THE NUMBER OF ZEROS OF LINEAR COMBINATIONS OF
L-FUNCTIONS NEAR THE CRITICAL LINE*

By
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Abstract. In this paper, we investigate the zeros near the critical line of
linear combinations of L-functions belonging to a large class, which conjecturally
contains all L-functions arising from automorphic representations on GL(n). More
precisely, if Ly, ..., Ly are distinct primitive L-functions with J > 2, and b; are any
non-zero real numbers, we prove that the number of zeros of F(s) = ]!=1 b;L;(s)
in the region Re(s) > 1/2 + 1/G(T) and Im(s) € [7T,27] is asymptotic to
KoTG(T)/+/1og G(T) uniformly in the range loglog T < G(T) < (log T)", where
Ky is a certain positive constant that depends on J and the L;. This establishes a
generalization of a conjecture of Hejhal in this range. Moreover, the exponent v
verifies v < 1/J as J grows.

1 Introduction

The theory of L-functions has become a central part of modern number theory, due
toits connection to various arithmetic, geometric and algebraic objects. L-functions
are represented by Dirichlet series which are absolutely convergent in half-planes.
They satisfy certain conditions, including having a meromorphic continuation, an
Euler product over primes and a functional equation. The prototypical example
of an L-function is the Riemann zeta function. Other important examples include
Dirichlet L-functions attached to primitive Dirichlet characters, and the Hasse—
Weil L-functions attached to elliptic curves. The Langlands program predicts that
all L-functions arise from automorphic representations over GL(#n).

L-functions are predicted to verify several hypotheses, the most important of
which is the generalized Riemann hypothesis (GRH), which asserts that all non-
trivial zeros of L-functions lie on the critical line Re(s) = 1/2. On the other
hand, there exist various Dirichlet series which have arithmetical significance and
satisfy a functional equation, but are not L-functions, since they do not possess an
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Euler product. Most of these functions can be expressed as linear combinations
of L-functions. Important examples include Epstein zeta functions associated to
quadratic forms, and the zeta function attached to ideal classes in number fields.
Unlike L-functions, these zeta functions are not expected to satisfy the GRH, and
some of them might even possess zeros inside the region of absolute convergence.
The first to have investigated such a phenomenon are Davenport and Heilbronn [3],
who proved in 1936 that the Epstein zeta function of a positive definite quadratic
form of class number > 2 has infinitely many zeros in the half-plane of absolute
convergence Re(s) > 1.

For a complex valued function f(z), we shall denote by N¢(o1, o2, T) the number
of zeros of f in the rectangle o; < Re(s) < 03 and T < Im(s) < 27. We also let
N¢(o, T) be the number of zeros of f in the region Re(s) > o and T < Im(s) < 2T.
Voronin [24] proved that Ng(o1,02,T) > T for any 1/2 <o) <0, < 1 fixed,
where E(s, Q) is the Epstein zeta function attached to a binary quadratic form Q
with integral coefficients and with class number at least 2. Lee [14] improved
this result to an asymptotic formula Ng(o1, 02, T) ~ c(o1, 02)T for some positive
constant c(oy, 02). Gonek and Lee [4] obtained a quantitative bound for the error
term in this asymptotic formula, and this was subsequently improved by Lamzouri
[11] who showed that one can obtain a saving of a power of log 7 in the error term.

Throughout this paper we let J > 2 be an integer, by, ..., b; be non-zero real
numbers such that Zle bf = 1, and we define

J
(1.1) F(s) = Fp,..1,(5) = > _ biLi(s),

j=1
for L-functions L;,...,L;. Lee, Nakamura and Panikowski [16] generalized

Voronin’s result to zeros of linear combinations of L-functions in the strip
1/2 < o1 < 0y < 1, where 01, 0, are fixed. More precisely, they established that

NF(O-la 02, T) > 71:

if the L; belong to the Selberg class of L-functions, and verify a stronger version
of the Selberg orthogonality conjecture (see (1.3) below). In the special case
where the L; are Dirichlet L-functions or Hecke L-functions attached to the ideal
class characters of a quadratic imaginary field, one obtains an asymptotic formula
Np(o1,02,T) ~ cp(o1,02)T as T — oo, for a certain positive constant cg(o1, 02)
(See [2], [10] and [14]). Furthermore, by using the methods of the proof of
Theorem 1.1 below, one can generalize this result by showing that

T
Ni(@1, 02, T) = er(on,o0T+0( o).
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if the L-functions L;,...,L; satisfy the assumptions Al1-A5 below and
0 =0(J, F, 01, 0;) is a positive constant.

Although linear combinations of L-functions have many zeros off the critical
line, it was conjectured by Montgomery that 100% of the zeros of F(s) lie on the
critical line, if the L; are primitive! L-functions satisfying assumptions A1 and A2
below. Bombieri and Hejhal [1] established this conjecture if the L; satisfy the
assumptions Al, A2, A3 and A5 below, conditionally on the GRH and a zero-
spacing hypothesis for each of the L;. Unconditionally, Selberg [20] established
that a positive proportion of the zeros of F(s) lie on the critical line, in the special
case where all of the L; are Dirichlet L-functions having the same parity and
conductor.

In this paper we study the zeros of the linear combination F(s) where the
L-functions Ly, ..., L; satisfy the following assumptions:

Al: (Euler product) Forj=1,...,J and Re(s) > 1 we have

Lo =TI (1-“2) "

p i=1

where |a;;(p)| < p? for some fixed 0 < 0 < 1/2 and foreveryi=1,...,d.
A2: (Functional equation) The functions L, L, ..., L; satisfy the same func-
tional equation

AJ(S) = COA](I - S_),
where
k
Aj(s) 1= Li()Q [ [ TAes + po),
=1

lo| =1,0 > 0, A4, > 0 and u, € C with Re(u,) > 0.
A3: (Ramanujan hypothesis on average)

d
>3 1)l = 0

p<x i=1

holds for every € > 0 and foreveryj=1,...,J asx — oo.
A4: (Zero density hypothesis) There exist positive constants ¢y, ¢, such that for
alll <j<Jandalleg > 1/2 we have

(1.2) Ny (o, T) < T' =112 log T)*.

! An L-function is primitive if it cannot be written as a product of non-trivial L-functions, where the
trivial L-function is the constant 1.
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A5: (Selberg orthogonality conjecture) By assumption A1 we can write

log Li(s) = ZZﬁL(P ),

p k=1
where ,BLj(p") are complex numbers. Then, for all 1 < j, k < J there exist

constants & > 0 and ¢;x such that

Z B, (P;ﬁLk(P)
p<x

where 9, =0if j #kand §;, = 1 if j = k.

1
(1.3) = gu&loglogx+ s +O( ),

log x

Remark. The assumptions A1-AS5 are standard, and are expected to hold for
all L-functions arising from automorphic representations on GL(»n). In particular,
they are verified by GL(1) and GL(2) L-functions, which are the Riemann zeta
function and Dirichlet L-functions, and L-functions attached to Hecke holomorphic
or Maass cusps forms. For GL(1) L-functions, the Selberg orthogonality conjecture
boils down to the fact that L(s, y) is regular and non-zero at s = 1, if y is a non-
principal Dirichlet character. For GL(2) L-functions, assumptions A3 and A5 are
handled using the Ranking—Selberg convolution, while assumption A4 is proved
in [17] for L-functions attached to holomorphic cusp forms, and in [19] for L-
functions attached to Maass forms. Assumptions A4 and A5 are used to investigate
the joint distribution of log L;, log L,, . .., log L; near the critical line, which is a
key component of the proof of Theorem 1.1 below. To this end, the zero density
hypothesis A4 is used to approximate log L;(c + it) by short Dirichlet polynomials
for “almost all” points ¢, while the Selberg orthogonality conjecture A5 insures
the “statistical independence” of the functions log L;(c + it), when o is very close
to 1/2.

For each 1 < j < J, write L; as a Dirichlet series L;(s) = Z;’,Zl aleEn), which is
absolutely convergent for Re(s) > 1 by assumption A3. Then F(s) has a Dirichlet
series representation

or(n) > 1b o, (n).
Zl Z
Since the first non-zero term dommates the others, F(s) has no zeros in Re(s) > A
for some constant A > 0. Hence, we may define

or :=sup{Re(p) : F(p) =0} < A.
Moreover, it follows from assumption A2 that F(s) satisfies the functional equation

k k
(14)  F)Q [[Tes+ pe) = oF (1 = 50" T T(Ae(1 — )+ o).

=1 =1
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Furthermore, since F(s) has no zeros on Re(s) > oF, by (1.4) we see that

{_ pme+m - Re(ug)+m

A 1’ <l—ap,fz1,...,kandm:0,1,2,...}

is the set of (trivial) zeros of F(s) on Re(s) < 1 — of. All the other zeros are in
the strip 1 — o < Re(s) < o and we may call them the non-trivial zeros. The
number of nontrivial zeros S+ iy of F(s) with 0 < y < T is denoted by Np(T') and
it is well-known that

d
Np(T) ~ 2; TlogT

as T — oo, where dp =2 Z’Zzl Ae.
Bombieri and Hejhal [1] conjectured that the order of magnitude of the number
of zeros of F(s) off the critical line and up to height 7 should be

TlogT
Vioglog T’

Motivated by this conjecture, Hejhal [5, 6] studied the zeros of linear combinations
of L-functions near the critical line. Suppose that L; and L, satisfy assumptions A1,
A2, A4, and AS, as well as the Ramanujan—Petersson conjecture (which asserts
that |a;;(p)| < 1 for all i,j and p) instead of the weaker assumption A3. Let
F(s) = cos(a)L;(s)+sin(a)L,(s), where a is a real number. Then Hejhal [5] proved
that for “almost all” a with respect to a certain measure, we have

TG(T) TG(T)

1
1.5 T
(1.5) JloglogT < F(z T 6 ) < Jloglog T

in the range (log 7)° < G(T) < (logl‘;(g)gTT)K where d > Oand 1 < x < 3 are fixed. He
also conjectured (see [5, Section 6]) that the following asymptotic formula should

hold for all & ¢ 77 in the same range of G(7):

1 1 T)N\/51+§2 TG(T)

(1.6) NF(z TGy 8732 \/log G(T)’

In the short note [6], Hejhal discussed a generalization of the bounds (1.5) to linear
combinations with three or more L-functions, but did not provide a complete proof
of these bounds.

In this paper, we prove a quantitative generalization of the conjectured asymp-
totic formula (1.6) for any linear combination of L-functions F(s) = Zi] biL;(s)
as in (1.1), though in a smaller range of the parameter G(T). More precisely, our
main result is the following theorem.
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Theorem 1.1. Let F(s) be defined by (1.1), where the L-functions Ly, ..., Ly
satisfy assumptions AI-A5. Let T be large, £ = max;<; &, and

0 <v < 1/(12J +7 +16J./3&)

be a fixed real number. Then for c=1/2+ 1/G(T) with loglogT <G(T) <(logT)"
we have

TG(T TG(T
Ne@ D =K o0 wo TOD )

Vlog G(T) (log G(T))>/*
where

J

1 P
Ko =Ko(J; <1, 82, ..., &) = / e~ XRS5y, du

s T 6 2
and

R, :={ueR :u, =max{uy,...,us}}.

Remark. In the case J = 2, an easy calculation shows that Ky matches the
constant predicted by Conjecture (1.6) of Hejhal. Indeed, we have in this case
1 2 /= 2z 2/ 2 /%
Ko = (/ e_”'/“_"z/gzuldulduz + / e_"l/*'_"z/“ugduldm).
471.2\/614:2 Uy >uy Ury>ug

We can compute the first integral as

o0
/ e—u%/él—ug/g“zuldulduz _ <1 / e—u§(1/§1+1/§2)du2 - \/ﬁfl &ié ‘
w>u 2 Jooo 2 S1+&

Evaluating the second integral similarly, we thus deduce that

Ko = 1 (\/ﬂfl &é +\/7f§2 &ié )= VE+E
Tunyas\ 2 \a+aT 2 \a+s/) T 82

as desired.

Remark. In[15], Lee obtained an analogue of Theorem 1.1 (in a larger range
of G(T)) in the case where F(s) = E(s, Q) is the Epstein zeta function attached to a
binary quadratic form Q with integral coefficients and class number 2 or 3. In this
case E(s, Q) can be expressed as the linear combination of two Hecke L-functions.
However, the method of [15] does not seem to generalize to the case of linear
combinations of three or more L-functions.
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2 Strategy of the proof of Theorem 1.1, key ingredients
and detailed results

Let F(s) be defined by (1.1) where the L; satisfy assumptions A1-A5. In order to
count the number of zeros of F(s) in the region Re(s) > o, T < Im(s) < 2T we
shall use Littlewood’s lemma in a standard way. Let o9 > op. Then, F(s) has no
zeros in Re(s) > o and hence by Littlewood’s lemma (see [21, (9.9.1)]), we have

0 1 2T 1 2T
Np(u, T)du = / log |F(o +it)|dt — / log |F(og + it)|dt
(21) o 2 T 2 T

T
+ ) (0 — 0¢)logng + Op(log T),
T

where ng is the smallest positive integer such that ar(np) # 0. In order to estimate
the integrals on the right hand side of this asymptotic formula, we shall construct
a probabilistic random model for F(o + it). Recall that

F(o+it) = ZbL(aHt)—Zb HH( a’ﬁ?)

j=1 p i=l

Let {X(p)}, be a sequence of independent random variables, indexed by the prime
numbers, and uniformly distributed on the unit circle. For 1 < j < J we consider
the random Euler products

Li(0, X) _HH( “Jz(P)X(P))

p i=1

These products converge almost surely for ¢ > 1/2 by Kolmogorov’s three series
theorem. We shall prove that the integral } fT2T log |F(o + it)|dt is very close to
the expectation of log |F'(o, X)|, where the probabilistic random model F(o, X) is
defined by

J
F(0,X) =Y biLi(o, X).
Jj=1

Theorem 2.1. Let J > 2 be an integer, { = max;<; &, and
0 <v < 1/(12J +7 +16J,/3&)
be a fixed real number. Let T be large. There exists a positive constant > 0 such

that for o0 = 1/2+ 1/G(T) with loglog T < G(T) < (log T)" we have

1 2T . 1
T/r log |F(c + it)|dt = E(log | F (o, X)I)+0((log T)ﬁ)’

where here and throughout we denote by I&(-) the expectation.
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Thus, in order to estimate Np(o, T) it remains to investigate the function
M(o) := E(log |F (o, X)),

and more precisely to estimate the difference M(c) — M(o + h) for small . We
shall investigate this quantity in Section 7 and prove the following result.
Theorem 2.2. Let
log G(T) log G(T)
G(T)=G(T d Gy(T):=G(T .
=60 ey -1 @ D =0D, Gy +1
Assume that G(T) > 4. Then for eachi = 1,2 we have
1 1 1 1 . 2nKy 1
M -M =(-1) (0]
(,* G(T)) (5 G,-(T)) D ogGarypn * <(log G(T))9/4)’
where the constant K is defined in Theorem 1.1.

‘We now show how to deduce Theorem 1.1 from Theorems 2.1 and 2.2.

Proof of Theorem 1.1 assuming Theorems 2.1 and 2.2. First, note
that

1 .
= —1)"/(G(T)log G(T)).
2 * Gy =0+ (CDAGD logG(D)
Since Np(w, T) is a decreasing function of w for each 7', we see that
2% 6,1, Ni(o, T) o
2.2) / Nr(w, T)dw < ’ < / Nr(w, T)dw.
. : G logG(T) ~ Jisy1, "
By (2.1) and Theorems 2.1 and 2.2, we obtain
2n [2ad
" / = Np(w, Tydw
T Js
1 2T 1 1 1
= log |F it)| — log |F it ) |dt + O
p ), ol vl —tog [F(5 + o wir)ars (6eryioecen)
1 1 1
=M(o) — M| . + +0
(@) (2 Gi(T)) (G(T) log G(T))
; 27'L'K0 1
=(=1) .
Y togainrp * L ogarys)
Inserting these estimates in (2.2) completes the proof. (]

We next describe the different ingredients that are used in the proof of Theo-
rem 2.1. The first is a discrepancy bound for the joint distribution of the values of
the L-functions L;(s), which generalizes the results of [13] for the Riemann zeta
function. For ¢ > 1/2 we let

L(o +it) = (log|Ly(o +it)|, ...,log|L;(c +it)|,argLi(c + it), ..., arg L;(o + it)),



ZEROS OF LINEAR COMBINATIONS OF L-FUNCTIONS 677

and similarly define the random vector

L(o, X) = (log|Li (0, X)|, ..., log|L;(o, X)|, arg L, (0, X), ..., arg L;(o, X)).
For a Borel set B in R and for ¢ = 1/2 + 1/G(T), we define
2.3) Dr(B) = ;meas{t € [T,2T] : L(o + it) € B}
and
(2.4) ®(B) := P(L(0, X) € B),

where here and throughout, meas will denote the Lebesgue measure on R. We will
prove that the measure ®}*"¢ is absolutely continuous and investigate its density
function Hy(u, v) in Section 7.

We define the discrepancy between these two distributions as

D7(B) := ®r(B) — OF"(B).
Then we prove the following result which generalizes [13, Theorem 1.1], and
might be of independent interest.
Theorem 2.3. Let T be large and o = 1/2+ 1/G(T) where
loglog T < G(T) < \/log T/loglog T.

Then we have
VG(T)loglog T
V1og T

where R runs over all rectangular boxes of R¥ (possibly unbounded) with sides

sup [Dr(R)| «
R

parallel to the coordinate axes.

We shall use this result to approximate the integral ; T2 g log |F(o+it)|dt by the
expectation E(log |F (o, X)|). However, in doing so we need to control the large
values and the logarithmic singularities of both log | F(¢ +it)| and log | F(o, X)|. To
this end we prove the following propositions.

Proposition 2.4. Let T be large, and 0 = 1/2 + 1/G(T) with

logT

2<6M) = CO\/loglog T’

for some small constant ¢y > 0. There exist positive constants Cy, Cy > 0 such
that for every positive integer k < (logT)/(C1G(T)loglog T) we have

1 2T
- /T | log|F (o + it)||**dt

& (Crkloglog T G(T)****(max{k, G(T)*>?log G(T)})* .
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Proposition 2.5. LetT belarge, ando =1/2+1/G(T)with2 < G(T) < logT.
There exists a constant C3 > 0 such that for every integer k > 1 we have

E[| log |F(o, X)I1*] < (loglog T)(C3k(k + log log T))".

We also need the following result on the large deviations of log L;(o + if) and
log Lj(o, X).

Lemma 2.6. Let 1 < j < J, and T be large. Let 0 = 1/2 + 1/G(T) with
loglog T < G(T) < cov/log T/ loglog T for some small constant cy > 0. Then,
there exists a positive constant c| such that for all \/1og G(T) < t < (loglog T)?
we have

1
Tmeas{t € [T,2T] :|log Li(c + it)| > t}
2

T T
< Vog () P (- & log G(T) + cho(T))’
where Go(T) = max{/log G(T), log; T}. Furthermore, the same bound holds for
P(|log Li(o, X)| > 1),
in the same range of t.

Our last ingredient in the proof of Theorem 2.1 is the following lemma, which
provides bounds for the probability of “the concentration” of the random variable
|F (o, X)|.

Lemma 2.7. Let ¢ > 0 be small and J > 1 be fixed. Then for any real
numbers o > 1/2, R > 0 and M > 2z we have

P(L(o, X) € [-M, M1¥, and R < |F(0,X)| < R+¢) < MY 1M (Re + &%),
where the implicit constant is absolute.

The plan of the remaining part of the paper is as follows. With all the ingredi-
ents now in place, we shall first prove Theorem 2.1 in Section 3. In Section 4 we
gather together several preliminary results that will be used in subsequent sections,
and prove Lemma 2.6. These will be used to bound the discrepancy of the joint
distribution of log L;(s) and prove Theorem 2.3 in Section 5. Then in Section 6, we
shall establish Proposition 2.4. Finally in Section 7 we shall investigate the distri-
bution of the random vector L(o, X) and establish Theorem 2.2, Proposition 2.5,
and Lemma 2.7.
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3 Proof of Theorem 2.1

In this section we establish Theorem 2.1 using the ingredients listed in the previous
section, namely Theorem 2.3, Propositions 2.4 and 2.5, and Lemmas 2.6 and 2.7.

We let 6 = 1/2 + 1/G(T) where loglog T < G(T) < (logT)?, and 0 < 0 < 1/2
is a real number that we shall optimize later. We start by showing how to use
Lemma 2.6 and Proposition 2.4 to control the large values and the logarithmic

singularities of log |F(o + it)|]. Let @ > 0 be a positive constant to be chosen and
define

L :=aloglogT, and M :=(G(T)loglogT)>.
We define the following sets:

Si(T) :={t € [T,2T] : L(c + it) € (=L, L)¥},
Sy(T) :={t € [T,2T] : log |F(o + it)] > —M},
and

So(T) := §1(T) N S2(T).

Let

¢ 1= &max 1= max{;.
j<J

Then it follows from Lemma 2.6 that

J
meas([7, 2T]\ Si(T)) < Zmeas{t e [T,2T] : |logLi(oc +it)| > £}
j=1
TeO(\/loglog T)

< (log T)**/0)

On the other hand, using Proposition 2.4 with k = | (loglog 7)*/*] gives

1 2T
meas((T, 271\ SxT) < / | log | F(o + in)|*dt
T

& T exp(—(loglog 7).
Therefore we deduce that

O(\/log logT)

3.1) meas([7, 271\ So(T) <1 e
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Combining this bound with Proposition 2.4, and using Holder’s inequality with
r = |loglog T'| we have

/ log |F(o + ir)|dt
te[T.2TI\So(T)

2T 1/2r
< (meas{7 € [T, 2T \So(T>}>1—1/2’( / |log|F(o + ir>||2’dr)
T

(32) TeO(\/log logT)

(log T)az/(fg)
TeO(\/loglog T)
(log T)az/(éﬂ)—39 :

1-1/2r
< ( ) (Tog 1) (loglog T)*)"/*"

<
We now define for 7 € R
Yr(7) = 7lﬂmeas{t e So(T) : log|F(o +it)| > t}
and similarly
Wiand(7) :=P(X € 8, and log |F (o, X)| > 1),

where § is the event L(o, X) € (=L, £)* and log|F(s,X)| > —M. First we
observe that for r € So(7T) we have

J J J
log |F(o +ir)| < log (Z |bij(a+it)|> < log (Z |bj|eﬂ> =L +log (Z |b,~|>,

J=1 J=1 J=1

and hence we have
(33) \PT(T) = \Prand(T) = Oa

for
_ J
t> L:=L+log (Z|bj|).
=1
Using a geometric covering argument, we prove the following result which shows
that Wr(7) is very close to Wianq(7) uniformly in z. This will imply Theorem 2.1.

Proposition 3.1. Let T be large. Then we have

(loglog T)>'*!

SUE |\PT(T) - \Prand(T)l < (10g T)(I—H—IGJOC)/(4J+2) .

<[l

Proof. We let 0 < & = &(T) < e~%* be a small parameter to be chosen. We
shall consider three cases depending on the size of 7.
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Case 1: 7 < —M. In this case, it follows from the definition of the set So(7)
together with (3.1) that

meas(So(7T))
T

;meas{t € [T,2T] : L(c +if) € (=L, L)Y} + 0(

Yr(7)

1 )
(log T)2/"
Similarly, using Proposition 2.5 with k = |loglog T'] we have

1
Pdog |F(o,X)| < —M) < E(|log |F(a, X)||?* )
(log |F(a, X)| < )_M2k (llog |F (o, X)||7) < (log T)?

Therefore, it follows from the definition of the event 8 that

1

Weana(?) = P(L(0, X) € (=L, L)) + 0<(log . )

Hence Theorem 2.3 yields

loglog T )

(34) ‘PT(T) = lIJrand(r) + 0((10g T)(I—H)/Z

Case 2: —M < 1 < log(Cs¢)+ L, where Cj is a suitably large constant. In this
case we have

1
(3.5 Yr(7) = Tmeas{t € [T,2T]: L(c +if) € (=L, L) \ Uy(e, L)},
where U;(y, £) is the bounded subset of R* defined by

U;(y, L) == {(ul, U VY, ..., 0)) €RY lujl, lvj| < Lforall 1 <j<J,

J
Z bjeujﬂ'vj < y}

Jj=1
We cover U, (e, £) with K(7) distinct hypercubes B (7) of the form H]?:JI [z, zj+&)
with non-empty intersection with U;(e®, £). Note that

and

K(n) <« (ﬁ)zj.

Now, let 1 < k < K(7) and (uy,...,u;,01,...,05) € Br(r) N Uyer, L).
Recall that this intersection is non-empty by construction. Subsequently, for any
(X1, ..., X7, Y1,...,Ys) € B(r) we have |x; — u;| < ¢ and |y; — vj| < ¢ for all
1 <j < J. Hence, we deduce that |x;|, [yj| < L+eforall 1 <j < J and

J J
E bje)(j+iyj E bjeuj+il)j
=

j=1

+ O(SEL) < Cyee®
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for some positive constant Cy since e* < Czge® by our assumption. Therefore, we
have shown that

Us(e, L) C | Bu(r) C Uy(Caee®, L + ).
k<K(1)

Hence, appealing to Theorem 2.3 we obtain

Yl,meas{t € [T,2T] : L(o + it) € Uy(e, L)}

K(7)
< ; pmeas{r € [T,2T] : Lo +if) € B(v))
(3.6) K(7) K(t)loglogT
T
= ; P(L(O', X) € B/((7'-)) + 0( (10g T)(I—H)/Z )

L2J+l

< P(L(0, X) € Uy(Caze®, £ +2)) + 0(821(10g i )

Moreover, it follows from Lemma 2.7 that
(3.7) P(L(o, X) € Uy(Caee”, £ +)) < L¥ 62,
Combining this bound with (3.5) and (3.6) gives

¥ (1) = ;meas{t € [T,2T] : L(c +it) € (=L, £)*}

L21+1

2J AL 2
+O(L e e +821(logT)(1—9)/2)'

Similarly, it follows from (3.7) that
Wrana(7) = P(L(0, X) € (=L, £)*) + O(L¥ ** &),

Thus, using Theorem 2.3 we deduce that in this case
L21+1

_ 2 4L 2
3.8) WYr(7) = Prana(7) + O(L ee + ¢/ (log T)(I—H)/Z)'

Case 3: log(Cze)+ L <1 < £. In this case we have
1
Yr(7) = Tmeas{t € [T,2T] : L(o + it) € V,(e*, L)},
where V,(y, £) is the bounded subset of R defined by

V,(y, L) = {(ul, sy U1, ., 0) € Ryl o] < Lforall 1 <j<J,

J .
Z bj€uj+wj > y}

J=1

and
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Similarly as before, we cover V,(e®, £) with K (7) distinct hypercubes @k(r), each
of which has non-empty intersection with V,(e’, £) and sides of length &. The
number of such hypercubes is

K(1) < (f)zj.

Now, let 1 < k < I?(T) and (u4y,...,u5,01,...,05) € %k(r) NV, (e*, £). Then, for
any (x1,...,X7, Y1, ...,ys) € Bi(r) we have |x; — uj| < ¢ and |y; — vj| < & for all
1 <j < J. Hence, we deduce that |x;|, [yj| < L+eforall 1 <j < J and

J J
Z bjexj+iyj Z bjeuj+ivj
j=1

C
+0(ge®) > e — 3 get

=1 2
if C3 is suitably large. Therefore, we have shown that
~ C
(3.9) Ve &) ¢ | Be vy (er— Jeet Lre).

k<K(7)

Now, using Theorem 2.3 we deduce

K(z)
()<Y pmeas(t € [T,2T]: Lo +ir) € Bi(0)}
k=1
(3.10) ko = K(v)loglog T
- kz_; P(L(c, X) € By(1)) + 0( (log T1-2 )

L2741
e (log T)(1-0)/2 ) :

< e’)

&« LY,

< P(L(a, X) e v,(ef - Z4eeL,L +g)) +0(

Moreover, it follows from Lemma 2.7 that

J
> biLi(o, X)

C
IP’(L(U, X)e (=L —¢, L+¢&)” and e — 23 ce® <
=1

sincer < £ = £+0(1) by our assumption. Furthermore, since the density Hr(u, v)
of the random vector L(o, X) is uniformly bounded in u, v by Lemma 7.2, we have

G.1D P(L(s,X) € (=L — &, L+ &) \ (=L, L)"') < LY e,

Combining these bounds we obtain

P(L(a, X) eV, (ef - C; ¢, L+ g)) = Wona(0) + O(LY e*C).
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Hence, inserting this estimate in (3.10) we deduce

L2J+l

2J 4L
(3.12) ¥r(7) < Prana(?) + O(L €T 20(0g T)a—a)/z)'

We now proceed to prove the corresponding lower bound. Let 7; be such that
ef=e" — C23 ge®. Then, it follows from (3.9) and Theorem 2.3 that

1
Tmeas{t € [T,2T] : L(c + it) € V,(e*, L + &)}

K(z1)
> ; pmeas(t € [T,2T]: Lo +ir) € Be(z1)}
G4 R K(»)loglog T
~ 7)loglog
- ; P(L(o, X) € Be(z)) + O (log T2 )

L2J+l

> Wrana(z) + 0(82J(10g T)(I—H)/Z ) :

Moreover, by Lemma 2.7 we have

Wrana(71)

J
> biLi(o, X)

j=1

= Wrana(7) + 0<]P)<L(O', X) € (—L, L)zj tet <

C
<e'+ 23 8€L>)

= Wona(7) + O(LY e 6).

Finally, we use Theorem 2.3 together with (3.11) to deduce
1
Tmeas{t € [T,2T] : Lo +it) € V (e, L +e)} — Y1 (1)

< ;meas{t e [T,2T]: Lc+it) € (=L —¢&, L+ &) \ (=L, L)}

loglog T )

_ o 2\ [ 27

=P(L(c,X) € (=L — &, L +&)¥ \ (=L, £) )+0((10gT)(1_9)/2
_ loglog T
2J—1

< L e+ (log T)(1-0)/2"

Inserting these estimates in (3.13) yields

£2J+1
821(10g T)(l—a)/z ) :

Thus we deduce from the estimates (3.4), (3.8) and (3.12) and (3.14) that in all
cases we have

(3.14) W (7) > Prana(7) + O(sze“s +

L21+1

: 27 4L
Wr(7) = Wrana(7) + O(L e et 2/ (log T)(I—G)/2)'
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The desired result follows by choosing

_ (loglog )Y/ @+
- (log T)(1=0+8a)/(4J+2) " 0

Proof of Theorem 2.1. By (3.3) we have

£ £ 1 1
b4 rdr=/ / drdr = / log |F(o +it)| + M)dt.
[ owwae= [ r L QoslF@in] )

log |F(a+it)|>1
Combining this identity with (3.2) and using that meas(So(7)) = TYr(—M) we
obtain
1 2T
/ log |F(o + it)|dt
T Jr

(315) z eO(\/loglogT)
_ /_ Wi — M¥r(=M) + o(aog ryrans )

We now repeat the exact same approach for the random model F(o, X). Using
the same argument leading to (3.2) but with Lemma 2.5 instead of Lemma 2.4, we
deduce similarly that
O(\/log logT)

Elog|F(0, X)) = Bls - log [F(0, 0D+ O( 1o ).

where 1g is the indicator function of 8. Therefore, reproducing the argument
leading to (3.15) we obtain

eO(\/log logT)
(log T)**/<0) ) ’
Combining (3.15) and (3.16) together with Proposition 3.1 we deduce that

£
(3.16) BogIF(. 0D = | Wana()dr = Mana(—M) + O

1 2T
T / log |F(o + ir)|dt

(3.17) (log log T)>/*+ eO(\/loglog T) )

= Edlog |F(a, X)[) + O((log T)(1=0—16J0)/(47+2)=30 + (log T)**/0)=30

WEe first require that @ satisfies 0 < a/+/3¢, so that the exponent of log T in the
second error term of (3.17) is negative. Therefore, we might choose a be slightly
bigger than 1/3&6. Hence, in order to insure that the exponent of log T in the error
term of (3.17) is negative, we thus require that 4 satisfies the inequality

1
12J + 7+ 16J/3&

This completes the proof. (|

12J0+ 70+ 16J/3¢0 < 1 = 0 <
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4 Preliminary results

In this section we provide several of the technical lemmas that we shall need later.
We first record several useful facts. Since

. k
log Ly(5) = zzz"‘;;ﬁ) ,

i=1 k=1

we see that y
1
P = > i)
i=1
and
(4.1) 1BLPOI <
fork=1,2,...andj=1,...,J. For later use, we remark that
1B, (") |81, (p M2 1B, ()I*

@) Y <00 >y <oo, Y

k=3 p k=2 p V4 p

One can easily show (4.2) by applying assumption A3 and inequalities

k—=2)0 d

1 d
@3 1O D lae < Y el fork =2
i=1 i=1

and
d 2 d
(4.4) 1BLP)I* < (Z |aj,i(p>|) <d) ol
i=1 i=1
Lemma 4.1. Let 1 < j, k < J. Then uniformly for 1/2 < o < 1 we have
ZﬁL,(p)ﬁLk(p)
20
4.5) v P

~auaion(, ) sl -12me(, )

for some constants ¢ k Moreover, uniformly for 1/2 < o < 1 we have

Z BL®)pr.p) _

e ) +0(1)

1
4.6) =7 = dueylo g<<a—l/2)log¥

if2§Y§exp(201_1),
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and

1" yi-
)3

1
4.7 if Yy > .
@7 pno 26— Dlogy = = exP(za— 1)

p>Y

Proof. We start by proving (4.5). First, by partial summation and (1.3) we
derive

Br.(0)Br.(p) % =2
> =0,4&; du+ Db
(4.8) P P’ J ]/2 log ]

(o= ) (14 [T " an).

for some constants b;;. To evaluate the integral on the right-hand side of this
estimate we use the substitution w = (20 — 1) logu. This gives

[e%e} u—2g [e%e} B dw
/ du=/ e v
> logu Qo—1)log2 w

! d ! d > d
(4.9) - / vy / e — 1™ / o0
(2o—1)log2 W (2o—1)log2 w 1 w

= log ( ) — log(2log2) — y + O(c — 1/2),

1
c—1/2

1 d o0 d
y=/<1—e—w) w—/ o
0 w 1 w

is the Euler—Mascheroni constant. Inserting this estimate in (4.8) implies (4.5).
We next establish (4.6). Similarly to (4.8) one has

Br,(0)Br,(p) % y=2
S <o [ dur 00D,

where

p>Y

To estimate this integral we again use the substitution w = (20 — 1)logu. Then
similarly to (4.9) one obtains

%) M—ZD' %) dw 1
du = / e =1lo + O(1),
/Y logu (2o—1)log Y w g<(a— 1/2)10gY)

which implies (4.6).
We finally turn to the proof of (4.7). By partial summation and (1.3) it follows
that in the range Y > exp(1/(20 — 1)) we have

2 0 1-20 [eS) 1-20
)
Z |BL,(P)I <</ 2 du Y <</ e—wdu) Y
Y (

+ +
= 20 logu logY 20—1)log ¥ w logY

Y1—20'
< 2o —1logY’



688 Y. LAMZOURI AND Y. LEE

Now, we will bound the contribution of the prime powers. By (4.1) and (4.3), we

have
5 dp2(n—l)0 d )
Bl < 5 D 1P,
i=1

and hence by assumption A3 and partial summation, we have

|ﬁL(pn)| Z 1 |0‘11(P)| Z—l |0511(p)|
Z I;Zrm < Z Z . p2Ao—0m+20 Z Z l p2Ao—0m+20
p'>Y p>\Y n=2 p<\/Yn>ll"5y
n>2 ogp
YL o)l YL o)
< Z l plo—20 Z )l/z(u—a)pza
p>VY p<VY

<<Y(l+e 40+20)/2 + Y—2(U—9)+(l+g—20)/2

for any ¢ > 0. By choosing ¢ sufficiently small, we obtain

) 1B, @I y'=2
= pe (20— 1)logY”’
which completes the proof. (]

Let L(s) be an L-function satisfying assumptions A1-A4. Here and throughout,
we define for Y > 2 and o, € R

Ry y(o+it) = Z ﬁs((:::g and RL,Y(O', X) = Z LrMHX(p)"

no
Pn <Y pn <Y p

>

where {X(p)}, is a sequence of independent random variables, uniformly dis-
tributed on the unit circle.

Our next result shows that log L(o + it) can be approximated by R; y(o + it) for
1/2+1/G(T) < 6 < 1, and for all ¢ € [T, 2T] except for an exceptional set with a
very small measure. This is accomplished using the zero-density estimates (1.2).

Lemma 4.2. Let L(s) be an L-function satisfying assumptions AI-A4. Let T
be large and G(T) be such that 2 < G(T) < co+/log T/ loglog T, for some suitably
small constant co > 0. Put Y = A6MD0gloeT £ o constant A > 5. Then
there is a positive constant ¢\ such that for all t € [T,2T] except for a set of
measure K T exp(—cylog T/G(T)), we have

. s 1
log L(c +1it) = Ry y(o +it) + 0<(log T)A/z—z)

uniformly foro > 1/2+1/G(T).
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Proof. By Perron’s formula we have

c+iY w

1 Y
Ry y(o+it) =2 . / logl(c+it+w) dw
Tl Je—iy w

e A
+0<Y R 5"/4|1og(Y/p">|>

p n=1p

(4.10)

where ¢ = 5/4 — 0. To bound the error term of this last estimate, we split the sum
over primes into three parts: p" < Y/2, Y/2 < p" < 2Y and p” > 2Y. The terms in
the first and third parts satisfy | log(Y/p™)| > log 2, and hence their contribution is

LY AN '%S(Ifj:)' = Y‘”+1/4<Z Vj;(/ﬁ” + 0(1)> <y
P

P n=l1

by (4.1) and (4.4). To handle the contribution of the terms Y/2 < p" < 2Y, we put
r =Y — p”", and use the lower bound | log(Y/p™)| > |r|/Y. Then the contribution
of these terms is
1
—o+0—5/4 —1/246
LY > <Y log Y.
r<Y

Let wg = —1/(2G(T)) and assume that L(o + it +w) has no zeros in the half-strip
given by Re(w) > —3/(4G(T)), |Im(w)| < Y + 1. Then in the slightly smaller
half-strip { w : Re(w) > wy, [Im(w)| < Y} we have

/

(4.11) I (c+it+w) K G(T)logT

(see [7, Proposition 5.7]). Observe that this holds for all 7 € [T, 2T except for 7 in
a set of measure

11
<Y- N( + 2T) < T'=/4GM) (1og T) exp(AG(T) log log T)

2 4G(TY’
logT
K Texp ( —C] G?T))

for some constants ¢y, ¢z, c3 > 0 by (1.2) and our assumption on G(7). Now,
integrating both sides of (4.11) along the horizontal segment from w to w + B,
where B is sufficiently large, we see that for such ¢ we have

log L(o + it + w) < G(T) logT,

for all w such that Re(w) > wyq, [Im(w)| < Y. Using this and shifting the contour
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to the left in (4.10), we obtain

Ry y(o +it)—log (o + if)

1 wo—iY wo+iY c+iY Yy®
= ( +/ +/ >10gL(0+it+w) dw
27\ Je—iv wo—i¥  Juwo+iy w

+O(Y V0 ogy + Y1/

Wy l
KL G(M)(JogT)Y™logY K (log TY/2-2"

This proves the lemma. (|

We now establish the analogous result for the random model log L(o, X).
Lemmad4.3. Leto>1/2andY >exp(1/(2c—1)). Then, for all ¢ > 0 we have
1-20
P(|log Li(o, X) — Ry, X)| > .
(o L0, X) = Ruy(@. 01 2 0 € o
Proof. By Chebyshev’s inequality we have

1
(4.12) P(|logLi(o, X) — Ry, y(0, X)| > &) < 2 E(llog Li(, X) — Ry, (o, X)I*).
Furthermore, observe that

E(llog Lo, X) — Ry y(0. 0P = 3 7 L-’(;’,ﬁf L B X (o))

pLy>Y L2
_ E:lﬂqgwﬂz
p2na

>

pr>Y
since E(X(p1)"X(p2)") = 1 only when n = m and p; = p,, and is O otherwise.
Combining this identity with Lemma 4.1 and (4.12) completes the proof. g

We also need a standard mean value estimate, which follows from [22, Lem-
ma 3.3].

Lemma 4.4. Let z > 2 be a real number and k be a positive integer such that
k <logT/logz. Let{a(p)}, be a sequence of complex numbers. Let {X(p)}, be a
sequence of independent random variables uniformly distributed on the unit circle.

1 2T a(p)
T/r > i | < k!(2|a(p)|2)

Pz P=z
E(

2%k
> < k! (Z |a(p)|2>
Using this result we bound the (2k)th moments of Ry, y(o + if) and Ry, y (o, X).

Then we have

2k k
b

and
k

> ap)X(p)

P=z

Pz
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Lemma4.5. Let1 <j<J. Letoc > 1/2and Y > 2 be real numbers. Then
for all positive integers k < log T/logY, we have
1 2T
- / IR, v(o +it)|*dt < k!(&loglog Y + O(+/loglog Y))*,
- .

and
E(|Ry, v(a, X)|*) < k!(&loglog Y + O(y/loglog V)X

Proof. We only prove the first estimate, as the second is similar and simpler.
First, by (4.2) we have
2
ﬁLj(p) + Z ﬁLj(p )

Ry, y(o+if) = Z o+t 2o+2it
p<Y pVY

+ O(1)

uniformly in Y and z. Hence it follows from Minkowski’s inequality that

2T 1/2k
( / IRy, v(o+ it)|2kdt)
. :

2T Br(p) 2k )1/2k
J . d
(4.13) 5( /T ; povit |
T BL,(p?)
+ (/T P;y p20'+2it

for some constant C; > 0. Now, it follows from Lemma 4.4 together with Stirling’s

2k 1/2k
dt) +C TV,

formula and assumption A5 that

1 2T v ) 2k | v )|2 k

T/ RN dt<<k!<z Pul >
(4.14) T lp<y p<Y p

< k!(&loglog Y + O(1)),
since ¢ > 1/2. Similarly, by Lemma 4.4 and a simple change of variable we have
2T ﬂL_(p2) 4T ﬁ (pZ
/T p2a+2it 2 / 20’+ll dt
p<VY

(4.15)

2N12\ k
< Tk!(zlﬂ”(’; ) ) .

p<r P
Now, by (4.1), (4.3), assumption A3 and partial summation we obtain
|BL,(0>)I? lai(p)I?
Z P2 < Z Z pr-20
p<Y p<Y i=1

Combining this estimate with (4.13), (4.14) and (4.15) completes the proof. ]
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As a consequence of this result and Lemma 4.2, we establish Lemma 2.6.

Proof of Lemma 2.6. Let Y = !0¢(DlogloeT By [Lemma 4.2 for all
t € [T, 2T] except for a set of measure < T exp(—c; log T/G(T)) (for some constant
c1 > 0), we have

log Li(6 +it) =Ry, y(o +it) + 0<(log Ty’ ) '

Therefore, it follows from Lemma 4.5 that

1
Tmeas{t € [T,2T] : |log Li(o +it)| > 7}

IA

1 0,
Tmeas{z € [T, 271 : Ry, y(o +i)| > 7 — } + 0@ )

1
logT
(4.16) . |
= (t—1/logT)** T
<l (f] log G(T) + O(\/1og G(T) + log; T)
- (t—1/logT)?

Using Stirling’s formula, and choosing
k= [(z— 1/1og T)*/(&log G(T) + C max{+/log G(T), log; T})|

for some suitably large constant C implies the result.
We now establish the analogous bound for log L;(o, X). Let ¢ = 1/(log T)? and
Y = ¢G(Moglog T’ Then it follows from Lemma 4.3 that

T . 2k —cy loeT
IRy, y(o +if)|"dt + O(e™ "' o™)
- .

k log T
) +O(e ™ 16n),

) (10g T)4 e—2(10g log T
(logT)? (loglog T)>
& e—(log log T) )

P(|1og Li(o, X) = Ry, v(e, )| >

Now, using the same argument leading to (4.16) together with Lemma 4.5 we
obtain

P(|log Li(o, X)| > 1)

< P(IRL (0, X1 > 7= )+ O(e™ e 1)

1
logT
< ! (f] log G(T) + O(y/1og G(T) +log; T)
- (t—1/logT)?
Making the same choice of k and using Stirling’s formula completes the proof. [
We extend the X(p) multiplicatively by defining for n=][, p*, X(m)=[[, X(p)*.
We finish this section with the following standard lemma, which we shall use

)k + O(e—(loglog T)S).

in Section 5 to prove that the characteristic function of the joint distribution of
log Lij(o + it) is very close to that of the joint distribution of log L;(c, X).
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Lemma 4.6. Let bj(n) be complex numbers, such that |bj(n)| < C for all
1 <j<Jandn > 1 and for some constant C > 0. Let k;j, ka be positive integers
forj < J and write k=3 ;_;kj and k' = ,_; ki. Then uniformly for Y, T > 2 we

have
1t b\ (= bi(n)\ ¥
LI ) () a

T

j=1 “n<y n<y
J 2\k+k'
:]E(H (Zb(n)X(n)) (me)}«m) ) ((CYT) )
j=1 “n<Y n<Y

Proof. We have

1 et bin)\ % bi(n)\ Y
LI ) () a

j=1 “n<y n<y
_ 1/2T< Z bi(niy)---br(ng,1) bJ(nl,J)”'bJ(nk,,J)>
T Jr ooy (RERR L (1, - - ng, )"

8 ( > bl(ml,l)"'bl(mk/l.;l) bJ(ml,J)"'bJ(ka;J))dt.
gty (myy - -my 1)~ (myg---my, )"

The contribution of the diagonal terms is

SR | ({1 O

nij,mij<Y j=1 i=1

[Trni=I1mi;
J kj K,
=E ( 1T ( > bj(”)X(i’l)) (Z bj(n)X(n)> ) .
j=1 n<Y n<Y

The off-diagonal contribution is

B (m/n)ZiT _ (m/n)iT
= . %:<Y ];[<Hb(nz])]:[b(mw)>( lTlOg(l’ﬂ/i’l) )’

TTnsATmi;

: /
where n = [[n;; and m = [[m;;. Since n,m < Y*** and n # m,

<< Yk+k/ .
[ log(m/n)|
Hence, we derive
(C Y)k+k’ (CY2 )k+k/
> 1 .
RS DI .
n,-‘,-,m,',jSY
[Tni#T1mi;

This completes the proof. (|
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S Bounding the discrepancy: Proof of Theorem 2.3

Letu = (uy, ..., uy) and similarly v, x, and y be vectors in R’, and define

Brixy)i= [ VA0, v)
R

and

PM(x, y) = /]R I C RN
where x - u = Ef:] xju; is the dot product. Then by the definitions of ®7 and @}
in (2.3) and (2.4), we may write

R 1 /27 J
Or(x.y) =, /T exp {2711'2(;@ log |Li(o + if)| +y; arng(a+it))]dt
Jj=1

and

J
CT)rTa“d(x, y)=E < exp [ZﬂiZ(Xj log |Li(0, X)| + y;arg Li(o, X))} ) .

j=1

Proposition5.1. Let T be large ando=1/2+1/G(T) where2 < G(T) < lgé'l‘;gg .

Let ||X||oo = sup, ;< lxj|. Then, for any constant A > O there exists a constant

\/logT

€1 /6Ty loglog > W€ have

c1 > 0 such that for all x and 'y with ||X]|co, ||¥lloco <

m Frand 1
CDT(Xa Y) = cI)T (Xa Y) + 0((10g T)A ) :

Proof. LetY =exp(BG(T)loglogT), where B =2A+6. Then foreveryj < J,
it follows from Lemma 4.2 that

1
(5.1) log Li(o +it) =RLj,Y(0+if)+0((10g T)A+l)

for all € [T, 2T] except for a set of measure < T exp(—c; log T/G(T)) for some
constant ¢; > 0. Let A(T) be the set of points ¢ € [T, 2T for which (5.1) holds for
allj < J. Then

meas(A(T)) < T exp(—cy log T/G(T)) < T exp(—+/log T).
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Hence by (5.1), CT)T(X, y) equals

1 J
- / exp <2n'i< > (xjRelog Li(o + if) + yjimlog Li(c + it))> ) dt
A(T)

Jj=1
+ O(e—\/l()g T)
J

1 2T
= T / exp (Zﬂl( E (ijeRL,.,y(a +if) + yjImRL,.,y(a + ll))) ) dt
T - ’ ’
J=1

1
O((log T)A ) ’

Let N = [log T/(10BG(T) loglog T)]. Then, it follows from the previous estimate
that CT)T(X, y) equals

2N—1 (27”),, 1 2T J n
52 Y T /T <Z(ijeRLj,Y(Hit)+yjImRLj,Y(a+it))) dt +Ey,
n=0 : j=1
where
El < !
' (log D
(27T)2N(||X”oo+”y”oo)2N1/2T 4 AN
R;. 1 dt
(5.3) - oM r ) ;:I 1, v(0 +it)|
1 N! (cilog TN 1

(Cyloglog Y)Y

< ogTyt T 2! G(TY (loglog TYN S (log TYA”

by Lemma 4.5, Minkowski’s inequality and Stirling’s formula, where ¢; and C,
are positive constants.

Next, we handle the main term of (5.2). To this end, we use Lemma 4.6, which

implies that for all non-negative integers k, ks, . . ., kpy suchthat k| +- - -+kp; < 2N
we have
1 r2T J J
- /T [®RL.v(o+it)s [[Re, v(o + ity ar
j=1 =1

J J
=F ( H(RL,,Y(U, X))b H(RLJ',Y(@ X))km) +O(T~\).

j=1 =1

Let z; = x; + iy; and z; be its complex conjugate. Then it follows from this estimate
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that for all 0 < n < 2N we have

1 2T J "
T / ( Z(ijeRLj,y(a +it) + yImRy, y(o + it))) dt
T -
j=1
11 7 n
TonT / (Z(ZJRL,-,Y(J +it) + ZjRy, y(o + it))) dt
T -
Jj=1
1 Z n
2" - Ty >0 <k1,...,k2j>
ki+--+koy=n
1 2T J J
X T / H(ZjRLj’Y(O' + il‘))kf H(ZKRL[,Y(O' + il))kj+’dt
T .
=1 t=1

1 n I !
= 2 (kl,kz’m’ky>1E(H(zf~RL,,y(a, X9 [ [eRe,. v (o, X»W)

Jj=1 =1

J n
=E [ ( Z(-ijeRL_,,Y(U, X) + yImR;, y(o, X))) }
j=1

+O(T ™27 (||X] o0 + 1Y 1100)™)-

Inserting this estimate in (5.2), we derive that &)T(X, y) equals

2N—1 Qi)' J n
> o E < < > (xReRy, y(0, X) +y,ImRy, y(o, X))) >
n=0 : j=1

O((log T)™
5.4) +O((logT)™")

J
=E ( exp <27ri > (xReRy, y(o, X) +y,ImRy, y(o, X))) )
Jj=1
+O0((log T)™),
where the last estimate follows by Lemma 4.5 and the same argument as in (5.3).
Let ¢ > 0 be a parameter to be chosen, and define B, to be the event

[log Li(o, X) — Ry, (0, X)| <eé,

for all j < J. Let B¢ be the complement of B,. Then it follows from Lemma 4.3
that

1
P(B¢ .
(Be) < &2(log T)?8
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Let 15, be the indicator function of the event B,. Then it follows from this estimate
that Cf)rfmd(x, y) equals

J
. 1
E (138 - exp (271'1 j§=1 (xjRe log Li(a, X) + y;Im log L;(a, X)))) +0( 2(log T)ZB)

J
=E (1BE - exp (2m' > (xReRy, y(0, X) + y,ImRy, y(o, X))))
Jj=1
1
0
* <8 * g2(log T)ZB)

J
. 1
) (exp (2m ;(ijeRLj,y(a, X) + yImRy, y(o, X)))) + o(g * 2 (log T)ZB).

Choosing ¢ = (logT)"28/3 and inserting this estimate in (5.4) completes the
proof. g

The deduction of Theorem 2.3 from Proposition 5.1 uses Beurling—Selberg
functions. For z € C let

_ /sinwzy2 ad sgn(n) 2 _ [sinmz\2
H(Z)—( T )(Z (Z—l’l)2+Z> and K(z)—( z )

n=—oo

Beurling proved that the function B*(x) = H(x) + K(x) majorizes sgn(x) and
its Fourier transform has restricted support in (—1, 1). Similarly, the function
B~ (x) = H(x) — K(x) minorizes sgn(x) and its Fourier transform has the same prop-
erty (see [23, Lemma 5]).

Let A > 0 and a, b be real numbers with a < b. Take J = [a, b] and define

1
Fra@= (B (Alz—a)+ B~ (A(b = 2)).

Then we have the following lemma, which is provedin [12] (see Lemma 7.1 therein
and the discussion above it).

Lemma 5.2. The function Fq A satisfies the following properties
(1) For all x € R we have |F3 A(x)| < 1 and

(5.5) 0 < 15(x) — Fya(x) < K(A(x — @) + K(A(b — x)).

(2) The Fourier transform of Fg a is

- o
(5.6) By a() = {lg(y)+0(A) iflyl < A,

iflyl = A.
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Proof of Theorem 2.3. First, it follows from Lemma 2.6 that with
r=(loglog T)? we have

1 1
pmeas{t € [T,27] : L(o +ir) ¢ [~(loglog T)?, (loglog T)*1¥} « (log T)10"

and

1
P, ) ¢ [=(loglog )7, (oglog TPT) <y,

Therefore, it suffices to consider rectangular regions
R c [—(loglog T)?, (loglog 7)1%.
Let A =J + 3 and ¢, be the corresponding constant in Proposition 5.1. Let

\/IOg T
C1 s
VG(T)loglog T

and
J J
R =[]la;, b1 x [[lc;. )]
Jj=1 Jj=1

forj=1, ,J,with0 < bj—aj, di—c; < 2(loglog T)%. We also write Ji = laj, b;]
and J; = [c], d;]. By Fourier inversion, (5.6), and Proposition 5.1 we have

o1 J
/ H Fy, a(log|Li(o + it)|)F 3, a(arg Li(o + it)) dt

/Rz, (HFJ A(5)Fy, A(y])) Or(—x, —y) dxdy
(5.7)

< H ﬁjj,A(xj)ﬁgj,A@j)> CT)rTand(—X, —y)dxdy + E;

il lyl<a J=1
j=1,2,..,J

J
=E ( [1 Fy.atlogILi(, X)DFy, a(arg Ly(o, X))) +0(
j=1

1
(log T)? )
47
where E; = O(A% 1% %6007,
Next note that K(&) = max(0, 1 — |£]). Applying Fourier inversion, Proposi-
tion 5.1 with J = 1, and Lemma 7.1 we obtain

2T
K(A(log|L (o +it)] — a)) dt
T

LS 16N amiac g 1
= 1 - mies @
N /_A( L )eTTEDIE 0, 0dE <
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where a is an arbitrary real number. By this and (5.5) we have that

1 2T
T/ F3,.A(RelogL (o +1it))dt
(5.8) T

1 2T
- T/r 15, (Relong(a+it))dt+O(I/A).

Lemma 5.2 implies that |Fy, A(x)|, |[Fg,,a(x)| < 1 forj=1,...,J. Hence, by this
and (5.8) we have

1 27 J . '
- /T [ Fo.aRelog Li(o + it))Fy, s(arg Li(o + ir)) dt
j=1
1 2T
= T/, 15, (RelogL(c +it))Fy, a(arg Ly (o + it))

J
x [ [ Fs,.a(Relog Li(o + i) Fy, a(arg Li(o + if)) dt + O(1/ A).
Jj=2
By using the same argument, one can prove analogs of (5.8) for Relog L;(o + it)
with 2 < j < J and arg L;(c + it) with 1 < j < J. We then derive

1 /27 J
T / H Fy, a(Relog Lj(o +it))Fy, a(arg Li(o + it)) dt
T
j=1

21 J
(5.9) 1 . . 1
=/ ,Ll 1y, A(Relog Li(o + i)y, a(arg Lo + it)) dt + O, ( A )

:cDT(R)+0J(i).

A similar argument shows that

J
1
(5.10) E ( [175,.aRelog Lo, X))Fy, aarg Lo, X))) = o ®+0,( ).
j=1

Inserting the estimates (5.9) and (5.10) in (5.7) completes the proof. ]

6 L* norm of loglzjf=1 b;Li(o + it)|: Proof of Proposi-
tion 2.4

To prove Proposition 2.4 we follow the same strategy as in the proof of [13,
Proposition 2.5] for the Riemann zeta function, but we encounter new technical
difficulties which we shall describe later.

We first start with the following classical lemma, which is a generalization of a
lemma of Landau (see Lemma « in [21, Section 3.9]).
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Lemma 6.1 ([13, Lemma 5.1]). Let O < r < 1. Also, let so = o9 + it and
suppose f(z) is analytic in |z — so| < r. Define

f(@)
f(s0)

M, (sp) = max
lz—sol<r

+3 and Ndso)= » 1,
le=sol<r
where the last sum runs over the zeros p of f(z) in the closed disk of radius r
centered at so. Then for 0 < 6 < r/2 and |z — so| < r — 20 we have
f/

1 1
P@= 3 +0( 5,008 Milso) + Nis(so)(log1/0+ 1),

|p—sol<r—o
Recall that L;(s) has a Dirichlet series representation

o

Li(s) = Z aL;lEn),
n=1

for Re(s) > 1. We shall apply Lemma 6.1 to the following function

. J
©6.1) f@=c 0 S hLe),

Ejil bjaLj(nO) j=1

where ny is the smallest positive integer n such that Z{=1 bjar,(n) #0. We let p run
over the zeros of f. We recall that ¢ = 1/2 + 1/G(T), and choose
s 1 1
= r:=o00— . —
5G(T)’ ° 2 26y

where o( is taken to be large (but fixed) so that |f(c¢ + ir)] > 1/10 and
min,, [sop — p| > 1/10 uniformly in 7. A straightforward generalization of [13,

and R :=r+4.

Lemmas 5.2 and 5.3] leads to the following result. To be precise, we only include
the major steps of the proof.

Lemma 6.2. Let o, 0, r, R, and so = oy + it be as above. Then there exists an

absolute constant ¢ > 0 such that for every positive integer k we have

2T J 2k
/ log| > biLi(c+in)|| dt
T j=1
|27 J 2k
< MGk + G(T) log GTH* > (log ( > biLisy)| + 3)) :
n=[T] j=1

where s, = o,+it, forn > Qis a point at which | Zil b;L;(s)| achieves its maximum
value on the set | J, -, ,,, Dr(00 + it), and Dg(z) is the disc of radius R centered
at z.
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Proof. First, applying Lemma 6.1 to f(z) defined in (6.1) we obtain for
|z = so| < r— 20 that

f@ 1 1
o " Ip—S()zI;r—é e, 0( 5, 108 M,(50) + Ny—s(s0)(log 1/0+ 1))
where
M, (so) = max ff((szo)) +3 and N,(so) = Z 1.

lo—sol<r

Now, a standard application of Jensen’s formula shows that (see [13, (5.4)])
N,_5(s0) < ;(log M, (s0) +log 10).
Hence we derive

/ 1
J} ((ZZ)) - ¥ ., + O(G(T)* log G(T) log M,(s0))

for |z — so| < r — 2J. We integrate both sides from sg = g¢ + it to s = ¢ + it and

|[p—sol<r—o

take the real parts, to obtain

log|f(s)| — log |f(so)|
= Z log |s — pl + O(N,_s(s0) + G(T)’ log G(T) log M,(s0))

|p—sol<r—o
= Y logls— pl+O(G(T)* log G(T) log M,(s0)),
|p—sol<r—o
since log |so — p| = O(1) for all zeros p with |p — 59| < r — J by our choice of gy.
Furthermore, since log [f(so)| = O(1) and log [f(s)| = log | ZJLI b;Li(s)| + O(1), we
deduce that

J
log| > biLi(o + if)

J=1

< Z log|o+it — p| + a1G(T)? log G(T') log M (sy),

|p=sol<r—o

for some positive constant ¢;. We now use the simple inequality

e+ ) < 2% max(lxl, [y < 2% + [y1*)

2k

dt

for all real numbers x, y, to deduce that
J
log | > biLi(o + it)

/2T
T =

2T 2k
(6.2) < 4k/ ( > |10g|0'+it—p||) dt
T

|p=sol<r—o

2T
+2c1G(T)} log G(TY)* | (log M,(so))*dt.
T
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Forn > 0, let s,, = g, + it,, be a point at which | ZL] b;L;(s)| achieves its maximum
value on the set {J,,<,<,,,; Dr(00 + it). Then, we note that

127

2T n+1
(log My(so)P'dr = >~ [ (log M (s
T n=\T) n

(6.3) 7]

) (log(

n=|T]

J
> biLi(sy)

=

)

for some absolute constant ¢; > 0. Furthermore, a straightforward generalization

of the proof of [13, Lemma 5.3] implies that

2T 2k
/( S |10g|0'+it—p||> dr
T
|

p—So|<r—ad
[2T ] 1 2k
(6.4) <(esk)™ Y {5 D logMrloo+ i<n+N5>>)
n=|T] <1/V/o
)2k 2T J 2k
< (033]3 Z (log( ijLj(sn) +3)> ,
n=(T) j=1

where c3 > 0 is an absolute constant. Inserting the estimates (6.3) and (6.4) in
(6.2) completes the proof. (]

In the case of the Riemann zeta function, in order to bound

[27]

> (log|¢(sa)l +3)*,

n=|\T|

the authors of [13] use Jensen’s inequality together with standard estimates for the
second moment of ¢(s). However, estimates for the second moment are not known
in general for the L-functions in our class. Using a different approach, we were
able to overcome this problem and establish the following result.

Lemma 6.3. Let d, 1, R, and 5oy = o¢ + it be as above. Let D,(z) be the disc of
radius a centered at z. Forn > 0, let s, = 0, +it,, be a point at which | Zi] biLi(s)|
achieves its maximum value onthe set\ J,,,,1 Dr(0o+it). Then there exist positive
constants ¢y and c; such that for all positive integers k < log T/(c1G(T)loglogT)

we have
12T | J 2k
> (log ( > biLisy)| + 3)) & TG(T)*(c2kloglog THX.
n=|T| j=1
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Proof. We first observe that

J
(102 (| ot

2k
" 3)) < €} max( (og(L;(s)] + 3)*)
= j<

J
< CF ) _(log(ILi(sy) +3)*

Jj=1
for some constant C; > 0 that depends on J and the b;. Thus, we have

[27T]

5 (o

n=|T|

[27]

2k J
+3)) < CEST S (g5l + 3™
=1

n=|T|

7
Z biL;(s,)

J=1

To prove the lemma, it is enough to show that

[27T]

> (log(ILi(sw)] +3)* < TG(T)X(Cak loglog T)
n=|\T]

for every j < J and for some constant C, > O.
Without loss of generality, we only consider the casej = 1. Let

Ar(T) ={[T] <n < [2T] : |Li(sp)| < 5},
Ar(T) :={|T] <n < |2T] : |Li(sp)| > 5, Li(s) = 0 for some |s — s,| < J},
As(T) :={[T] <n < [2T] : |Li(sp)| > 5, L1(s) #0 for all |s — s,| < J}.

Then we see that

(6.5) 3" (log(ILi(s)] +3)* < T(log 8)*.
nE.A](T)
To bound the sum over A,(T), we use the classical Phragmen—Lindel6f principle

which implies that there exists x > 0 (which might depend on x and d in assumption
Al) such that

(6.6) ILi(x +iy)| < (1 +|yD".

If |p — syl < dand Li(p) =0, then Re(p) > 1/2+ 1/(10G(T)). By assumption A4
we have
> (og(ILi(sy)] +3))* < C5(log TY*N.,(1/2+ 1/(10G(T)), T)
neAs(T)
(6.7) < C§Te—C4l(‘;(gTT>+2kloglogT

Cy logT

< C’;Te_ 2 G(T)
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for some constants C3, C4 > 0 and for k < log T/(c{G(T) loglog T) by choosing ¢
sufficiently large. Lastly, for each n € A3(T) we have

1
0 < log(Li(s)1 +3) < 2log il <, [[  logiLit+ iplduay,
Dj(sy)

since log |L;(s)| is subharmonic by [18, Theorem 17.3]. By Jensen’s inequality

k

applied to the convex function ¢(x) = x**, we have

1 2k
(log(IL1(sn)] +3)* <<CI§( e // log |Ly(x + iy)ldxd)’>
Dys(sn)
<<C5 T2 // (log |Li(x+ ly)|)2kdxdy
Dj(sy)
<G5 / / (log | L1 (x + iy)|)**dxdy
Y Dy (6o+it,)

for some Cs > O and R' = R+ 6. Thus,

> (og(ILi(s)| +3))*
neA3(T)
(6.8)

Y / /D (log |Ly (x + iy)|)*dxdy.

nE.Ag(T) R (D‘()+ll‘,,

Let S, ={n e A3(T) : n = ¢ (mod (4[R'] +2))}. If m,n € 8, and m # n then
|m — n| > 4[R"] +2; so that |, — t,| > 2R’ + 1. This implies that

Dgr /(o9 +it,) N Dr(0g + it,) = 0.

Thus, since the disks are disjoint we see that

Z / /D (log |Li (x + iy)|)**dxdy

(6 9) HGS( r (Co+it,)

oo+R’ 2T+2R'+1
«<6@? [ [T doglLie+ inldyas.
D'()—R 2R —

By adding (6.9) for all £ (mod (4[R’] +2)) and using (6.8), we see that

> (log(ILi(sn)] +3)*
neAs(T)
(6.10)

oo+R 2T+2R'+1
< CtG(T)? / (log |Ly (x + iy)])*dydx.
oo—R JT—2R—1

Note that
oo—R =09 —r—25=1/2+1/(10G(T)).
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Let Y = exp(100G(T) loglog T). Then it follows from Lemma 4.2 that uniformly
for x > 09 — R’ we have
6.11) log Li (x +iy) = Ry y(x+iy)+0( ! )
; (logT)*
forall y € [T, 2T] except for a set of measure < T exp(—Cg log T/G(T)), for some
constant Cg > 0. Let A(T) be the set of points y € [T, 2T] for which (6.11) holds
and let A(T) be its complement in [T — 2R’ — 1, 2T + 2R’ + 1]. Then we have
log T)

G(T)/

We now split the inner integral on the right-hand side of (6.10) in two parts, the
first over A(T) and the second over A°(T). By (6.6) we obtain

meas(A°(T)) K T exp ( —Cs

D'()+R/

/ / )(log |L1(x + iy)|)*dydx <« meas(A°(T))(Cy log T)*

6.12 coR AT

( ) Cs log T)
2G(T)

for some positive constant Cy, where the last estimate follows from our assumption

<L Texp ( —

on k.
Furthermore, if y € A(T), then for x > o9 — R’ we have

(log |Li(x + iy))** < 4*(|Rp, y(x +iy)|* + 1)

by (6.11). Thus, by Lemma 4.5 and Stirling’s formula we obtain

0’0+R/

/ (log |Ly(x + i) ) dydx
(6 13) oyp—R' A(T)

oo+R’ 2T
< 4* ( / / IRz, y(x + iy)|*dydx + T) &« T(Cgkloglog T)X
oo—R JT

for some positive constant Cg. Inserting the estimates (6.12) and (6.13) in (6.10)
gives

3" (og(ILi(sw)l +3)* < TG(T)*(Cok log log TY*
neAs(T)

for some constant Cy > 0. This with (6.5) and (6.7) proves the lemma. [

Proposition 2.4 follows from Lemmas 6.2 and 6.3.

7 Analysis of the random model: Proofs of Theorem
2.2, Proposition 2.5 and Lemma 2.7

Recall that

L(o, X) = (log |Li(0, X)|, ..., log|L,(0, X)|, arg L (0, X), .. ., arg L,(0, X)).
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We define its partial sum
Lq(O', X) = (IOg |Ll,q(o-3 X)la vees IOg |LJ,q(O-3 X)la arng,q(o-a X)a vees arng’q(O', X))

for a positive integer g, where

Bu; (P )X(P)k
logLjy(0,X) = Z
P=q k=1

We also define
(7.1) L. (0, X) := L(o, X) — Ly(0, X).
For a Borel set B in R* and for ¢ = 1/2 + 1/G(T), we define
7.2) O (B) = P(Ly(0, X) € B),

' DY (B) :=P(L. 4(0, X) € B)

and their Fourier transforms

By [ ST,
(7.3)

D (x, y) = /R eIV ADE (u, v)

forx=(x,....,x) e R andy=(y,...,y)) e R/.

7.1 Upper bounds for the density functions and the Fourier trans-
forms of L(c, X), L (0, X), and L. ,(g, X). In this subsection, we prove that the
distribution functions of L(o, X), L (o, X), and L., ,(o, X) are absolutely continu-
ous, and provide bounds for their density functions and Fourier transforms. These
will be used to prove Proposition 2.5 and Lemma 2.7. We start with the following
lemma.

Lemma 7.1. Let A > 0 be a given real number. Then, there exists a positive
integer q(A) such that

D(x, y) Kgoa (1+[Ix]]2 + lyll2) ™

for every q > q(A), where

Xl = > Il

jsJ
Furthermore, for any positive integer g we have
~and A
PG, ¥) Lga (L+[Ix[12 + 1yl ™"

Thus, CDg’f‘}d is absolutely continuous for sufficiently large q > 0 and (I)rag T IS
absolutely continuous for any q > 0.
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Proof. The absolute continuity of (Drand and CDrjng follows from the inequali-
ties in the lemma (see [9, Section 3]). Thus, it is enough to prove these inequalities.

We first define for any prime p

J
(71.4) @po(X,y) = E[GXP (27ri > (yRe(gi(X(p)p~")) +yj1m(gj(X(p)p_”)))>],

j=1

where -
gy =>_ B,
k=1
Then we find that
D (x, y) = BlexpRri(xy, . . ., X7, V15 - - -» ) - Ly(o, X))
(7.5) = erox 9
P<q
By [14, Lemma 2.5] there is a constant C > 0 such that
Cpa/Z
(7.6) l9p.s(X, )| <
g o (7 + y)l/4
if

2
ZﬁL ) — iyp)| > 5Z<x +y7)

Jj=1 Jj=1

for some constant 6 > 0. Note that [14, Lemma 2.5] holds even for complex

coefficients a; with minor modification. In that case the condition in the last line
of the lemma should be

> dllyll-

Z aj(yj — iy})

Let g; > 0 be alarge positive integer to be chosen later and define a sequence g,

of integers inductively by ¢, = 29". We shall prove that given u and v, there exists
a prime p in the interval (g,—1, g,] such that

J 2
> B — i)

j=1

L. : 2., .2
>, (min @)Jz:lj(x,- +y7)
holds. Suppose not. Then multiplying both sides by 1/p and summing over all
primes p in (g,—1, ¢,] we have
5 | o0 B ()& — iy

Gn—1<P<{n p

1. !
< ,(ming) > (& +yH(log g1 + O(loglog g,-1)).
e
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On the other hand by (1.3) we see that

S | oL AL @) — iypI?

4n—1<P<qn p

J 2
Zx +7 ( > lﬁLf;p)l +0(1))

J=1 dn—1<P=4gn

~

= (5 +y)(&1og gu—1 + O(loglog g,—1))
j=1

J
> (ming) > (7 +yH(log gu—1 + Ologlog g,—1)).
.

This is a contradiction if g,_; is sufficiently large.

Now, take g = g,,+1 where m = |[4A] + 1. Then using (7.6) together with the
trivial bound |, +(x, y)| < 1 we obtain

Frand - X quﬁ Cq m
1DPF el <[] ] lewoxwl<]] <

J 2 2V1/4 2)A
n=1 gn <p=<qn+1 n=1 (Zj=1 Xj +yj) / (Z lx Yy )

for some constant C, ,, > 0. This completes the proof.
To prove the second inequality, we choose ¢ such that g, > ¢. Then for
m = [4A] + 1 we obtain similarly that

Lm—1 m ng/z
= rand 1
eyl [T I leecni <] v 57,0
n=C  Gn<p<dns1 ot Qj=1 X7 +35)
'/
< q,m,l
T (L 2+ A
=17 J
for some constant C’ me > 0. O

By Lemma 7.1 and [9, Section 3], there is an integer g > 0 such that both d)ff‘}d
and d);agflr have continuous density functions, say H, r(u, v) and H., r(u, v), re-
spectively. One can also see that H., r(u, v) has partial derivatives of any order.
Since @5 = CDrj‘de, it follows that ®%"¢ has a continuous density function which
we shall denote throughout by Hr(u, v). These density functions are real valued
and nonnegative.

Lemma 7.2. Let 0 < A < (24/ max;<, é’j)_l be a fixed real number. For all
u, v e R/ we have

A J 2 2
Hr(u, v) & e voean 22105+,
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Proof. Let g be a positive integer. By a standard convolution argument we
have

Hr(u,v) = /sz Hyr(u—x,v— y)dCDmZ (X, y)
= [ Har@ = x.v = DH_gr(x, sy

foru, v e R’. Since
|81, (P )I
ILy(0, ) = leongq(ﬂ P < ZZZ =R
J=1 P=q k=1

we have H, 7(x,y) = 0 for Z _l(x +y; 2) > R2 Let

J
B,(u,v) = {(x, y) € R . Z(xj - uj)2 + () — vj)2 < Rﬁ}

Jj=1

be the 2J dimensional ball of radius R, centered at (u, v), then we see that

Hr(u,v) = / H,r(u —x,v—y)H. ,7(x, y)dxdy
B,(u,v)

< (sup Hyr(x,y) 0% (By(u, ).
(x,y)eR%

Since the measure @ﬁf‘(}d(ﬁ) := P[L,(0, X) € B] and its density function qu,,,(x, y)
depend continuously on ¢ > 1/2, we see that

sup sup H,r(x,y) <M, := sup sup I:Iq,,,(x, y) < o0
T>Ty (x,y)eR¥ 1/2<0<2/3 x,yeR/

for a sufficiently large constant 7y > 0. Hence, we deduce that
(1.7) Hr(u, v) < M@0 (By(u, v).

Thus, it remains to find an upper bound for (Drang(Bq(u v)).
First, we remark that if (x, y) € B,(u, v) and ||(u, V)||2 > 2R, then

1
(7.8) e WMl =, 11, vz,

since otherwise }|[(w, V)2 < [[(w, V)[l2 — [ VIl < I, v) — &Pl < Ry
which contradicts our assumption. Let 4 < (24J max;<, é‘j)_l be a positive real
number. Then it follows from (7.8) that for (u, v) € R¥ such that [|(u, v)||» > 2R,
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we have
O (By(u, V)

= / H>q,T(Xa Y)dXdy
B,](ll v)

79 i
7 < e oG Zi:l(”fwfz)/ elexGin Zél(xfﬂf)HW,T(Xa y)dxdy
B,(u,v)

I SN (a2
< e e 2= (Y7 / _eomn E./:1<x/2+y/)H>q,T(X, y)dxdy.
R

To complete the proof we establish that for any real number 0< 1’ <(6J maxj<; &)™
we have

(7.10) / elog;év(T) Zle(fofyf)HW,T(X’ y)dxdy = O, ;(1)
RY
as T — oo. Indeed, assuming (7.10) we obtain by (7.7) and (7.9) that
Hr(u,v) <, ¢ oo 705407

for [|(u, v)||2 > 2R,. Therefore, choosing g to be large but fixed we deduce that
for all (u, v) € R¥ we have

Hr(u, v) < e_logaﬂ S 0G+0,)

where the implicit constant is absolute.

We now proceed to establish (7.10). Our proof is basically the same as the
second part of the proof of Proposition 2.2 in [15]. First, note that

ya J 2,2
/ZJ eloscr) 22i=10 +}'i)H>q,T(X’ y)dxdy
R

Y J
=E{exp ( £ G(T) 2

)}

kzl: B, (Pk)X(P)k

P>q
Since by (4.2) we have

X k k k
ZZﬂL<p> ®) _ZZ/BL(? @, 0.

pP>q k=1 P k=1
Br, ()X (p) B X(p)?
:Z - pa +Z - p2a

P

+0,(1),
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we see that
J k k
— B, (P )X(p)
E
>
P

v J
<<qE[ (1 gG(T)Z

J=1

)

/

J 2 2
B, (p™)X(p)
logG(T 21: Z

p*

bl
y E[exp ( 6% ‘Z B, (p2>X(p>2 2)]

log G(T)
By inequality [8, (18.8)] (which is an easy application of Parseval’s identity), the

i

p

By Hoélder’s inequality, the above is

d 6/
= HE[exp <logG(T>‘Z

j=l

above is

! 6J2/ R A 6J1 1AL\ "
SH(l_logcmg P2 ) (1‘10g<;<r>§ Pt )

By (4.2), we see that
2412 2012
Z |ﬁL,-(P )] < Z |ﬁLj(p )] < 00

4o 2
P p P p
Furthermore, it follows from (4.5) that
2
3 'ﬁ;gj)' = &log G(T) + O(1).
P

Hence, we obtain

i 2
/21 e 10G(D) PUIICALY )H> ¢.7(X, Y)dxdy
R

J reE 3
<, H (1 _ 6J1' (& log G(T) + 0(1))) 2

1 log G(T)

L 1

since 0 < A’ < (6J max;; fj)_l. This completes the proof of (7.10) and hence the
result. O
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From the above lemma, we deduce the following proposition and Lemma 2.7.

Proof of Proposition 2.5. By Lemma 7.2 we see that

2k J
— X uj+in
E( ) = /R ; > be

j=1
Furthermore, it follows from [15, Lemma 2.3] that there exists a constant C > 0O

2

k
log log Hr(u, v)dudv.

J
> biLi(o, X)
=1

such that for any M > 0 we have

J
11 HUjFIv;
ain [ iog| Y be

Jj=1
Applying this result with M =log G(T)/ A completes the proof. (]

2k

log e~ T qudy <« MY (CRMM + k).

Proof of Lemma 2.7. First, using that Hy(u, v) is uniformly bounded in
u, v we obtain

J
P(L(o,X) € [-M, M]” and R < | > b;Li(0,X)| < R+ g>
(7.12) J=1
J
< ‘AE[—M,MJJ,VEL—M,MJJ dudv < M [IE[—M,MJJ,VG_[O,ZEJJ dudv,
R<| Zj!:l bjeuj+ﬂ’j|<R+e R<| Zjlzl bje"-’+ll}f|<R+e

where the last estimate is obtained by splitting the range of each v; into intervals
of the form [2kz, (2k + 1)xr] and using that e is periodic of period 2. By the
change of variables r| = ¢", the last integral in (7.12) equals

d
(7.13) / / </ rldm)duz...dujduz...dvj,
0,2z J[-M,M}—! Ry T1

where
. J .
Ro = {(ri,v1) € [e™,eM] x [0,27] : R < |byrie™ + > bje" ™| < R+e&}.
=2

We shall now bound the inner integral by changing the polar coordinates (ry, v;)
to cartesian coordinates x, y, defined by x = rjcos(v;) and y = rysin(v;). Let
Z= Zf:z [Ij: e Theset {(x,y) € R?: R; < |[x+iy+Z| < R>} corresponds to the
annulus of radii Ry, R, centered at —Z with volume 7(R3 — R?). Thus, we have
d dxd
/ r dvy = / xay
Ro

T eMay/nce X2 42
R/|by| <|x+iy+Z| <(R+€)/|b |

oy (R+¢)? — R?

oM
<e
|b1]?

/ dxdy = e
R/|b1 | <|x+iy+Z| <(R+&)/|bi |

< e™(Re + &%).
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Inserting this estimate in (7.13) and combining it with (7.12) we deduce

J
> biLi(o, X)

P(L(a, X) e [-M, M]¥ and R <
Jj=1

<R+e>

< MY 1eM(Re + 62, O

7.2 Asymptotic formulas for CT)rTa“d(x, y) and Hr(u, v). Inorderto prove
Theorem 2.2 we need an asymptotic formula for the density function H7(u, v) that
is valid for a certain set of (u, v). To this end we prove the following result.

Lemma 7.3. Let {yin = minj<; ;. Then we have

(7.14) | i (x| < e Emn(IIKIBHIVID log GT+O(1)

for |IX|]3 + |Iyl13 < e2V9D. Moreover, there exists a constant ¢4 > 0 such that

5
(7.15) DX, y) = e (1 +Y " Buo(2) + O] |z||§>)

m=3

holds for
z:=x+iy=(x1+iy1,---,XJ+iJ’J)GCJ

and ||z||2 < c4, where each B, ;(z) is a homogeneous polynomial in 7 and z of

degree m,
J
Boo(2) = — 77 log G(T) Y & +y7)
(7.16) =1 log G(T)
og . .
+j];] (le,jz + 0( G(T) ))()le — lyjl)(sz + lyjz)a

for some constants C;, ;, and

_ llz]|3'
(7.17) Buo@) = B2+ O ")
form=3,4,5.
Proof. Recall from (7.5) that

(7.18) o(x, y) = [ op.o(x. 1),
P
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where ¢, (X, y)is defined in (7.4). Now, using (7.4) and expanding the exponential
we obtain

J
Ppo(X,y)=E {GXP <27Ti > (gRe(g(X(p)p™)) + yjIm(gj(X(p)p_”))))}

=

-2, H IO s ()]

k,lE(ZE())J pg pg
where fork= (ky, ..., k;) € (Zso)’, we define K(K):=ky +- - - +ky, Kl :i= k! - - - k!,
Z=X+1iy,z=X— iy and z¥ :=z’{‘ ---zﬁ’. Let

J

et =2[[Ta(0) )]
Since A, ;(0,0) =1, and A, ,(0, k) = A, ,(k, 0) = 0 for k # 0, we deduce that
(7.19) Ppo(X,¥) = 1 + R, 5(2),
where
Roo@ =) > (m)gi:l)zkzlfx,,,g(k, N
k70 150 !

We now proceed to bound the sum R, ;(z) in a certain range of z and p. By (4.3)
and (4.4), we see that

X (P)X 4 o i(p)|?
()T o (R o

1| 1
=0 | L 0F) =0(,)

Hence, there exists a constant ¢y > 0 such that both

(7.20) ‘gf(i(p))‘ Z lai(P)I?,
‘gj(Xp(f))‘ = Copl/lz_e

hold for every prime p and every j < J. Thus, we obtain

d ki+L;
Ryo@l < 35 1 1 <"’°”1'§”2 J S |aj,,-<p>|2)
1 i=1

(7.21) k70 170 =l
IIZII [1z]13
ZZD o, (P)I* < pi- -

j=1 i=1
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provided that ||z|]|» < p'/?7Y. This implies that in the range ||z||, < Y with
Y := exp(y/G(T)), there is a constant ¢; > O such that |Rp.s(2)] < ; holds for all
primes p > ¢;YY/(/2=9_ Therefore, using that |¢, ,(x,y)| < 1 for all primes p,
together with (7.18) and (7.19) we have

05x,yl < [[ 11+Rp0@

p>c YO

exp( Z Rp,g(z)+0( Z |Rp,a(z)|2)>

pECl yrr(s) PZCI Y('(e)

(7.22)
=<

B

for ||z]|, < Y and any € > O fixed, where
cle):=(1+¢)/(1/2 —6).
The second p-sum in (7.22) is
1 J.d
S R@PF <zl D> > D el
PZCIY{'(E) PZCIYI'(G)p Jj=1 i=1
<L 237> < [zl 3y~

for||z||> < Y and any € > O fixed by (7.21), assumption A3 and partial summation.
The first p-sum in (7.22) is

(n.l')K(kH)ZkZl

Ry +(2) = Ayo(k, 1)
X X
:_7[2'2 Zj1%jn Z ]E|:g]'1( p(f))gjz( p(f))}
J1.J2<J p=>c Ye©
. K (k)
+ 0< DY el l>|>,
p=ci Y@ k,

where the #-sumis overk,1 € (ZEO)J withk #0,1# 0 and K(k+1) > 3. By (7.20),
assumption A3 and partial summation, the above O-term is

J d

« (com||z]|2)™*+D 1 2

< Z k' Z 1+H(K (k+)—2)(1/2—06) Z Z la;.i(p)l
a m ,

j=1 i=1

v (com|[2l12)X® o ent— i _
<y ap TR <y TRl < Y213
. n
for ||z]], < Y. Thus we derive

|DE(x, y))

exp ( -7 Y 55 Y Eg (X(p))gjz(i(f))} +0<Y—f/2||z||%>)‘

<
= o
Ji2sJ p>c Ye© p
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for ||z||» < Y and for any € > O fixed. Moreover, by (4.2) and (4.6), the sum above
equals

B, 0B, @5
Z %1% Z Z " 2kgL

Ji2sJ p>c YO k=1
B, ()P, ()
_ . 2
=2 w2 p, o)
Ji1.J2<J p>c|Y"(5)

log G(T)Zéjlzjl +0(|1zI13).
1

Therefore, we deduce that
7.23 &yrand —(%5 log GIT)+O(1) S, & 1512 —7*Eminll2lI3(} log G(T)+O(1))
( ) | D7 (x,y)| < e i <e

for ||z||» < Y where Y = VS This proves (7.14).

Next we find an asymptotic formula for &)rrand. By (7.21), there is a constant
¢4 > 0 such that |R, ;(z)| < é for ||z|]» < ¢4 and for every prime p. Hence, it
follows from (7.18) and (7.19) that

DI(x, y) = exp (ZRP o(2) — ZRM@)2 + O(Z |Rp,g<z>|3>).
p p

The O-term above is

< ||z||2§jpl+2(1 o0 ZZla,,(pn < |lzl1§

Jj=1 i=1
for [|z]]a < ¢4 by (7.21), assumption A3 and partial summation. We observe
that the sum o Iip,g(z) - %Zp R, ,(z)* has a power series representation in
Zls ..., 2J5 21, - . -2y Without a constant term. Let B,(k, 1) be the coefficient of z¥z
in this sum. Then we have

> ) B,k Dz

k70 170
(n.l)UC(kH)ZkZl
= Z Z 'l' ZA[J,U(ka l)
KA 150 >
(7”')9<(k1+ll+k2+lz)zk1+kzzll+l2
Z Z K: 'k 'L 11! ZAp,a(kla 1)A, 0(K2, 12).
k1, k270 1;,1,70 1-Kodp iy >
Therefore, if X(k+1) =2 or 3, then
- K (k+)
Bk, =""

a2 AnetD,
p
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while in the case X(k +1) > 4, we have

(n.l)iK(kH)
Bo(k, =" ZAM(k )
(n.l)IK(kH)
Z > K, th, 1 1L ZApa(kl,h)Apg(kz,lz)

ki, k70 11,170
ki+ko=Kk 1;+l=1

For X(k +1) > 4, we have

X0t
Bo(k, ) <) Z Ap.o(K, D)

)

LD DD D Z|Apg(k1,lz)||Ap,,<kz,l2>|
ki ko70 1), L70 1822
ki+ko=k 1;+1,=1

<« (com)* kD max; >, |a,i(p)|*

m 1+2(1/2-0)
k!! > p
+ Z Z (Coﬂ)g{(kﬂ) Zmaszi |aj,i(P)|2
k1|k2111|121 p1+2(1/2—0)
ki ko#01,L70 e TS p
ki +ko=k 1;+l,=1
CgC(kH)
< ko

for some constant ¢s > 0, where the implicit constant is independent of k and 1.
Hence, we deduce that

cellzl1) K&
Z B,(k, )z*7' « Z (esllzll2) < |lzl$

K, 10 K(k+)>6 k!
K(k+D)>6
for ||z||, < c4. Therefore, we obtain
5
(7.24) O(x,y) = exp (Z Bun.o(2) + O(]|z] |g))

m=2

for ||z||» < ¢4, Where

Buo@ = > By(k,Dz*z
Kk,10
K(k+)=m

is a homogeneous polynomial in zy, ..., 2y, 21, . . . , 27 of degree m.

For each k,1 # O satisfying KX(k +1) = 3,4,5, B,(k,1) is a Dirichlet series
absolutely convergent for Re(s) > 1/2 — € for some € > 0. Thus, each coeffi-
cient B,(k, 1) in such case satisfies

By(k, 1) = By 2(k, D) + O(1/G(T)),
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which proves (7.17). This also implies that
(7.25) Bun.o(z) = O(|2ll3

form = 3,4, 5 and for ||z||2 < c4. On the other hand, when m = 2, we see that

(7.26) B2,0(Z)= Z gjlsjz(a)ZjIZjZ’
J12sJ
where
— X(p) X(p)
82(0) '__ﬂzz]E[gj'( p° )gjz( p° )]
B, @B, (")
= 222 " 2ko—L
p k=l
B, (p)ﬁ ® B, P )ﬂ RD) |
Z L; L; zzkzz: L L +0<G(T))-
P

The second p-sum on the last line is convergent by (4.2). Therefore, it follows
from (4.5) that

log G(T))

(7.27) 8jp(0) =—m 5}1 526 10g G(T) + G j, + 0( G(T)

for some constant C;, j,. This proves (7.16). By (7.24) and (7.25) we see that

DM(x, y) = P2 (1 + Z Bn,o(2) + 0(||z||2>)
m=3
holds for [|z]|; < c4. This proves (7.15) and hence completes the proof. ]

Using Lemma 7.3 we establish the following result, which is the key ingredient
in the proof of Theorem 2.2.

Lemma 7.4. Forallu,v € R’ we have

e_loglG(T) S gvjil(”f"'“jz)PT(u, V) + 0( ! )

Hr(u,v) = (log G(T))y'+3 >

1
(log G(T))’

where
Qr }’ﬂ(u7 V)
Pr(u, ’
T(ll V) - H : 5] % Z (10g G(T))(m+r)/2
is a polynomial in u, v of degree < 5 and Q,.,,(u, v) is a homogeneous polynomial
inw,vofdegreerforr <m<S5.
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Proof. Recall that the density function Hy(u, v) is the inverse Fourier trans-
form of CDrTa“d(x, y), so that

Hytu )= [ e B, vy,
R

By Lemma 7.1, (7.14) and by changing the variables to polar coordinates, with
Z =X + Iy as in the previous lemma, we find that

Hr(u, v)

— / e—2ni(x~u+y-v)a\)r7g1nd(x’ y)dxdy
|lzll2<ca

40 ¢ Gminlog GO gy gy 4 dxdy
VG(T) van (1 + ||Z|| )2J+l
cr<llzll<e llla>e 2

— / e—2ni(x~u+y-v)a\)r7§1nd(x’ y)dxdy
|lzll2<ca

V) S 1

—E 2 — —
+0 / e Emin log G(T)w w2J ldu) +/ Sl w2J ldu)
c4 evan (1 + w)?/*

. ~ 1
— —27i(x-u+y-v) grand
= e O7"(x, y)dxdy + O ; .
~/||Z||2£C4 r ( G(T)%nin log G(T) )

Therefore, it follows from (7.15) and (7.16) that

5
Hr(u,v) = / ¢ P2 2mi YY) (1 +Y B2+ 0 |z||§>) dxdy
|lzll2<ca

m=3
1
0 ( G(T)‘min log G(T) )

5
= / eBro@D2milxutyv) <1 +> Bm,o‘(z)> dxdy
|lzll2<ca

m=3

1
0((10g G(T))’*+3 ) ’

Let
J

B o(2) = Ba,(@) + 7 log G(T) Y_ &1z,

=

then by (7.26) and (7.27), we have

50(2) = Z (le,jz + O(IOi((;E)T)))ZjIZjZ.

Juj2<J
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Thus, by (7.16) we have
5
Hr(u,v) = ¢~ 08 G L (5] —2mieury ) (1 +> B, g(z)) dxdy

llzll2 <cs e

1
* 0 togayym )

where each @m’g(z) form = 2,3,4,5 is a homogeneous polynomial of degree m
defined to satisfy the identity

1 > S
(1435, + ,B) () (1 +y B,,,,,,(z)) =1+ B,.,@ +O(lzll9).
m=2

m=3

Furthermore, one has

. e log G(TO\\ & m—ik
Bm,g(z>—;(Dk,m+0( e )2

for some constants Dy ,,. Thus, the polynomials

m
Bu(z) =Y Diemd "™

k=0

are independent of ¢ and we see that

5
Hr(u,v) = o~ 108 G(T) Yoy G5 +y])—2mi(x-uty-v) (1 + Z @m(z)> dxdy
llzll2<ca >
1
0 .
(aog G<T>>f+3)

Extending the range of integration to all of R* and changing the x; and y; to
xj/\/m*log G(T) and y;/\/m? log G(T) respectively, we obtain

HT(ua V)

5
- / e—ﬂzlogcmzf’-l@(x%+y.%>—2nf<x~u+y-v>(1+Z@m<z))dxdy
RY

m=2

+0((log G(T) ™)

= i S 7
_ / e— E_/!:l a_,j(x]z+y]2)—2 JiogG(D) (X-u+y-v) 1+ Z Bm(Z) dXdy
R m"(log G(T)y™? | % (log G(T))’

m=2

+O0((log G(T))™/73).
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The above exponent is

2 D 2
logG(T)Zé: (1 +0,%) ZEJ(( f\/logG(T)) (f'+gj\/1;:G(T)) )-

Hence, making the change of variables

Z=X1+J1, ..., X+ 1)),
where . ;
%= — luj 55':)2' _ ll)j
T GVlog Gy T Gy\/log G(T)
foreveryj=1,...,J, we see that
1 J o e—10,2 2 1
Hr(u,v) = oG 21 S W0 p ,V)+ 0 >
1= g0 ey T TP+ 0( 0 Gpyyna)

where Pr(u, v) is a polynomial in u and v defined by

5

1 B,u(2)
_ Z]_l gj(x +y] "
Pr(u,v) = Y /]sz (1 + Z 7[’”(10g G(T))m/Z)dXdy

m=

By expanding the polynomial 7~ B,,(%), we have

—m=2JR 5\ — ¢ Qk,m(Xa y.u, V)
T Bm(z) - kz:(; (IOg G(T))k/2 s

where Oy (X, y, u, v) is a homogeneous polynomial in X, y, u, v of degree m and
each term has k factors in u, v. Therefore, we have

1 L Qen(u, V)
PrOv= oL 22 (1og GTyymbr2”

m=2 k=0
where
Qunu,v)i= [ e SHD0, 0, y, u, dxdy
RY
is a homogeneous polynomial in u, v of degree k for k < m < 5. (]

7.3 Proof of Theorem 2.2. lLeto=1/2+G(T)and g; = 1/2 + Gi(T) for
i =1, 2. Then, recall that

J
Z biLi(a, X)D log 3 pjeti

j=1

M(o) = E(log

H7(u, v)dudv.
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Let My := \/nlog G(T) loglog G(T), where 1 > 0 is a suitably large constant that
depends on J and the &;. By the Cauchy—Schwarz inequality, Lemma 7.2 with
A = (30J max;<y éj)_]and equation (7.11) we see that

J
§ :bjeuﬁiv_,

/ log
RY\[—-M;, M, 1> 1
J_
J
Z bjeuj+il)j

=(/
R\ [—My, M 1% =1

1
2
X ( / Hr(u, V)dudV)
RY\[-M,M; ¥

Hr(u, v)dudv

1
2

2
log Hr(u, V)dudv)

< (log G(T)? ((log ?\;IT))HZ e—lo?é%zn) % (log é(T))3 :
This implies
J
Mio) = /{_Ml 10| 3B i vauay + O((log G ).

J=1
We now use the asymptotic formula for Hr(u, v) in Lemma 7.4 to obtain

1
~ (log G(T))

X / log
[—M, M1

M(o)

1 J o oz=1..2 2
e o 215 WA Py vydady

J
E bjeuj+ivj

j=1

J
dudv +

log

1 1
0] .
<(10g G(T))'*+ /[—Ml M P (log G(T))? >

bjeuj+il}j
1

Jj=

By the Cauchy—Schwarz inequality and (7.11) we have

(~/l—M1,M1]21

< 2M)*

<« MY /
R

J
§ :bjeujﬂ'vj

J=1

2
log dudv)

2
dudv

J
E bjeu.f*'i“j

=

J
E bjeuj+ivj

J=1

log

[—M;, M1

2 1~ 2,02
a2 21 07

log e M dudv <« M7,
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Thus we have
1

(log G(T))’
J
x lo bttt
/[_MI,MIJZJ g Jz:l: !

<(log log G(T))’+(1/?
(log G(T))*/? >

M(o) =

_ 1 J o=l 20002
e~ rsom 215 W) Pr(u, v)dudy

We now use Lemma 7.4, which gives
M(o)

J
. 1 J z—1(,,2 2
E b€ | e leeGn 21 G W40 udy

j=1

-
= lo
[1j<s & log G(T)Y Ji—my i1 s
+ log bje"r*™
”2_:2 ; / My, M1 z1:

((log log G(T))J"“/z))
(log G(T))>/?

Or.m(u, v)dudv
(log G(T))J+(m+r)/2

J el 2
e ]%Gm 21§ (u +0;%)

By the Cauchy—Schwarz inequality and (7.11), we can replace [—M;, M;]% in
both integrals by R?/, at the cost of an error term of size <« 1/(log G(T))? if 7 is
suitably large. Let

Orm(u, v) = Z Qr,m,k,lukvl-

k.l
K (k+)=r

Since Q. (u, v) is a homogeneous polynomial of degree r, by changing the vari-
ables u, v to v/log G(T)u, v/log G(T)v, we obtain

1 J =102 2
M(o) = / lo XS 00 qudy
(o) P & Jes g

J
Z b; L) /10g G(D) | ,—

j—l
- dudv
+ log | S byettion/108 D) | = 32 & iy Lrn(W: V)
%;/ ¢ Z (log G(T)y"”?
( (loglog G(T))’ *W 2 )
(log G(T))*/2
1 5 m
= 1(0,0,0) + qrmxl(K, 1, 0)
I G 22 1og iy 2

K(k+)=r

((log log G(T))f+<1/2>)
(log G(T))*/2 ’
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where

J
Z bje(uﬁi”j)\/ 10g G(T) | = 311 &7 0740, ) gkl gy gy
=

Ik, 1, 0) ::/ log
RY

The above estimation also holds for M(o;) and M(o,). Therefore, we deduce that
M(o) — M(a;)

=7rJ 1J gt(I(O,O,(f)—I(O,O,Ui))
j—l J

(728 ZZ (log G(T))m/2 Z Brm 16, 1, 0) = 1(k. 1, 0:))

m=2 r=
XK (k+l)—r

(loglog G(T))’*(1/?
( (log G(T))>/? )

This integral I(k, 1, o) was estimated in [15] when Kk, 1 are fixed and G(T) is a
power of logT. Let R, := {u € R’ : u,, = max{uy, ..., u;}}, then I(k, 1, o) equals

L&+, b vidudy

S b oo /10g G(T)| =

J J
Z / / log
n=1 /R SRy =1

J J
= Z/ / log ‘bne(”"””")\/lf’g‘;(n‘e_ =165 W@ gkl dudy + Z &k, 1, 0),
R J®
n=1 n

n=1

where &,(K, 1, o) is defined by

(7 29) / / log‘l_'_z J ((u] iy )+i(0;— v,,))\/logG(T)

j7n

=X @k qudy.

Moreover, define

dy ::/ e_zf!ﬂ”f'z/*zfvldv,
RY
J J 2
Dy(k, D) := dlZ/ e” 2 Sy, ukdu,

Ds(k, 1) —d1210g|b |/ =L gk g,

n=1

then we find that

J
(7.30) I(k,1,0) = /1og G(T) - Di(k, 1) + Dok, D + Y €,(k, 1, 0).

n=1



ZEROS OF LINEAR COMBINATIONS OF L-FUNCTIONS 725

Note that

4 {0, if €; is odd for some j,
=

I, (& 2T+ 1)/2)),  if ¢; is even for all j.

J= ]

By changing (log 7)? to G(T) in the proof of [15, Proposition 2.4], it follows that
1
&k, l,o)=0
@1.2)=0( 400 Geryi)
if G(T) > 1, but this bound is not sufficient for our purpose. Instead, by (7.30),

we estimate the difference

I(ka la O-) - I(ka la O-i)

J
=(\/log G(T) = \/1og G(T)HD1 (k, D) + > "(E4(k, 1, 0) — E,(k, 1, 57))

n=1
_(=1)'Dy(k, 1)

" 2(log G(T))3/?

J
1
# 2tk 1.0) = &t o) + O tog G152

By symmetry, we only estimate &,(k, 1, o) — €,(k, 1, 0;). By (7.29) and a simple
substitution, we see that

El(ka la 0-) - El(ka la O-i)
b .
— lo 1+ Je((uj—ul)+t(v_,~—vl))\/logG(T)
/Rf /Jz gt

P

_ / / 10g‘1 Y b (=i, 01y log GiT)
R JR, by

P
e
RJ :Rl

b; :
1+ ]e((uj—u|)+1(vj—vl))\/logG(T)
2
J#1
i og e J+K(k+1)/2
% (e— S W) _ e—foﬁg% AT 1(”12“)]2)( log G(T)) +X b/ )ukvldudv.
log G(T)

S E 2402
e~ 2m G gkl gudy

J e—17,,2 2
e~ 215 @ )ukyl dudy

Since llgggg(TT)) = 1+0(;,, Gl(T))2 ), by adapting the proof of [15, Lemma 2.5], we
find that the above is
e o) e
< log |1 + 7 plt=11)+i(0;=v1))/1og G(T)
G0z G2 Jur S, |18+ 2o,

#

Jooe—

J
_(1s0( ! | eGR4,
x e~ 1P uogainp ) 2= 5 G+ )( E (u]2+l)j2)+ 1)ukvldudv
=1

1
< log Gy
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Thus, we deduce that

_ (=1'Di(k, D 0( 1 )

[ 1,0) =1k, Lo) =, 1o 6y T O\ og Gy

Inserting this estimate in (7.28) gives

(=1)'D1(0,0) N O( 1 )

MO =M= L, epaog aarypr +laog Gy

where , ,
Dy(0,0)=="*]] \/5,.2 / = Zn Sy, du
=1 n=1 Y Rn

by I'(1/2) = \/=. This completes the proof.
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