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EVA A. GALLARDO-GUTIÉRREZ AND JONATHAN R. PARTINGTON

Abstract. A closed subspace is invariant under the Cesàro operator C on the
classical Hardy space H2(D) if and only if its orthogonal complement is invariant
under the C0-semigroup of composition operators induced by the affine maps
ϕt(z) = e−tz + 1 − e−t for t ≥ 0 and z ∈ D. The corresponding result also holds in
the Hardy spaces Hp(D) for 1 < p < ∞. Moreover, in the Hilbert space setting, by
linking the invariant subspaces of C to the lattice of the closed invariant subspaces
of the standard right-shift semigroup acting on a particular weighted L2-space on
the line, we exhibit a large class of non-trivial closed invariant subspaces and
provide a complete characterization of the finite codimensional ones, establishing,
in particular, the limits of such an approach towards describing the lattice of all
invariant subspaces ofC. Finally, we present a functional calculus argument which
allows us to extend a recent result by Mashreghi, Ptak and Ross regarding the
square root of C and discuss its invariant subspaces.

1 Introduction and preliminaries

Despite the fact that one of the most classical transformations of sequences is the
Cesàro operator C, there are still many questions about it unsettled. Recall that C
takes a complex sequence a = (a0, a1, a2, . . .) to that with n-th entry:

(C a)n =
1

n + 1

n∑
k=0

ak (n ≥ 0).

Upon identifying sequences with Taylor coefficients of power series, C acts for-
mally on f (z) =

∑∞
k=0 akzk as

(1.1) C(f )(z) =
∞∑
n=0

(
1

n + 1

n∑
k=0

ak

)
zn.
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Indeed, if f is a holomorphic function on the unit disc D so is C(f ) and moreover,
C is an isomorphism of the Fréchet space H(D) of all holomorphic functions on D

endowed with the topology of uniform convergence on compacta.
Nevertheless, this is no longer true when C is restricted to the classical Hardy

spaces Hp(D), 1 ≤ p < ∞. A classical result of Hardy concerning trigonometric
series along with M. Riesz’s theorem yields that C is bounded on Hp(D) for
1 < p < ∞. Likewise, Siskakis proved that C is bounded on H1(D) (providing
even an alternative proof of the boundedness on Hp(D) for 1 < p < ∞; see [34],
[35]). However 0 belongs to the spectrum of C in Hp(D) and hence, C is not an
isomorphism [34].

Note that (1.1) can be written as

C(f )(z) = {
⎧⎨⎩ 1

z

∫ z
0

f (ξ)
1−ξ

dξ, z ∈ D \ {0},
f (0), z = 0,

for z ∈ D. There is an extensive literature on the Cesàro operator, and more
general, on integral operators, acting on a large variety of spaces of analytic
functions regarding its boundedness, compactness or spectral picture (see [1] or
[3], for instance).

If we restrict ourselves to the Hilbert space case H2(D), Kriete and Trutt proved
the striking result that the Cesàro operator is subnormal, namely, C on H2(D) has
a normal extension. More precisely, if I denotes the identity operator on H2(D),
they proved that I − C is unitarily equivalent to the operator of multiplication by
the identity function acting on the closure of analytic polynomials on the space
L2(μ,D) for a particular measure μ (see [24]). An alternative proof of the Kriete
and Trutt theorem, based on the connection between C and composition operator
semigroups, was later established by Cowen [9].

For Hp(D), 1 < p < ∞, Miller, Miller and Smith [29] showed that C is
subdecomposable, namely, it has a decomposable extension (the H1(D) case was
proved by Persson [32] ten years later). Decomposable operators were introduced
by Foiaş [16] in the sixties as a generalization of spectral operators in the sense
of Dunford, and many spectral operators in Hilbert spaces as unitary operators,
self-adjoint operators or more generally, normal operators are decomposable (see
the monograph [26] for more on the subject).

Normal operators on Hilbert spaces or more generally, decomposable operators
on Banach spaces have a rich lattice of non-trivial closed invariant subspaces with
a significant description of them. But, very little is known about this description
even for concrete examples of subnormal operators as the Cesàro operator, and this
will be the main motivation of the present manuscript.
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In this context, we discuss invariant subspaces of the Cesàro operator C on the
Hardy space H2(D). Broadly speaking, we prove a Beurling–Lax Theorem for
the Cesàro operator and provide a complete characterization of the finite codimen-
sional invariant subspaces of C. The composition semigroup method has turned
out to be a powerful tool to study the Cesàro operator and we will make use of such
technique in Section 2 to link the invariant subspaces of C to those of the right-shift
semigroup {Sτ}τ≥0 acting on a particular weighted L2(R, w(y)dy). In particular, we
will establish the limits of our approach towards describing completely the lattice
of the invariant subspaces of C.

In Section 3, we discuss Phillips functional calculus (as in Haase’s book [22])
which will allow us, in particular, to generalize the recent work by Mashreghi, Ptak
and Ross [28] regarding the square roots of C. In particular, we will discuss their
invariant subspaces.

In order to close this introductory section we collect some preliminaries for the
sake of completeness.

1.1 Semigroups of composition operators. The study of semigroups
of composition operators on various function spaces of analytic functions has
its origins in the work of Berkson and Porta [5], where they characterize their
generators on Hp(D), proving, indeed, that these semigroups are always strongly
continuous.

Recall that a one-parameter family � = {ϕt}t≥0 of analytic self-maps of D is
called a holomorphic flow (or holomorphic semiflow by some authors) if it
is a continuous family that has a semigroup property with respect to composition,
namely

(1) ϕ0(z) = z, for z ∈ D;
(2) ϕt+s(z) = ϕt ◦ ϕs(z), for t, s ≥ 0, and z ∈ D;
(3) for any s ≥ 0 and any z ∈ D, limt→s ϕt(z) = ϕs(z).

The holomorphic flow � is trivial if ϕt(z) = z for all t ≥ 0. Otherwise, we say
that � is non-trivial. We refer to the recent monograph [6] for more on the subject.

Associated to the holomorphic flow � = {ϕt}t≥0 is the family of composition
operators {Cϕt }t≥0, defined on the space of analytic functions on D by

Cϕt f = f ◦ ϕt.

Clearly, {Cϕt}t≥0 has the semigroup property:

(1) Cϕ0 = I;
(2) CϕtCϕs = Cϕt+s for all t, s ≥ 0.
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Moreover, recall that if an operator semigroup {Tt}t≥0 acts on a Banach space X,
then it is called a strongly continuous or C0-semigroup, if it satisfies

lim
t→0+

Ttf = f

for any f ∈ X. Given a C0-semigroup {Tt}t≥0 on a Banach space X, recall that its
generator is the closed and densely defined linear operator A defined by

Af = lim
t→0+

Ttf − f
t

with domain D(A) = {f ∈ X : limt→0+
Ttf−f

t exists}.

2 The lattice of the invariant subspaces of the Cesàro
operator

The aim of this section is identifying the lattice of the invariant subspaces of
the Cesàro operator C acting on the Hardy space H2(D). In particular, we will
characterize the finite codimensional invariant subspaces of C.

Our first result resembles a Beurling–Lax Theorem for the Cesàro operator.

Theorem 2.1. Let � = {ϕt}t≥0 be the holomorphic flow given by

(2.1) ϕt(z) = e−tz + 1 − e−t (z ∈ D).

A closed subspace M in H2(D) is invariant under the Cesàro operator if and only
if its orthogonal complement M⊥ is invariant under the semigroup of composition

operators induced by �, namely, {Cϕt }t≥0.

Before proceeding with the proof, note that each ϕt in (2.1) is an affine map
which is a hyperbolic non-automorphism of the unit disc inducing a bounded
composition operator Cϕt on H2(D) with norm

(2.2) ‖Cϕt‖2 = e
t
2

(see, for instance, [10, Theorem 9.4]).
Likewise, the generator of the C0-semigroup {Cϕt}t≥0 is given by

Af (z) = (1 − z)f ′(z) (z ∈ D),

(see the pioneering work by Berkson and Porta [5], for instance).

Proof. First, let us show that the cogenerator of the C0-semigroup {Cϕt}t≥0

given by
V = (A + I)(A − I)−1
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is a well-defined bounded operator. For such a task, we will prove that 1 ∈ ρ(A),
the resolvent of A, or equivalently,

A − I : D(A) ⊂ H2(D) → H2(D)

is bijective.
Note that A−I is an injective operator inD(A)⊂H2(D). Indeed, if (A−I)f (z)=0

then (1 − z)f ′(z) − f (z) = 0, so f (z) = C/(1 − z) for some complex constant C ∈ C.
But for C �= 0 we have that f �∈ H2(D).

We claim that A − I is also surjective. Given g ∈ H2(D), in order to find
f ∈ H2(D) such that

(A − I)f (z) = g(z) (z ∈ D)

or
(1 − z)f ′(z) − f (z) = ((1 − z)f (z))′ = g(z) (z ∈ D),

let

(2.3) f (z) =
1

1 − z

∫ z

1
g(u) du =

1
z − 1

∫ 1

z
g(u) du

for z ∈ D.
Note that the adjoint of the Cesàro operator C∗ has the following matrix with

respect to the canonical orthonormal basis of H2(D):⎛⎜⎜⎜⎜⎜⎜⎝

1 1
2

1
3

1
4 . . .

0 1
2

1
3

1
4 . . .

0 0 1
3

1
4 . . .

0 0 0 1
4 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

Writing

Tg(z) =
1

z − 1

∫ 1

z
g(u) du,

for g ∈ H2(D), observe that

Tzn =
1

z − 1

(1 − zn+1

n + 1

)
= −1 + z + · · · + zn

n + 1
.

Accordingly, T is a well-defined operator in H2(D) (as it is -C∗). This in particular
implies that the function f in (2.3) belongs to H2(D) and hence A − I is surjective.

Accordingly, the cogenerator V of the C0-semigroup {Cϕt}t≥0 is a well-defined
bounded operator on H2(D).
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Now, having in mind the norm estimate (2.2), we observe that the C0-semigroup
{e−tCϕ2t }t≥0 is contractive on H2(D) and its generator is 2A − I. Since

V − I = 2(A − I)−1 = 4((2A − I) − I)−1 = −2C∗

the invariant subspaces of the cogenerator are simply the common invariant sub-
spaces of the semigroup (see [17, Chap. 10, Theorem 10.9]) and the statement of
the theorem follows. �

First, let us remark that a similar argument in the context of C0-semigroups
of analytic 2-isometries was also used in [19]. Likewise, recalling that the Hardy
space Hp(D), 1 ≤ p < ∞, consists of holomorphic functions f on D for which the
norm

‖f‖p =
(

sup
0≤r<1

∫ 2π

0
|f (reiθ)|p dθ

2π

)1/p

is finite, we note that the previous proof also works in Hp(D)-spaces (1 < p < ∞)
with the natural identification of the dual space Hp(D)∗ ∼= Hp′

(D) where p′ is the
conjugate exponent: 1

p + 1
p′ = 1. In this case, the bounded composition operator

Cϕt on Hp(D) has norm

(2.4) ‖Cϕt‖p = e
t
p

for 1 ≤ p < ∞ (see [30, Exercise 3.12.5, pp. 56–57] and [23, Part Two,
Ch. 1, Section 5 1.B pp. 165–166], for instance). Accordingly, the C0-semigroup
{e−(p′−1)tCϕp′ t}t≥0 is also contractive on Hp(D) with generator p′A − (p′ − 1)I and
cogenerator

I + 2(p′A − (p′ − 1)I − I)−1 = I + 2(p′(A − I))−1.

Therefore, a closed subspace M in Hp(D) for 1 < p < ∞ is invariant under the
Cesàro operator if and only if its annihilator M⊥ in Hp′

(D) is invariant under the
C0-semigroup {Cϕt}t≥0.

In this regard, it is worth noting that (1 − z)−1 �∈ Hp(D) for any 1 ≤ p ≤ ∞
since (1 − eiθ)−1 �∈ Lp(T).

Remark 2.2. By Dunford and Schwartz [15, Thm. 11, p. 622], the resolvent
can be expressed in terms of the Laplace transform of the semigroup; that is,

(A − I)−1f (z) =
∫ ∞

0
e−tCϕt f (z) dt (z ∈ D).

So
C∗f (z) = −

∫ ∞

0
e−tf (e−tz + 1 − e−t) dt (z ∈ D).
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Indeed, a consequence of the previous formula is the following:

Corollary 2.3. A closed subspace M in H2(D) is invariant under the Cesàro
operator if and only if it is invariant under the semigroup {C∗

ϕt
}t≥0.

Alternatively, one may use that the adjoint of the generator is the generator
of the adjoint semigroup in the context of Hilbert spaces (see [17, Chap. 10], for
instance).

Finally, note that the adjoint C∗
ϕt

in H2(D) in Corollary 2.3 may be explicitly
computed as a weighted composition operator (see [10, Theorem 9.2]). Indeed,
expressing ϕt(z) = e−tz + 1 − e−t in its normal form, namely

ϕt(z) = (atz + bt)/(0z + a−1
t )

where

at = e−t/2, bt =
1 − e−t

e−t/2

we deduce that C∗
ϕt

= TgtCσtT
∗
ht

where

gt(z) =
1

−btz + a−1
t

=
e−t/2

1 − (1 − e−t)z
(z ∈ D),

σt(z) =
atz

−btz + a−1
t

=
e−tz

1 − (1 − e−t)z
(z ∈ D),

and

ht(z) = a−1
t = et/2;

and Tgt and Tht denote the analytic Toeplitz operators acting on H2(D) induced by
the symbols gt and ht respectively.

Accordingly,

C∗
ϕt
f (z) =

1
1 − (1 − e−t)z

f
(

e−tz
1 − (1 − e−t)z

)
(z ∈ D)

for f ∈ H2(D) and every t ≥ 0.

2.1 Shift semigroups. In order to provide a characterization of the finite
codimensional invariant subspaces of C, we will make use of a semigroup of
operators acting on the Hardy space of the right half-plane C+. Recall that the
Hardy space H2(C+) consists of the functions F analytic on C+ with finite norm

‖F‖H2(C+) =
{

sup
0<x<∞

∫ ∞

−∞
|F(x + iy)|2 dy

}1/2

.
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The classical Paley–Wiener Theorem (see [33], for instance) states that H2(C+) is
isomorphic under the Laplace transform to L2(R+), the space of measurable func-
tions square-integrable over (0,∞). More precisely, to each function F ∈ H2(C+)
there corresponds a function f ∈ L2(R+) such that

F(s) = (Lf )(s) :=
∫ ∞

0
f (x)e−sx dx (s ∈ C+),

and
‖F‖2

H2(C+) = 2π

∫ ∞

0
|f (x)|2 dx.

A first observation already stated in [8, Lemma 4.2] is that each

ϕt(z) = e−tz + 1 − e−t

for z ∈ D and t > 0 induces a composition operator in H2(D) which is similar
under an isomorphism U (indeed unitarily equivalent up to a constant) to et Cφt

in H2(C+), where
φt(s) = ets + (et − 1) (s ∈ C+),

namely,

(2.5) UCϕtU
−1 = etCφt (t ≥ 0).

Since we are interested in studying invariant subspaces, either for the entire
semigroup or individual elements, we may disregard factors of the form eλt for a
fixed λ ∈ R.

By means of the inverse Laplace transformwe are led to consider the semigroup
on L2(R+)

(2.6) Vtg(x) = e−te−(1−e−t)xg(e−tx) (x > 0, t ≥ 0).

Now, proceeding as in [18], we may find a further equivalence with an operator
on L2(R) using the unitary mapping T : L2(R) → L2(R+) defined by

Th(x) = x−1/2h(log x) (x > 0)

and
T−1g(y) = ey/2g(ey) (y ∈ R).

Accordingly,

(2.7) T−1VtTh(y) = e−t/2e−(1−e−t)ey
h(y − t) (y ∈ R)

for t ≥ 0.
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Denoting by {St : t ≥ 0} the right-shift semigroup on L2(R):

Stf (y) = f (y − t) (y ∈ R)

and recalling that if w denotes a positive measurable function in R the space
L2(R, w(y)dy) consists of measurable functions in R square-integrable respect to
the measure w(y)dy, a key observation is the following

Proposition 2.4. The semigroup {σt : t ≥ 0} in L2(R) given by

(2.8) σth(y) = e−(1−e−t)ey
h(y − t) (y ∈ R)

for h ∈ L2(R) is unitarily equivalent to the right-shift semigroup {St : t ≥ 0} acting
on the weighted Lebesgue space L2(R, e−2(ey−1) dy).

Proof. Let us denote the weight w(y) = e−2(ey−1) for y ∈ R and consider the
unitary mapping W : L2(R) → L2(R, w(y) dy) given by

Wh(y) = h(y)/
√

w(y) (y ∈ R),

for h ∈ L2(R). A computation shows that for any function f ∈ L2(R, w(y) dy)
and t > 0

WσtW
−1f (y) = Wσt f (y)e

−(ey−1)

= We−(1−e−t)ey
f (y − t)e−(ey−t−1)

= eey−1e−(1−e−t)ey
f (y − t)e−(ey−t−1)

= f (y − t),

for y ∈ R. This yields the statement of the proposition. �
Figure 1 shows a plot of the weight function described in Proposition 2.4.
As a by-product of equations (2.5), (2.6), (2.7), Proposition 2.4 and Theo-

rem 2.1, if we denote by F the unitary isomorphism F = WT−1L−1U from H2(D)
onto L2(R, e−2(ey−1) dy), the following result regarding the lattice of invariant sub-
spaces of the Cesàro operator holds:

Theorem 2.5. A closed subspace M in H2(D) is invariant under the Cesàro
operator if and only if FM⊥ in L2(R, e−2(ey−1) dy) is invariant under the right-shift

semigroup {St : t ≥ 0}.
Accordingly, characterizing the lattice of invariant subspaces of the Cesàro

operator in the Hardy space reduces to characterizing the lattice of the right-shift
semigroup in L2(R, e−2(ey−1) dy).
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Figure 1. The weight e−2(ey−1) as a function of y.

Though the lattice of the invariant subspaces of the right-shift semigroup acting
on weighted Lebesgue spaces is only characterized for a very restricted subclass
of weights (for instance, the Beurling–Lax Theorem provides a characterization
in L2(R+), where the weight is the characteristic function χ(0,+∞) of (0,+∞)),
the question if such a lattice contains non-standard invariant subspaces has been
extensively studied (see [11, 12, 13, 14], [20, 21], [27] or [31], for instance).

Recall that given a ∈ R∪{−∞}∪{∞}, the “standard invariant subspaces”
of {St : t ≥ 0} are given by

L2((a,∞), w(y) dy) = {f ∈ L2(R, w(y) dy) : f (y) = 0 for a.e. y ≤ a}.
In [11, Equation (8)], Domar proved that if the weight satisfies

limy→−∞
logw(y)

y
> −∞

then the lattice of invariant subspaces of {St : t ≥ 0} in L2(R, w(y) dy) contains
non-standard invariant subspaces.

A word about notation: Domar denotes by L2(R, w(y) dy) the space of
measurable functions f in R such that f w ∈ L2(R). Note that this does not affect
the previous equation since it is enough to consider the positive function w1/2.



CESÀRO OPERATOR 605

In our case, w(y) = e−2(ey−1) for y ∈ R and consequently, {St : t ≥ 0} has
non-standard invariant subspaces in L2(R, e−2(ey−1) dy). Indeed, it is possible to
exhibit many non-standard invariant subspaces in this case. In order to show them
recall that, by means of the unitary equivalence L : L2(R+,

√
2π dt) → H2(C+),

the Beurling–Lax Theorem asserts that a closed subspaceM of L2(R+) is invariant
under every truncated right-shift to L2(R+)

SR+, τf (t) =

⎧⎨⎩0 if 0 ≤ t ≤ τ,

f (t − τ) if t > τ,
τ ≥ 0,

if and only if there exists an inner function  ∈ H∞(C+) such that LM = H2(C+)
(see [30, Cor. 6.5.5(2), p. 149], for instance). Here, recall that an inner function 

is an analytic function inC+ with |(z)| ≤ 1 for z ∈ C+, such that the non-tangential
limits exist and are of modulus 1 almost everywhere on the imaginary axis.

Example 2.6. Let T ∈ R be fixed and write

L2(R, w(y) dy) = L2((−∞,T), w(y) dy) ⊕ L2((T,∞), w(y) dy),

the orthogonal direct sum of closed subspaces. Note that
(1) exp(−2(eT − 1)) ≤ w(y) ≤ e2 on (−∞,T), so L2((−∞,T), w(y) dy) is

naturally isomorphic to L2(−∞,T).
(2) If M is a closed subspace of L2((−∞,T), w(y) dy) invariant under all trun-

cated right-shifts on L2((−∞,T), w(y) dy), i.e.,

S(−∞,T), τf (y) =

⎧⎨⎩0 if y − τ > T,

f (y − τ) if y − τ ≤ T,

for τ ≥ 0, then M⊕L2((T,∞), w(y) dy) is a closed subspace of L2(R, w(y) dy)
invariant under all right shifts.

Now, the Beurling–Lax Theorem provides a large class of non-standard invari-
ant subspaces M: take the “twisted” Laplace transform

(2.9) L̃f (s) =
∫ ∞

−T
e−suf (−u) du

which gives an isomorphism fromL2((−∞,T), w(y) dy) onto esTH2(C+). Then any
subspace of the form L̃−1esTK is invariant under all truncated right shifts S(−∞,T), τ

where  ∈ H∞(C+) is inner and K = H2(C+) � H2(C+) is the associated model
space (these calculations are easiest to follow when T = 0, and the general case is
a shifted version).
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As an explicit example, let K be spanned by the reproducing kernel

s �→ 1/(s + λ)

for λ ∈ C+, so that M is the one-dimensional space of L2((−∞,T), w(y) dy)
spanned by eλt; then M ⊕ L2((T,∞), w(y) dy) is a non-standard invariant subspace
for all right shifts.

While a theorem of Aleman and Koreblum [2] asserts that the analytic Volterra
operator is unicellular in Hp-spaces, as a consequence of the previous considera-
tions we have a new deduction of the following known result:

Corollary 2.7. The Cesàro operator C is not a unicellular operator in H2(D).

In this regard, the feature that the Cesàro operator C is not a unicellular operator
on H2(D) can be also deduced from [7], as the referee kindly pointed out to us.
Indeed, it follows from the result that the point spectrum of I − C∗ in H2(D) is
D along with the fact that any operator on a Hilbert space which has at least
two eigenvalues cannot be unicellular. Likewise, in [25, Corollary 6], the authors
constructed two non-zero invariant subspaces of Cwhose intersection is zero space.

On the other hand, it is worth pointing out that classifying the invariant sub-
spaces turns out to be completely different if one considers other semigroups
studied in the context of Cesàro-like operators, as in the following remark:

Remark 2.8. In [4], the authors considered the composition operator group
on H2(C+) corresponding to the flow on C+ given by

φt(s) = e−ts, s ∈ C+, t ∈ R,

in a broader context of studying Cesàro-like operators.

Proceeding similarly as before, the transformed semigroup on L2(0,∞) is given
by

Ṽtg(x) = etg(etx) (x > 0, t ∈ R and g ∈ L2(0,∞)),

which transferred to L2(R) is

T−1ṼtTh(y) = et/2h(y + t) (y ∈ R, t ∈ R),

for h ∈ L2(R).

The subspaces M invariant under the group (τt)t∈R = (T−1ṼtT)t∈R were essen-
tially classified by Lax—the factors et/2 are irrelevant—and can be found, with a
slightly different notation, in [30, Cor. 6.5.4, p. 149]. There are two types:
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(1) 1-invariant subspaces, i.e., τtM ⊂ M for all t < 0 but not for all t ∈ R. These
have the form M = FqH2(�+), where q is measurable with |q| = 1 almost
everywhere and here �+ denotes the upper half-plane;

(2) 2-invariant subspaces, i.e., τtM ⊂ M for all t ∈ R. These have the form
M = FχEL2(R) for some measurable subset E ⊂ R.

Here F denotes the Fourier transform but, alternatively, one can use the bilat-
eral Laplace transform and express the subspaces in terms of L2(iR) and the
space H2(C+) of the right half-plane.

Likewise, in this case the invariant subspaces of the form L̃−1K ⊕ L2(R+) are
1-invariant subspaces as described above, corresponding in L2(iR) to

K ⊕ H2(C+) = H2(C+).

Finally, as an application of Theorem 2.5, we present a characterization of the
finite codimensional invariant subspaces of the Cesàro operator C in H2(D). Of
particular relevance will be a theorem of Domar [12] which states that the lattice
of the invariant subspaces of {Sτ : τ ≥ 0} consists of just the standard invariant
subspaces in L2(R+, w(x) dx) whenever:

(1) w is a positive continuous function in R+ such that logw is concave in [c,∞)
for some c > 0.

(2) limx→∞ − logw(x)
x = ∞.

(3) limx→∞ log | logw(x)|−log x√
log x

= ∞.

Theorem 2.9. A finite codimensional closed subspaceM in H2(D) is invariant
under the Cesàro operator if and only if FM⊥ in L2(R, e−2(ey−1) dy) is spanned by

a finite subset of functions given by⋃
λ∈�

{ykeλy : k = 0, 1, 2, . . . , nλ}

where � ⊂ C+ is a finite set and nλ ≥ 0 for each λ ∈ �.

Before proceeding with the proof, let us introduce the notation

fλ,k(y) = ykeλy

for y ∈ R, λ ∈ C+ and k = 0, 1, 2, . . . . Note that

(Stfλ,k)(y) = fλ,k(y − t) =
k∑

j=0

(
k
j

)
(−t)k−je−λtyjeλy,
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so

(2.10) Stfλ,k =
k∑

j=0

(
k
j

)
(−t)k−je−λtfλ,j

for any λ ∈ C+ and k = 0, 1, 2, . . . .

Proof. Supposefirst that M is a finite codimensional closed subspace in H2(D)
invariant under C. Theorem 2.5 yields that N = FM⊥ is a finite dimensional
subspace of L2(R, e−2(ey−1) dy) invariant under all right shifts. Thus, P−N, the
projection onto L2((−∞, 0), e−2(ey−1) dy) ∼= L2(−∞, 0), is a finite dimensional
subspace invariant under all the truncated right shifts.

Thus, by the Beurling–Lax Theorem, P−N corresponds to a model space and
in particular is spanned by a finite set of functions of the form

ykeλy, for y ∈ (−∞, 0)

where k = 0, 1, 2, . . . , nλ for λ ∈ � ⊂ C+. We now show that N is spanned by
what we shall call the “natural extension” to R of such functions as elements of
L2(R, e−2(ey−1) dy), namely, ykeλy for y ∈ R.

Observe that since N is finite dimensional, by the aforementioned Domar the-
orem,

N ∩ L2((0,∞), e−2(ey−1) dy) = {0}.
Therefore, there exist hλ,k ∈ N such that P−fλ,k = hλ,k and N is spanned by hλ,k.
Let N1 be spanned by fλ,k with the same k and λ. By (2.10), N1 is invariant under
all right shifts St. Then span {N,N1} is a finite dimensional invariant subspace of
all right shifts St. Upon applying Domar’s theorem again,

span {N,N1} ∩ L2((0,∞), e−2(ey−1) dy) = {0}.

Since

hλ,k − fλ,k ∈ span {N,N1} ∩ L2((0,∞), e−2(ey−1) dy),

we conclude that hλ,k = fλ,k. Thus, N is spanned by fλ,k.

For the converse, assume N = FM⊥ in L2(R, e−2(ey−1) dy) is a finite dimensional
subspace spanned by a finite subset of the form

⋃
λ∈�{ykeλy : k = 0, 1, 2, . . . , nλ}

where λ ∈ � ⊂ C+ is finite. Equation (2.10) yields that N is invariant under all
right shifts St. Now, Theorem2.5 and the fact that F is an isomorphism yield that M
is a finite codimensional closed subspace invariant under C, which completes the
proof. �
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Remark 2.10. Note that in the case that N = FM⊥ is infinite-dimensional,
the arguments above giving the structure of N in terms of the structure of P−N fail
because we can no longer assume that P−N is closed. However, it is of interest to
note that the closure P−N in L2(−∞, 0) has the same property of invariance under
all truncated right shifts, and corresponds to a model space.

For instance, if B is a Blaschke product in C+ with the set of zeros � and
multiplicities nλ + 1 for λ ∈ � with nλ ∈ {0, 1, 2, . . . } and we set

NB = span {fλ,k : λ ∈ �, k = 0, 1, . . . , nλ}L
2(R,e−2(ey−1) dy)

,

clearly NB is invariant under all right shifts. Nevertheless,

L̃P−NB = span {L̃P−fλ,k : λ ∈ �, k = 0, 1, . . . , nλ}
H2(C+)

= KB,

where L̃ is defined in (2.9) with T = 0. Consequently, NB �= L2(R, e−2(ey−1) dy),
and if B1 �= B2 are two Blaschke products, then NB1 �= NB2 .

2.2 A final remark regarding the lattice of the invariant subspaces
of C. As we have just noted, the approach addressed in the previous theorem fails
if P−N is not closed. Indeed, the following example shows that P−N need not be
closed even if N is a closed shift-invariant subspace of L2(R, e−2(ey−1) dy) showing,
somehow, the limits of such an approach.

Let λ > 0 and denote by eλ the function

eλ : y ∈ R �→ eλy.

Since 1 < e−2(ey−1) < e2 for y < 0, we have

(2.11) ‖eλ‖2
L2((−∞,0),e−2(ey−1) dy) ≈ ‖eλ‖2

L2(−∞,0) ≈ 1/λ.

On the other hand,

(2.12) ‖eλ‖2
L2(R,e−2(ey−1) dy) ≥

∫ 2

1
e2λye−2(ey−1) dy ≥ e2λe−2(e2−1).

Now take N to be the closed linear span in L2(R, e−2(ey−1) dy) of {en2 : n ∈ N},
that is,

N = span {en2 : n ∈ N}L2(R,e−2(ey−1) dy)
.

Now the twisted Laplace transform given in (2.9), with T = 0, provides an isomor-
phism from L2((−∞, 0), e−2(ey−1) dy) onto H2(C+) transforming eλ to 1/(s+λ). By
an argument similar to that used in proving the classical Müntz–Szász theorem it
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follows that P−N � L2((−∞, 0), e−2(ey−1) dy) since there are functions orthogonal
to each 1/(s + n2), for example, 1/(s + 2) times a Blaschke product with zeros at
{n2 : n ∈ N}.

Now (kerP−)∩N is a closed shift-invariant subspace of L2((0,∞), e−2(ey−1) dy)
and hence, by Domar’s theorem, a standard subspace. It must be {0} (again this
follows from a Müntz–Szász argument) so the restriction

P− : N → L2((−∞, 0), e−2(ey−1) dy)

is injective. Finally, by Banach’s open mapping theorem the norm estimates
in (2.11) and (2.12) show that it cannot have a closed range.

The following proposition characterizes when P−N is a closed subspace of
L2((−∞, 0), e−2(ey−1) dy).

Proposition 2.11. With the above notation, P−N is closed if and only if
the (not necessarily direct) sum of the two closed subspaces N and

L2((0,∞), e−2(ey−1) dy) is closed.

Proof. It is well known that if P : H → K is a projection onto a subspace K
of a Hilbert space H then K is automatically closed: since if (xn) is a sequence in K

tending to x ∈ H, we have xn = Pxn → Px, so x = Px ∈ K.
Now if H := N + L2((0,∞), e−2(ey−1) dy) is closed, the projection P− maps H

to itself and its image is P−N. Conversely, if P−N is closed then

N + L2((0,∞), e−2(ey−1) dy) = P−N ⊕ L2((0,∞), e−2(ey−1) dy),

the orthogonal direct sum of two closed subspaces, and is therefore closed. �

3 Functions of the Cesàro operator

Suppose that (T(t))t≥0 is a C0-semigroup with ‖T(t)‖ ≤ emt for some m < 1 and
infinitesimal generator A.

It is a standard fact that∫ ∞

0
e−λtT(t) dt = (λ − A)−1

provided that Reλ > m.
Now consider the operator

B =
1√
π

∫ ∞

0

e−λt

√
t

T(t) dt.
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Then

B2 =
1
π

∫ ∞

0

e−λt

√
t

T(t) dt
∫ ∞

0

e−λu

√
u

T(u) du

=
1
π

∫ ∞

w=0
e−λwT(w) dw

∫ w

t=0

1√
t
√

w − t
dt

with w = t + u. The second integral is π (use the substitution t = w sin2 θ) and so
B2 = (λ − A)−1. Similarly for (−B)2, of course.

This gives an alternative way of looking at a result in [28] on the square roots
of the Cesàro operator, by using the composition semigroup and the observations
in Section 2. Not surprisingly, it is linked with the fact that the Laplace transform
of eat is 1/(s − a) and the Laplace transform of eat/

√
t is

√
π/

√
s − a. There is a

more general functional calculus available here, but this calculation at least can be
done directly.

Indeed the Phillips functional calculus [22, Rem. 3.3.3] allows us, given a
bounded semigroup (T(t))t≥0 of operators on a Banach space X, to associate an
operator f (A) to a function f that is the Laplace transform of a Borel measure μ

on [0,∞) of bounded variation, by the formula

f (A)x =
∫

[0,∞)
T(t)x dμ(t) (x ∈ X).

Note that the convention in [22] is that the generator is −A, rather than A, and we
have allowed for that in the discussion below. In particular, we have

(3.1)
∫ ∞

0

e−λt

t1−β
dt = λ−β�(β)

for Re λ,Reβ > 0, so that∫ ∞

0

e−teat

t1−β
dt = (1 − a)−β�(β)

for Re a < 1 and Reβ > 0, from which we obtain

(3.2)
∫ ∞

0

e−tT(t)
t1−β

dt = (I − A)−β�(β)

for Re β > 0. A similar formula holds on replacing T(t) by T(t)∗ and A by A∗.
Recalling that C∗ = (I − A)−1, we have the following:

Theorem 3.1. For Reβ > 0 let Mβ denote the matrix of Cβ (as defined

using (3.2)) with respect to the standard orthonormal basis (zj)∞j=0. Then

(3.3) (Mβ)i,j =

⎧⎨⎩0 if i < j,(i
j

)∑i−j
k=0(−1)k

(i−j
k

)
(j + k + 1)−β if i ≥ j.
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Proof. The (j, i) entry of the matrix for (I − A)−β is the coefficient of zj in

1
�(β)

∫ ∞

0

e−t

t1−β
(e−tz + (1 − e−t))i dt,

namely, 0 for j > i and otherwise

1
�(β)

∫ ∞

0

e−t

t1−β

(
i
j

)
e−jt(1 − e−t)i−j dt

=
1

�(β)

(
i
j

)∫ ∞

0

e(−1−j)t

t1−β

i−j∑
k=0

(
i − j

k

)
(−1)ke−kt dt.

Now, using (3.1) we obtain (3.3). �
In the case β = 1/2 this agrees with the formula in [28].

Remark 3.2. It is clear from the functional calculus that every subspace for
C is also an invariant subspace for Cβ for Reβ > 0. Since invariant subspaces
for C1/n are clearly invariant subspaces for C for n = 1, 2, . . ., we may conclude
that C and C1/n have the same lattice of invariant subspaces.
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[25] T. L. Kriete and D. Trutt, On the Cesàro operator, Indiana Univ. Math. J. 24 (1974/75), 197–214.

[26] K. Laursen and M. Neumann, An Introduction to Local Spectral Theory, The Clarendon Press,
Oxford University Press, New York, 2000.

[27] P. D. Lax, Translation invariant subspaces, Acta Math. 101 (1959), 163–178.

[28] J. Mashreghi, M. Ptak and W. T. Ross, Square roots of some classical operators, Studia Math.
269 (2023), 83–106.
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