Z(p). That is, if q : CN → C

is a polynomial and q vanishes on all Z(p)∩TN, then q vanishes on all Z(p).
(2) If q : CN → C is a polynomial and q(z) �= 0 for some z ∈ Z(p), then the real

dimension of Z(q) ∩ Z(p) ∩TN is at most N − 2. In particular, it has positive
codimension in �(�).

Proof. The terminology “toral polynomial” was introduced in [1] (see Defi-
nition 2.2 and Proposition 2.1) to describe a polynomial p for which Z(p) ∩ TN is
Zariski dense in Z(p). Denote the polydisc

DN := {z ∈ CN : |zj| < 1, j = 1, 2, . . . ,N},
and its inverse

(C \ D)N := {z ∈ CN : |zj| > 1, j = 1, 2, . . . ,N}.
Theorem 3.5 in [1] states that if Z(p) is disjoint from DN ∪ (C \ D)N then p is
toral. We claim that this is the case for P�, as Sarnak and Kurasov discuss in [28].
To prove it, recall that P�(z) := det(1 − diag(z, z)S) and that S is real orthogonal.
Assume diag(z, z)Sa = λa for some non-zero a, and notice that ‖Sa‖ = ‖a‖
since S is orthogonal. If z ∈ Dn, then diag(z, z) is strictly contracting, i.e.,
‖diag(z, z)a‖ < ‖a‖. Hence ‖λa‖ < ‖a‖ so λ �= 1. It follows that P�(z) �= 0 in that
case. For the other case, z ∈ (C \ D)N , a similar proof, using ‖diag(z, z)a‖ > ‖a‖
in this case, would give that P�(z) �= 0. We may conclude that Z(P�) is disjoint
from DN ∪ (C \ D)N , and therefore P� is toral. If P� is reducible, then any p factor
of P� has Z(p) ⊂ Z(P�) and is therefore also toral. This proves part (1).

To prove (2), recall that p in Lemma 5.5 is irreducible, so given a polynomial q
such that q(z) �= 0 for some z ∈ Z(p), the intersection V = Z(p)∩Z(q) has complex
dimension N −2. By Lemma A.1, we may deduce that Z(p)∩Z(q)∩TN = V ∩TN

has real dimension at most N − 2. �
According to Theorem 5.3, either P� is irreducible, or it is reducible but each

factor appears once. We say that P� has no square factors. It is a simple observation
(by counting degrees) that an irreducible polynomial does not share factors with
any of its derivatives. It follows that a reducible polynomial that shares a common
factor with all of its derivatives must have a square factor. Since P�, even if
reducible, has no square factors, then it must have at least one derivative ∂

∂zj
P�

without a common factor. The next corollary follows by applying Lemma 5.5 to
the singular set

�sing(�) ⊂ Z(P�) ∩ Z
( ∂

∂zj
P�

)
∩ TN .
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Corollary 5.6. For any � satisfying Assumption 1, the singular set �sing(�) is

a subvariety of �(�) of positive codimension. That is, �sing(�) has real dimension
at most N − 2.

Remark 5.7. Corollary 5.6 is well known and can be found for example
in [15]. However, to the best of our knowledge this is the first proof that does not
rely on Friedlander’s simplicity result [16], which means that the results of this
paper do not rely on [16].

The next lemma that we can now prove will be the main ingredient in proving
Theorem 3.3 regarding the common spectrum of metric graphs.

Lemma 5.8 (No common factors). Let � and �′ be two graphs with the same
number of edges that satisfy Assumption 1 and consider their polynomials P�

and P�′ . Then:

(1) The polynomials are equal P� = P�′ , equivalently �(�) = �(�′), if and only

if � and �′ are isomorphic graphs.
(2) If � and �′ are not isomorphic, then P� and P�′ do not share any common

factor, except for two cases:
(a) If � is a mandarin and �′ is a flower, or vice versa.

(b) If � and �′ share a common loop ej, in which case (1 − zj) is a common
factor of P� and P�′ .

Proof. Part (1). Two graphs � and �′ of N edges are isomorphic if and only
if spec(�, �) = spec(�′, �) for any �. In fact, it is enough to consider only one
Q-independent choice of � as seen in [21, 27]. According to Lemma 4.7, having
spec(�, �) = spec(�′, �) for any � is equivalent to

�(�) := Z(P�) ∩ TN = Z(P�′) ∩ TN =: �(�′),

which, by Lemma 5.5, is equivalent to

Z(P�) = Z(P�′).

According to Theorem 5.3, both P� and P�′ have no square factors, so the equality
of their zero sets implies that the polynomials are equal up to a constant. This
constant is 1 since P�(0) = P�′(0) = 1 by construction. We may conclude that
P� = P�′ if and only if � and �′ are isomorphic.

To prove (2), assume that P� �= P�′ and further assume they have a common
factor q. We may assume without loss of generality that P� is reducible and that q
is an irreducible factor of P�. As discussed in Remark 5.4, both P� and P�′ have
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degree 2 in each zj, so q has degree at most 1 in some variable zj, and hence q �= cP�′

for any constant c ∈ C. Therefore, q is a non-trivial factor of P�′ , which means
that P�′ is reducible. We may conclude that either both graphs have loops, or one
of them, say � without loss of generality, is a mandarin. We treat the two cases
separately.

Case (i). Assume � is a mandarin graph and �′ has loops. We want to show
that if their polynomials share a common factor q, then �′ is a flower. Since � is
a mandarin, either q = PM,s or q = PM,as, and in both cases q is irreducible and has
degree 1 in every zj. Since �′ is a graph with loops, having such an irreducible
factor implies that all edges are loops, by Remark 5.4. We conclude that �′ must
be a flower.

Case (ii). Assume both � and �′ have loops and that their polynomials share
a common factor q. Assume by contradiction that they do not share a common
loop. Then their common factor must be P�,sym = P�′,sym by Theorem 5.3. Let j

be such that ej is a loop of � and not a loop of �′, then P�,sym has degree 1 in zj

but P�′,sym has degree 2 in zj, according to Remark 5.4. This leads to the needed
contradiction. Hence � and �′ share a loop edge ej and so (1 − zj) is a common
factor. �

5.2 Reflection symmetries and the trace space. Recall that for a man-
darin graph, an eigenfunction f is called symmetric if f ◦ R = f , where R is the
reflection of all edges. Similarly, f is called anti-symmetric if f ◦ R = −f . It
is not hard to see that these properties are determined by the traces. Given an
eigenpair (k2, f ), f is symmetric if and only if trk(f ) has (Aj,Bj) = (Cj,Dj) for every
edge ej, and it is anti-symmetric if and only if (Aj,Bj) = −(Cj,Dj) for all edges.

Lemma 5.9 (Mandarin trace space symmetry). Let � be a mandarin graph

and consider a trace fiber Tz(�) for z ∈ �(�). Define its symmetric and anti-
symmetric subspaces

Tz,s(�) := {x ∈ Tz(�) : (Aj,Bj) = (Cj,Dj) for every edge ej},
and

Tz,as(�) := {x ∈ Tz(�) : (Aj,Bj) = −(Cj,Dj) for every edge ej}.
Then,

Tz(�) = Tz,s(�) ⊕ Tz,as(�),

with the rule of

Tz,s(�) �= {0} ⇐⇒ PM,s(z) = 0

Tz,as(�) �= {0} ⇐⇒ PM,as(z) = 0.



GENERIC LAPLACIAN EIGENFUNCTIONS ON METRIC GRAPHS 755

For later use, we define the symmetric and anti-symmetric parts of the trace
space.

Definition 5.10. Given a mandarin graph �, define

Ts(�) := {(z,x) ∈ T(�) : PM,s(z) = 0, and x ∈ Tz,s(�)},
and

Tas(�) := {(z,x) ∈ T(�) : PM,s(z) = 0, and x ∈ Tz,as(�)}.

In other words, given an eigenpair (k2, f ) of (�, �),
(1) f is symmetric if and only if (exp(ik�), trk(f )) ∈ Ts(�),
(2) f is anti-symmetric if and only if (exp(ik�), trk(f )) ∈ Tas(�).

Prior to proving Lemma 5.9, we first state the analogous result for graphs with
loops. It is straightforward that if (k2, f ) is an eigenpair and f is supported on a
loop ej, then trk(f ) vanishes on all edges except for ej, and the vertex condition at
the vertex of ej is

Aj = Cj = 0, Bj + Dj = 0.

It is not hard to see that the other direction holds too, i.e., f is supported on ej if
trk(f ) has Bj = −Dj and vanishes on all other entries.

Lemma 5.11 (Trace space symmetry for loops). Let � be a graph with loops,
let Eloops be the set of loops, and consider a trace fiber Tz(�) for z ∈ �(�). For any

loop ej ∈ Eloops, define the anti-symmetric subspace

Tz,as,j(�) := {x ∈ Tz(�) : Dj = −Bj, and all other entries of x vanish}.

Define the symmetric (on all loops) subspace

Tz,sym(�) := {x ∈ Tz(�) : (Aj,Bj) = (Cj,Dj)for every loop ej ∈ Eloops}.

Then,

Tz(�) = Tz,sym(�)
⊕

ej∈Eloops

Tz,as,j(�),

with the rule of

Tz,sym(�) �= {0} ⇐⇒ P�,sym(z) = 0,

Tz,as,j(�) �= {0} ⇐⇒ zj = 1.

For later use, we define the symmetric and anti-symmetric parts of the trace
space.
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Definition 5.12. Given a graph � with loops Eloops, define

Tsym(�) := {(z,x) ∈ T(�) : P�,sym(z) = 0, and x ∈ Tz,sym(�)},
and

Tas,j(�) := {(z,x) ∈ T(�) : zj = 1, and x ∈ Tz,as,j(�)}.
In particular, given an eigenpair (k2, f ) of (�, �), f is supported on a loop ej if and
only if (exp(ik�), trk(f )) ∈ Tas,j(�).

We may now prove these lemmas.

Proof of Lemma 5.9. Let � be a mandarin graph, let z ∈ �(�) and let
� ∈ [0, 2π)N such that z = exp(ik�) with k = 1. It is a standard argument that given
an isometry R : (�, �) → (�, �), such that R2 is the identity, any eigenspace has
a basis of eigenfunctions that are either symmetric or anti-symmetric. See [6] for
example. Let Eig(�, �, k)s be the span of the symmetric basis eigenfunctions and
Eig(�, �, k)as of the anti-symmetric basis eigenfunctions. Then

Eig(�, �, k) = Eig(�, �, k)s ⊕ Eig(�, �, k)as.

Acting with trk on this equation, using z = exp(ik�), we get

Tz(�) = trk(Eig(�, �, k)s) ⊕ trk(Eig(�, �, k)as) = Tz,s(�) ⊕ Tz,as(�).

Now let x ∈ Tz,s(�) and we may assume that x is real. To be in Tz,s(�), x must
satisfy the vertex and edge conditions in 4.2 and to have (Aj,Bj) = (Cj,Dj) on every
edge ej. This can be reduced to the following conditions:

A1 = A2 = · · · = AN =: A,(5.3)

B1 + B2 + · · · + BN = 0,(5.4)

and for every ej,

(5.5) zj =
A + iBj

A − iBj
, or ‖(A,Bj)‖ = 0.

We now consider two cases.
The first case is when A �= 0, in which case zj �= −1 for all j, by (5.5). Inverting

the Möbius transformation gives Bj = −iA zj−1
zj+1 , and (5.4) leads to

N∑
j=1

zj − 1
zj + 1

= 0, and therefore PM,s(z) =
( N∑

j=1

zj − 1
zj + 1

) N∏
j=1

(zj + 1) = 0.

For the other direction, assume that PM,s(z) = 0 with zj �= −1 for all j. If we set x
to have A = 1 and Bj = −i zj−1

zj+1 for all ej, then x ∈ Tz,s.
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The second case is when A = 0. If A = 0, for every j either zj = −1 or Bj = 0,
by (5.5). The sum in (5.4) requires that there are at least two non-zero Bj’s, and
therefore two coordinates satisfying zj = −1. Hence, PM,s(z) = 0. For the other
direction, assume that PM,s(z) = 0 and that zj = −1 for some fixed ej (as the case
where all zj �= −1 was treated already). Then the equation

PM,s(z) = (zj − 1)
∏
j′ �=j

(zj′ + 1) = 0

tells us that there must be another j′ �= j with zj′ = −1. Let x be a trace vector with

Bj = Dj = −Bj′ = −Dj′

and zero in all other entries, then x ∈ Tz,s.
We conclude that

Tz,s �= {0} ⇐⇒ PM,s(z).

The proof of
Tz,as �= {0} ⇐⇒ PM,as(z)

follows the same steps. �
The proof of Lemma 5.11 is similar to the proof of Lemma 5.9.

Proof of Lemma 5.11. Let � be a graph with loops, let Eloops be the set of
loops and for every ej ∈ Eloops let Rj be the reflection of ej that acts by identity on all
other edges. As already mentioned, the group of reflection symmetries of �, say G,
is the group generated by Rj for all ej ∈ Eloops. Notice that this is an abelian group
since the Rj generators commute, and that any element of this group satisfies R2

equals identity. The same argument as before, namely that these are isometries
that preserve the vertex conditions, tells us that any eigenspace Eig(�, �, k) has a
basis of eigenfunctions that satisfy f ◦ Rj = ±f for every loop ej. Notice that there
are only two cases of an eigenfunction f as above:
(1) either f ◦ Rj = f for every loop ej, in which case we call f symmetric, or,
(2) f is supported on some loop ej, in which case f ◦ Rj = −f .

To see that these are the only two cases, assume that f is not supported on a single
loop, but f ◦ Rj = −f for some loop ej. Then there exists an edge ej′ , with j′ �= j

such that f |ej′ �≡ 0. But Rj acts as identity on ej′ and so f ◦ Rj = −f implies that
f |ej′ = −f |ej′ , contradicting the assumption that f |ej′ �≡ 0. Hence, the above two
cases are indeed the only two cases.

As in the proof of Lemma 5.9, the basis of eigenfunctions with certain types of
symmetry provides the needed decomposition of any eigenspace, which results in

(5.6) Tz(�) = Tz,sym(�)
⊕

ej∈Eloops

Tz,as,j(�).
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Notice that by definition, any non-trivial Tz,as,j(�) is one-dimensional. Assume that
there is a non-zero trace vector x ∈ Tz,as,j(�) for some loop ej, namely Bj = −Dj �= 0
and the rest of the entries are zero. The edge equation in Lemma 4.2 gives

Bj = zjBj ⇒ zj = 1.

On the other hand, given any z ∈ TN with zj = 1 for some loop ej, the trace vector x
with Bj = −Dj = 1 and zero in all other entries satisfies x ∈ Tz,as,j(�). Therefore,

(5.7) Tz,as,j(�) �= {0} ⇐⇒ zj = 1.

We are left with showing that

Tz,sym(�) �= {0} ⇐⇒ P�,sym(z) = 0.

To do so, we use a fixed orthogonal decomposition of C2N ,

(5.8) C2N = Vsym ⊕ Vas,

that was constructed in [5, Definition 5.11], where the following properties were
shown:
(1) The z-dependent matrix U(z) is block diagonal in the fixed decomposition

(5.8),
U(z) = Usym(z) ⊕ Uas(z),

for any z ∈ TN .
(2) The space Vas is |Eloops| dimensional, with a (fixed) basis of vectors aej for

ej ∈ Eloops, that satisfy
U(z)aej = zjaej,

for any z ∈ TN .
We may conclude that

P�(z) : = det(I2N − Uz)(5.9)

= det(I|Eloops| − Usym(z)) det(I2N−|Eloops| − Uas(z))(5.10)

=
( ∏

ej∈Eloops

(1 − zj)
)

det(I2N−|Eloops| − Uas(z)),(5.11)

where the second line follows from the decomposition in (1) and in the third line
we replace the determinant det(I|Eloops| − Usym(z)) with the product of eigenvalues
given by (2). By comparing this decomposition of P�(z) with Theorem 5.3 we
conclude that

P�,sym(z) = det(I2N−|Eloops| − Uas(z)),
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and in particular,

(5.12) dim(ker(I2N − U(z))) > |{ej ∈ Eloops : zj = 1}| ⇐⇒ P�,sym(z) = 0.

We may now recall that

dim(ker(I2N − U(z))) = dim(Tz(�)) = dim(Tz,sym(�)) +
∑

ej∈Eloops

dim(Tz,as,j(�)),

by Corollary 4.10 and the decomposition (5.6). According to (5.7), dim(Tz,as,j(�))
equals one when zj = 1 and is zero otherwise. We conclude that

dim(ker(I2N − U(z))) > |{ej ∈ Eloops : zj = 1}| ⇐⇒ Tz,sym(�) �= {0},
and we are done by applying (5.12). �

Lemma 5.13 (Mandarin and flower). If � is a flower graph and �′ is a
mandarin graph with the same number of edges, then

Tsym(�) = Ts(�
′).

In particular, P�,sym = cPM,s for some constant c.

Proof. A point (z,x) ∈ Tsym(�) needs to satisfy (Aj,Bj) = (Cj,Dj) for every ej

(since all edges are loops) and also the equations in Lemma 4.2. Assuming that x
is real,12 it can be reduced to the following conditions:

A1 = A2 = · · · = AN =: A,(5.13)

2B1 + 2B2 + · · · + 2BN = 0,(5.14)

and for every ej,

(5.15) zj =
A + iBj

A − iBj
, or ‖(A,Bj)‖ = 0.

These are exactly the same equations as (5.3), (5.4) and (5.5), which are the defining
equations of Ts(�′). We conclude that

Tsym(�) = Ts(�
′).

According to Lemma 5.9 and Lemma 5.11 it means that for any z ∈ TN ,

P�,sym(z) = 0 ⇐⇒ PM,s(z) = 0.

We may conclude from Lemma 5.5 that P�,sym(z) and PM,s share the same zero set
in CN and are therefore equal up to a constant factor. �

12We can assume x is real because we know that every fiber Tz(�′) has a real basis.
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6 Genericity theorems

In this section we prove the main results of this paper. The proofs share a similar
structure, in which we show that a certain property P is generic, by showing that
any eigenpair (k2, f ) of (�, �) that fails to satisfy P must have exp(ik�) ∈ B for
some “small” subvariety B ⊂ �(�). A common step in all proofs is the claim that a
property whose negation is encapsulated by a small subvariety as above is strongly
and ergodically generic. We prove this genericity criterion in the next Lemma. We
remind the reader that we call V ⊂ CN an algebraic set or a variety if it is a
finite union and intersection of zero sets of polynomials. We say that B ⊂ �(�)
is a subvariety of �(�) if B = V ∩ �(�) for some variety V . A subvariety B has a
positive co-dimension in �(�) if dim(B) ≤ N − 2, since �(�) has real dimension
N − 1 by Lemma 4.7.

Lemma 6.1 (The genericity criterion). Let � be a graph satisfying Assump-

tion 1, and let B ⊂ �(�) be a subvariety of positive co-dimension in �(�). Then:
(1) The set of “good” lengths

(6.1) G(B) = {� ∈ RE
+ : ∀k > 0, exp(ik�) /∈ B}

is strongly generic.
(2) For any Q-independent �,

lim
T→∞

|{k ∈ spec(�, �) ∩ [0,T] : exp(ik�) ∈ B}|
| spec(�, �) ∩ [0,T]| = 0.

Proof. By definition, to show that G(B) is strongly generic we need to show
that its complement G(B)c = RN

+ \ G(B) is a countable union of sets, Bn for n ∈ N,
such that each Bn is a closed subanalytic set (see Definition 2.2) of dimension at
most N − 1. We may deduce from (6.1) that when a subvariety is given by a union
B = B1 ∪ B2, the complement of G(B) = G(B1 ∪ B2) is given by a union,

G(B1 ∪ B2)
c = G(B1)

c ∪ G(B2)
c,

and so G(B1 ∪B2) is strongly generic if both G(B1) and G(B2) are strongly generic.
It is therefore enough to prove that G(B) is strongly generic when the subvariety B

is defined in terms of a finite intersection of zero sets of polynomials, rather than
union and intersection. Assume that

B = {z ∈ TN : pj(z) = 0, j = 0, 1, 2, . . . ,m},
where p0 = P� and p1, p2, . . . , pm are some polynomials. The real and imaginary
parts of each polynomial pj defines real analytic functions on R × RN by

fj,1(k,x) := �[pj(exp (ikx))], and fj,2(k,x) := �[pj(exp (ikx))].
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Given n ∈ N, define

Bn :=
{
� ∈ RN

+ : ∃k ∈
[1
n
, n
]

s.t. fj(k, �) = 0, s = 1, 2, and j = 0, 1, 2, . . . ,m
}
,

which is a closed subanalytic set according to Definition 2.2. We write G(B)c as

G(B)c : = {� ∈ RN
+ : ∃k > 0 s.t. exp(ik�) ∈ B}

= {� ∈ RN
+ : ∃k > 0 s.t. fj,s(k, �) = 0, s = 1, 2, and j = 0, 1, 2, . . . ,m}

=
⋃
n∈N

Bn.

To conclude that G(B) is strongly generic we need to show that dim(Bn) ≤ N − 1
for all n ∈ N. To this end, define the auxiliary sets

B̃ := {x ∈ RN : exp (ix) ∈ B}, Cn :=
{
(k, �) ∈

[1
n
, n
]
× RN

+ : k� ∈ B̃
}
.

The exponent map e(x) := exp (ix) is a local diffeomorhpism between RN and TN ,
so

dim(B̃) = dim(B) ≤ N − 2

follows from e(B̃) = B and the assumption thatB has positive co-dimension in�(�).
The dimension of Cn is bounded by

dim(Cn) ≤ dim(B̃) + 1 ≤ N − 1,

which bounds the dimension of Bn by

dim(Bn) ≤ dim(Cn) ≤ N − 1,

since Bn is a projection of Cn. This proves (1).
To prove (2), consider the embedding of �(�) in the flat torus RN/2πZN ,

�flat(�) := {x ∈ RN/2πZN : exp(ix) ∈ �(�)}.
This is an analytic variety, defined by P�(exp(ix)) = 0, that has dimension N − 1
(as it is diffeomorhpic to �(�) ). We abuse notation and consider the periodic set B̃
as a subset of RN/2πZN , and therefore a subset B̃ ⊂ �flat(�). Let {k�}2π denote the
remainder of k� modulo 2π. In [8] Barra and Gaspard introduced an �-dependent
Borel measure μ� on �flat(�) which has the following ergodic property. For any
Q-independent � and any Borel subsetA ⊂ �flat(�), assuming its boundary satisfies
μ�(∂A) = 0,

lim
T→∞

|{k ∈ spec(�, �) ∩ [0,T] : {k�}2π ∈ A}|
| spec(�, �) ∩ [0,T]| =

μ�(A)
μ�(�(�))

.
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For a proof, see [13, Proposition 4.4] or [15, Lemma 3.2 ]. The measure μ� is
absolutely continuous with respect to an (N − 1)-dimensional volume measure on
�flat(�) and therefore μ�(B̃) = μ�(∂B̃) = 0. Here we use the fact that B̃ is closed
and has dim(B̃) ≤ N − 2. Applying the ergodic property to B̃ ⊂ �flat(�) gives

lim
T→∞

|{k ∈ spec(�, �) ∩ [0,T] : {k�}2π ∈ B̃}|
| spec(�, �) ∩ [0,T]| =

μ�(B̃)
μ�(�(�))

= 0.
�

At this point we get, as a corollary of Lemma 6.1 and Corollary 5.6, an
independent proof for (a stronger version of) Friedlander’s result on the simplicity
of the spectrum.

Corollary 6.2. Let � be a graph satisfying Assumption 1. Then having simple
eigenvalues is strongly and ergodically generic in �.

Proof. By Lemma 4.7, k2 > 0 is a multiple eigenvalue of (�, �) if and only
if exp(ik�) ∈ �sing(�). By Corollary 5.6, �sing(�) is a subvariety of positive
codimension in �(�), and the needed result follows by substituting B = �sing in
Lemma 6.1. �

Remark 6.3. The above proof is independent of Friedlander’s proof in [16].
The idea of an alternative proof for the generic simplicity which relies on the
positive codimension of �sing(�) appeared in section 7 of [15].

6.1 Proofs of Theorems 3.5 and 3.6—Genericity on the trace space.
Theorem 3.5 and Theorem 3.6 can be stated as one general theorem, using the
results and definitions accumulated so far.

Theorem 6.4. Let � be a graph satisfying Assumption 1. Let p = P� if P�

is irreducible, otherwise, let p be an irreducible factor of P�. Let q(z,x) be a
polynomial in (z,x) which is homogeneous in x. If there exists a point (z,x) ∈ T(�)
such that

z ∈ �reg(�) ∩ Z(p), x �= 0, and q(z,x) �= 0,

then the next two properties of eigenpairs (k2, f ) of (�, �) are strongly and ergodi-
cally generic in �:

(1) exp(ik�) ∈ �reg(�), and

(2) q(exp(ik�), trk(f )) �= 0 whenever p(exp(ik�)) = 0.

To see why Theorem 6.4 implies Theorems 3.5 and 3.6, let us break down these
theorems into an assumption and resulting generic property. The assumption in
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Theorems 3.5 and 3.6 is that there exists an � and an eigenpair (k2, f ) of (�, �)
such that k2 > 0 and is a simple eigenvalue, q(exp(ik�), trk(f )) �= 0, and f has
a certain “symmetry type”. The result is that this is the generic situation for
eigenfunctions of that “symmetry type”. Namely, for a generic eigenpair (k2, f ),
k2 > 0 is simple and q(exp(ik�), trk(f )) �= 0 whenever f is of that “symmetry type”.
The four “symmetry types” are:
(1) Theorem 3.5 for graphs with no loops: Any f .
(2) Theorem 3.5 for graphs with loops: f is not supported on a single loop.
(3) Theorem 3.6 for mandarin graphs, first case: f is symmetric.
(4) Theorem 3.6 for mandarin graphs, second case: f is anti-symmetric.

As shown in Lemma 5.9 and Lemma 5.11, the possible “symmetry types” of f are
captured by the decomposition of Tz for z = exp(ik�). In the case that k2 > 0 is
simple, equivalently dim(Tz) = 1, there is only one possible “symmetry type” and
it is determined by the irreducible factor of P� that vanish at z = exp(ik�). We call
this factor p.
(1) For Theorem 3.5, for graphs with no loops, p = P�.
(2) For Theorem 3.5, for graphs with loops, p = P�,sym.
(3) For Theorem3.6, for symmetric eigenfunctions of mandarin graphs, p = PM,s.
(4) For Theorem 3.6, for anti-symmetric eigenfunctions of mandarin graphs,

p = PM,as.
Using the above dictionary it is a simple check to see that indeed Theorem 6.4
implies Theorems 3.5 and 3.6. We proceed with the proof of Theorem 6.4.

Proof of Theorem 6.4. We first state the following claim.
Claim. There exist 4N polynomials Qj ∈ C[z1, . . . , zn] for j = 1, 2, . . . , 4N,

such that for any (z,x) ∈ T(�) with z ∈ �reg(�) and x �= 0,

(6.2) q(z,x) = 0 ⇐⇒ z ∈ Qj(z) = 0 for j = 1, 2, . . . , 4N.

We will first prove Theorem 6.4 assuming the claim and then prove the claim.
Define the variety V as the common zero set

V := {z ∈ CN : Qj(z) = 0 for j = 1, 2, . . . , 4N},

and the associated subvariety B ⊂ �(�) by

B = V ∩ Z(p) ∩ TN ∪ �sing(�).

The subvariety B captures the negation of the generic properties (1) and (2) in
Theorem 6.4. Clearly, if (1) fails, then exp(ik�) ∈ �sing(�) ⊂ B. If (2) fails but
not (1), then the point (z,x) = (exp(ik�), trk(f )) ∈ T(�) has z ∈ �reg, x �= 0, p(z) = 0
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and q(z,x) = 0. Then z ∈ V according to the claim and so

z = exp(ik�) ∈ V ∩ Z(p) ∩ TN ⊂ B.

Applying Lemma 6.1 to the subvariety B proves Theorem 6.4. To this end, we
only need to show that B has positive co-dimension in �(�). In fact, it is enough
to show that

(6.3) dim(V ∩ Z(p) ∩ TN) ≤ N − 2,

since dim(�sing(�)) ≤ N −2 by Corollary 5.6. By the assumption of Theorem 6.4,
there exists a point (z,x) = (exp(ik�), trk(f )) ∈ T(�) such that z ∈ �reg, x �= 0,
p(z) = 0 and q(z,x) �= 0. According to the claim it means that

(6.4) z ∈ �reg ∩ Z(p) \ V,

so p (which is irreducible by our choice) is not a factor of at least one Qj polynomial.
We prove (6.3) by applying Lemma 5.5 to p and this Qj which gives

dim(V ∩ Z(p) ∩ TN) ≤ dim(Z(Qj) ∩ Z(p) ∩ TN) ≤ N − 2.

We conclude that dim(B) ≤ N − 2 which proves Theorem 6.4 by Lemma 6.1.
We now prove the claim on which our proof is based. Write q(z,x) as the sum

of K monomials, using multi-indices an ∈ (N ∪ {0})N and bn ∈ (N ∪ {0})4N for
n = 1, . . . ,K,

q(z,x) =
K∑

n=1

zanxbn, zan :=
N∏
j=1

zan(j)
j , xan :=

4N∏
j=1

xbn(j)
j .

Recall that q(z,x) is homogeneous in x, so there is some m ∈ N ∪ {0} such that

|bn| :=
4N∑
j=1

bn(j) = m, for all n = 1, 2, . . . ,K.

Consider the rank one matrix xx∗ whose entries are (xx∗)i,j = xixj. The following
holds

xm
j q(z,x) =

K∑
n=1

zan

4N∏
i=1

(xx∗)bn(i),j for all j = 1, 2, . . . , 4N.

Let A(z) be the 4N × 4N matrix introduced in Lemma 4.12, and define the polyno-
mials

Qj(z) :=
K∑

n=1

zan

4N∏
i=1

(A(z))bn(i),j for all j = 1, 2, . . . , 4N.
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These are indeed polynomials since the entries of A(z) are polynomials, by
Lemma 4.12. Fix a point (z,x) ∈ T(�) with z ∈ �reg(�) and x �= 0. Accord-
ing to Lemma 4.12,

A(z) = cz,xxx∗,

for some non-zero constant cz,x ∈ C \ {0}. Therefore,

Qj(z) = cm
z,x(xj)

mq(z,x) for every j = 1, 2, . . . , 4N.

If q(z,x) = 0 then Qj(z) = 0 for all j. For the other direction, assume that
Qj(z) = 0 for all j. Since x �= 0 then xj �= 0 for some j, in which case Qj(z) = 0
implies q(z,x) = 0. We conclude that for any point (z,x) ∈ T(�) with z ∈ �reg(�)
and x �= 0,

q(z,x) = 0 ⇐⇒ Qj(z) = 0 for every j = 1, 2, . . . , 4N.
�

6.2 Proof of Theorem 3.3—No common spectrum. We remind the
reader that Theorem 3.3 considers the common spectrum,

spec(�, �) ∩ spec(�′, �),

of two distinct13 graphs � and �′ of same number of edges, assigned with the same
edge lengths � = �′. The theorem states that except for two cases, generically, there
are no common eigenvalues. The two exceptional cases are:

(i) If � and �′ share a common loop ej, then for any � = �′,

2π

�j
N ⊂ spec(�, �) ∩ spec(�′, �),

which means that the common spectrum has positive density,

lim inf
T→∞

| spec(�, �) ∩ spec(�′, �) ∩ [0,T]|
| spec(�, �) ∩ [0,T]| ≥ 2L

�j
, L =

N∑
j=1

�j.

(ii) If � is a mandarin graph and �′ is a flower graph, then for any � = �′, the
common spectrum is at least half of the spectrum, i.e.,

lim inf
T→∞

| spec(�, �) ∩ spec(�′, �) ∩ [0,T]|
| spec(�, �) ∩ [0,T]| ≥ 1

2
.

13By distinct we mean non isomorphic.
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Theorem 3.3 can now follow from Theorem 6.4 for � and q(z,x) = P�′ , however,
we will prove it using Lemma 6.1 which was the main ingredient in the proof of
Theorem 6.4.

Proof of Theorem 3.3. Assume that � and �′ are both graphs of N edges
that satisfy Assumption 1. Recall that for any k ≥ 0, denoting z = exp(ik�), we
have

k ∈ spec(�, �) ∩ spec(�′, �) ⇐⇒ P�(z) = 0 and P�′(z) = 0,

and define

B := �(�) ∩ �(�′) = {z ∈ TN : P�(z) = 0 and P�′(z) = 0}.
Assume that � and �′ are distinct, do not share a loop edge, and are not a pair of
mandarin graph and flower graph. Then, the polynomials P� and P�′ do not share
any common factor, according to Lemma 5.8, which means that B has positive
co-dimension in �(�), by Lemma 5.5. We conclude that B is a subvariety of �(�)
that has positive co-dimension, so Lemma 6.1 applies and the following holds:
(1) The set of “good” lengths

G(B) = {� ∈ RE
+ : ∀k > 0, exp(ik�) /∈ B}

= {� ∈ RE
+ : spec(�, �) ∩ spec(�′, �) = {0}}

is strongly generic.
(2) For any Q-independent �,

|{k ∈ spec(�, �) ∩ [0,T] : exp(ik�) ∈ B}|
| spec(�, �) ∩ [0,T]|

=
| spec(�, �) ∩ spec(�′, �) ∩ [0,T]|

| spec(�, �) ∩ [0,T]| −−−→
T→∞ 0.

This proves Theorem 3.3, except for the two special cases.
Case i. Assume that � and �′ share a common loop ej, then according to

Theorem 5.3, P� and P�′ share a common factor (zj − 1), and so

eik�j = 1 ⇒ P�(exp(ik�)) = 0 and P�′(exp(ik�)) = 0.

We conclude that k = 2π
�j

n ∈ spec(�, �) ∩ spec(�′, �) for every n ∈ N, as needed.
For the density statement we can write it as

| spec(�, �) ∩ spec(�′, �) ∩ [0,T]| ≥ �j

2π
T + O(1), T → ∞.

Using the Weyl law, as stated in [10, p. 95] for example,

| spec(�, �) ∩ spec(�′, �) ∩ [0,T]|
| spec(�, �) ∩ [0,T]| ≥

�j

2π
T + O(1)

L
π
T + O(1)

=
�j

2L
+ O

( 1
T

)
, T → ∞.
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Case ii. Assume that � is a flower with N edges, i.e., every edge is a loop.
According to the decomposition in Theorem 5.3, and the argument of case i, we
have

|{k ∈ [0,T] : P�,sym(exp(ik�)) = 0}| = | spec(�, �) ∩ [0,T]| −
N∑
j=1

∣∣∣2π

�j
N ∩ [0,T]

∣∣∣
=

L
π

T −
N∑
j=1

�j

2π
T + O(1),

=
L
2π

T + O(1),

wherewe count, as usual, such that zeros of P�,sym(exp(ik�)) are repeated according
to their degree and eigenvalues are repeated according their multiplicity. We
conclude that

|{k ∈ [0,T] : P�,sym(exp(ik�)) = 0}|
| spec(�, �) ∩ [0,T]| =

1
2

+ O
( 1
T

)
, T → ∞.

Now let �′ be a mandarin graph with N edges. According to Lemma 5.13,

{k ∈ [0,T] : P�,sym(exp(ik�)) = 0} ⊂ spec(�, �) ∩ spec(�′, �),

which finishes the proof. �

6.3 Proof of Theorem 3.2—Non-vanishing trace. Given a graph �

with N edges, and m̃ vertices of degree one, let m := 4N − m̃, and number the
entries of the associated trace vectors x = trk(f ) by

x = (x1, x2, . . . , xm, 0, 0, . . . , 0),

such that the last m̃ = 4N − m entries are the Neumann entries (namely Bj or Dj)
corresponding to a vertex of degree one, and are therefore zero. In this way,
Theorem 3.2 says that given a graph � that satisfies Assumption 1, the following
properties of eigenpairs (k2, f ) of (γ, �) are strongly and ergodically generic in �:
(1) k2 > 0 is simple, and
(2) whenever f is not supported on a loop (if such exists),

(trk(f ))j �= 0, for all j = 1, 2, . . . ,m.

We will prove Theorem 3.2 by applying Theorem 6.4 to the polynomial

q(z,x) :=
m∏
j=1

xj

together with the following lemma.
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Lemma 6.5. Let � be a graph satisfying Assumption 1, and fix an index

j ∈ {1, 2, . . . ,m}. Then, there exist an � ∈ RN
+ and an eigenpair (k2, f ) of (�, �),

such that k2 is a non-zero simple eigenvalue, f is not supported on a loop (if the

graph has loops), and
(trk(f ))j �= 0.

Proof. First consider the case where the j-th coordinate of trk(f ) is a Dirichlet
coordinate (namely Aj′ or Cj′ for some edge ej′) and therefore equal to the value
of f at some vertex v. In such a case, the genericity result Berkolaiko and Liu in
[12] assures that there is an � ∈ RN

+ (in fact a residual set of such) for which every
eigenfunction which is not supported on a loop does not vanish at v. Since not all
eigenfunctions are supported on loops (as can be seen in the proof of Theorem 3.3)
then we are done.

Now consider the case of j such that the j-th coordinate of trk(f ) is a Neumann
coordinate, namely it equals 1

k times the normal derivative of f along an edge e
at a vertex v which is not of degree one. We may now use [3, Lemma 5.20]
which shows that there exists some �κ ∈ RN/2πZN such that whenever � ∈ RN

+

satisfies exp(i�) = exp(i�κ), then k2 = 1 is a simple eigenvalue of (�, �) with an
eigenfunction f which is not supported on a loop (this is the meaning of the notation
�κ ∈ �c

L in [3]), and furthermore the normal derivative of f along the edge e at the
vertex v is non-zero (this is the meaning of the notation ∂ef�κ(v) �= 0 in [3]). This
proves the lemma. �

Proof of Theorem 3.2. Let � be a graph with N edges that satisfies
Assumption 1. Choose the irreducible polynomial p as follows. If � has loops,
set p = P�,sym. If � is a mandarin, set p = PM,s. Otherwise, P� is irreducible and
we set p = P�. According to Lemma 5.11, if � has loops then any eigenpair (k2, f )
of (�, �) with the properties that k2 is non-zero and simple, and f is not supported
on a loop, must satisfy

z = exp(ik�) ∈ Z(P�,sym) ∩ �reg(�) = Z(p) ∩ �reg(�).

We may deduce from Lemma 6.5 that for any � which is not a mandarin

(6.5) ∃(z,x) ∈ T(�) such that z ∈ �reg(�) ∩ Z(p) and q(x) �= 0.

Notice that q(x) �= 0 implies x �= 0. This is the needed assumption for Theorem 6.4
and we conclude that the properties
(1) k2 > 0 is simple, and
(2) q(trk(f )) �= 0 whenever f is not supported on a loop (if such exists),

are strongly and ergodically generic. We have proved Theorem 3.2 except for
mandarin graphs.
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Now assume that � is a mandarin graph, and orient all edges from one vertex,
say v0 to the other, say v1. According to Lemma 6.5, there exists an eigenpair
(k2, f ) of (�, �) such that k2 is a non-zero simple eigenvalue and q(trk(f )) �= 0. We
claim that we may assume that f is symmetric. To see that, first assume that f is
anti-symmetric, and consider its restriction to the edge ej

f |ej (tj) = Aj cos(ktj) + Bj cos(ktj), tj ∈ [0, �j].

Define �′ such that �′
j = �j + π

k for all edges, and extend f to a function f̃ on (�, �′)

f̃ |ej(tj) = Aj cos(ktj) + Bj cos(ktj), tj ∈
[
0, �j +

π

k

]
.

It is not hard to conclude that trk(f̃ ) and trk(f ) are related by

(Ãj, B̃j, C̃j, D̃j) = (Aj,Bj,−Cj,−Dj).

We may conclude that f̃ is a symmetric eigenfunction of eigenvalue k2 with
q(trk(f̃ )) �= 0. To see that k2 is also simple as an eigenvalue of (�, �′), notice
that this extension procedure is invertible and maps eigenspaces to eigenspaces, so
it preserves multiplicity.

To conclude, we have shown that there exists an eigenpair (k2, f ) of (�, �) such
that k2 is a non-zero simple eigenvalue, q(trk(f )) = 0, and f is symmetric, so (6.5)
holds and we may apply Theorem 6.4 by which
(1) k2 > 0 is simple, and
(2) q(trk(f )) �= 0 whenever f is symmetric,

are strongly and ergodically generic properties for a mandarin graph. If we
set p = PM,as, then the same argument proves that
(3) q(trk(f )) �= 0 whenever f is anti-symmetric,

is also strongly and ergodically generic. Since an eigenfunction of a simple
eigenvalue is either symmetric or anti-symmetric, then we are done. �

7 Future work

7.1 The conjecture of Q-independent spectrum. In this paper we
constructed a machinery for proving genericity statements for a single eigenpair.
However, this machinery may be generalized to include relations between different
eigenvalues and eigenfunctions, by considering products of T(�) and products of
�(�). Kurasov and Sarnak have shown in [29] that when � is Q-independent,
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the spectrum spec(�, �) has infinite dimension over Q. Following this result,
Sarnak raised the question of whether spec(�, �) is linearly independent over Q,
for a generic �. We believe that the answer is affirmative, and we write it as a
conjecture.

Conjecture 7.1 (Q-independent spectrum). For every graph �, maybe except
some pathological cases, there is a generic set G ⊂ RN

+ , such that for any � ∈ G, the

spectrum spec(�, �) is linearly independent over Q. That is, if we number the non-
zero square root eigenvalues in spec(�, �) increasingly, k1 ≤ k2 ≤ k3 ≤ · · · ↗ ∞,

then, for any n ∈ N,
n∑

j=1

kjqj �= 0, for all q = (q1, . . . , qn) ∈ Qn \ {0}.

If we can extend Theorem 6.4 to products of the trace space, then we would
reduce the conjecture, for a given graph �, to the following problem. For any
rational vector q ∈ Qn \ {0}, provide at least one choice of �, such that the first n

eigenvalues are simple and
∑n

j=1 kjqj �= 0.

7.2 The conjecture of full support eigenfunctions. We say that an
eigenfunction has full support if it does not vanish entirely on any edge,

f |ej �≡ 0, for all j = 1, 2, . . . ,N.

Conjecture 4.3 in [24] states,

Conjecture 7.2 (Full support eigenfunctions, [24]). For any metric graph

(�, �), and any choice of a complete orthonormal sequence of eigenfunctions,

there are infinitely many eigenfunctions with full support.

This conjecture was confirmed in [24] for any graph with � proportional to a
rational vector. The case of Q-independent � follows from the ergodic genericity
proved in [4]. The conjecture was proven for all tree graphs (and graphs with
Dirichlet conditions) in [30]. Let us provide two lemmas that may lead to progress
in proving this conjecture in general.

Lemma 7.3. Consider a metric graph (�, �). If there exists one non-zero
eigenvalue which is simple and has eigenfunction with full support, then there are

infinitely many such simple eigenvalues whose eigenfunctions have full support.

Proof. Using Lemma 4.11, we may say that a non-zero k ∈ spec(�, �) is
simple and has eigenfunction of full support, if

(7.1)
∂

∂zj
P�(exp(ik�)) �= 0 for every j = 1, 2, . . . ,N.
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Given such k, consider the infinite path, exp(it�) for t ∈ R+. This path intersects any
�(�) neighborhood of the point exp(ik�) infinitely often. Taking a small enough
neighborhood so that the derivatives of P� remains non-zero, we get an infinite
sub-sequence of spec(�, �) of square root eigenvalues that satisfy (7.1), and hence
each of these square root eigenvalues is simple, with eigenfunctions that have full
support. �

Lemma 7.3, implicitly, is used in [30], where the fact that the graph is a tree
allows to omit the k �= 0 restriction, and then one can take k = 0, which is simple
and has a constant eigenfunction (and hence of full support). The next lemma uses
the trace space to capture the property of “not having full support” in terms of the
secular manifold.

Lemma 7.4. Given a metric graph (�, �), let f be an eigenfunction with a

non-zero eigenvalue k2 �= 0, and let x = trk(f ). Let supp(f ) ⊂ E be the set of edges

ej for which f |ej �≡ 0 and let sj := eik�j for every ej ∈ supp(f ). Then, the z fiber

T(�)x := {z ∈ �(�) : (z,x) ∈ T(�)}

is an m = N − |supp(f )| dimensional torus inside �(�), given by

T(�)x = {z ∈ TN : zj = sj for every ej ∈ supp(f )}.

Proof. Let (Aj,Bj,Cj,Dj) be the restriction ofx to the edge ej. Since x satisfies
the vertex conditions, then according to Lemma 4.2, z ∈ T(�)x if and only if

Aj + iBj − zj(Cj − iDj) = 0,(7.2)

Cj + iDj − zj(Aj − iBj) = 0,(7.3)

for every edge ej. If ej /∈ supp(f ), namely (Aj,Bj,Cj,Dj) = 0, then any zj solves
these equations. If ej ∈ supp(f ), namely (Aj,Bj,Cj,Dj) �= 0, then these two
equations have a unique zj solution. Since we are given a point exp(ik�) ∈ T(�)x,
then the zj solution for ej ∈ supp(f ) is

zj = eik�j =: sj. �

Using the above two lemmas, one may prove the conjecture by showing that
there is no � ∈ RN

+ for which the path t �→ exp(it�) intersects �(�) only at positive
dimensional subtori as above. It is possible that such a claim can be approached
using algebraic tools.
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7.3 The co-dimension of the singular set �sing(�). In [15], below the
proof of Proposition 1.1, the author conjectures that in the cases where �(�) is
irreducible, the singular set �sing(�) has real dimension

dim(�sing(�)) ≤ N − 3.

Consider the vertical fiber,

T(�)z := {x ∈ C4N : (z,x) ∈ T(�)},
which is a complex vector space. Recall that

z ∈ �sing(�) ⇐⇒ dim(T(�)z) ≥ 2.

Since T(�) is defined in TN × C4N by 4N linear equations with real coefficients,
then we expect T(�) to be an N-dimensional manifold. However, this requires
a transversality argument, i.e., showing that the rank of the Jacobian is always
maximal. If this is the case, then the submanifold

�d(�) := {z ∈ �(�) : dim(T(�)z) = d}
should have dimension at most N − d. If this is true, then to prove the conjecture,
one only needs to deal with �2(�), namely eigenvalues with multiplicity exactly 2.
One may ask if such multiplicity can exist without any symmetry of degree 2. We
believe that this approach might lead to a proof for this conjecture.

Appendix A Algebraic varieties intersected with the
torus

Lemma A.1. Consider an algebraic set (or variety) V ⊂ CN of (complex)

dimension n. Then V ∩ TN has real dimension at most n.

Proof. We consider the case where V is the common zero set of p1, p2, . . . , pm

distinct irreducible polynomials, which we write as

V = Z(p1) ∪ Z(p2) ∪ · · · ∪ Z(pm).

Since any variety is a finite union of zero sets as above, then it is sufficient to prove
the statement for this case.
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Let Q = (p1, p2, . . . , pm) so that Q : CN → Cm and let

F(x) := Q(exp(ix)).

Wedenote their derivatives byDFandDQ. The derivatives at a point z=exp(ix)∈TN

arem×N matrices, which are related by the diagonal unitarymatrixu(z) := idiag(z),

(A.1) DF(x) = DQ(z)u(z), z = exp(ix) ∈ TN.

Assume that V ∩ TN has real dimension n′, so that we want to show n′ ≤ n. Since
the exponent is a diffeomorhpism between RN/2πZN and TN , then

O := {x ∈ RN/2πZN : exp(ix) ∈ V ∩ TN}

has real dimension n′ and exp(ix) is a regular point of V ∩ TN if and only if x is a
regular point of O. Notice that O is the zero set of F, and therefore at any regular
point x ∈ O, the tangent space TxO is n′ dimensional real vector space, given by
the right kernel of the matrix DF(x). In particular, TxO has an orthonormal basis
of n′ real vectors {a1,a2, . . . ,an′ }, such that

DF(x)aj = 0, j = 1, 2, . . . , n′.

Define the vectors bj := u(z)aj for all j. Since u(z) is unitary, these are n′ complex
orthonormal vectors. They satisfy

DF(x)aj = DQ(z)bj = 0, j = 1, 2, . . . n′,

so we conclude that the kernel of DQ(z) has complex dimension at least n′.
Now, assume that there exists a regular point of V in V ∩ TN , say z = exp(ix);

then the tangent space TzV at z is n-dimensional and equals the kernel of DQ(z).
Hence

n′ ≤ n.

On the other hand, if there are no regular points of V in V ∩ TN , then V ∩ TN

is contained in the singular set of V , say Vsing, which is a variety of dimension
strictly smaller than n. Set V = V0 and n0 = n and let Vj+1 be the singular set
of Vj with nj+1 = dim(Vj+1). We may conclude that for any j, either Vj ∩ TN

has real dimension n′ ≤ nj or Vj ∩ TN = Vj+1 ∩ TN . Since the dimensions nj

are strictly decreasing this must end after at most n = n0 steps and provide the
answer n′ ≤ n = n0. �
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