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Abstract. In this paper, we investigate the zeros near the critical line of
linear combinations of L-functions belonging to a large class, which conjecturally
contains all L-functions arising from automorphic representations on GL(n). More
precisely, if L1, . . . ,LJ are distinct primitive L-functions with J ≥ 2, and bj are any
non-zero real numbers, we prove that the number of zeros of F(s) =

∑J
j=1 bjLj(s)

in the region Re(s) ≥ 1/2 + 1/G(T) and Im(s) ∈ [T, 2T] is asymptotic to
K0TG(T)/

√
log G(T) uniformly in the range log log T ≤ G(T) ≤ (log T)ν, where

K0 is a certain positive constant that depends on J and the Lj. This establishes a
generalization of a conjecture of Hejhal in this range. Moreover, the exponent ν
verifies ν � 1/J as J grows.

1 Introduction

The theory of L-functions has become a central part of modern number theory, due
to its connection to various arithmetic, geometric and algebraic objects. L-functions
are represented by Dirichlet series which are absolutely convergent in half-planes.
They satisfy certain conditions, including having a meromorphic continuation, an
Euler product over primes and a functional equation. The prototypical example
of an L-function is the Riemann zeta function. Other important examples include
Dirichlet L-functions attached to primitive Dirichlet characters, and the Hasse–
Weil L-functions attached to elliptic curves. The Langlands program predicts that
all L-functions arise from automorphic representations over GL(n).

L-functions are predicted to verify several hypotheses, the most important of
which is the generalized Riemann hypothesis (GRH), which asserts that all non-
trivial zeros of L-functions lie on the critical line Re(s) = 1/2. On the other
hand, there exist various Dirichlet series which have arithmetical significance and
satisfy a functional equation, but are not L-functions, since they do not possess an
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Euler product. Most of these functions can be expressed as linear combinations
of L-functions. Important examples include Epstein zeta functions associated to
quadratic forms, and the zeta function attached to ideal classes in number fields.
Unlike L-functions, these zeta functions are not expected to satisfy the GRH, and
some of them might even possess zeros inside the region of absolute convergence.
The first to have investigated such a phenomenon are Davenport and Heilbronn [3],
who proved in 1936 that the Epstein zeta function of a positive definite quadratic
form of class number ≥ 2 has infinitely many zeros in the half-plane of absolute
convergence Re(s) > 1.

For a complex valued function f (z), we shall denote by Nf (σ1, σ2,T) the number
of zeros of f in the rectangle σ1 ≤ Re(s) ≤ σ2 and T ≤ Im(s) ≤ 2T . We also let
Nf (σ,T) be the number of zeros of f in the region Re(s) ≥ σ and T ≤ Im(s) ≤ 2T .
Voronin [24] proved that NE(σ1, σ2,T) � T for any 1/2 < σ1 < σ2 < 1 fixed,
where E(s,Q) is the Epstein zeta function attached to a binary quadratic form Q

with integral coefficients and with class number at least 2. Lee [14] improved
this result to an asymptotic formula NE(σ1, σ2,T) ∼ c(σ1, σ2)T for some positive
constant c(σ1, σ2). Gonek and Lee [4] obtained a quantitative bound for the error
term in this asymptotic formula, and this was subsequently improved by Lamzouri
[11] who showed that one can obtain a saving of a power of logT in the error term.

Throughout this paper we let J ≥ 2 be an integer, b1, . . . , bJ be non-zero real
numbers such that

∑J
j=1 b2

j = 1, and we define

(1.1) F(s) := FL1,...,LJ (s) =
J∑

j=1

bjLj(s),

for L-functions L1, . . . ,LJ. Lee, Nakamura and Pańkowski [16] generalized
Voronin’s result to zeros of linear combinations of L-functions in the strip
1/2 < σ1 < σ2 < 1, where σ1, σ2 are fixed. More precisely, they established that

NF(σ1, σ2,T) � T,

if the Lj belong to the Selberg class of L-functions, and verify a stronger version
of the Selberg orthogonality conjecture (see (1.3) below). In the special case
where the Lj are Dirichlet L-functions or Hecke L-functions attached to the ideal
class characters of a quadratic imaginary field, one obtains an asymptotic formula
NF(σ1, σ2,T) ∼ cF(σ1, σ2)T as T → ∞, for a certain positive constant cF(σ1, σ2)
(See [2], [10] and [14]). Furthermore, by using the methods of the proof of
Theorem 1.1 below, one can generalize this result by showing that

NF(σ1, σ2,T) = cF(σ1, σ2)T + O
( T

(logT)δ

)
,
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if the L-functions L1, . . . ,LJ satisfy the assumptions A1–A5 below and
δ = δ(J,F, σ1, σ2) is a positive constant.

Although linear combinations of L-functions have many zeros off the critical
line, it was conjectured by Montgomery that 100% of the zeros of F(s) lie on the
critical line, if the Lj are primitive1 L-functions satisfying assumptions A1 and A2
below. Bombieri and Hejhal [1] established this conjecture if the Lj satisfy the
assumptions A1, A2, A3 and A5 below, conditionally on the GRH and a zero-
spacing hypothesis for each of the Lj. Unconditionally, Selberg [20] established
that a positive proportion of the zeros of F(s) lie on the critical line, in the special
case where all of the Lj are Dirichlet L-functions having the same parity and
conductor.

In this paper we study the zeros of the linear combination F(s) where the
L-functions L1, . . . ,LJ satisfy the following assumptions:

A1: (Euler product) For j = 1, . . . , J and Re(s) > 1 we have

Lj(s) =
∏
p

d∏
i=1

(
1 − αj,i(p)

ps

)−1

where |αj,i(p)| ≤ pθ for some fixed 0 ≤ θ < 1/2 and for every i = 1, . . . , d.

A2: (Functional equation) The functions L1,L2, . . . ,LJ satisfy the same func-
tional equation

�j(s) = ω�j(1 − s̄),

where

�j(s) := Lj(s)Q
s

k∏
	=1


(λ	s + μ	),

|ω| = 1, Q > 0, λ	 > 0 and μ	 ∈ C with Re(μ	) ≥ 0.
A3: (Ramanujan hypothesis on average)

∑
p≤x

d∑
i=1

|αj,i(p)|2 = O(x1+ε)

holds for every ε > 0 and for every j = 1, . . . , J as x → ∞.
A4: (Zero density hypothesis) There exist positive constants c1, c2 such that for

all 1 ≤ j ≤ J and all σ ≥ 1/2 we have

(1.2) NLj(σ,T) 
 T1−c1(σ−1/2)(logT)c2 .

1An L-function is primitive if it cannot be written as a product of non-trivial L-functions, where the
trivial L-function is the constant 1.
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A5: (Selberg orthogonality conjecture) By assumption A1 we can write

log Lj(s) =
∑

p

∞∑
k=1

βLj(p
k)

pks
,

where βLj(p
k) are complex numbers. Then, for all 1 ≤ j, k ≤ J there exist

constants ξj > 0 and cj,k such that

(1.3)
∑
p≤x

βLj(p)βLk(p)

p
= δj,kξj log log x + cj,k + O

( 1
log x

)
,

where δj,k = 0 if j �= k and δj,k = 1 if j = k.

Remark. The assumptions A1–A5 are standard, and are expected to hold for
all L-functions arising from automorphic representations on GL(n). In particular,
they are verified by GL(1) and GL(2) L-functions, which are the Riemann zeta
function and Dirichlet L-functions, and L-functions attached to Hecke holomorphic
or Maass cusps forms. ForGL(1) L-functions, the Selberg orthogonality conjecture
boils down to the fact that L(s, χ) is regular and non-zero at s = 1, if χ is a non-
principal Dirichlet character. For GL(2) L-functions, assumptions A3 and A5 are
handled using the Ranking–Selberg convolution, while assumption A4 is proved
in [17] for L-functions attached to holomorphic cusp forms, and in [19] for L-
functions attached to Maass forms. Assumptions A4 and A5 are used to investigate
the joint distribution of logL1, log L2, . . . , logLJ near the critical line, which is a
key component of the proof of Theorem 1.1 below. To this end, the zero density
hypothesis A4 is used to approximate log Lj(σ + it) by short Dirichlet polynomials
for “almost all” points t, while the Selberg orthogonality conjecture A5 insures
the “statistical independence” of the functions logLj(σ + it), when σ is very close
to 1/2.

For each 1 ≤ j ≤ J, write Lj as a Dirichlet series Lj(s) =
∑∞

n=1
αLj (n)

ns , which is
absolutely convergent for Re(s) > 1 by assumption A3. Then F(s) has a Dirichlet
series representation

∞∑
n=1

αF(n)
ns

=
∞∑
n=1

∑J
j=1 bjαLj(n)

ns
.

Since the first non-zero term dominates the others, F(s) has no zeros in Re(s) > A
for some constant A > 0. Hence, we may define

σF := sup{Re(ρ) : F(ρ) = 0} ≤ A.

Moreover, it follows from assumption A2 that F(s) satisfies the functional equation

(1.4) F(s)Qs
k∏

	=1


(λ	s + μ	) = ωF(1 − s̄)Q1−s
k∏

	=1


(λ	(1 − s) + μ̄	).
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Furthermore, since F(s) has no zeros on Re(s) > σF, by (1.4) we see that{
− μ	 + m

λ	
: −Re(μ	) + m

λ	
< 1 − σF, 	 = 1, . . . , k and m = 0, 1, 2, . . .

}
is the set of (trivial) zeros of F(s) on Re(s) < 1 − σF. All the other zeros are in
the strip 1 − σF ≤ Re(s) ≤ σF and we may call them the non-trivial zeros. The
number of nontrivial zeros β + iγ of F(s) with 0 < γ < T is denoted by NF(T) and
it is well-known that

NF(T) ∼ dF

2π
T logT

as T → ∞, where dF = 2
∑k

	=1 λ	.

Bombieri and Hejhal [1] conjectured that the order of magnitude of the number
of zeros of F(s) off the critical line and up to height T should be

T log T√
log logT

.

Motivated by this conjecture, Hejhal [5, 6] studied the zeros of linear combinations
of L-functions near the critical line. Suppose that L1 and L2 satisfy assumptions A1,
A2, A4, and A5, as well as the Ramanujan–Petersson conjecture (which asserts
that |αj,i(p)| ≤ 1 for all i, j and p) instead of the weaker assumption A3. Let
F(s) = cos(α)L1(s) + sin(α)L2(s), where α is a real number. Then Hejhal [5] proved
that for “almost all” α with respect to a certain measure, we have

(1.5)
TG(T)√
log log T


 NF

(1
2

+
1

G(T)
,T
)


 TG(T)√
log log T

in the range (logT)δ ≤ G(T) ≤ logT
(log logT)κ where δ > 0 and 1 < κ < 3 are fixed. He

also conjectured (see [5, Section 6]) that the following asymptotic formula should
hold for all α /∈ π

2Z in the same range of G(T):

(1.6) NF

(1
2

+
1

G(T)
,T
)

∼
√

ξ1 + ξ2

8π3/2

TG(T)√
logG(T)

.

In the short note [6], Hejhal discussed a generalization of the bounds (1.5) to linear
combinations with three or more L-functions, but did not provide a complete proof
of these bounds.

In this paper, we prove a quantitative generalization of the conjectured asymp-
totic formula (1.6) for any linear combination of L-functions F(s) =

∑J
j=1 bjLj(s)

as in (1.1), though in a smaller range of the parameter G(T). More precisely, our
main result is the following theorem.
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Theorem 1.1. Let F(s) be defined by (1.1), where the L-functions L1, . . . ,LJ

satisfy assumptions A1–A5. Let T be large, ξ = maxj≤J ξj, and

0 < ν < 1/(12J + 7 + 16J
√

3ξ)

be a fixed real number. Then for σ=1/2 + 1/G(T) with log log T ≤G(T)≤ (logT)ν

we have

NF(σ,T) = K0
TG(T)√
log G(T)

+ O
( TG(T)

(logG(T))5/4

)
,

where

K0 = K0(J; ξ1, ξ2, . . . , ξJ) :=
1

4πJ/2+1
∏J

j=1

√
ξj

J∑
n=1

∫
Rn

e−∑J
j=1 u2

j /ξjundu

and

Rn := {u ∈ R
J : un = max{u1, . . . , uJ}}.

Remark. In the case J = 2, an easy calculation shows that K0 matches the
constant predicted by Conjecture (1.6) of Hejhal. Indeed, we have in this case

K0 =
1

4π2
√

ξ1ξ2

(∫
u1≥u2

e−u2
1/ξ1−u2

2/ξ2u1du1du2 +
∫

u2≥u1

e−u2
1/ξ1−u2

2/ξ2u2du1du2

)
.

We can compute the first integral as

∫
u1≥u2

e−u2
1/ξ1−u2

2/ξ2u1du1du2 =
ξ1

2

∫ ∞

−∞
e−u2

2(1/ξ1+1/ξ2)du2 =

√
πξ1

2

√
ξ1ξ2

ξ1 + ξ2
.

Evaluating the second integral similarly, we thus deduce that

K0 =
1

4π2
√

ξ1ξ2

(√πξ1

2

√
ξ1ξ2

ξ1 + ξ2
+
√

πξ2

2

√
ξ1ξ2

ξ1 + ξ2

)
=

√
ξ1 + ξ2

8π3/2
,

as desired.

Remark. In [15], Lee obtained an analogue of Theorem 1.1 (in a larger range
of G(T)) in the case where F(s) = E(s,Q) is the Epstein zeta function attached to a
binary quadratic form Q with integral coefficients and class number 2 or 3. In this
case E(s,Q) can be expressed as the linear combination of two Hecke L-functions.
However, the method of [15] does not seem to generalize to the case of linear
combinations of three or more L-functions.
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2 Strategy of the proof of Theorem 1.1, key ingredients
and detailed results

Let F(s) be defined by (1.1) where the Lj satisfy assumptions A1–A5. In order to
count the number of zeros of F(s) in the region Re(s) > σ, T ≤ Im(s) ≤ 2T we
shall use Littlewood’s lemma in a standard way. Let σ0 > σF. Then, F(s) has no
zeros in Re(s) ≥ σ0 and hence by Littlewood’s lemma (see [21, (9.9.1)]), we have

(2.1)

∫ σ0

σ
NF(u,T)du =

1
2π

∫ 2T

T
log |F(σ + it)|dt − 1

2π

∫ 2T

T
log |F(σ0 + it)|dt

+
T
2π

(σ − σ0) log n0 + OF(logT),

where n0 is the smallest positive integer such that αF(n0) �= 0. In order to estimate
the integrals on the right hand side of this asymptotic formula, we shall construct
a probabilistic random model for F(σ + it). Recall that

F(σ + it) =
J∑

j=1

bjLj(σ + it) =
J∑

j=1

bj

∏
p

d∏
i=1

(
1 − αj,i(p)

pσ+it

)−1
.

Let {X(p)}p be a sequence of independent random variables, indexed by the prime
numbers, and uniformly distributed on the unit circle. For 1 ≤ j ≤ J we consider
the random Euler products

Lj(σ,X) :=
∏
p

d∏
i=1

(
1 − αj,i(p)X(p)

pσ

)−1
.

These products converge almost surely for σ > 1/2 by Kolmogorov’s three series
theorem. We shall prove that the integral 1

T

∫ 2T
T log |F(σ + it)|dt is very close to

the expectation of log |F(σ,X)|, where the probabilistic random model F(σ,X) is
defined by

F(σ,X) :=
J∑

j=1

bjLj(σ,X).

Theorem 2.1. Let J ≥ 2 be an integer, ξ = maxj≤J ξj, and

0 < ν < 1/(12J + 7 + 16J
√

3ξ)

be a fixed real number. Let T be large. There exists a positive constant β > 0 such

that for σ = 1/2 + 1/G(T) with log log T ≤ G(T) ≤ (logT)ν we have

1
T

∫ 2T

T
log |F(σ + it)|dt = E(log |F(σ,X)|) + O

( 1
(logT)β

)
,

where here and throughout we denote by E(·) the expectation.
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Thus, in order to estimate NF(σ,T) it remains to investigate the function

M(σ) := E(log |F(σ,X)|),
and more precisely to estimate the difference M(σ) − M(σ + h) for small h. We
shall investigate this quantity in Section 7 and prove the following result.

Theorem 2.2. Let

G1(T) := G(T)
logG(T)

logG(T) − 1
and G2(T) := G(T)

log G(T)
logG(T) + 1

.

Assume that G(T) ≥ 4. Then for each i = 1, 2 we have

M
(1
2

+
1

G(T)

)
− M

(1
2

+
1

Gi(T)

)
= (−1)i

2πK0

(logG(T))3/2
+ O
( 1

(logG(T))9/4

)
,

where the constant K0 is defined in Theorem 1.1.

We now show how to deduce Theorem 1.1 from Theorems 2.1 and 2.2.

Proof of Theorem 1.1 assuming Theorems 2.1 and 2.2. First, note
that

1
2

+
1

Gi(T)
= σ + (−1)i/(G(T) logG(T)).

Since NF(w,T) is a decreasing function of w for each T , we see that

(2.2)
∫ 1

2 + 1
G2(T)

σ
NF(w,T)dw ≤ NF(σ,T)

G(T) logG(T)
≤
∫ σ

1
2 + 1

G1(T)

NF(w,T)dw.

By (2.1) and Theorems 2.1 and 2.2, we obtain

2π

T

∫ 1
2 + 1

Gi(T)

σ
NF(w,T)dw

=
1
T

∫ 2T

T
log |F(σ + it)| − log

∣∣∣F(1
2

+
1

Gi(T)
+ it
)∣∣∣dt + O

( 1
G(T) logG(T)

)
= M(σ) − M

(1
2

+
1

Gi(T)

)
+ O
( 1

G(T) logG(T)

)
= (−1)i

2πK0

(logG(T))3/2 + O
( 1
(logG(T))9/4

)
.

Inserting these estimates in (2.2) completes the proof. �
We next describe the different ingredients that are used in the proof of Theo-

rem 2.1. The first is a discrepancy bound for the joint distribution of the values of
the L-functions Lj(s), which generalizes the results of [13] for the Riemann zeta
function. For σ > 1/2 we let

L(σ + it) = (log |L1(σ + it)|, . . . , log |LJ(σ + it)|, argL1(σ + it), . . . , argLJ(σ + it)),
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and similarly define the random vector

L(σ,X) = (log |L1(σ,X)|, . . . , log |LJ(σ,X)|, argL1(σ,X), . . . , argLJ(σ,X)).

For a Borel set B in R
2J and for σ = 1/2 + 1/G(T), we define

(2.3) �T (B) :=
1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ B}
and

(2.4) �rand
T (B) := P(L(σ,X) ∈ B),

where here and throughout, meas will denote the Lebesgue measure on R. We will
prove that the measure �rand

T is absolutely continuous and investigate its density
function HT (u, v) in Section 7.

We define the discrepancy between these two distributions as

DT(B) := �T (B) − �rand
T (B).

Then we prove the following result which generalizes [13, Theorem 1.1], and
might be of independent interest.

Theorem 2.3. Let T be large and σ = 1/2 + 1/G(T) where

log logT ≤ G(T) ≤√log T/ log log T.

Then we have

sup
R

∣∣DT (R)
∣∣
 √

G(T) log logT√
log T

,

where R runs over all rectangular boxes of R2J (possibly unbounded) with sides

parallel to the coordinate axes.

We shall use this result to approximate the integral 1
T

∫ 2T
T log |F(σ+ it)|dt by the

expectation E(log |F(σ,X)|). However, in doing so we need to control the large
values and the logarithmic singularities of both log |F(σ+ it)| and log |F(σ,X)|. To
this end we prove the following propositions.

Proposition 2.4. Let T be large, and σ = 1/2 + 1/G(T) with

2 < G(T) ≤ c0

√
log T

log logT
,

for some small constant c0 > 0. There exist positive constants C1,C2 > 0 such
that for every positive integer k ≤ (logT)/(C1G(T) log log T) we have

1
T

∫ 2T

T
| log|F(σ + it)||2kdt


 (C2k log logT)kG(T)3k+2(max{k,G(T)3/2 logG(T)})2k.



678 Y. LAMZOURI AND Y. LEE

Proposition 2.5. Let T be large, andσ = 1/2+1/G(T)with 2 < G(T) ≤ logT.

There exists a constant C3 > 0 such that for every integer k ≥ 1 we have

E[| log |F(σ,X)||2k] 
 (log log T)J(C3k(k + log log T))k.

We also need the following result on the large deviations of log Lj(σ + it) and
logLj(σ,X).

Lemma 2.6. Let 1 ≤ j ≤ J, and T be large. Let σ = 1/2 + 1/G(T) with

log log T ≤ G(T) ≤ c0
√

log T/ log log T for some small constant c0 > 0. Then,
there exists a positive constant c1 such that for all

√
log G(T) ≤ τ ≤ (log log T)2

we have

1
T

meas{t ∈ [T, 2T] :| logLj(σ + it)| ≥ τ}


 τ√
logG(T)

exp
(

− τ2

ξj log G(T) + c1G0(T)

)
,

where G0(T) = max{√log G(T), log3 T}. Furthermore, the same bound holds for

P(| logLj(σ,X)| > τ),

in the same range of τ.

Our last ingredient in the proof of Theorem 2.1 is the following lemma, which
provides bounds for the probability of “the concentration” of the random variable
|F(σ,X)|.

Lemma 2.7. Let ε > 0 be small and J ≥ 1 be fixed. Then for any real
numbers σ > 1/2, R > 0 and M > 2π we have

P(L(σ,X) ∈ [−M,M]2J, and R < |F(σ,X)| < R + ε) 
 M2J−1e2M(Rε + ε2),

where the implicit constant is absolute.

The plan of the remaining part of the paper is as follows. With all the ingredi-
ents now in place, we shall first prove Theorem 2.1 in Section 3. In Section 4 we
gather together several preliminary results that will be used in subsequent sections,
and prove Lemma 2.6. These will be used to bound the discrepancy of the joint
distribution of log Lj(s) and prove Theorem 2.3 in Section 5. Then in Section 6, we
shall establish Proposition 2.4. Finally in Section 7 we shall investigate the distri-
bution of the random vector L(σ,X) and establish Theorem 2.2, Proposition 2.5,
and Lemma 2.7.
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3 Proof of Theorem 2.1

In this section we establish Theorem 2.1 using the ingredients listed in the previous
section, namely Theorem 2.3, Propositions 2.4 and 2.5, and Lemmas 2.6 and 2.7.

We let σ = 1/2 + 1/G(T) where log logT ≤ G(T) ≤ (logT)θ, and 0 < θ ≤ 1/2
is a real number that we shall optimize later. We start by showing how to use
Lemma 2.6 and Proposition 2.4 to control the large values and the logarithmic
singularities of log |F(σ + it)|. Let α > 0 be a positive constant to be chosen and
define

L := α log log T, and M := (G(T) log logT)3.

We define the following sets:

S1(T) := {t ∈ [T, 2T] : L(σ + it) ∈ (−L,L)2J},
S2(T) := {t ∈ [T, 2T] : log |F(σ + it)| > −M},

and

S0(T) := S1(T) ∩ S2(T).

Let

ξ := ξmax := max
j≤J

ξj.

Then it follows from Lemma 2.6 that

meas([T, 2T] \ S1(T)) ≤
J∑

j=1

meas{t ∈ [T, 2T] : | logLj(σ + it)| ≥ L}


 TeO(
√

log logT)

(logT)α2/(ξθ)
.

On the other hand, using Proposition 2.4 with k = (log log T)5/4� gives

meas([T, 2T] \ S2(T)) ≤ 1
M2k

∫ 2T

T
| log |F(σ + it)||2kdt


 T exp(−(log logT)5/4).

Therefore we deduce that

(3.1) meas([T, 2T] \ S0(T)) 
 TeO(
√

log logT)

(logT)α2/(ξθ)
.
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Combining this bound with Proposition 2.4, and using Hölder’s inequality with
r = log logT� we have

(3.2)

∣∣∣∣ ∫
t∈[T,2T]\S0(T)

log |F(σ + it)|dt

∣∣∣∣
≤ (meas{t ∈ [T, 2T] \ S0(T)})1−1/2r

(∫ 2T

T
| log |F(σ + it)||2rdt

)1/2r



(TeO(

√
log logT)

(logT)α2/(ξθ)

)1−1/2r
(T(logT)(6r+2)θ(log log T)4r)1/2r


 TeO(
√

log logT)

(logT)α2/(ξθ)−3θ
.

We now define for τ ∈ R

�T (τ) :=
1
T

meas{t ∈ S0(T) : log |F(σ + it)| > τ}
and similarly

�rand(τ) := P(X ∈ S, and log |F(σ,X)| > τ),

where S is the event L(σ,X) ∈ (−L,L)2J and log |F(σ,X)| > −M. First we
observe that for t ∈ S0(T) we have

log |F(σ + it)| ≤ log
( J∑

j=1

|bjLj(σ + it)|
)

≤ log
( J∑

j=1

|bj|eL
)

= L + log
( J∑

j=1

|bj|
)

,

and hence we have

(3.3) �T (τ) = �rand(τ) = 0,

for

τ > L̃ := L + log
( J∑

j=1

|bj|
)

.

Using a geometric covering argument, we prove the following result which shows
that �T (τ) is very close to �rand(τ) uniformly in τ. This will imply Theorem 2.1.

Proposition 3.1. Let T be large. Then we have

sup
τ≤L̃

|�T (τ) − �rand(τ)| 
 (log log T)2J+1

(logT)(1−θ−16Jα)/(4J+2)
.

Proof. We let 0 < ε = ε(T) ≤ e−2L be a small parameter to be chosen. We
shall consider three cases depending on the size of τ.
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Case 1: τ ≤ −M. In this case, it follows from the definition of the set S0(T)
together with (3.1) that

�T (τ) =
meas(S0(T))

T

=
1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ (−L,L)2J} + O
( 1

(logT)2

)
.

Similarly, using Proposition 2.5 with k = log log T� we have

P(log |F(σ,X)
∣∣ < −M) ≤ 1

M2k
E(| log |F(σ,X)||2k) 
 1

(logT)2
.

Therefore, it follows from the definition of the event S that

�rand(τ) = P
(
L(σ,X) ∈ (−L,L)2J) + O

( 1
(logT)2

)
.

Hence Theorem 2.3 yields

(3.4) �T(τ) = �rand(τ) + O
( log log T
(logT)(1−θ)/2

)
.

Case 2: −M < τ ≤ log(C3ε) +L, where C3 is a suitably large constant. In this
case we have

(3.5) �T (τ) =
1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ (−L,L)2J \ UJ(e
τ,L)},

where UJ(y,L) is the bounded subset of R2J defined by

UJ(y,L) :=
{

(u1, . . . , uJ, v1, . . . , vJ) ∈ R
2J : |uj|, |vj| < L for all 1 ≤ j ≤ J,

and

∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣ ≤ y
}

.

We cover UJ(eτ,L) with K(τ) distinct hypercubesBk(τ) of the form
∏2J

j=1[zj, zj + ε)
with non-empty intersection with UJ(eτ,L). Note that

K(τ) 

(L

ε

)2J
.

Now, let 1 ≤ k ≤ K(τ) and (u1, . . . , uJ, v1, . . . , vJ) ∈ Bk(τ) ∩ UJ(eτ,L).
Recall that this intersection is non-empty by construction. Subsequently, for any
(x1, . . . , xJ, y1, . . . , yJ) ∈ Bk(τ) we have |xj − uj| ≤ ε and |yj − vj| ≤ ε for all
1 ≤ j ≤ J. Hence, we deduce that |xj|, |yj| < L + ε for all 1 ≤ j ≤ J and∣∣∣∣ J∑

j=1

bje
xj+iyj

∣∣∣∣ = ∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣ + O(εeL) ≤ C4εe
L
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for some positive constant C4 since eτ ≤ C3εeL by our assumption. Therefore, we
have shown that

UJ(e
τ,L) ⊂ ⋃

k≤K(τ)

Bk(τ) ⊂ UJ(C4εe
L,L + ε).

Hence, appealing to Theorem 2.3 we obtain

(3.6)

1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ UJ(e
τ,L)}

≤
K(τ)∑
k=1

1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ Bk(τ)}

=
K(τ)∑
k=1

P(L(σ,X) ∈ Bk(τ)) + O
(K(τ) log logT

(logT)(1−θ)/2

)
≤ P(L(σ,X) ∈ UJ(C4εe

L,L + ε)) + O
( L2J+1

ε2J(logT)(1−θ)/2

)
.

Moreover, it follows from Lemma 2.7 that

(3.7) P(L(σ,X) ∈ UJ(C4εe
L,L + ε)) 
 L2Je4Lε2.

Combining this bound with (3.5) and (3.6) gives

�T (τ) =
1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ (−L,L)2J}

+ O
(
L2Je4Lε2 +

L2J+1

ε2J(logT)(1−θ)/2

)
.

Similarly, it follows from (3.7) that

�rand(τ) = P(L(σ,X) ∈ (−L,L)2J) + O(L2Je4Lε2).

Thus, using Theorem 2.3 we deduce that in this case

(3.8) �T (τ) = �rand(τ) + O
(
L2Je4Lε2 +

L2J+1

ε2J(logT)(1−θ)/2

)
.

Case 3: log(C3ε) + L < τ ≤ L̃. In this case we have

�T (τ) =
1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ VJ(e
τ,L)},

where VJ(y,L) is the bounded subset of R2J defined by

VJ(y,L) :=
{

(u1, . . . , uJ, v1, . . . , vJ) ∈ R
2J : |uj|, |vj| < L for all 1 ≤ j ≤ J,

and
∣∣∣∣ J∑

j=1

bje
uj+ivj

∣∣∣∣ > y
}

.
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Similarly as before, we cover VJ(eτ,L) with K̃(τ) distinct hypercubes B̃k(τ), each
of which has non-empty intersection with VJ(eτ,L) and sides of length ε. The
number of such hypercubes is

K̃(τ) 

(L

ε

)2J
.

Now, let 1 ≤ k ≤ K̃(τ) and (u1, . . . , uJ, v1, . . . , vJ) ∈ B̃k(τ) ∩ VJ(eτ,L). Then, for
any (x1, . . . , xJ, y1, . . . , yJ) ∈ B̃k(τ) we have |xj − uj| ≤ ε and |yj − vj| ≤ ε for all
1 ≤ j ≤ J. Hence, we deduce that |xj|, |yj| < L + ε for all 1 ≤ j ≤ J and∣∣∣∣ J∑

j=1

bje
xj+iyj

∣∣∣∣ = ∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣ + O(εeL) > eτ − C3

2
εeL

if C3 is suitably large. Therefore, we have shown that

(3.9) VJ(e
τ,L) ⊂ ⋃

k≤K̃(τ)

B̃k(τ) ⊂ VJ

(
eτ − C3

2
εeL,L + ε

)
.

Now, using Theorem 2.3 we deduce

(3.10)

�T (τ) ≤
K̃(τ)∑
k=1

1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ B̃k(τ)}

=
K̃(τ)∑
k=1

P(L(σ,X) ∈ B̃k(τ)) + O
( K̃(τ) log log T

(logT)(1−θ)/2

)
≤ P

(
L(σ,X) ∈ VJ

(
eτ − C4

2
εeL,L + ε

))
+ O
( L2J+1

ε2J(logT)(1−θ)/2

)
.

Moreover, it follows from Lemma 2.7 that

P

(
L(σ,X) ∈ (−L − ε,L + ε)2J and eτ − C3

2
εeL <

∣∣∣∣ J∑
j=1

bjLj(σ,X)
∣∣∣∣ ≤ eτ

)

 L2Je4Lε,

since τ ≤ L̃ = L+O(1) by our assumption. Furthermore, since the density HT (u, v)
of the random vector L(σ,X) is uniformly bounded in u, v by Lemma 7.2, we have

(3.11) P(L(σ,X) ∈ (−L − ε,L + ε)2J \ (−L,L)2J) 
 L2J−1ε.

Combining these bounds we obtain

P

(
L(σ,X) ∈ VJ

(
eτ − C4

2
εeL,L + ε

))
= �rand(τ) + O(L2Je4Lε).
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Hence, inserting this estimate in (3.10) we deduce

(3.12) �T (τ) ≤ �rand(τ) + O
(
L2Je4Lε +

L2J+1

ε2J(logT)(1−θ)/2

)
.

We now proceed to prove the corresponding lower bound. Let τ1 be such that
eτ = eτ1 − C3

2 εeL. Then, it follows from (3.9) and Theorem 2.3 that

(3.13)

1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ VJ(e
τ,L + ε)}

≥
K̃(τ1)∑
k=1

1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ B̃k(τ1)}

=
K̃(τ1)∑
k=1

P(L(σ,X) ∈ B̃k(τ1)) + O
( K̃(τ) log log T

(logT)(1−θ)/2

)
≥ �rand(τ1) + O

( L2J+1

ε2J(logT)(1−θ)/2

)
.

Moreover, by Lemma 2.7 we have

�rand(τ1)

= �rand(τ) + O
(
P

(
L(σ,X) ∈ (−L,L)2J : eτ <

∣∣∣∣ J∑
j=1

bjLj(σ,X)
∣∣∣∣ ≤ eτ +

C3

2
εeL
))

= �rand(τ) + O(L2Je4Lε).

Finally, we use Theorem 2.3 together with (3.11) to deduce

1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ VJ(e
τ,L + ε)} − �T(τ)

≤ 1
T

meas{t ∈ [T, 2T] : L(σ + it) ∈ (−L − ε,L + ε)2J \ (−L,L)2J}

= P(L(σ,X) ∈ (−L − ε,L + ε)2J \ (−L,L)2J) + O
( log logT

(logT)(1−θ)/2

)

 L2J−1ε +

log logT
(logT)(1−θ)/2

.

Inserting these estimates in (3.13) yields

(3.14) �T (τ) ≥ �rand(τ) + O
(
L2Je4Lε +

L2J+1

ε2J(logT)(1−θ)/2

)
.

Thus we deduce from the estimates (3.4), (3.8) and (3.12) and (3.14) that in all
cases we have

�T (τ) = �rand(τ) + O
(
L2Je4Lε +

L2J+1

ε2J(log T)(1−θ)/2

)
.
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The desired result follows by choosing

ε =
(log logT)1/(2J+1)

(logT)(1−θ+8α)/(4J+2) . �

Proof of Theorem 2.1. By (3.3) we have∫ L̃

−M
�T (τ)dτ =

∫ L̃

−M

1
T

∫
t∈S0(T)

log |F(σ+it)|>τ

dtdτ =
1
T

∫
t∈S0(T)

(log |F(σ + it)| + M)dt.

Combining this identity with (3.2) and using that meas(S0(T)) = T�T (−M) we
obtain

(3.15)

1
T

∫ 2T

T
log |F(σ + it)|dt

=
∫ L̃

−M
�T (τ)dτ − M�T (−M) + O

( eO(
√

log logT)

(logT)α2/(ξθ)−3θ

)
.

We now repeat the exact same approach for the random model F(σ,X). Using
the same argument leading to (3.2) but with Lemma 2.5 instead of Lemma 2.4, we
deduce similarly that

E(log |F(σ,X)|) = E(1S · log |F(σ,X)|) + O
( eO(

√
log logT)

(logT)α2/(ξθ)

)
,

where 1S is the indicator function of S. Therefore, reproducing the argument
leading to (3.15) we obtain

(3.16) E(log |F(σ,X)|) =
∫ L̃

−M
�rand(τ)dτ − M�rand(−M) + O

( eO(
√

log logT)

(logT)α2/(ξθ)

)
.

Combining (3.15) and (3.16) together with Proposition 3.1 we deduce that

(3.17)

1
T

∫ 2T

T
log |F(σ + it)|dt

= E(log |F(σ,X)|) + O
( (log log T)2J+4

(logT)(1−θ−16Jα)/(4J+2)−3θ
+

eO(
√

log logT)

(logT)α2/(ξθ)−3θ

)
.

We first require that θ satisfies θ < α/
√

3ξ, so that the exponent of logT in the
second error term of (3.17) is negative. Therefore, we might choose α be slightly
bigger than

√
3ξθ. Hence, in order to insure that the exponent of logT in the error

term of (3.17) is negative, we thus require that θ satisfies the inequality

12Jθ + 7θ + 16J
√

3ξθ < 1 ⇐⇒ θ <
1

12J + 7 + 16J
√

3ξ
.

This completes the proof. �
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4 Preliminary results

In this section we provide several of the technical lemmas that we shall need later.
We first record several useful facts. Since

logLj(s) =
∑

p

d∑
i=1

∞∑
k=1

αj,i(p)k

kpks
,

we see that

βLj(p
k) =

1
k

d∑
i=1

αj,i(p)k

and

(4.1) |βLj(p
k)| ≤ d

k
pkθ

for k = 1, 2, . . . and j = 1, . . . , J. For later use, we remark that

(4.2)
∞∑
k=3

∑
p

|βLj(p
k)|

pk/2
< ∞,

∞∑
k=2

∑
p

|βLj(p
k)|2

pk
< ∞,

∑
p

|βLj(p)|4
p2

< ∞.

One can easily show (4.2) by applying assumption A3 and inequalities

(4.3) |βLj(p
k)| ≤ 1

k

d∑
i=1

|αj,i(p)|k ≤ p(k−2)θ

k

d∑
i=1

|αj,i(p)|2 for k ≥ 2

and

(4.4) |βLj(p)|2 ≤
( d∑

i=1

|αj,i(p)|
)2

≤ d
d∑

i=1

|αj,i(p)|2.

Lemma 4.1. Let 1 ≤ j, k ≤ J. Then uniformly for 1/2 < σ ≤ 1 we have

(4.5)

∑
p

βLj(p)βLk(p)

p2σ

= δj,kξj log
( 1
σ − 1/2

)
+ c′

j,k + O
(
(σ − 1/2) log

( 1
σ − 1/2

))
for some constants c′

j,k. Moreover, uniformly for 1/2 < σ ≤ 1 we have

(4.6)

∑
p>Y

βLj(p)βLk(p)

p2σ
= δj,kξj log

( 1
(σ − 1/2) logY

)
+ O(1)

if 2 ≤ Y ≤ exp
( 1
2σ − 1

)
,
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and

(4.7)
∑
pn>Y

|βLj(p
n)|2

p2nσ

 Y1−2σ

(2σ − 1) logY
if Y ≥ exp

( 1
2σ − 1

)
.

Proof. We start by proving (4.5). First, by partial summation and (1.3) we
derive ∑

p

βLj(p)βLk(p)

p2σ
=δj,kξj

∫ ∞

2

u−2σ

log u
du + bj,k

+ O
((

σ − 1
2

)(
1 +
∫ ∞

2

u−2σ

log u
du
))

,

(4.8)

for some constants bj,k. To evaluate the integral on the right-hand side of this
estimate we use the substitution w = (2σ − 1) logu. This gives∫ ∞

2

u−2σ

log u
du =

∫ ∞

(2σ−1) log 2
e−w dw

w

=
∫ 1

(2σ−1) log 2

dw

w
+
∫ 1

(2σ−1) log 2
(e−w − 1)

dw

w
+
∫ ∞

1
e−w dw

w

= log
( 1
σ − 1/2

)
− log(2 log2) − γ + O(σ − 1/2),

(4.9)

where

γ =
∫ 1

0
(1 − e−w)

dw

w
−
∫ ∞

1
e−w dw

w

is the Euler–Mascheroni constant. Inserting this estimate in (4.8) implies (4.5).
We next establish (4.6). Similarly to (4.8) one has∑

p>Y

βLj(p)βLk(p)

p2σ
= δj,kξj

∫ ∞

Y

u−2σ

log u
du + O(1).

To estimate this integral we again use the substitution w = (2σ − 1) logu. Then
similarly to (4.9) one obtains∫ ∞

Y

u−2σ

log u
du =

∫ ∞

(2σ−1) log Y
e−w dw

w
= log

( 1
(σ − 1/2) logY

)
+ O(1),

which implies (4.6).
We finally turn to the proof of (4.7). By partial summation and (1.3) it follows

that in the range Y > exp(1/(2σ − 1)) we have∑
p>Y

|βLj(p)|2
p2σ



∫ ∞

Y
u−2σ du

log u
+

Y1−2σ

log Y


∫ ∞

(2σ−1) log Y
e−w dw

w
+

Y1−2σ

logY


 Y1−2σ

(2σ − 1) logY
.
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Now, we will bound the contribution of the prime powers. By (4.1) and (4.3), we
have

|βLj(p
n)|2 ≤ dp2(n−1)θ

n2

d∑
i=1

|αj,i(p)|2,

and hence by assumption A3 and partial summation, we have

∑
pn>Y
n≥2

|βLj(p
n)|2

p2nσ

 ∑

p>
√

Y

∞∑
n=2

∑d
i=1 |αj,i(p)|2

n2p2(σ−θ)n+2θ
+
∑

p≤√
Y

∑
n≥ logY

logp

∑d
i=1 |αj,i(p)|2

n2p2(σ−θ)n+2θ


 ∑
p>

√
Y

∑d
i=1 |αj,i(p)|2
p4σ−2θ

+
∑

p≤√
Y

∑d
i=1 |αj,i(p)|2
Y2(σ−θ)p2θ


Y (1+ε−4σ+2θ)/2 + Y−2(σ−θ)+(1+ε−2θ)/2

for any ε > 0. By choosing ε sufficiently small, we obtain

∑
pn>Y

|βLj(p
n)|2

p2nσ

 Y1−2σ

(2σ − 1) logY
,

which completes the proof. �
Let L(s) be an L-function satisfying assumptions A1–A4. Here and throughout,

we define for Y ≥ 2 and σ, t ∈ R

RL,Y (σ + it) :=
∑
pn≤Y

βL(pn)
pn(σ+it) and RL,Y(σ,X) :=

∑
pn≤Y

βL(pn)X(p)n

pnσ
,

where {X(p)}p is a sequence of independent random variables, uniformly dis-
tributed on the unit circle.

Our next result shows that logL(σ + it) can be approximated by RL,Y (σ + it) for
1/2 + 1/G(T) ≤ σ ≤ 1, and for all t ∈ [T, 2T] except for an exceptional set with a
very small measure. This is accomplished using the zero-density estimates (1.2).

Lemma 4.2. Let L(s) be an L-function satisfying assumptions A1–A4. Let T
be large and G(T) be such that 2 < G(T) ≤ c0

√
log T/ log logT, for some suitably

small constant c0 > 0. Put Y = eAG(T) log logT for a constant A ≥ 5. Then
there is a positive constant c1 such that for all t ∈ [T, 2T] except for a set of

measure 
 T exp(−c1 logT/G(T)), we have

log L(σ + it) = RL,Y (σ + it) + O
( 1
(logT)A/2−2

)
uniformly for σ ≥ 1/2 + 1/G(T).
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Proof. By Perron’s formula we have

RL,Y (σ + it) =
1

2πi

∫ c+iY

c−iY
logL(σ + it + w)

Yw

w
dw

+ O
(

Y−σ+1/4
∑

p

∞∑
n=1

|βL(pn)|
p5n/4| log(Y/pn)|

)(4.10)

where c = 5/4 − σ. To bound the error term of this last estimate, we split the sum
over primes into three parts: pn ≤ Y/2, Y/2 < pn < 2Y and pn ≥ 2Y . The terms in
the first and third parts satisfy | log(Y/pn)| ≥ log 2, and hence their contribution is


 Y−σ+1/4
∑

p

∞∑
n=1

|βL(pn)|
p5n/4 = Y−σ+1/4

(∑
p

|βL(p)|
p5/4 + O(1)

)

 Y−1/4

by (4.1) and (4.4). To handle the contribution of the terms Y/2 < pn < 2Y , we put
r = Y − pn, and use the lower bound | log(Y/pn)| � |r|/Y . Then the contribution
of these terms is


 Y−σ+θ−5/4
∑
r≤Y

1
r


 Y−1/2+θ log Y.

Let w0 = −1/(2G(T)) and assume that L(σ+ it+w) has no zeros in the half-strip
given by Re(w) ≥ −3/(4G(T)), |Im(w)| ≤ Y + 1. Then in the slightly smaller
half-strip {w : Re(w) ≥ w0, |Im(w)| ≤ Y} we have

(4.11)
L′

L
(σ + it + w) 
 G(T) logT

(see [7, Proposition 5.7]). Observe that this holds for all t ∈ [T, 2T] except for t in
a set of measure


 Y · N
(1

2
+

1
4G(T)

, 2T
)


 T1−c2/(4G(T))(logT)c3 exp(AG(T) log log T)


 T exp
(

− c1
logT
G(T)

)
for some constants c1, c2, c3 > 0 by (1.2) and our assumption on G(T). Now,
integrating both sides of (4.11) along the horizontal segment from w to w + B,
where B is sufficiently large, we see that for such t we have

logL(σ + it + w) 
 G(T) logT,

for all w such that Re(w) ≥ w0, |Im(w)| ≤ Y . Using this and shifting the contour
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to the left in (4.10), we obtain

RL,Y(σ + it)− log L(σ + it)

=
1

2πi

(∫ w0−iY

c−iY
+
∫ w0+iY

w0−iY
+
∫ c+iY

w0+iY

)
log L(σ + it + w)

Yw

w
dw

+ O(Y−1/2+θ logY + Y−1/4)


 G(T)(logT)Yw0 logY 
 1
(logT)A/2−2

.

This proves the lemma. �
We now establish the analogous result for the random model log L(σ,X).

Lemma 4.3. Let σ>1/2 and Y ≥exp(1/(2σ−1)). Then, for all ε>0 we have

P(| logLj(σ,X) − RLj,Y (σ,X)| ≥ ε) 
 Y1−2σ

ε2(2σ − 1) logY
.

Proof. By Chebyshev’s inequality we have

(4.12) P(| logLj(σ,X) − RLj,Y (σ,X)| ≥ ε) ≤ 1
ε2E(| logLj(σ,X) − RLj,Y (σ,X)|2).

Furthermore, observe that

E(| logLj(σ,X) − RLj,Y (σ,X)|2) =
∑

pn
1,p

m
2 >Y

βLj(p
n
1)βLj(p

m
2 )

pnσ
1 pmσ

2
E(X(p1)

n
X(p2)

m
)

=
∑
pn>Y

|βLj(p
n)|2

p2nσ
,

since E(X(p1)nX(p2)m) = 1 only when n = m and p1 = p2, and is 0 otherwise.
Combining this identity with Lemma 4.1 and (4.12) completes the proof. �

We also need a standard mean value estimate, which follows from [22, Lem-
ma 3.3].

Lemma 4.4. Let z ≥ 2 be a real number and k be a positive integer such that
k ≤ log T/ log z. Let {a(p)}p be a sequence of complex numbers. Let {X(p)}p be a

sequence of independent random variables uniformly distributed on the unit circle.
Then we have

1
T

∫ 2T

T

∣∣∣∣∑
p≤z

a(p)
pit

∣∣∣∣2k

dt 
 k!
(∑

p≤z

|a(p)|2
)k

,

and

E

(∣∣∣∣∑
p≤z

a(p)X(p)
∣∣∣∣2k)

≤ k!
(∑

p≤z

|a(p)|2
)k

.

Using this result we bound the (2k)th moments of RLj,Y (σ + it) and RLj,Y (σ,X).
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Lemma 4.5. Let 1 ≤ j ≤ J. Let σ ≥ 1/2 and Y ≥ 2 be real numbers. Then

for all positive integers k ≤ log T/ logY, we have

1
T

∫ 2T

T
|RLj,Y (σ + it)|2kdt 
 k!(ξj log log Y + O(

√
log log Y))k,

and
E(|RLj,Y (σ,X)|2k) 
 k!(ξj log logY + O(

√
log log Y))k.

Proof. We only prove the first estimate, as the second is similar and simpler.
First, by (4.2) we have

RLj,Y (σ + it) =
∑
p≤Y

βLj(p)

pσ+it
+
∑

p≤√
Y

βLj(p
2)

p2σ+2it
+ O(1)

uniformly in Y and t. Hence it follows from Minkowski’s inequality that

(4.13)

(∫ 2T

T
|RLj,Y (σ + it)|2kdt

)1/2k

≤
(∫ 2T

T

∣∣∣∣∑
p≤Y

βLj(p)

pσ+it

∣∣∣∣2k

dt
)1/2k

+
(∫ 2T

T

∣∣∣∣ ∑
p≤√

Y

βLj(p
2)

p2σ+2it

∣∣∣∣2k

dt
)1/2k

+ C1T
1/2k,

for some constant C1 > 0. Now, it follows from Lemma 4.4 together with Stirling’s
formula and assumption A5 that

(4.14)

1
T

∫ 2T

T

∣∣∣∣∑
p≤Y

βLj(p)

pσ+it

∣∣∣∣2k

dt 
 k!
(∑

p≤Y

|βLj(p)|2
p2σ

)k

≤ k!(ξj log log Y + O(1))k,

since σ ≥ 1/2. Similarly, by Lemma 4.4 and a simple change of variable we have∫ 2T

T

∣∣∣∣ ∑
p≤√

Y

βLj(p
2)

p2σ+2it

∣∣∣∣2k

dt =
1
2

∫ 4T

2T

∣∣∣∣ ∑
p≤√

Y

βLj(p
2)

p2σ+it

∣∣∣∣2k

dt


 Tk!
(∑

p≤Y

|βLj(p
2)|2

p2

)k

.

(4.15)

Now, by (4.1), (4.3), assumption A3 and partial summation we obtain

∑
p≤Y

|βLj(p
2)|2

p2

∑

p≤Y

d∑
i=1

|αj,i(p)|2
p2−2θ


 1.

Combining this estimate with (4.13), (4.14) and (4.15) completes the proof. �
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As a consequence of this result and Lemma 4.2, we establish Lemma 2.6.

Proof of Lemma 2.6. Let Y = e10G(T) log logT . By Lemma 4.2 for all
t ∈ [T, 2T] except for a set ofmeasure
 T exp(−c1 logT/G(T)) (for some constant
c1 > 0), we have

log Lj(σ + it) = RLj,Y (σ + it) + O
( 1

(logT)3

)
.

Therefore, it follows from Lemma 4.5 that

(4.16)

1
T

meas{t ∈ [T, 2T] : | log Lj(σ + it)| > τ}

≤ 1
T

meas
{
t ∈ [T, 2T] : |RLj,Y (σ + it)| > τ − 1

log T

}
+ O(e−c1

logT
G(T) )

≤ 1
(τ − 1/ logT)2k

1
T

∫ 2T

T
|RLj,Y (σ + it)|2kdt + O(e−c1

logT
G(T) )

≤ k!
(ξj logG(T) + O(

√
log G(T) + log3 T)

(τ − 1/ logT)2

)k
+ O(e−c1

logT
G(T) ).

Using Stirling’s formula, and choosing

k = (τ − 1/ logT)2/(ξj log G(T) + C max{√log G(T), log3 T})�
for some suitably large constant C implies the result.

We now establish the analogous bound for log Lj(σ,X). Let ε = 1/(logT)2 and
Y = eG(T)(log logT)5 . Then, it follows from Lemma 4.3 that

P

(
| logLj(σ,X) − RLj,Y (σ,X)| >

1
(logT)2

)

 (logT)4

(log logT)5
e−2(log logT)5


 e−(log logT)5 .

Now, using the same argument leading to (4.16) together with Lemma 4.5 we
obtain

P(| logLj(σ,X)| > τ)

≤ P

(
|RLj,Y (σ,X)| > τ − 1

log T

)
+ O(e−(log logT)5 )

≤ k!
(ξj log G(T) + O(

√
log G(T) + log3 T)

(τ − 1/ logT)2

)k
+ O(e−(log logT)5 ).

Making the same choice of k and using Stirling’s formula completes the proof. �
We extend the X(p) multiplicatively by defining for n=

∏
p pα, X(n)=

∏
p X(p)α.

We finish this section with the following standard lemma, which we shall use
in Section 5 to prove that the characteristic function of the joint distribution of
logLj(σ + it) is very close to that of the joint distribution of logLj(σ,X).
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Lemma 4.6. Let bj(n) be complex numbers, such that |bj(n)| ≤ C for all

1 ≤ j ≤ J and n ≥ 1 and for some constant C > 0. Let kj, k′
j be positive integers

for j ≤ J and write k =
∑

j≤J kj and k′ =
∑

j≤J k′
j. Then uniformly for Y,T ≥ 2 we

have

1
T

∫ 2T

T

J∏
j=1

(∑
n≤Y

bj(n)
nit

)kj
(∑

n≤Y

bj(n)
nit

)k′
j

dt

= E

( J∏
j=1

(∑
n≤Y

bj(n)X(n)
)kj
(∑

n≤Y

bj(n)X(n)
)k′

j
)

+ O
( (CY2)k+k′

T

)
.

Proof. We have

1
T

∫ 2T

T

J∏
j=1

(∑
n≤Y

bj(n)
nit

)kj
(∑

n≤Y

bj(n)
nit

)k′
j

dt

=
1
T

∫ 2T

T

( ∑
ni,j≤Y

b1(n1,1) · · ·b1(nk1,1)
(n1,1 · · · nk1,1)it

· · · bJ(n1,J) · · ·bJ(nkJ,J)
(n1,J · · · nkJ ,J)it

)

×
( ∑

mi,j≤Y

b1(m1,1) · · · b1(mk′
1,1)

(m1,1 · · ·mk′
1,1)

−it
· · · bJ(m1,J) · · · bJ(mk′

J ,J)

(m1,J · · ·mk′
J ,J)

−it

)
dt.

The contribution of the diagonal terms is

�1 =
∑

ni,j,mi,j≤Y∏
ni,j=

∏
mi,j

J∏
j=1

( kj∏
i=1

bj(ni,j)

k′
j∏

i=1

bj(mi,j)
)

= E

( J∏
j=1

(∑
n≤Y

bj(n)X(n)
)kj
(∑

n≤Y

bj(n)X(n)
)k′

j
)

.

The off-diagonal contribution is

�2 =
∑

ni,j,mi,j≤Y∏
ni,j �=∏mi,j

J∏
j=1

( kj∏
i=1

bj(ni,j)

k′
j∏

i=1

bj(mi,j)
)( (m/n)2iT − (m/n)iT

iT log(m/n)

)
,

where n =
∏

ni,j and m =
∏

mi,j. Since n,m ≤ Yk+k′
and n �= m,

1
| log(m/n)| 
 Yk+k′

.

Hence, we derive

�2 
 (CY)k+k′

T

∑
ni,j,mi,j≤Y∏
ni,j �=∏mi,j

1 
 (CY2)k+k′

T
.

This completes the proof. �
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5 Bounding the discrepancy: Proof of Theorem 2.3

Let u = (u1, . . . , uJ) and similarly v, x, and y be vectors in R
J , and define

�̂T(x, y) :=
∫
R2J

e2πi(x·u+y·v)d�T(u, v),

and

�̂rand
T (x, y) :=

∫
R2J

e2πi(x·u+y·v)d�rand
T (u, v),

where x · u =
∑J

j=1 xjuj is the dot product. Then by the definitions of �T and �rand
T

in (2.3) and (2.4), we may write

�̂T(x, y) =
1
T

∫ 2T

T
exp
[
2πi

J∑
j=1

(xj log |Lj(σ + it)| + yj argLj(σ + it))
]
dt

and

�̂rand
T (x, y) = E

(
exp
[
2πi

J∑
j=1

(xj log |Lj(σ,X)| + yj argLj(σ,X))
])

.

Proposition 5.1. Let T be large andσ=1/2+1/G(T)where 2<G(T)≤
√

logT
log logT .

Let ||x||∞ := sup1≤j≤J |xj|. Then, for any constant A > 0 there exists a constant

c1 > 0 such that for all x and y with ||x||∞, ||y||∞ ≤ c1

√
logT√

G(T) log logT
, we have

�̂T(x, y) = �̂rand
T (x, y) + O

( 1
(logT)A

)
.

Proof. Let Y = exp(BG(T) log logT), where B = 2A+6. Then for every j ≤ J,
it follows from Lemma 4.2 that

(5.1) log Lj(σ + it) = RLj,Y (σ + it) + O
( 1

(logT)A+1

)
for all t ∈ [T, 2T] except for a set of measure 
 T exp(−c1 log T/G(T)) for some
constant c1 > 0. Let A(T) be the set of points t ∈ [T, 2T] for which (5.1) holds for
all j ≤ J. Then

meas(A(T)) 
 T exp(−c1 log T/G(T)) 
 T exp(−√log T).
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Hence by (5.1), �̂T (x, y) equals

1
T

∫
A(T)

exp
(

2πi
( J∑

j=1

(xjRe logLj(σ + it) + yjIm log Lj(σ + it))
))

dt

+ O(e−
√

logT )

=
1
T

∫ 2T

T
exp
(

2πi
( J∑

j=1

(xjReRLj,Y (σ + it) + yjImRLj,Y (σ + it))
))

dt

+ O
( 1

(logT)A

)
.

Let N = [logT/(10BG(T) log logT)]. Then, it follows from the previous estimate
that �̂T(x, y) equals

(5.2)
2N−1∑
n=0

(2πi)n

n!
1
T

∫ 2T

T

( J∑
j=1

(xjReRLj,Y (σ + it) + yjImRLj,Y (σ + it))
)n

dt + E1,

where

(5.3)

E1 
 1
(logT)A

+
(2π)2N(||x||∞ + ||y||∞)2N

(2N)!
1
T

∫ 2T

T

( J∑
j=1

|RLj,Y (σ + it)|
)2N

dt


 1
(logT)A

+
N!

(2N)!
(C2 log log Y)N

(c2
1 logT)N

G(T)N(log logT)2N

 1

(logT)A
,

by Lemma 4.5, Minkowski’s inequality and Stirling’s formula, where c1 and C2

are positive constants.

Next, we handle the main term of (5.2). To this end, we use Lemma 4.6, which
implies that for all non-negative integers k1, k2, . . . , k2J such that k1+· · ·+k2J ≤ 2N

we have

1
T

∫ 2T

T

J∏
j=1

(RLj,Y (σ + it))kj

J∏
	=1

(RLj,Y (σ + it))kJ+	dt

= E

( J∏
j=1

(RLj,Y (σ,X))kj

J∏
	=1

(RLj,Y (σ,X))kJ+	

)
+ O(T−1/2).

Let zj = xj + iyj and z̄j be its complex conjugate. Then it follows from this estimate
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that for all 0 ≤ n ≤ 2N we have

1
T

∫ 2T

T

( J∑
j=1

(xjReRLj,Y (σ + it) + yjImRLj,Y (σ + it))
)n

dt

=
1
2n

1
T

∫ 2T

T

( J∑
j=1

(z̄jRLj,Y (σ + it) + zjRLj,Y (σ + it))
)n

dt

=
1
2n

∑
k1,...,k2J≥0
k1+···+k2J=n

(
n

k1, . . . , k2J

)

× 1
T

∫ 2T

T

J∏
j=1

(z̄jRLj,Y (σ + it))kj

J∏
	=1

(z	RL	,Y (σ + it))kJ+	dt

=
1
2n

∑
k1,...,k2J≥0
k1+···+k2J=n

(
n

k1, k2, . . . , k2J

)
E

( J∏
j=1

(z̄jRLj,Y (σ,X))kj

J∏
	=1

(z	RLj,Y (σ,X))kJ+	

)

+ O
(

T−1/2
( J∑

j=1

|zj|
)n)

= E

[( J∑
j=1

(xjReRLj,Y (σ,X) + yjImRLj,Y (σ,X))
)n]

+ O(T−1/2Jn(||x||∞ + ||y||∞)n).

Inserting this estimate in (5.2), we derive that �̂T(x, y) equals

(5.4)

2N−1∑
n=0

(2πi)n

n!
E

(( J∑
j=1

(xjReRLj,Y (σ,X) + yjImRLj,Y (σ,X))
)n)

+ O((logT)−A)

= E

(
exp
(

2πi
J∑

j=1

(xjReRLj,Y (σ,X) + yjImRLj,Y (σ,X))
))

+ O((logT)−A),

where the last estimate follows by Lemma 4.5 and the same argument as in (5.3).
Let ε > 0 be a parameter to be chosen, and define Bε to be the event

| logLj(σ,X) − RLj,Y (σ,X)| < ε,

for all j ≤ J. Let Bc
ε be the complement of Bε. Then it follows from Lemma 4.3

that
P(Bc

ε) 
 1
ε2(logT)2B

.
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Let 1Bε
be the indicator function of the eventBε. Then it follows from this estimate

that �̂rand
T (x, y) equals

E

(
1Bε

· exp
(

2πi
J∑

j=1

(xjRe logLj(σ,X) + yjIm log Lj(σ,X))
))

+ O
( 1
ε2(logT)2B

)

= E

(
1Bε

· exp
(

2πi
J∑

j=1

(xjReRLj,Y (σ,X) + yjImRLj,Y (σ,X))
))

+ O
(
ε +

1
ε2(logT)2B

)
= E

(
exp
(

2πi
J∑

j=1

(xjReRLj,Y (σ,X) + yjImRLj,Y (σ,X))
))

+ O
(
ε +

1
ε2(logT)2B

)
.

Choosing ε = (logT)−2B/3 and inserting this estimate in (5.4) completes the
proof. �

The deduction of Theorem 2.3 from Proposition 5.1 uses Beurling–Selberg
functions. For z ∈ C let

H(z) =
(sinπz

π

)2
( ∞∑

n=−∞

sgn(n)
(z − n)2

+
2
z

)
and K(z) =

(sinπz
πz

)2
.

Beurling proved that the function B+(x) = H(x) + K(x) majorizes sgn(x) and
its Fourier transform has restricted support in (−1, 1). Similarly, the function
B−(x) = H(x) − K(x) minorizes sgn(x) and its Fourier transformhas the same prop-
erty (see [23, Lemma 5]).

Let � > 0 and a, b be real numbers with a < b. Take I = [a, b] and define

FI,�(z) =
1
2
(B−(�(z − a)) + B−(�(b − z))).

Then we have the following lemma, which is proved in [12] (see Lemma 7.1 therein
and the discussion above it).

Lemma 5.2. The function FI,� satisfies the following properties

(1) For all x ∈ R we have |FI,�(x)| ≤ 1 and

(5.5) 0 ≤ 1I(x) − FI,�(x) ≤ K(�(x − a)) + K(�(b − x)).

(2) The Fourier transform of FI,� is

(5.6) F̂I,�(y) =

⎧⎨⎩1̂I(y) + O( 1
�

) if |y| < �,

0 if |y| ≥ �.
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Proof of Theorem 2.3. First, it follows from Lemma 2.6 that with
τ=(log log T)2 we have

1
T

meas{t ∈ [T, 2T] : L(σ + it) /∈ [−(log log T)2, (log logT)2]2J} 
 1
(logT)10 ,

and
P(L(σ,X) /∈ [−(log log T)2, (log log T)2]2J) 
 1

(logT)10 .

Therefore, it suffices to consider rectangular regions

R ⊂ [−(log logT)2, (log logT)2]2J.

Let A = J + 3 and c1 be the corresponding constant in Proposition 5.1. Let

� := c1

√
log T√

G(T) log log T
,

and

R =
J∏

j=1

[aj, bj] ×
J∏

j=1

[cj, dj]

for j = 1, . . . , J, with 0 < bj −aj, dj −cj ≤ 2(log log T)2. We also write Ij = [aj, bj]
and Jj = [cj, dj]. By Fourier inversion, (5.6), and Proposition 5.1 we have

1
T

∫ 2T

T

J∏
j=1

FIj,�(log |Lj(σ + it)|)FJj,�(argLj(σ + it)) dt

=
∫
R2J

( J∏
j=1

F̂Ij,�(xj)F̂Jj,�(yj)
)

�̂T(−x,−y) dx dy

=
∫

|xj|,|yj|≤�
j=1,2,...,J

( J∏
j=1

F̂Ij,�(xj)F̂Jj,�(yj)
)

�̂rand
T (−x,−y) dx dy + E2

= E

( J∏
j=1

FIj,�(log |Lj(σ,X)|)FJj,�(argLj(σ,X))
)

+ O
( 1

(logT)2

)
,

(5.7)

where E2 = O(�2J (log logT)4J

(logT)A ).

Next note that K̂(ξ) = max(0, 1 − |ξ|). Applying Fourier inversion, Proposi-
tion 5.1 with J = 1, and Lemma 7.1 we obtain

1
T

∫ 2T

T
K(�(log |L1(σ + it)| − α)) dt

=
1
�

∫ �

−�

(
1 − |ξ|

�

)
e−2πiαξ�̂T(ξ, 0, . . . , 0) dξ 
 1

�
,
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where α is an arbitrary real number. By this and (5.5) we have that

(5.8)

1
T

∫ 2T

T
FI1,�(Re logL1(σ + it)) dt

=
1
T

∫ 2T

T
1I1

(
Re logL1(σ + it))dt + O(1/�).

Lemma 5.2 implies that |FIj,�(x)|, |FJj,�(x)| ≤ 1 for j = 1, . . . , J. Hence, by this
and (5.8) we have

1
T

∫ 2T

T

J∏
j=1

FIj,�(Re log Lj(σ + it))FJj,�(argLj(σ + it)) dt

=
1
T

∫ 2T

T
1I1 (Re logL1(σ + it))FJ1,�(argL1(σ + it))

×
J∏

j=2

FIj,�(Re log Lj(σ + it))FJj,�(argLj(σ + it)) dt + O(1/�).

By using the same argument, one can prove analogs of (5.8) for Re log Lj(σ + it)
with 2 ≤ j ≤ J and argLj(σ + it) with 1 ≤ j ≤ J. We then derive

1
T

∫ 2T

T

J∏
j=1

FIj,�(Re log Lj(σ + it))FJj,�(argLj(σ + it)) dt

=
1
T

∫ 2T

T

J∏
j=1

1Ij,�(Re log Lj(σ + it))1Jj,�(argLj(σ + it)) dt + OJ

( 1
�

)
=�T (R) + OJ

( 1
�

)
.

(5.9)

A similar argument shows that

(5.10) E

( J∏
j=1

FIj,�(Re log Lj(σ,X))FJj,�(argLj(σ,X))
)

= �rand
T (R) + OJ

( 1
�

)
.

Inserting the estimates (5.9) and (5.10) in (5.7) completes the proof. �

6 L2k norm of log |∑J
j=1 bjLj(σ + it)|: Proof of Proposi-

tion 2.4

To prove Proposition 2.4 we follow the same strategy as in the proof of [13,
Proposition 2.5] for the Riemann zeta function, but we encounter new technical
difficulties which we shall describe later.

We first start with the following classical lemma, which is a generalization of a
lemma of Landau (see Lemma α in [21, Section 3.9]).
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Lemma 6.1 ([13, Lemma 5.1]). Let 0 < r 
 1. Also, let s0 = σ0 + it and

suppose f (z) is analytic in |z − s0| ≤ r. Define

Mr(s0) = max|z−s0|≤r

∣∣∣ f (z)
f (s0)

∣∣∣ + 3 and Nr(s0) =
∑

|�−s0|≤r

1,

where the last sum runs over the zeros � of f (z) in the closed disk of radius r
centered at s0. Then for 0 < δ < r/2 and |z − s0| ≤ r − 2δ we have

f ′

f
(z) =

∑
|ρ−s0|≤r−δ

1
s − ρ

+ O
( 1
δ2 (logMr(s0) + Nr−δ(s0)(log 1/δ + 1))

)
.

Recall that Lj(s) has a Dirichlet series representation

Lj(s) =
∞∑
n=1

αLj(n)

ns
,

for Re(s) > 1. We shall apply Lemma 6.1 to the following function

(6.1) f (z) =
nz

0∑
j≤J bjαLj(n0)

J∑
j=1

bjLj(z),

where n0 is the smallest positive integer n such that
∑J

j=1 bjαLj(n) �= 0. We let ρ run
over the zeros of f . We recall that σ = 1/2 + 1/G(T), and choose

δ :=
1

5G(T)
, r := σ0 − 1

2
− 1

2G(T)
, and R := r + δ.

where σ0 is taken to be large (but fixed) so that |f (σ0 + it)| ≥ 1/10 and
minρ |s0 − ρ| ≥ 1/10 uniformly in t. A straightforward generalization of [13,
Lemmas 5.2 and 5.3] leads to the following result. To be precise, we only include
the major steps of the proof.

Lemma 6.2. Let σ, δ, r,R, and s0 = σ0 + it be as above. Then there exists an

absolute constant c > 0 such that for every positive integer k we have∫ 2T

T

∣∣∣∣ log
∣∣∣∣ J∑

j=1

bjLj(σ + it)
∣∣∣∣∣∣∣∣2k

dt


 ck(G(T)3/2k + G(T)3 logG(T))2k
2T�∑
n=T�

(
log
(∣∣∣∣ J∑

j=1

bjLj(sn)
∣∣∣∣ + 3
))2k

,

where sn = σn+itn for n > 0 is a point at which |∑J
j=1 bjLj(s)| achieves its maximum

value on the set
⋃

n≤t≤n+1 DR(σ0 + it), and DR(z) is the disc of radius R centered
at z.
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Proof. First, applying Lemma 6.1 to f (z) defined in (6.1) we obtain for
|z − s0| ≤ r − 2δ that

f ′(z)
f (z)

=
∑

|ρ−s0|≤r−δ

1
z − ρ

+ O
( 1
δ2 (logMr(s0) + Nr−δ(s0)(log 1/δ + 1))

)
where

Mr(s0) = max|z−s0|≤r

∣∣∣ f (z)
f (s0)

∣∣∣ + 3 and Nr(s0) =
∑

|�−s0|≤r

1.

Now, a standard application of Jensen’s formula shows that (see [13, (5.4)])

Nr−δ(s0) ≤ r
δ
(logMr(s0) + log 10).

Hence we derive

f ′(z)
f (z)

=
∑

|ρ−s0|≤r−δ

1
z − ρ

+ O(G(T)3 log G(T) logMr(s0))

for |z − s0| ≤ r − 2δ. We integrate both sides from s0 = σ0 + it to s = σ + it and
take the real parts, to obtain

log|f (s)| − log |f (s0)|
=

∑
|ρ−s0|≤r−δ

log |s − ρ| + O(Nr−δ(s0) + G(T)3 logG(T) logMr(s0))

=
∑

|ρ−s0|≤r−δ

log |s − ρ| + O(G(T)3 log G(T) logMr(s0)),

since log |s0 − ρ| = O(1) for all zeros ρ with |ρ − s0| ≤ r − δ by our choice of σ0.
Furthermore, since log |f (s0)| = O(1) and log |f (s)| = log |∑J

j=1 bjLj(s)| + O(1), we
deduce that

log

∣∣∣∣ J∑
j=1

bjLj(σ + it)

∣∣∣∣ ≤ ∑
|ρ−s0|≤r−δ

log |σ + it − ρ| + c1G(T)3 logG(T) logMr(s0),

for some positive constant c1. We now use the simple inequality

(x + y)2k ≤ 22k max(|x|, |y|)2k ≤ 22k(|x|2k + |y|2k)

for all real numbers x, y, to deduce that

(6.2)

∫ 2T

T

∣∣∣∣ log

∣∣∣∣ J∑
j=1

bjLj(σ + it)

∣∣∣∣∣∣∣∣2k

dt

≤ 4k
∫ 2T

T

( ∑
|ρ−s0|≤r−δ

| log |σ + it − ρ||
)2k

dt

+ (2c1G(T)3 log G(T))2k
∫ 2T

T
(logMr(s0))

2kdt.
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For n > 0, let sn = σn + itn be a point at which |∑J
j=1 bjLj(s)| achieves its maximum

value on the set
⋃

n≤t≤n+1 DR(σ0 + it). Then, we note that

∫ 2T

T
(logMr(s0))

2kdt ≤
2T�∑
n=T�

∫ n+1

n
(logMr(s0))

2kdt


 ck
2

2T�∑
n=T�

(
log
(∣∣∣∣ J∑

j=1

bjLj(sn)

∣∣∣∣ + 3
))2k

(6.3)

for some absolute constant c2 > 0. Furthermore, a straightforward generalization
of the proof of [13, Lemma 5.3] implies that

(6.4)

∫ 2T

T

( ∑
|ρ−s0|≤r−δ

| log |σ + it − ρ||
)2k

dt


 (c3k)
2k

2T�∑
n=T�

(
1
δ

∑
	≤1/

√
δ

log MR(σ0 + i(n + 	
√

δ))
)2k


 (c3k)2k

δ3k

2T�∑
n=T�

(
log
(∣∣∣∣ J∑

j=1

bjLj(sn)
∣∣∣∣ + 3
))2k

,

where c3 > 0 is an absolute constant. Inserting the estimates (6.3) and (6.4) in
(6.2) completes the proof. �

In the case of the Riemann zeta function, in order to bound

2T�∑
n=T�

(log |ζ(sn)| + 3)2k,

the authors of [13] use Jensen’s inequality together with standard estimates for the
second moment of ζ(s). However, estimates for the second moment are not known
in general for the L-functions in our class. Using a different approach, we were
able to overcome this problem and establish the following result.

Lemma 6.3. Let δ, r,R, and s0 = σ0 + it be as above. Let Da(z) be the disc of

radius a centered at z. For n > 0, let sn = σn + itn be a point at which |∑J
j=1 bjLj(s)|

achieves its maximum value on the set
⋃

n≤t≤n+1 DR(σ0+it). Then there exist positive

constants c1 and c2 such that for all positive integers k ≤ log T/(c1G(T) log logT)
we have

2T�∑
n=T�

(
log
(∣∣∣∣ J∑

j=1

bjLj(sn)

∣∣∣∣ + 3
))2k


 TG(T)2(c2k log logT)k.



ZEROS OF LINEAR COMBINATIONS OF L-FUNCTIONS 703

Proof. We first observe that(
log
(∣∣∣∣ J∑

j=1

bjLj(sn)

∣∣∣∣ + 3
))2k

≤ Ck
1 max

j≤J
{(log(|Lj(sn)| + 3))2k}

≤ Ck
1

J∑
j=1

(log(|Lj(sn)| + 3))2k

for some constant C1 > 0 that depends on J and the bj. Thus, we have

2T�∑
n=T�

(
log
(∣∣∣∣ J∑

j=1

bjLj(sn)
∣∣∣∣ + 3
))2k

≤ Ck
1

J∑
j=1

2T�∑
n=T�

(log(|Lj(sn)| + 3))2k.

To prove the lemma, it is enough to show that

2T�∑
n=T�

(log(|Lj(sn)| + 3))2k 
 TG(T)2(C2k log logT)k

for every j ≤ J and for some constant C2 > 0.
Without loss of generality, we only consider the case j = 1. Let

A1(T) := {T� ≤ n ≤ 2T� : |L1(sn)| ≤ 5},
A2(T) := {T� ≤ n ≤ 2T� : |L1(sn)| > 5,L1(s) = 0 for some |s − sn| ≤ δ},
A3(T) := {T� ≤ n ≤ 2T� : |L1(sn)| > 5,L1(s) �= 0 for all |s − sn| ≤ δ}.

Then we see that

(6.5)
∑

n∈A1(T)

(log(|L1(sn)| + 3))2k ≤ T(log 8)2k.

To bound the sum over A2(T), we use the classical Phragmen–Lindelöf principle
which implies that there exists κ > 0 (which might depend on x and d in assumption
A1) such that

(6.6) |L1(x + iy)| 
 (1 + |y|)κ.
If |ρ − sn| ≤ δ and L1(ρ) = 0, then Re(ρ) ≥ 1/2 + 1/(10G(T)). By assumption A4
we have ∑

n∈A2(T)

(log(|L1(sn)| + 3))2k 
 Ck
3(logT)2kNL1(1/2 + 1/(10G(T)),T)


 Ck
3Te

−C4
logT
G(T) +2k log logT


 Ck
3Te

− C4
2

logT
G(T)

(6.7)
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for some constants C3,C4 > 0 and for k ≤ log T/(c1G(T) log logT) by choosing c1

sufficiently large. Lastly, for each n ∈ A3(T) we have

0 ≤ log(|L1(sn)| + 3) ≤ 2 log |L1(sn)| 
 1
πδ2

∫∫
Dδ(sn)

log |L1(x + iy)|dxdy,

since log |L1(s)| is subharmonic by [18, Theorem 17.3]. By Jensen’s inequality
applied to the convex function ϕ(x) = x2k, we have

(log(|L1(sn)| + 3))2k 
Ck
5

(
1

πδ2

∫∫
Dδ(sn)

log |L1(x + iy)|dxdy
)2k


Ck
5

1
πδ2

∫∫
Dδ(sn)

(log |L1(x + iy)|)2kdxdy


Ck
5

1
δ2

∫∫
DR′ (σ0+itn)

(log |L1(x + iy)|)2kdxdy

for some C5 > 0 and R′ = R + δ. Thus,

(6.8)

∑
n∈A3(T)

(log(|L1(sn)| + 3))2k


 Ck
5

∑
n∈A3(T)

1
δ2

∫∫
DR′ (σ0+itn)

(log |L1(x + iy)|)2kdxdy.

Let S	 = {n ∈ A3(T) : n ≡ 	 (mod (4�R′� + 2))}. If m, n ∈ S	 and m �= n then
|m − n| ≥ 4�R′� + 2; so that |tm − tn| ≥ 2R′ + 1. This implies that

DR′(σ0 + itn) ∩ DR′(σ0 + itm) = ∅.

Thus, since the disks are disjoint we see that

(6.9)

∑
n∈S	

1
δ2

∫∫
DR′ (σ0+itn)

(log |L1(x + iy)|)2kdxdy


 G(T)2
∫ σ0+R′

σ0−R′

∫ 2T+2R′+1

T−2R′−1
(log |L1(x + iy)|)2kdydx.

By adding (6.9) for all 	 (mod (4�R′� + 2)) and using (6.8), we see that

(6.10)

∑
n∈A3(T)

(log(|L1(sn)| + 3))2k


 Ck
5G(T)2

∫ σ0+R′

σ0−R′

∫ 2T+2R′+1

T−2R′−1
(log |L1(x + iy)|)2kdydx.

Note that
σ0 − R′ = σ0 − r − 2δ = 1/2 + 1/(10G(T)).
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Let Y = exp(100G(T) log log T). Then it follows from Lemma 4.2 that uniformly
for x ≥ σ0 − R′ we have

(6.11) logL1(x + iy) = RL1,Y(x + iy) + O
( 1

(logT)3

)
,

for all y ∈ [T, 2T] except for a set of measure 
 T exp(−C6 logT/G(T)), for some
constant C6 > 0. Let A(T) be the set of points y ∈ [T, 2T] for which (6.11) holds
and let Ac(T) be its complement in [T − 2R′ − 1, 2T + 2R′ + 1]. Then we have

meas(Ac(T)) 
 T exp
(

− C6
logT
G(T)

)
.

We now split the inner integral on the right-hand side of (6.10) in two parts, the
first over A(T) and the second over Ac(T). By (6.6) we obtain

(6.12)

∫ σ0+R′

σ0−R′

∫
Ac(T)

(log |L1(x + iy)|)2kdydx 
 meas(Ac(T))(C7 logT)2k


 T exp
(

− C6 logT
2G(T)

)
for some positive constant C7, where the last estimate follows from our assumption
on k.

Furthermore, if y ∈ A(T), then for x ≥ σ0 − R′ we have

(log |L1(x + iy)|)2k 
 4k(|RL1,Y (x + iy)|2k + 1)

by (6.11). Thus, by Lemma 4.5 and Stirling’s formula we obtain

(6.13)

∫ σ0+R′

σ0−R′

∫
A(T)

(log |L1(x + iy)|)2k dydx


 4k
(∫ σ0+R′

σ0−R′

∫ 2T

T
|RL1,Y (x + iy)|2kdydx + T

)

 T(C8k log log T)k

for some positive constant C8. Inserting the estimates (6.12) and (6.13) in (6.10)
gives ∑

n∈A3(T)

(log(|L1(sn)| + 3))2k 
 TG(T)2(C9k log logT)k

for some constant C9 > 0. This with (6.5) and (6.7) proves the lemma. �
Proposition 2.4 follows from Lemmas 6.2 and 6.3.

7 Analysis of the random model: Proofs of Theorem
2.2, Proposition 2.5 and Lemma 2.7

Recall that

L(σ,X) = (log |L1(σ,X)|, . . . , log |LJ(σ,X)|, argL1(σ,X), . . . , argLJ(σ,X)).



706 Y. LAMZOURI AND Y. LEE

We define its partial sum

Lq(σ,X) = (log |L1,q(σ,X)|, . . . , log |LJ,q(σ,X)|, argL1,q(σ,X), . . . , argLJ,q(σ,X))

for a positive integer q, where

logLj,q(σ,X) :=
∑
p≤q

∞∑
k=1

βLj(p
k)X(p)k

pkσ
.

We also define

(7.1) L>q(σ,X) := L(σ,X) − Lq(σ,X).

For a Borel set B in R
2J and for σ = 1/2 + 1/G(T), we define

�rand
q,T (B) = P(Lq(σ,X) ∈ B),

�rand
>q,T (B) := P(L>q(σ,X) ∈ B)

(7.2)

and their Fourier transforms

�̂rand
q,T (x, y) :=

∫
R2J

e2πi(x·u+y·v)d�rand
q,T (u, v),

�̂rand
>q,T (x, y) :=

∫
R2J

e2πi(x·u+y·v)d�rand
>q,T (u, v)

(7.3)

for x = (x1, . . . , xJ) ∈ R
J and y = (y1, . . . , yJ) ∈ R

J .

7.1 Upper bounds for the density functions and the Fourier trans-
forms of L(σ,X), Lq(σ,X), and L>q(σ,X). In this subsection, we prove that the
distribution functions of L(σ,X), Lq(σ,X), and L>q(σ,X) are absolutely continu-
ous, and provide bounds for their density functions and Fourier transforms. These
will be used to prove Proposition 2.5 and Lemma 2.7. We start with the following
lemma.

Lemma 7.1. Let A > 0 be a given real number. Then, there exists a positive

integer q(A) such that

�̂rand
q,T (x, y) 
q,A (1 + ||x||2 + ||y||2)−A

for every q ≥ q(A), where

||x||2 :=
√∑

j≤J

|xj|2.

Furthermore, for any positive integer q we have

�̂rand
>q,T (x, y) 
q,A (1 + ||x||2 + ||y||2)−A.

Thus, �rand
q,T is absolutely continuous for sufficiently large q > 0 and �rand

>q,T is
absolutely continuous for any q > 0.



ZEROS OF LINEAR COMBINATIONS OF L-FUNCTIONS 707

Proof. The absolute continuity of �rand
q,T and �rand

>q,T follows from the inequali-
ties in the lemma (see [9, Section 3]). Thus, it is enough to prove these inequalities.

We first define for any prime p

(7.4) ϕp,σ(x, y) := E

[
exp
(

2πi
J∑

j=1

(xjRe(gj(X(p)p−σ)) + yjIm(gj(X(p)p−σ)))
)]

,

where

gj(u) =
∞∑
k=1

βLj(p
k)uk.

Then we find that

�̂rand
q,T (x, y) = E[exp(2πi(x1, . . . , xJ, y1, . . . , yJ) · Lq(σ,X))]

=
∏
p≤q

ϕp,σ(x, y).(7.5)

By [14, Lemma 2.5] there is a constant C > 0 such that

(7.6) |ϕp,σ(x, y)| ≤ Cpσ/2

(
∑J

j=1(x
2
j + y2

j ))1/4

if ∣∣∣∣ J∑
j=1

βLj(p)(xj − iyj)
∣∣∣∣2 ≥ δ

J∑
j=1

(x2
j + y2

j )

for some constant δ > 0. Note that [14, Lemma 2.5] holds even for complex
coefficients aj with minor modification. In that case the condition in the last line
of the lemma should be ∣∣∣∣ J∑

j=1

aj(yj − iy′
j)

∣∣∣∣ ≥ δ||y||2.

Let q1 > 0 be a large positive integer to be chosen later and define a sequence qn

of integers inductively by qn+1 = 2qn . We shall prove that given u and v, there exists
a prime p in the interval (qn−1, qn] such that∣∣∣∣ J∑

j=1

βLj(p)(xj − iyj)
∣∣∣∣2 ≥ 1

2
(min

j≤J
ξj)

J∑
j=1

(x2
j + y2

j )

holds. Suppose not. Then multiplying both sides by 1/p and summing over all
primes p in (qn−1, qn] we have∑

qn−1<p<qn

|∑J
j=1 βLj(p)(xj − iyj)|2

p

≤ 1
2
(min

j≤J
ξj)

J∑
j=1

(x2
j + y2

j )(logqn−1 + O(log log qn−1)).



708 Y. LAMZOURI AND Y. LEE

On the other hand by (1.3) we see that

∑
qn−1<p<qn

|∑J
j=1 βLj(p)(xj − iyj)|2

p

=
J∑

j=1

(x2
j + y2

j )
( ∑

qn−1<p≤qn

|βLj(p)|2
p

+ O(1)
)

=
J∑

j=1

(x2
j + y2

j )(ξj log qn−1 + O(log log qn−1))

≥ (min
j≤J

ξj)
J∑

j=1

(x2
j + y2

j )(logqn−1 + O(log log qn−1)).

This is a contradiction if qn−1 is sufficiently large.

Now, take q = qm+1 where m = 4A� + 1. Then using (7.6) together with the
trivial bound |ϕp,σ(x, y)| ≤ 1 we obtain

|�̂rand
q,T (x, y)| ≤

m∏
n=1

∏
qn<p≤qn+1

|ϕp,σ(x, y)| ≤
m∏

n=1

Cqσ/2
n+1

(
∑J

j=1 x2
j + y2

j )1/4
≤ Cq,m

(
∑J

j=1 x2
j + y2

j )A

for some constant Cq,m > 0. This completes the proof.

To prove the second inequality, we choose 	 such that q	 > q. Then for
m = 4A� + 1 we obtain similarly that

|�̂rand
>q,T (x, y)| ≤

	+m−1∏
n=	

∏
qn<p≤qn+1

|ϕp,σ(x, y)| ≤
m∏

n=1

Cqσ/2
n+1

(
∑J

j=1 x2
j + y2

j )1/4

≤ C′
q,m,	

(
∑J

j=1 x2
j + y2

j )A

for some constant C′
q,m,	 > 0. �

By Lemma 7.1 and [9, Section 3], there is an integer q > 0 such that both �rand
q,T

and �rand
>q,T have continuous density functions, say Hq,T (u, v) and H>q,T (u, v), re-

spectively. One can also see that H>q,T (u, v) has partial derivatives of any order.
Since �rand

T = �rand
>1,T , it follows that �rand

T has a continuous density function which
we shall denote throughout by HT(u, v). These density functions are real valued
and nonnegative.

Lemma 7.2. Let 0 < λ < (24J maxj≤J ξj)−1 be a fixed real number. For all
u, v ∈ RJ we have

HT (u, v) 
λ e− λ
logG(T)

∑J
j=1(u

2
j +v 2

j ).
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Proof. Let q be a positive integer. By a standard convolution argument we
have

HT (u, v) =
∫
R2J

Hq,T (u − x, v − y)d�rand
>q,T(x, y)

=
∫
R2J

Hq,T (u − x, v − y)H>q,T(x, y)dxdy

for u, v ∈ R
J . Since

|Lq(σ,X)|2 =
J∑

j=1

| logLj,q(σ,X)|2 ≤
J∑

j=1

∑
p≤q

∞∑
k=1

|βLj(p
k)|

pk/2 := R2
q,

we have Hq,T (x, y) = 0 for
∑J

j=1(x
2
j + y2

j ) > R2
q. Let

Bq(u, v) :=
{

(x, y) ∈ R
2J :

J∑
j=1

(xj − uj)
2 + (yj − vj)

2 ≤ R2
q

}

be the 2J dimensional ball of radius Rq centered at (u, v), then we see that

HT (u, v) =
∫

Bq(u,v)
Hq,T (u − x, v − y)H>q,T(x, y)dxdy

≤
(

sup
(x,y)∈R2J

Hq,T (x, y)
)
�rand

>q,T (Bq(u, v)).

Since the measure �̃rand
q,σ (B) := P[Lq(σ,X) ∈ B] and its density function H̃q,σ(x, y)

depend continuously on σ ≥ 1/2, we see that

sup
T≥T0

sup
(x,y)∈R2J

Hq,T (x, y) ≤ Mq := sup
1/2≤σ≤2/3

sup
x,y∈RJ

H̃q,σ(x, y) < ∞

for a sufficiently large constant T0 > 0. Hence, we deduce that

(7.7) HT (u, v) ≤ Mq�
rand
>q,T (Bq(u, v)).

Thus, it remains to find an upper bound for �rand
>q,T (Bq(u, v)).

First, we remark that if (x, y) ∈ Bq(u, v) and ||(u, v)||2 ≥ 2Rq then

(7.8) ||(x, y)||2 ≥ 1
2
||(u, v)||2,

since otherwise 1
2 ||(u, v)||2 < ||(u, v)||2 − ||(x, y)||2 ≤ ||(u, v) − (x, y)||2 ≤ Rq

which contradicts our assumption. Let λ < (24J maxj≤J ξj)−1 be a positive real
number. Then it follows from (7.8) that for (u, v) ∈ R2J such that ||(u, v)||2 ≥ 2Rq
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we have

�rand
>q,T (Bq(u, v))

=
∫

Bq(u,v)
H>q,T (x, y)dxdy

≤ e− λ
logG(T)

∑J
j=1(u

2
j +v 2

j )
∫

Bq(u,v)
e

4λ
logG(T)

∑J
j=1(x

2
j +y2

j )H>q,T (x, y)dxdy

≤ e− λ
logG(T)

∑J
j=1(u

2
j +v 2

j )
∫
R2J

e
4λ

logG(T)

∑J
j=1(x

2
j +y2

j )H>q,T (x, y)dxdy.

(7.9)

To complete the proof we establish that for any real number 0<λ′<(6J maxj≤J ξj)−1

we have

(7.10)
∫
R2J

e
λ′

logG(T)

∑J
j=1(x

2
j +y2

j )H>q,T (x, y)dxdy = Oq,λ′(1)

as T → ∞. Indeed, assuming (7.10) we obtain by (7.7) and (7.9) that

HT (u, v) 
q e− λ
logG(T)

∑J
j=1(u

2
j +v 2

j ),

for ||(u, v)||2 ≥ 2Rq. Therefore, choosing q to be large but fixed we deduce that
for all (u, v) ∈ R

2J we have

HT (u, v) 
 e− λ
logG(T)

∑J
j=1(u

2
j +v 2

j )

where the implicit constant is absolute.

We now proceed to establish (7.10). Our proof is basically the same as the
second part of the proof of Proposition 2.2 in [15]. First, note that

∫
R2J

e
λ′

logG(T)

∑J
j=1(x

2
j +y2

j )H>q,T (x, y)dxdy

= E

[
exp
(

λ′

logG(T)

J∑
j=1

∣∣∣∣∑
p>q

∞∑
k=1

βLj(p
k)X(p)k

pkσ

∣∣∣∣2)].
Since by (4.2) we have

∑
p>q

∞∑
k=1

βLj(p
k)X(p)k

pkσ
=
∑

p

∞∑
k=1

βLj(p
k)X(p)k

pkσ
+ Oq(1)

=
∑

p

βLj(p)X(p)

pσ
+
∑

p

βLj(p
2)X(p)2

p2σ
+ Oq(1),
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we see that

E

[
exp
(

λ′

logG(T)

J∑
j=1

∣∣∣∣∑
p>q

∞∑
k=1

βLj(p
k)X(p)k

pkσ

∣∣∣∣2)]


q E

[
exp
(

3λ′

log G(T)

J∑
j=1

∣∣∣∣∑
p

βLj(p)X(p)

pσ

∣∣∣∣2

+
3λ′

log G(T)

J∑
j=1

∣∣∣∣∑
p

βLj(p
2)X(p)2

p2σ

∣∣∣∣2)].
By Hölder’s inequality, the above is

≤
J∏

j=1

E

[
exp
(

6Jλ′

log G(T)

∣∣∣∣∑
p

βLj(p)X(p)

pσ

∣∣∣∣2)] 1
2J

× E

[
exp
(

6Jλ′

log G(T)

∣∣∣∣∑
p

βLj(p
2)X(p)2

p2σ

∣∣∣∣2)] 1
2J

.

By inequality [8, (18.8)] (which is an easy application of Parseval’s identity), the
above is

≤
J∏

j=1

(
1 − 6Jλ′

logG(T)

∑
p

|βLj(p)|2
p2σ

)− 1
2J
(

1 − 6Jλ′

log G(T)

∑
p

|βLj(p
2)|2

p4σ

)− 1
2J

.

By (4.2), we see that ∑
p

|βLj(p
2)|2

p4σ
≤∑

p

|βLj(p
2)|2

p2
< ∞.

Furthermore, it follows from (4.5) that∑
p

|βLj(p)|2
p2σ

= ξj log G(T) + O(1).

Hence, we obtain∫
R2J

e
λ′

logG(T)

∑
j≤J(x

2
j +y2

j )H>q,T (x, y)dxdy


q

J∏
j=1

(
1 − 6Jλ′(ξj log G(T) + O(1))

log G(T)

)− 1
2J


q,λ′ 1

since 0 < λ′ < (6J maxj≤J ξj)−1. This completes the proof of (7.10) and hence the
result. �
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From the above lemma, we deduce the following proposition and Lemma 2.7.

Proof of Proposition 2.5. By Lemma 7.2 we see that

E

(∣∣∣∣ log

∣∣∣∣ J∑
j=1

bjLj(σ,X)

∣∣∣∣∣∣∣∣2k)
=
∫
R2J

∣∣∣∣ log

∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣∣∣∣∣2k

HT (u, v)dudv.

Furthermore, it follows from [15, Lemma 2.3] that there exists a constant C > 0
such that for any M > 0 we have

(7.11)
∫
R2J

∣∣∣∣ log
∣∣∣∣ J∑

j=1

bje
uj+ivj

∣∣∣∣∣∣∣∣2k

e− 1
M

∑J
j=1(u

2
j +v 2

j )dudv 
 MJ(Ck)k(M + k)k.

Applying this result with M = logG(T)/λ completes the proof. �
Proof of Lemma 2.7. First, using that HT (u, v) is uniformly bounded in

u, v we obtain

(7.12)

P

(
L(σ,X) ∈ [−M,M]2J and R <

∣∣∣∣ J∑
j=1

bjLj(σ,X)

∣∣∣∣ < R + ε

)



∫

u∈[−M,M]J ,v∈[−M,M]J

R<|∑J
j=1 bje

uj+ivj |<R+ε

dudv 
 MJ
∫

u∈[−M,M]J ,v∈[0,2π]J

R<|∑J
j=1 bje

uj+ivj |<R+ε

dudv,

where the last estimate is obtained by splitting the range of each vj into intervals
of the form [2kπ, (2k + 1)π] and using that eivj is periodic of period 2π. By the
change of variables r1 = eu1 , the last integral in (7.12) equals

(7.13)
∫

[0,2π]J−1

∫
[−M,M]J−1

(∫
R0

dr1

r1
dv1

)
du2 . . . duJdv2 . . . dvJ,

where

R0 := {(r1, v1) ∈ [e−M, eM] × [0, 2π] : R < |b1r1e
iv1 +

J∑
j=2

bje
uj+ivj | < R + ε}.

We shall now bound the inner integral by changing the polar coordinates (r1, v1)
to cartesian coordinates x, y, defined by x = r1 cos(v1) and y = r1 sin(v1). Let
Z =
∑J

j=2
bj

b1
euj+ivj . The set {(x, y) ∈ R

2 : R1 < |x+ iy+Z| < R2} corresponds to the
annulus of radii R1,R2 centered at −Z with volume π(R2

2 − R2
1). Thus, we have∫

R0

dr1

r1
dv1 =

∫
e−M≤

√
x2+y2≤eM

R/|b1|<|x+iy+Z|<(R+ε)/|b1 |

dxdy
x2 + y2

≤ e2M
∫

R/|b1|<|x+iy+Z|<(R+ε)/|b1 |
dxdy = πe2M (R + ε)2 − R2

|b1|2

 e2M(Rε + ε2).
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Inserting this estimate in (7.13) and combining it with (7.12) we deduce

P

(
L(σ,X) ∈ [−M,M]2J and R <

∣∣∣∣ J∑
j=1

bjLj(σ,X)
∣∣∣∣ < R + ε

)

 M2J−1e2M(Rε + ε2). �

7.2 Asymptotic formulas for �̂rand
T (x, y) and HT (u, v). In order to prove

Theorem 2.2 we need an asymptotic formula for the density function HT (u, v) that
is valid for a certain set of (u, v). To this end we prove the following result.

Lemma 7.3. Let ξmin = minj≤J ξj. Then we have

(7.14) |�̂rand
T (x, y)| ≤ e−π2ξmin(||x||22+||y||22)( 1

2 logG(T)+O(1))

for ||x||22 + ||y||22 ≤ e2
√

G(T). Moreover, there exists a constant c4 > 0 such that

(7.15) �̂rand
T (x, y) = eB2,σ(z)

(
1 +

5∑
m=3

Bm,σ(z) + O(||z||62)
)

holds for

z := x + iy = (x1 + iy1, . . . , xJ + iyJ) ∈ C
J

and ||z||2 ≤ c4, where each Bm,σ(z) is a homogeneous polynomial in z and z of
degree m,

B2,σ(z) = − π2 log G(T)
J∑

j=1

ξj(x
2
j + y2

j )

+
∑

j1,j2≤J

(
Cj1,j2 + O

( logG(T)
G(T)

))
(xj1 − iyj1 )(xj2 + iyj2 ),

(7.16)

for some constants Cj1,j2 and

(7.17) Bm,σ(z) = Bm,1/2(z) + O
( ||z||m2

G(T)

)
for m = 3, 4, 5.

Proof. Recall from (7.5) that

(7.18) �̂rand
T (x, y) =

∏
p

ϕp,σ(x, y),
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where ϕp,σ(x, y) is defined in (7.4). Now, using (7.4) and expanding the exponential
we obtain

ϕp,σ(x, y) = E

[
exp
(

2πi
J∑

j=1

(xjRe(gj(X(p)p−σ)) + yjIm(gj(X(p)p−σ)))
)]

=
∑

k,l∈(Z≥0)J

(πi)K(k+l)zkzl

k!l!
E

[ J∏
j=1

gj

(
X(p)
pσ

)kj

gj

(
X(p)
pσ

)	j
]
,

where for k= (k1, . . . , kJ) ∈ (Z≥0)J, we defineK(k) := k1 + · · ·+ kJ, k! := k1! · · · kJ!,
z = x + iy, z = x − iy and zk := zk1

1 · · · zkJ
J . Let

Ap,σ(k, l) := E

[ J∏
j=1

gj

(
X(p)
pσ

)kj

gj

(
X(p)
pσ

)	j
]
.

Since Ap,σ(0, 0) = 1, and Ap,σ(0, k) = Ap,σ(k, 0) = 0 for k �= 0, we deduce that

(7.19) ϕp,σ(x, y) = 1 + Rp,σ(z),

where

Rp,σ(z) :=
∑
k �=0

∑
l �=0

(πi)K(k+l)zkzl

k!l!
Ap,σ(k, l).

We now proceed to bound the sum Rp,σ(z) in a certain range of z and p. By (4.3)
and (4.4), we see that

gj

(
X(p)
pσ

)
=

βLj(p)X(p)

pσ
+ O
(∑d

i=1 |αj,i(p)|2
p2σ

)

= O
(

1
pσ

√√√√ d∑
i=1

|αj,i(p)|2
)

= O
( 1

p1/2−θ

)
.

Hence, there exists a constant c0 > 0 such that both

∣∣∣gj

(
X(p)
pσ

)∣∣∣ ≤ c0
1
pσ

√√√√ d∑
i=1

|αj,i(p)|2,
∣∣∣gj

(
X(p)
pσ

)∣∣∣ ≤ c0
1

p1/2−θ

(7.20)

hold for every prime p and every j ≤ J. Thus, we obtain

|Rp,σ(z)| 
∑
k �=0

∑
l �=0

1
k!l!

J∏
j=1

(
c0π||z||2

p1/2

√√√√ d∑
i=1

|αj,i(p)|2
)kj+	j


 ||z||22
p

J∑
j=1

d∑
i=1

|αj,i(p)|2 
 ||z||22
p1−2θ

(7.21)
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provided that ||z||2 
 p1/2−θ. This implies that in the range ||z||2 ≤ Y with
Y := exp(

√
G(T)), there is a constant c1 > 0 such that |Rp,σ(z)| ≤ 1

2 holds for all
primes p ≥ c1Y1/(1/2−θ). Therefore, using that |ϕp,σ(x, y)| ≤ 1 for all primes p,
together with (7.18) and (7.19) we have

|�̂rand
T (x, y)| ≤ ∏

p≥c1Yc(ε)

|1 + Rp,σ(z)|

≤
∣∣∣∣ exp

( ∑
p≥c1Yc(ε)

Rp,σ(z) + O
( ∑

p≥c1Yc(ε)

|Rp,σ(z)|2
))∣∣∣∣,(7.22)

for ||z||2 ≤ Y and any ε > 0 fixed, where

c(ε) := (1 + ε)/(1/2 − θ).

The second p-sum in (7.22) is∑
p≥c1Yc(ε)

|Rp,σ(z)|2 
 ||z||42
∑

p≥c1Yc(ε)

1
p2−2θ

J∑
j=1

d∑
i=1

|αj,i(p)|2


 ||z||42Y−2−ε 
 ||z||22Y−ε

for ||z||2 ≤ Y and any ε > 0 fixed by (7.21), assumption A3 and partial summation.
The first p-sum in (7.22) is∑

p≥c1Yc(ε)

Rp,σ(z) =
∑

p≥c1Yc(ε)

∑
k �=0

∑
l �=0

(πi)K(k+l)zkzl

k!l!
Ap,σ(k, l)

= − π2
∑

j1,j2≤J

zj1zj2

∑
p≥c1Yc(ε)

E

[
gj1

(
X(p)
pσ

)
gj2

(
X(p)
pσ

)]

+ O
( ∑

p≥c1Yc(ε)

∑∗

k,l

(π||z||2)K(k+l)

k!l!
|Ap,σ(k, l)|

)
,

where the ∗-sum is over k, l ∈ (Z≥0)J with k �= 0, l �= 0 andK(k+ l) ≥ 3. By (7.20),
assumption A3 and partial summation, the above O-term is


 ∑∗

k,l

(c0π||z||2)K(k+l)

k!l!
∑

p≥c1Yc(ε)

1
p1+(K(k+l)−2)(1/2−θ)

J∑
j=1

d∑
i=1

|αj,i(p)|2


 ∑∗

k,l

(c0π||z||2)K(k+l)

k!l!
Y2−K(k+l)−ε/2 
 Y−1−ε/2||z||32 ≤ Y−ε/2||z||22

for ||z||2 ≤ Y . Thus we derive

|�̂rand
T (x, y)|

≤
∣∣∣∣ exp

(
− π2

∑
j1,j2≤J

zj1zj2

∑
p≥c1Yc(ε)

E

[
gj1

(
X(p)
pσ

)
gj2

(
X(p)
pσ

)]
+ O(Y−ε/2||z||22)

)∣∣∣∣
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for ||z||2 ≤ Y and for any ε > 0 fixed. Moreover, by (4.2) and (4.6), the sum above
equals

∑
j1,j2≤J

zj1zj2

∑
p≥c1Yc(ε)

∞∑
k=1

βLj1
(pk)βLj2

(pk)

p2kσ

=
∑

j1,j2≤J

zj1zj2

∑
p≥c1Yc(ε)

βLj1
(p)βLj2

(p)

p2σ
+ O(||z||22)

=
1
2

logG(T)
J∑

j=1

ξj|zj|2 + O(||z||22).

Therefore, we deduce that

|�̂rand
T (x, y)| ≤ e−( π2

2 logG(T)+O(1))
∑J

j=1 ξj|zj|2 ≤ e−π2ξmin||z||22( 1
2 logG(T)+O(1))(7.23)

for ||z||2 ≤ Y where Y = e
√

G(T). This proves (7.14).
Next we find an asymptotic formula for �̂rand

T . By (7.21), there is a constant
c4 > 0 such that |Rp,σ(z)| ≤ 1

2 for ||z||2 ≤ c4 and for every prime p. Hence, it
follows from (7.18) and (7.19) that

�̂rand
T (x, y) = exp

(∑
p

Rp,σ(z) − 1
2

∑
p

Rp,σ(z)2 + O
(∑

p

|Rp,σ(z)|3
))

.

The O-term above is


 ||z||62
∑

p

1
p1+2(1−2θ)

J∑
j=1

d∑
i=1

|αj,i(p)|2 
 ||z||62

for ||z||2 ≤ c4 by (7.21), assumption A3 and partial summation. We observe
that the sum

∑
p Rp,σ(z) − 1

2

∑
p Rp,σ(z)2 has a power series representation in

z1, . . . , zJ, z̄1, . . . , z̄J without a constant term. Let Bσ(k, l) be the coefficient of zkzl

in this sum. Then we have∑
k �=0

∑
l �=0

Bσ(k, l)zkzl

=
∑
k �=0

∑
l �=0

(πi)K(k+l)zkzl

k!l!
∑

p

Ap,σ(k, l)

− 1
2

∑
k1,k2 �=0

∑
l1,l2 �=0

(πi)K(k1+l1+k2+l2)zk1+k2zl1+l2

k1!k2!l1!l2!
∑

p

Ap,σ(k1, l1)Ap,σ(k2, l2).

Therefore, if K(k + l) = 2 or 3, then

Bσ(k, l) =
(πi)K(k+l)

k!l!
∑

p

Ap,σ(k, l),
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while in the case K(k + l) ≥ 4, we have

Bσ(k, l) =
(πi)K(k+l)

k!l!
∑

p

Ap,σ(k, l)

− 1
2

∑
k1,k2 �=0
k1+k2=k

∑
l1,l2 �=0
l1+l2=l

(πi)K(k+l)

k1!k2!l1!l2!
∑

p

Ap,σ(k1, l1)Ap,σ(k2, l2)

For K(k + l) ≥ 4, we have

Bσ(k, l) 
 πK(k+l)

k!l!
∑

p

|Ap,σ(k, l)|

+
∑

k1,k2 �=0
k1+k2=k

∑
l1,l2 �=0
l1+l2=l

πK(k+l)

k1!k2!l1!l2!
∑

p

|Ap,σ(k1, l2)||Ap,σ(k2, l2)|


 (c0π)K(k+l)

k!l!
∑

p

maxj
∑

i |αj,i(p)|2
p1+2(1/2−θ)

+
∑

k1,k2 �=0
k1+k2=k

∑
l1,l2 �=0
l1+l2=l

(c0π)K(k+l)

k1!k2!l1!l2!
∑

p

maxj
∑

i |αj,i(p)|2
p1+2(1/2−θ)


 cK(k+l)
5

k!l!
,

for some constant c5 > 0, where the implicit constant is independent of k and l.
Hence, we deduce that∑

k,l �=0
K(k+l)≥6

Bσ(k, l)zkzl 
 ∑
K(k+l)≥6

(c5||z||2)K(k+l)

k!l!

 ||z||62

for ||z||2 ≤ c4. Therefore, we obtain

(7.24) �̂rand
T (x, y) = exp

( 5∑
m=2

Bm,σ(z) + O(||z||62)
)

for ||z||2 ≤ c4, where

Bm,σ(z) :=
∑
k,l �=0

K(k+l)=m

Bσ(k, l)zkzl

is a homogeneous polynomial in z1, . . . , zJ, z1, . . . , zJ of degree m.
For each k, l �= 0 satisfying K(k + l) = 3, 4, 5, Bσ(k, l) is a Dirichlet series

absolutely convergent for Re(s) > 1/2 − ε for some ε > 0. Thus, each coeffi-
cient Bσ(k, l) in such case satisfies

Bσ(k, l) = B1/2(k, l) + O(1/G(T)),
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which proves (7.17). This also implies that

(7.25) Bm,σ(z) = O(||z||m2 )

for m = 3, 4, 5 and for ||z||2 ≤ c4. On the other hand, when m = 2, we see that

(7.26) B2,σ(z) =
∑

j1,j2≤J

gj1,j2 (σ)zj1zj2,

where

gj1,j2 (σ) := − π2
∑

p

E

[
gj1

(
X(p)
pσ

)
gj2

(
X(p)
pσ

)]

= − π2
∑

p

∞∑
k=1

βLj1
(pk)βLj2

(pk)

p2kσ

= − π2
∑

p

βLj1
(p)βLj2

(p)

p2σ
− π2

∑
p

∞∑
k=2

βLj1
(pk)βLj2

(pk)

pk
+ O
( 1
G(T)

)
.

The second p-sum on the last line is convergent by (4.2). Therefore, it follows
from (4.5) that

(7.27) gj1,j2 (σ) = −π2δj1,j2ξj1 logG(T) + Cj1,j2 + O
( logG(T)

G(T)

)
for some constant Cj1,j2 . This proves (7.16). By (7.24) and (7.25) we see that

�̂rand
T (x, y) = eB2,σ(z)

(
1 +

5∑
m=3

Bm,σ(z) + O(||z||62)
)

holds for ||z||2 ≤ c4. This proves (7.15) and hence completes the proof. �
Using Lemma 7.3 we establish the following result, which is the key ingredient

in the proof of Theorem 2.2.

Lemma 7.4. For all u, v ∈ R
J we have

HT (u, v) =
1

(logG(T))J
e− 1

logG(T)

∑J
j=1 ξ−1

j (u2
j +v 2

j )PT (u, v) + O
( 1

(logG(T))J+3

)
,

where

PT (u, v) =
1

πJ
∏J

j=1 ξj
+

5∑
m=2

m∑
r=0

Qr,m(u, v)
(logG(T))(m+r)/2

is a polynomial in u, v of degree ≤ 5 and Qr,m(u, v) is a homogeneous polynomial
in u, v of degree r for r ≤ m ≤ 5.
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Proof. Recall that the density function HT(u, v) is the inverse Fourier trans-
form of �̂rand

T (x, y), so that

HT (u, v) =
∫
R2J

e−2πi(x·u+y·v)�̂rand
T (x, y)dxdy.

By Lemma 7.1, (7.14) and by changing the variables to polar coordinates, with
z = x + iy as in the previous lemma, we find that

HT (u, v)

=
∫

||z||2≤c4

e−2πi(x·u+y·v)�̂rand
T (x, y)dxdy

+ O
(∫

c4<||z||2≤e
√

G(T)
e−ξmin logG(T)||z||22dxdy +

∫
||z||2>e

√
G(T)

dxdy
(1 + ||z||2)2J+1

)
=
∫

||z||2≤c4

e−2πi(x·u+y·v)�̂rand
T (x, y)dxdy

+ O
(∫ e

√
G(T)

c4

e−ξmin logG(T)w2
w2J−1dw +

∫ ∞

e
√

G(T)

1
(1 + w)2J+1 w2J−1dw

)
=
∫

||z||2≤c4

e−2πi(x·u+y·v)�̂rand
T (x, y)dxdy + O

( 1

G(T)c
2
4ξmin logG(T)

)
.

Therefore, it follows from (7.15) and (7.16) that

HT(u, v) =
∫

||z||2≤c4

eB2,σ(z)−2πi(x·u+y·v)
(

1 +
5∑

m=3

Bm,σ(z) + O(||z||62)
)

dxdy

+ O
( 1

G(T)c
2
4ξmin log G(T)

)
=
∫

||z||2≤c4

eB2,σ(z)−2πi(x·u+y·v)
(

1 +
5∑

m=3

Bm,σ(z)
)

dxdy

+ O
( 1
(logG(T))J+3

)
.

Let

B′
2,σ(z) := B2,σ(z) + π2 log G(T)

J∑
j=1

ξj|zj|2,

then by (7.26) and (7.27), we have

B′
2,σ(z) =

∑
j1,j2≤J

(
Cj1,j2 + O

( log G(T)
G(T)

))
zj1zj2.
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Thus, by (7.16) we have

HT (u, v) =
∫

||z||2≤c4

e−π2 logG(T)
∑J

j=1 ξj(x2
j +y2

j )−2πi(x·u+y·v)
(

1 +
5∑

m=2

B̃m,σ(z)
)

dxdy

+ O
( 1

(logG(T))J+3

)
,

where each B̃m,σ(z) for m = 2, 3, 4, 5 is a homogeneous polynomial of degree m
defined to satisfy the identity

(
1 + B′

2,σ(z) +
1
2
B′

2,σ(z)
2
)(

1 +
5∑

m=3

Bm,σ(z)
)

= 1 +
5∑

m=2

B̃m,σ(z) + O(||z||62).

Furthermore, one has

B̃m,σ(z) =
m∑

k=0

(
Dk,m + O

( logG(T)
G(T)

))
zkzm−k,

for some constants Dk,m. Thus, the polynomials

B̃m(z) :=
m∑

k=0

Dk,mzkzm−k

are independent of σ and we see that

HT (u, v) =
∫

||z||2≤c4

e−π2 log G(T)
∑J

j=1 ξj(x2
j +y2

j )−2πi(x·u+y·v)
(

1 +
5∑

m=2

B̃m(z)
)
dxdy

+ O
( 1

(logG(T))J+3

)
.

Extending the range of integration to all of R
2J and changing the xj and yj to

xj/
√

π2 log G(T) and yj/
√

π2 logG(T) respectively, we obtain

HT(u, v)

=
∫
R2J

e−π2 logG(T)
∑J

j=1 ξj(x2
j +y2

j )−2πi(x·u+y·v)
(

1 +
5∑

m=2

B̃m(z)
)

dxdy

+ O((logG(T))−J−3)

=
∫
R2J

e
−∑J

j=1 ξj(x2
j +y2

j )−2 i√
logG(T)

(x·u+y·v)
(

1 +
5∑

m=2

B̃m(z)
πm(logG(T))m/2

)
dxdy

π2J(logG(T))J

+ O((logG(T))−J−3).
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The above exponent is

− 1
log G(T)

J∑
j=1

ξ−1
j (u2

j +v 2
j )−

J∑
j=1

ξj

((
xj +

iuj

ξj
√

logG(T)

)2
+
(
yj +

ivj

ξj
√

log G(T)

)2)
.

Hence, making the change of variables

z̃ = (x̃1 + iỹ1, . . . , x̃J + iỹJ),

where
x̃j = xj − iuj

ξj
√

log G(T)
, ỹj = yj − ivj

ξj
√

log G(T)

for every j = 1, . . . , J, we see that

HT (u, v) =
1

(logG(T))J
e− 1

logG(T)

∑J
j=1 ξ−1

j (u2
j +v 2

j )PT (u, v) + O
( 1

(logG(T))J+3

)
,

where PT (u, v) is a polynomial in u and v defined by

PT (u, v) =
1

π2J

∫
R2J

e−∑J
j=1 ξj(x2

j +y2
j )
(

1 +
5∑

m=2

B̃m(z̃)
πm(logG(T))m/2

)
dxdy.

By expanding the polynomial π−mB̃m(z̃), we have

π−m−2JB̃m(z̃) =
m∑

k=0

Qk,m(x, y, u, v)
(logG(T))k/2

,

where Qk,m(x, y, u, v) is a homogeneous polynomial in x, y, u, v of degree m and
each term has k factors in u, v. Therefore, we have

PT (u, v) =
1

πJ
∏J

j=1 ξj
+

5∑
m=2

m∑
k=0

Qk,m(u, v)
(logG(T))(m+k)/2 ,

where

Qk,m(u, v) :=
∫
R2J

e−∑J
j=1 ξj(x2

j +y2
j )Qk,m(x, y, u, v)dxdy

is a homogeneous polynomial in u, v of degree k for k ≤ m ≤ 5. �

7.3 Proof of Theorem 2.2. Let σ = 1/2 + G(T) and σi = 1/2 + Gi(T) for
i = 1, 2. Then, recall that

M(σ) = E

(
log

∣∣∣∣ J∑
j=1

bjLj(σ,X)

∣∣∣∣) =
∫
R2J

log

∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣HT (u, v)dudv.
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Let M1 :=
√

η logG(T) log log G(T), where η > 0 is a suitably large constant that
depends on J and the ξj. By the Cauchy–Schwarz inequality, Lemma 7.2 with
λ = (30J maxj≤J ξj)−1and equation (7.11) we see that

∣∣∣∣ ∫
R2J\[−M1,M1]2J

log

∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣HT (u, v)dudv
∣∣∣∣

≤
(∫

R2J\[−M1,M1]2J

∣∣∣∣ log

∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣∣∣∣∣2HT (u, v)dudv
) 1

2

×
(∫

R2J\[−M1,M1]2J
HT(u, v)dudv

) 1
2


 (logG(T))
J+1
2

( (logG(T))J+
1
2

M1
e− λM2

1
logG(T)

) 1
2 
 1

(logG(T))3
.

This implies

M(σ) =
∫

[−M1,M1]2J
log

∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣HT (u, v)dudv + O
( 1

(logG(T))3

)
.

We now use the asymptotic formula for HT (u, v) in Lemma 7.4 to obtain

M(σ) =
1

(logG(T))J

×
∫

[−M1,M1]2J
log

∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣e− 1
logG(T)

∑J
j=1 ξ−1

j (u2
j +v 2

j )PT (u, v)dudv

+ O
(

1
(logG(T))J+3

∫
[−M1,M1]2J

∣∣∣∣ log

∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣∣∣∣∣dudv +
1

(logG(T))3

)
.

By the Cauchy–Schwarz inequality and (7.11) we have

(∫
[−M1,M1]2J

∣∣∣∣ log

∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣∣∣∣∣dudv
)2

≤ (2M1)
2J
∫

[−M1,M1]2J

∣∣∣∣ log
∣∣∣∣ J∑

j=1

bje
uj+ivj

∣∣∣∣∣∣∣∣2dudv


 M2J
1

∫
R2J

∣∣∣∣ log
∣∣∣∣ J∑

j=1

bje
uj+ivj

∣∣∣∣∣∣∣∣2e− 1
M2

1

∑J
j=1(u

2
j +v 2

j )
dudv 
 M2(2J+1)

1 .
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Thus we have

M(σ) =
1

(logG(T))J

×
∫

[−M1,M1]2J
log
∣∣∣∣ J∑

j=1

bje
uj+ivj

∣∣∣∣e− 1
logG(T)

∑J
j=1 ξ−1

j (u2
j +v 2

j )PT(u, v)dudv

+ O
(

(log log G(T))J+(1/2)

(logG(T))5/2

)
.

We now use Lemma 7.4, which gives

M(σ)

=
1∏

j≤J ξj(π logG(T))J

∫
[−M1,M1]2J

log

∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣e− 1
logG(T)

∑J
j=1 ξ−1

j (u2
j +v 2

j )dudv

+
5∑

m=2

m∑
r=0

∫
[−M1,M1]2J

log

∣∣∣∣ J∑
j=1

bje
uj+ivj

∣∣∣∣e− 1
logG(T)

∑J
j=1 ξ−1

j (u2
j +v 2

j ) Qr,m(u, v)dudv
(logG(T))J+(m+r)/2

+ O
( (log log G(T))J+(1/2)

(logG(T))5/2

)
.

By the Cauchy–Schwarz inequality and (7.11), we can replace [−M1,M1]2J in
both integrals by R

2J , at the cost of an error term of size 
 1/(logG(T))3 if η is
suitably large. Let

Qr,m(u, v) =
∑
k,l

K(k+l)=r

qr,m,k,lukvl.

Since Qr,m(u, v) is a homogeneous polynomial of degree r, by changing the vari-
ables u, v to

√
log G(T)u,

√
logG(T)v, we obtain

M(σ) =
1

πJ
∏J

j=1 ξj

∫
R2J

log
∣∣∣∣ J∑

j=1

bje
(uj+ivj)

√
logG(T)

∣∣∣∣e−∑J
j=1 ξ−1

j (u2
j +v 2

j )dudv

+
5∑

m=2

m∑
r=0

∫
R2J

log
∣∣∣∣ J∑

j=1

bje
(uj+ivj)

√
logG(T)

∣∣∣∣e−∑J
j=1 ξ−1

j (u2
j +v 2

j ) Qr,m(u, v)dudv
(logG(T))m/2

+ O
( (log log G(T))J+(1/2)

(logG(T))5/2

)
=

1

πJ
∏J

j=1 ξj
I(0, 0, σ) +

5∑
m=2

m∑
r=0

1
(logG(T))m/2

∑
k,l

K(k+l)=r

qr,m,k,lI(k, l, σ)

+ O
( (log log G(T))J+(1/2)

(logG(T))5/2

)
,
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where

I(k, l, σ) :=
∫
R2J

log
∣∣∣∣ J∑

j=1

bje
(uj+ivj)

√
logG(T)

∣∣∣∣e−∑J
j=1 ξ−1

j (u2
j +v 2

j )ukvldudv.

The above estimation also holds for M(σ1) and M(σ2). Therefore, we deduce that

M(σ) − M(σi)

=
1

πJ
∏J

j=1 ξj
(I(0, 0, σ) − I(0, 0, σi))

+
5∑

m=2

m∑
r=0

1
(logG(T))m/2

∑
k,l

K(k+l)=r

qr,m,k,l(I(k, l, σ) − I(k, l, σi))

+ O
( (log logG(T))J+(1/2)

(logG(T))5/2

)
.

(7.28)

This integral I(k, l, σ) was estimated in [15] when k, l are fixed and G(T) is a
power of log T . Let Rn := {u ∈ R

J : un = max{u1, . . . , uJ}}, then I(k, l, σ) equals

J∑
n=1

∫
RJ

∫
Rn

log

∣∣∣∣ J∑
j=1

bje
(uj+ivj)

√
logG(T)

∣∣∣∣e−∑J
j=1 ξ−1

j (u2
j +v 2

j )ukvldudv

=
J∑

n=1

∫
RJ

∫
Rn

log
∣∣∣bne

(un+ivn)
√

logG(T)
∣∣∣e−∑J

j=1 ξ−1
j (u2

j +v 2
j )ukvldudv +

J∑
n=1

En(k, l, σ),

where En(k, l, σ) is defined by

(7.29)
∫
RJ

∫
Rn

log
∣∣∣∣1 +
∑
j �=n

bj

bn
e((uj−un)+i(vj−vn))

√
logG(T)

∣∣∣∣e−∑J
j=1 ξ−1

j (u2
j +v 2

j )ukvldudv.

Moreover, define

dl :=
∫
RJ

e−∑J
j=1 v 2

j /ξj vldv,

D1(k, l) := dl

J∑
n=1

∫
Rn

e−∑J
j=1 u2

j /ξj unukdu,

D2(k, l) := dl

J∑
n=1

log |bn|
∫
Rn

e−∑J
j=1 u2

j /ξjukdu,

then we find that

(7.30) I(k, l, σ) =
√

logG(T) · D1(k, l) + D2(k, l) +
J∑

n=1

En(k, l, σ).
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Note that

dl =

⎧⎨⎩0, if 	j is odd for some j,∏J
j=1

(
ξ

(	j+1)/2
j 
((	j + 1)/2)

)
, if 	j is even for all j.

By changing (logT)θ to G(T) in the proof of [15, Proposition 2.4], it follows that

En(k, l, σ) = O
( 1

(logG(T))1/4

)
if G(T) � 1, but this bound is not sufficient for our purpose. Instead, by (7.30),
we estimate the difference

I(k, l, σ) − I(k, l, σi)

=(
√

log G(T) −√logGi(T))D1(k, l) +
J∑

n=1

(En(k, l, σ) − En(k, l, σi))

=
(−1)iD1(k, l)
2(logG(T))3/2

+
J∑

n=1

(En(k, l, σ) − En(k, l, σi)) + O
( 1

(logG(T))5/2

)
.

By symmetry, we only estimate E1(k, l, σ) − E1(k, l, σi). By (7.29) and a simple
substitution, we see that

E1(k, l, σ) − E1(k, l, σi)

=
∫
RJ

∫
R1

log
∣∣∣∣1 +
∑
j �=1

bj

b1
e((uj−u1)+i(vj−v1))

√
logG(T)

∣∣∣∣e−∑J
j=1 ξ−1

j (u2
j +v 2

j )ukvldudv

−
∫
RJ

∫
R1

log

∣∣∣∣1 +
∑
j �=1

bj

b1
e((uj−u1)+i(vj−v1))

√
logGi(T)

∣∣∣∣e−∑J
j=1 ξ−1

j (u2
j +v 2

j )ukvldudv

=
∫
RJ

∫
R1

log
∣∣∣∣1 +
∑
j �=1

bj

b1
e((uj−u1)+i(vj−v1))

√
logG(T)

∣∣∣∣
×
(
e−∑J

j=1 ξ−1
j (u2

j +v 2
j ) − e− logG(T)

logGi(T)

∑J
j=1 ξ−1

j (u2
j +v 2

j )
( logG(T)

logGi(T)

)J+K(k+l)/2)
ukvldudv.

Since logG(T)
log Gi(T) = 1 + O( 1

(logG(T))2 ), by adapting the proof of [15, Lemma 2.5], we
find that the above is


 1
(logG(T))2

∫
RJ

∫
R1

∣∣∣∣ log
∣∣∣∣1 +
∑
j �=1

bj

b1
e((uj−u1)+i(vj−v1))

√
logG(T)

∣∣∣∣∣∣∣∣
× e

−(1+O( 1
(logG(T))2

))
∑J

j=1 ξ−1
j (u2

j +v 2
j )
( J∑

j=1

(u2
j + v 2

j ) + 1
)

ukvldudv


 1
(logG(T))9/4 .
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Thus, we deduce that

I(k, l, σ) − I(k, l, σi) =
(−1)iD1(k, l)
2(logG(T))3/2

+ O
( 1
(logG(T))9/4

)
.

Inserting this estimate in (7.28) gives

M(σ) − M(σi) =
(−1)iD1(0, 0)

2πJ(
∏J

j=1 ξj)(logG(T))3/2
+ O
( 1
(logG(T))9/4

)
,

where

D1(0, 0) = πJ/2
J∏

j=1

√
ξj

J∑
n=1

∫
Rn

e−∑J
j=1 u2

j /ξjundu

by 
(1/2) =
√

π. This completes the proof.
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