BUBBLING SOLUTIONS FOR MEAN FIELD EQUATIONS
WITH VARIABLE INTENSITIES
ON COMPACT RIEMANN SURFACES

By

PABLO FIGUEROA*

Abstract. For an asymmetric sinh-Poisson problem arising as a mean field
equation of equilibrium turbulence vortices with variable intensities of interest
in hydrodynamic turbulence, we address the existence of bubbling solutions on
compact Riemann surfaces. By using a Lyapunov—Schmidt reduction, we find
sufficient conditions under which there exist bubbling solutions blowing up at m
different points of S: positively at m; points and negatively at m — m points with
m > land m; € {0, 1, ..., m}. Several examples in different situations illustrate
our results in the sphere S? and flat two-torus T including non-negative potentials
with zero set non-empty.

1 Introduction

Let (S, g) be a compact Riemann surface and consider the problem

1.1 —Ath:l]( Vi(x)e* 1 ) —lzl’( Vo(x)e™™ 1 ),

s Vietdo, || Js Vae~tudv, |8

where A1, 1, > 0, > 0, V| and V, are smooth nonnegative potentials in S and |S]|
is the area of S. Here, A, is the Laplace—Beltrami operator and dv, is the area
elementin (S, g). This equation has attracted a lot of attention in recent years due to
its relevance in the statistical mechanics description of 2D-turbulence, as initiated
by Onsager [49]. Precisely, in this context, under a deterministic assumption on the
distribution of the vortex circulations, Sawada and Suzuki [56] derive the following
equation:
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where u is the stream function of a turbulent Euler flow, 4 > 0 is a physical constant
related to the inverse temperature and P is a Borel probability measure in [—1, 1]
describing the point-vortex intensities distribution.

Equation (1.2) includes several well-known problems depending on a suitable
choice of P. For instance, if P = ¢, is concentrated at 1, then (1.2) is related to the
classical mean field equation

Vet 1

1.3 —Agu=2 _
(1.3) gt (fSVe”dvg N

) in S,

where V is a smooth nonnegative function on S. The latter equation has been
studied in several contexts such as conformal geometry [11, 10, 40], statistical
mechanics [6, 7, 12, 41] and the relativistic Chern—Simons—Higgs model when S
is a flat two-torus [47, 57, 58]. Notice that solutions of (1.3) are critical points of
the functional

1
J(uw) = 2/S|vu|§dug—mog (/SVe“dvg>, ueH,

where H = {u € HY(S) : fs udv, = 0}. Minimizers of J; for A < 8z can be
found by using Moser—Trudinger’s inequality. The situation in the supercritical
regime 1 > 8z becomes subtler and the existence of solutions could depend on the
topology and the geometry of the surface S (or the domain). A degree argument
has been proved in [13, 14] by Chen and Lin, completing a program initiated by Li
[43], and has received a variational counterpart in [18, 46] by means of improved
forms of the Moser—Trudinger inequality.

Equation (1.1) is also related to (1.2) when P = 66, +(1 —o)o_, with t € [—1, 1]
and o € [0, 1]. Furthermore, (1.1) is the Euler—Lagrange equation of the functional

1
Ty, = 2/S|Vu|§dvg—lllog (/SVle”dvg>

— A log (/Vze_”‘dvg>, ueH.
S

If t=1and V|, = V, = 1 problem (1.1) reduces to the mean field equation of the

(1.4)

equilibrium turbulence, see [5, 34, 37, 48, 52], or its related sinh-Poisson version,
see [3, 4, 33, 38, 39], which have received a considerable amount of interest in
recent years. Precisely, in [48] a Trudinger—-Moser type inequality was proved:
if 11, A, € [0, 87), which can be called the subcritical case, then solutions to (1.1)
are the minimizers of J;, ;,, since this functional is coercive; butif 1, 4, € [0, 87]
and either 4, = 87 or 4, = 8z then the functional J,, ;, still has a lower bound but
it is not coercive. A minimization technique is no longer possible if 1; > 8z for
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some i = 1, 2 since J,, ;, becomes unbounded from below. In general, one needs
to apply variational methods to obtain the existence of critical points (generally
of saddle type) for J;, ,,. Several results in the supercritical case can be found in
[52, 59, 60]. A quantization property was derived in [38] for a blow-up sequence
{u,}, to (1.1) with 7 = 1, one has

Akn Vie D gy
(1.5) my() = lim lim ~ © 5,0 Vi ¢

e8rIN, k=1,2
F—0 n—+00 fS Vke(—l)k‘lun dl)g 7N, >

extending the corresponding ones for (1.3) in [44] and for (1.1) with 7 = 1 and
Vi=V,=1in[39].

Concerning the version of problem (1.1) on bounded domains Pistoia and
Ricciardi built in [50] sequences of blowing-up solutions when 7 > 0 and 4, A,7>
are close to 8z, while in [51] the same authors built an arbitrary large number of
sign-changing blowing-up solutions when 7z > 0 and 1, 4,7 are close to suitable
(not necessarily integer) multiples of 8. Ricciardi and Takahashi in [53] provided
a complete blow-up picture for solution sequences of (1.1) and successively in [54]
Ricciardi et al. constructed min-max solutions when A; — 8zt and 4, — Oona
multiply connected domain (in this case the nonlinearity e™™ may be treated as a
lower-order term with respect to the main term e").

In a compact Riemann surface S, a blow-up analysis in subcritical case 4| < 8«
and A, < ?{, and supercritical case 4; < 167 and 1, < lg”, characterizing the
blow-up masses my(p), k = 1,2, defined similarly as in (1.5), has been obtained
in [36], when 0 < 7 < 1. Furthermore, some existence results are deduced. The
authors in [55] obtain the minimal blow-up masses and proved an existence result
which generalizes the one obtained in [52] for 7 = 1.

To the extent of our knowledge, there are by now just few results concerning
the existence of bubbling solutions to (1.1) and its variants in different frameworks.
For instance, bubbling solutions have been constructed for a sinh-Poisson equation
(zr = 1) on bounded domains in [3, 4] with a Dirichlet boundary condition and
recently in [32] with a Robin boundary condition. Furthermore, recently in [24] and
[29], the authors have constructed blowing-up solutions on pierced domains with
a Dirichlet boundary condition for any 7 > 0. See also [50, 51] for generalizations
to 7 > 0 of results obtained in [3, 33] for 7 = 1, respectively. The construction of
sign-changing bubble tower solutions for sinh-Poisson type equations on pierced
domains has been addressed in [30].

By following some ideas presented in [3, 23], we are interested in construct-
ing bubbling solutions u,, ;, to (1.1) with m; positive bubbles and m;, nega-
tive bubbles suitably centered at m different points of S as both 4, — 8am;
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and 1,7> — 8x(m — my), with m; € {0, ..., m}. To this aim, introduce the Green
function G(x, p) with pole at p € S as the solution of

1L6) —A,G(-,p) =6, — |;| inS

JsG(x, p)dvg =0
where J, denotes a Dirac mass in p € S. Define for & = (&, ...,&,) € Sm \ A the
functional

1 nmp 1 m nmp
o=, ;jlog i)+, D logVa@)+ > H(&G, &)

j=mi+1 J=1

1 m
D BRCR

j=m1+l
(17) mp mp 2 my m
DPNCCHIEND PPN CRS)
Jj=1 =l j=1 i=m+1

i

D S SRR

j=m1+l i:I[-g;l
where H(x, &) is the regular part of G(x, &), S = {Vy, V, > 0} and
A={eS": & =Cfori#j)

is the diagonal set in S with m = m; + my,. Setting forj € J; :={1,...,m;}

mg 8 m
(1.8)  pi(x) := Vi(x) exp (SnH(x, &) +8T Y Gx, &) — f > G, é)),
'[;]1 i=m+1

andforje Jp :={m +1,...,m}

(1.9)  pj(x) = Va(x) exp (87rH(x, &) —8rtY Gx,&)+8r Y Gx, @)),
i=1 i=my+1

i
both for & € §” \ A we introduce the notation
(1.10) AL&) =41 Y A (&) — 2KE)pi&], k=12
J€Jk

where K is the Gaussian curvature of (S, g). The sign of Af, k = 1,2 allows us
to obtain a first existence result of bubbling solutions and several consequences;
see Theorem 2.1 and Section 2. Unfortunately, there are cases where the sign
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of A; (&) for either k = 1 or k = 2 or both is not available, for instance, the case
S=T,Vi=V,=1,m; =mp =1 and 7 = 1. See also [23] for several examples
in case A, = 0, namely, m; = 0, that could be extended here. Following ideas
presented in [23], in all these situations, a more refined analysis is necessary. To
this aim, introduce the quantities for k = 1, 2

By(&)
A;(&)
= =21 [Agpi(&) — 2K(EGpi&llog pi(&) =,
Jj€dk
(1.11) +1im {8 / V3BT T G a0 ol Gl gy
=0 L J$\Ujey, B&)

- S @) —Al@log |
Jj€dk
where B,(¢) denotes the pre-image of B,(0) through the isothermal coordinate sys-
tem at £. These types of quantities were first used and derived by Chang, Chen
and Lin in [9] in the study of the mean field equation on bounded domains with
a Dirichlet boundary condition; for the case of the torus see [15]. Moreover, the
constant B (<) has also been used in the construction of non-topological conden-
sates for the relativistic abelian Chern—Simons—Higgs model as the Chern—Simons
parameter tends to zero, see [19, 23, 45]. Our main result states as follows.

Theorem 1.1. Let D cC 8™\ A be a stable critical set of ¢%,. Assume that
(1.12)  either A7(¢) > 0(< Oresp.) or AJ(&) =0, Bj(¢) > 0(< Oresp.)
and
(1.13)  either A5(&) > 0(< Oresp.) or A5 =0, B5(&) > 0(< 0 resp.)

do hold in a closed neighborhood U of D in §" \ A. Then, for all ), in a
small right (left resp.) neighborhood of 8wm, and A,7* in a small right (left
resp.) neighborhood of 8wmy there is a solution u;, ,, of (1.1) which concentrates
(along sub-sequences) at m points, positively at q,, ..., qn, and negatively at

Gmi+15 - - - » my> In the sense

),1V]€u’11"12 “ ),2‘[2‘/26_”*1’*2 “
(1.14) [ Vietnsdog 8nj§_l:5qj and [, Vae T, 8z Y 4,

j=m1+1

as simultaneously ., — 8mm and J>t> — 8wmy, for some q € D.
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Notice that along with (1.14) there hold

(—T)k_lu;m;hz — IOg/Vke(_T)k_lml‘Az — —0o0 in Cloc(S\ {q1a ey Qm})
N

and

sup ((—r)k_lu,ll’,lz — log/Vke(_’)k_IWMZ) — +00
O; s
as simultaneously 1; — 8zm,; and 1,7> — 87my,, for any neighborhood O; of g;
inSwithk=1forj=1,...,m andk=2forj=m; +1,...,m. Hence, we get
that u,, ;, concentrates positively at qi, . . ., g,,, and negatively at g, 11, - . ., gm S
simultaneously 4; — 8zm; and Ar7?> — 8mmy. As in [23], the notion of stability
we are using here is the one introduced in [42]; see Definition 2.1 below. Conditions
(1.12)—(1.13) on a neighborhood of D are required to deal with a stable critical
set D in the sense below. Arguing as in Remark 4.5 in [23], the same conclusion of
Theorem 1.1 follows under the validity of conditions (1.12)—(1.13) juston D = { &},
where & is a non-degenerate local minimum/maximum point of ¢7,. Similarly,
Theorem 1.1 is also valid in the special case |A; (&) = O(|Ve;,,(E)]g), k=1,2ina
neighborhood of D and Bj(¢) > 0in D.

Now, we can address the case S=T, Vi =V, =1, m =my =1and 7 = 1.
When T is a rectangle, the constants like B;({), k£ = 1,2, have been used by
Chen, Lin and Wang [15] in the computation of the Leray—Schauder degree. Due
to H(x, x) being constant in T, we deduce that ¢3(¢) = —2G(&), &) + const.. Also,
it is known that the Green’s function satisfies G(&;, &) = G(& — &, 0) and the
function G(-, 0) has exactly three non-degenerate critical points gq;, g» (saddle
points) and g3 (minimum point). According to (1.11) we have that for i, k € {1, 2}

B (&) = lim [8/ 8TC(E)—87G(.&) _ 872TeSEH(§k,§k)—8nG(§i,:k) . ik
=01 JT\B&) r
Assuming that T = —T it follows that Bj($) = B3(¢), & = (&1,&), since
G(z,0) = G(—z,0). Furthermore, it is known that Bj() > 0 when either
=& =qroré —& =¢qo, and Bi(E) < 0 when & — & = ¢g3. By Theorem 1.1
we deduce the existence of
e two distinct families of solutions, for 4, A, in a small right neighbor-
hood of 8z, concentrating positively at £; and negatively at & with either
S—&=qrordg —& =qras Ay — 8rand A, — 87,
e one family of solutions, for Ay, A, in a small left neighborhood of 8z,
concentrating positively at &) and negatively at & with & —& = gzas Ay — 8x
and A, — 8.
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The case m, = 0, namely, as 1, 72 — 0%, can be also addressed by this approach.
Thus, we have that (1.1) can be seen as a perturbation of (1.3). In this case the
nonlinearity e~ is treated as a lower-order term with respect to the main term e".
For simplicity we denote A(¢) and B(¢) instead of A7(¢) and Bj($) with my; = m
and J, = &, so that we have the following result.

Theorem 1.2. Let D cC 8™\ A be a stable critical set of ¢¥,. Assume that
(1.15) either A(£) > 0(< Ovresp.) or A() =0, B(E) > 0(<0resp.)

do hold in a closed neighborhood U of D in 8" \ A. Then, for all 1, in a small
right (left resp.) neighborhood of 8wtm, and 1,7* in a small right neighborhood
of 0, there is a solution u,, ;, of (1.1) which concentrates positively (along sub-
sequences) at m points qi, . . . , qm,

i] V 161”1*2 .
, — 87 g d4 in measure sense for some q € D
Js Vie'ii2do, ’

I t?Vae M ) .
and o, — 0 uniformly in S.
Jg Vaem ™2 do,

Notice that a similar result can be obtained in case m; = 0 and m;, = m, namely,
as 1; = 0* and 1,72
points of S. The same conclusion of Theorem 1.2 follows: on one hand, under

— 8mm, and u;, ;, concentrates negatively at m different

the validity of condition (1.15) just on D = {&}, where & is a non-degenerate
local minimum/maximum point of ¢;;; and on the other hand, in the special case
A = O(IV9;,(©)],) in a neighborhood of D and B() > 0in D. See the proof
of Theorem 3.2 and Remark 4.5 in [23] for more details. Several examples for
Theorem 1.2 can be derived from each example provided in [23] for the case 4, = 0.

The paper is organized as follows: Some consequences and examples are
presented in Section 2. In Section 3, we construct a first approximation to a
solution to (1.1) with the required properties and we estimate the size of the error
of approximation with appropriate norms. In Section 4 we describe the scheme
of our proofs, by stating the principal results we need, and we give the proof of
our Theorem 1.1. Section 5 is devoted to the computation of the expansion of
the energy functional on the first approximation we constructed in Section 3. The
proof of Theorem 1.2 is done in Section 6. Sections 7 and 8 are devoted to proving
the intermediate results we state in Section 4.
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2 Consequences and examples

In this section we present several consequences of Theorem 1.1 and some examples
that illustrate our results in the sphere S? and flat two-torus T. A special case of
Theorem 1.1 is the following:

Theorem 2.1. Let D cC 8"\ A be a stable critical set of ¢%,. Assume that
A7) > 0 (< Oresp.) and A5(E) > 0 (< Oresp.) forall & € D. Then, for all A, in
a small right (left resp.) neighborhood of 8xm and 1, in a small right (left resp.)
neighborhood of S’Z”Z there is a solution u;, ;, of (1.1) which concentrates (along
sub-sequences) at m points qy, . . . , g, in the sense of (1.14) for some q € D.

The notion of stability we are using here is the following:

Definition 2.1. A critical set D cc §” \ A of g, is stable if for any closed
neighborhood U of D in §” \ A there exists § > 0 such that, if |G — Omllcvwy <0,
then G has at least one critical point in U. In particular, the minimal/maximal
set of ¢,, is stable (if ¢,, is not constant) as well as any isolated c.p. of ¢,, with
non-trivial local degree.

Notice that from the definition of p; in (1.8)—(1.9) and A;(<$) in (1.10), it is
readily checked that

87

Ar(©) = 4n Z Pi(&) {Ag log Vi(&) + (=) S

. (m = ") —2k@)]. k=12

for ac.p. of ¢, in view of Vp;(§) =0forallj=1,... , m. If Vi > 0and V, > 0
in S, then the function ¢35 with m; = my = 1 always attains its maximum value in
52\ A and the maximal set is clearly stable. Let us stress that V; and V, can vanish
at some points of S. Thus, we have deduced the following fact.

Corollary 2.1. Assume that V; > Qin S fori=1,2. If either

87 1 . 87 1
sgp[2K— AglogVy] < 15| (1 — r) or 1rslf[2K— AglogVy] > 15| (1 - r)
and either
87 ) 87
sup[2K — Aglog V5] < Is| (1—17) or 1I§f[2K — AglogVs] > |Sl(l — 1),
s

then there exist solutions u,, ;, to (1.1) which concentrate at two points, positively
at q, and negatively at q», in the sense of (1.14) as ., — 8w and ),7> — 8,

where (q1, q2) is a maximum of @5 in S§2\ A.
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When S = S? we have that K = Iggl’
Corollary 2.1 then provides the existence of blow-up solutions u;, ;, concentrating
at two points as A; — 8z and A1,7> — 87, where 1, and A,7? belong to a small

left neighborhood of 8z. In case of a flat two-torus S = T, K = 0, so that for

so that, for V; = V, = 1 and any 7 > O,

Vi=V,=1andany 7 > 0, ¢ # 1, Corollary 2.1 then provides the existence of
blow-up solutions u;, ;, concentrating at two points as 4; — 8z and Art? — 87,
where 4; belongs to a small right (left resp.) neighborhood of 8z if 7 > 1
(< 1 resp.) and A,7° belongs to a small left (right resp.) neighborhood of 8.
However, the case S =T, Vi =V, =1, m; =my =1 and 7 = 1 is an example for
which A% and A3 vanish in T? \ A and in particular at c.p.’s.

Let us mention some examples where V| and V, vanish at some points of S.
Precisely, assume that

_ h ) ) _ b )
Vix)=e 4r 324 miGepL)  gnd Vo(x) = e 4302, nz‘lG(x,pz,x),

with ny ;,n; > Oand py;,poj € S,i=1,...,li andj = 1,..., [, respectively.
The zero sets are {pi.1,...,p1,} for Vi and {p21,...,p2,} for V5. So, for
m; =my =1, m =2 we have that

Iy L & 5
03 == niGE,pr) — 2 > 12;G(&. pay) — RE G

i=1 =1

and if  is a c.p. of ¢; then

8

S| (1 - TZk_B) - 2K(§k):|, k=1,2.

4 &
AL (&) = 4mpi(&) [ - S”l > npi+
i=1

In particular, if S = S? then Corollary 2.1 provides the existence of blow-up
solutions u,, 5, concentrating at two points as 4; — 8z and Ar7> — 87 when
Z?:] n;# l—f and Zlil nyj # 1—27. We deduce the same conclusion when S =T
and Eﬁ‘:l n; #2— f and El?zl ny; #2—2t. Letus stress that there is no restriction
onng;,ny;’sif r=1.

Now, consider the case m; = m > 2 and m; = 1, namely, 4, close to 8zm
and A,7? close to 8. Roughly speaking, if u;, ;, concentrates negatively at g then

1

Voe ™ ™Miria 1 2
2¢ ) behaves like 4x - (5q —
T [S]

A - Jott — 8
2T(fs Vze_ruhdzdl)g |S| ) as 42t z
and equation (1.1) resembles the singular mean field equation

—Ag = /1<IS:::dug _ |~19|) _4ﬂa(5q - Iél) in S,
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with o = f According to a result of D’ Aprile and Esposito [17, Theorem 1.4], it
follows that the functional

. 1 & 1
OO = ]21: log Vi) + , _ , log Va(éne1)

mip 1
+ ZH(@, Qt]) + TZH(mea Smsl)
Jj=1

2 m
LDIPIICERI R P GHIN
=1 = Jj=1

i

has a C!-stable critical value for &,.; € S fixed under the assumptions S # S?, RP?
and % #1,...,m— 1. Thus, we deduce the next result.

Corollary 2.2. Assume that Vi > 0in S for i = 1,2, S & S?, RP? and
f#l,...,m—l. If either

87 1 . 87 1
sup(2K — Aglog Vil <\ ¢ (m - T) or infl2K — AglogVi] > ¢ (m - T)

and either sups[2K—Aglog V2] < (& (1—mz) orinfs[2K—Alog Vo] > {7 (1—mx),
then there exist solutions u,, ;, to (1.1) which concentrate at m+1 points, positively
at qi, ..., qn and negatively at g1, in the sense of (1.14) as 1, — 8zxm and

Jnt> — 81, where (q1, . .., Gue1) is @ max-min critical point of ¢, in S\ A,

When §=T and V; =V, =1, forany 1> 0, mt#1 and 7¢ {2, 1, g,..., mil},
Corollary 2.1 then provides the existence of blow-up solutions u;, ;, concentrating
at m + 1 points as A; — 8zm and 1,7> — 87, where A; belongs to a small right
(left resp.) neighborhood of 8xm if mr > 1 (< 1 resp.) and 1,7 belongs to a small
left (right resp.) neighborhood of 8z. Notice that a similar result can be obtained
in case m; = 1 and m; = m, namely, 4, close to 87 and A»72% close to 8zm.

Observe that, on one hand, we generalize existence results of blowing-up
solutions for mean field equations (1.3) in [23] to an asymmetric problem (1.1).
And, on the other hand, we perform, in a compact Riemann surface S, a similar
construction done for a sinh-Poisson equation in bounded domains with Dirichlet
boundary conditions by [3] and extended to an asymmetric case in [50]. Both
problems in [3, 50] do not contain any potential V; and the existence of C!-
stable critical points of the corresponding ¢}, implies the existence of blowing-up
solutions. However, to prove our results is not enough to assume the existence
of C!-stable critical points of ¢* in (1.7). Admissibility conditions in terms of
quantities either A;’s or By’s have to be used, in the same spirit of [23]. After
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completion of this work, we have learned that in [1] the existence of C!-stable
critical points of vortex type Hamiltonians, including ¢}, in (1.7), has been proved
for a surface S which is not homeomorphic to the sphere nor the projective plane.

Finally, we point out that the type of arguments used to obtain our results have
been also developed in several previous works by various authors. Let us quote a
few papers from the vast literature concerning singular perturbation problems with
nonlinearities of exponential type [8, 21, 26, 27, 31].

3 Approximation of the solution

The main idea to construct approximating solutions of (1.1), as in [23], is to use
as “basic cells” the functions

lx — ¢

. 2
5 ) 2logd, 6> 0, & e RZ,

s s(x) = Mo(

where uo(r) = log a ﬁz)z . They are all the solutions of

Au+e*=0 inR?

f]Rz el < oo,

and do satisfy the following concentration property: "> — 8xJs in measure sense
as 0 — 0. We will use now isothermal coordinates to pull-back us¢ in S. Let us
recall that every Riemann surface (S, g) is locally conformally flat, and the local
coordinates in which g is conformal to the Euclidean metric are referred to as
isothermal coordinates (see, for example, the simple existence proof provided by
Chern [16]). For every ¢ € S it amounts to finding a local chart y,, with y«(¢) =0,
from a neighborhood of ¢ onto B,,,(0) (the choice of ry is independent of ¢) in
which g = e?0:Wdx, where ¢; € C®(By,,(0), R). In particular, ¢ relates with the
Gaussian curvature K of (S, g) through the relation

(3.1) Ap(y) = —2K(7' (v)e”?  fory € By, (0).

We can also assume that ys, @+ depends smoothly on ¢ and that ¢-(0) = O,
V@:(0) = 0. We now pull-back us in & € S, for > 0, by simply setting

852

U(;,g(x) = U(S,O(yf(x)) = 10g (52 + |y§(x)|2)2

forx € yg?l(Bzro(O)). Letting y € C3°(B2,,(0)) be a radial cut-off function so that
0 < y <1, x = 1in B,,(0), we introduce the function PUs¢ as the unique solution
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of

(3.2) —AgPU;£(x) = ye(x)e™ % Weloct) — Iél [ xze=?eY<dv, in S,
fS PUa"ngUg = O,

where yz(x) = x(lyz(x)|) and @z(x) = @(ys(x)). Notice that the R.H.S. in (3.2) has
zero average and depends smoothly on x, and then (3.2) is uniquely solvable by a
smooth solution PUs¢.

Letusrecall the transformation law for A, under conformal changes: if § = eg,
then

(3.3) Ag=e?A,.

Decompose now the Green function G(x, &), & € S, as

1
Gx, &) ==, xelogly:(0)| +H(x, ),

and by (1.6) then deduce that

—AgH = — ) Agye 1og ly:(0)| — (Ve Vioglye(l)g — g in'S,
JsHC, O dvog = ) [¢ xelog |ye(-)ldog.

We have used that A log [y(x)| = e % A log |y| |y=y!(x) = 27d; in view of (3.3).
For r < 2rg define B.(&) = yz ' (B(0)), A,(&) = BA(&) \ B,2(&), and set

Ach - / X (|J’|)
* 2(Vye, V

Setting
¥5.:(X) = PUs (x) — xe[Use —1og(86%)] — 8zH(x, &),

by the definition of f: we then have that — AW = —258%f: + O(5*) in S so that
1
/5 fedvg = 5, /5 A W5 :dvg + O(6%) = O(6%)

for all 6 > 0, and hence [ f:dv, = 0. Therefore, F: is well defined as the unique
solution of

(3.4) {_AgF*z =k S,

fS ngl)g =0.

We have the following asymptotic expansion of PU; ¢ as 6 — 0, as shown in [23]:
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Lemma 3.1. The function PU; ¢ satisfies
PUjs: = x:[Use — 1og(86%)] + 8nH(x, &) + a5 — 20°F: + 0(5*| 1og d])

uniformly in S, where F¢ is given in (3.4) and
4z 5 e —1 % (Iy)logyl
ose=— _ 0 logd+2 (/ x(yD dy+7r—/ dy).
N ISI\ Je2 yI? R Dl

In particular, holds
52)(5 2 4
PU5’5=87L'G()C, 5)—2 5 +(l§,§—25 F5+0(5 |10g5|)
; [yl )
holds locally uniformly in S \ {&}.
The ansatz will be constructed as follows. Given m € N, let us consider distinct

points §; € Sand §; > 0,7 =1, ..., m. In order to have a good approximation, we
will assume that 3Cy > 1:

(3.5) 52 = ﬂ%azpj(é:j) forje{l,...,m},
T 136%pi&)  forje{mi+ ..., m),

with 0 < u; < Cp, i=1,2,
(3.6) |41 — 8zmy| < Cod*|logd| and |Ar7% — 8wmy| < Cyd?|logdl,

whered > 0,m; € {1,...,m—1}, my =m—m; and p; is given by (1.8)-(1.9). Up
to taking ry smaller, we assume that the points £;’s are well separated and V/(&)),
V(&) are uniformly away from zero, namely, we choose ¢ = ({1,...,¢&,) € &,
where

E= {(é:laafm) es” |dg(é:l:§]) = 4}’0
and Vi(gp), Va(Gj) =2 ro Vi, j=1,...,m, i #}.

Denote U; := Uy, and W; = PU;, j = 1,...,m, where P is the projection
operator defined by (3.2). Thus, our approximating solution is

mg 1 m
W =3 W= >, W,
Jj=1 Jj=mi+1

parametrized by (¢, &) € M x E, with u = (u1, uz) and M = (0, Cy] x (0, Col.
Notice that for ry small enough we have that D ¢ Z ¢ §” \ A. We will look for
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a solution u of (1.1) in the form u = W + ¢, for some small remainder term ¢. In
terms of ¢, the problem (1.1) is equivalent to finding ¢ € H so that

(3.7) L(¢) = —[R+N(¢p)] inS,
where the linear operator L is defined as

V9T (s Vie gy

2
3.8) L) =Agp+ Y Ar0D . - .
( ) (¢) g¢ Z T fs Vie(_.[)x—lwdug fs Vie(_r)z—lwdug

i=1

the nonlinear part N is given by

(3.9 N(¢p) = Ni(¢) — N2()
with
L Vet
Ni@) = Ait <fs Vie O W)y,

_ (_T)i—lvie(—r)ilw{ _ fs Vie(—r)i"W¢dvg
[ Vie=" Wap, [ Vie=" W ap,
Vie(_r)i_lw
s Vie(—f)i_lwdug>

(3.10)

for i = 1, 2 and the approximation rate of W is encoded in

Vix)eV 1 ) _121( Vo(x)e™™W 1 )

311) R=A W+ - -
(3-1D) s l(fSVlerl)g N [ Vae=Vdv, ~ |8

Notice that for all ¢ € H

/S L(¢)dv, = /5 N(¢p)dv, = /5 Rdv, = 0.

In order to get the invertibility of L, let us introduce the weighted norm for any
h € L*(S)
m 5]0'

All« = sup {
xe§ ; (7 + 1B,y O + 15 x5\8,, () (X)) */2

-1
} |2 (x)],

where 0 < ¢ < 1 is a small fixed constant and y, denotes the characteristic
function of the set A. Let us evaluate the approximation rate of W in || - ||, and
recall that m = m; + my:

Lemma 3.2. Assume (3.5)—(3.6). There exists a constant C > 0, independent
of 6 > 0 small, such that

forall & € E, where |V(p;‘n(§)|§ stands for 37| |V¢jgo;*n(§)|§.

(3.12) IRIl. < C(6IVp;,(Dlg + 67| 1ogdl)
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Proof. We shall argue in the same way as in [23, Lemma 2.1]. First, from
Lemma 3.1 we note that for any j € {1, ..., m},

W;(x) = Uj(x) — 1og(85;) + 8wH(x, &) + O(5°| log 3])
uniformly for x € B,,(;) and
W;(x) = 87G(x, &) + O(5*| log J))

uniformly for x on compact subsets of S\ {¢;}. Since by symmetry and ¢ (0) = 0
we have that
pix)eVidvg = 8xp;(&) + 0| log d)),

B,y(&)
we then get that forj € {1, ..., m}
/ Vie"dv,
Byy(&)
(3.13) 8;2 /B . Vler+8nH(x,§j)+8n E}i‘l,,#j Gx,&)— 3" S+t G(x,:,)+0(52|1oga‘|)dvg
o ‘..j
T
=2mm@+mﬁmwm:22+mmwn
9; 119

andforje {m +1,...,m}
(3.14)

VieVdo,
By (&)

o " m P v o o
- / Ve e LUIosBRHSTHEGI8 5210 GO =T Xl 1.1 GO log ) g
B,y (&)

— p](x) —1/z 2 i 22/t )
—membmj (07 + lys MDY (1 + O(5*| log d]))dv,

= 0(1).
So, by using (3.13)—(3.14) we have that

w —
(3.15) /Vle dv, = Z/Bm(c’ Vie"dv, + O(1) = 252 + O(| log d)).
Similarly, forj € {1, ..., m;} we get that
(3.16) / VaemVdv, = O(1),
By (&)
andforje {m +1,...,m}

. 1
(3.17) / ( Vse Wdl)g = 82 [mpi(&) + 0(52| logd))] = , + O(| log d)).
Bry (& J

25
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So, by using (3.16)—(3.17) we have that

(3.18) /Vze—fwdug Z / VaeWdo, + 0(1) = 252 +0(|logd)).
Jj=mi+1 Bro(&)
By Lemma 3.1 and (3.5), (3 15), (3.18) we have that
e inS\ U] 1B,O(é‘]) Al I v.erv = 0(6%) holds in view of W(x) = O(1);
e inB,(),je{l,...,m}, we have

VleW
fS Vlerl)g
W o~ 08B HETH (G187 ST 1y G, &)— T 301, 11 GG+ O(3% | log dl) U
amy 7?02 + O(|logd|)
1 [1 N <V(Pj Oygjl)(O)
pi(&)

e inB, (£),je{m +1,...,m}, there holds

_ § 3 2., 2 U;.
= oy V5@ + Oy () + % log oD eV

V1€W
fS V] erl)g
_ Vi@lpi(x)/ V201~ Y7+ 0(5°| log d))

2/t 2
amyu7?672 + O(| log d|) ( + lyg(x )T = 0(%).

Similarly as above, we have that
o in S\ UL By(&), ot | 2 lyy, = O(?) holds in view of W(x) = O(1);
JS 8
e inB,(),je{l,...,m}, we have

V2e—rW
Js Voe=Wdo,

_ Va@lpi(x)/Vi@)] ™" + O(8*| log d])

2‘[_ 2
w202 4 O logaly @ e = 0,

e inB, (),je{m +1,...,m}, we have

Vze—rW

fS Vze—Tdeg

1 V(pj o yz")(0)
[1+< ProYs

2 2
pi&) ’yff'(x)>+0(|yéj(X)I +0

8mmy

Since as before

/ —ielid / 89 dy + 0(6%) = 87 + O(5°)
e e ldvg = + =07 +
M = Jo,0 (52+|y| 2%
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with ¢; = ¢, for R given by (3.11) we then have that

l]V]éW 87rm1 -1

1 2
+ + O(0°)
Js VieWdv, IS|

my
R=— Z)(je_(perf +
=

1 & - AotVae ™V Int? — 8mmy
+ e el — + +O0(6),
> 17 [ VaemVdn, NE @

where y; = xs. By previous computations we now deduce that R(x) = O(5)

in S\ UL, B (&),

. OV 10801 0 Y5 YOI (0] + v I + 5% Tog o |

+O(|A1 — 8amy| + |A27* — 8wma| + %)
=Y 0(|V log(p; oyg‘)(O)Ilyg;-(x)I +1ys (O + |41 — 8my| + 6% | log |)

+ O(|A — 8my| + | A2t — 8mmy| + 67)

R= [—e_"”-f+87j_L

in B, (), j € {1,...,m} and similarly,

R = Y0V log(p; 0 y5 YOIy (0] + [y (I + | 227> — 8| + 6| log 3])

+ O(|A — 8my| + |Aa7? — 8mmy| + 67)

inB, (), je{mH, ..., m},inview of ¢;({)=0and Vg;(£;)=0. From the definition
of || -]« and (3.6) we deduce the validity of (3.12). This finishes the proof. ]

4 Variational reduction and proof of main results

The solvability theory for the linear operator L given in (3.8), obtained as the
linearization of (1.1) at the approximating solution W, is a key step in the so-
called nonlinear Lyapunov—Schimdt reduction. Notice that formally the operator L
approaches I defined in R? as

Lo 8 1 P(2)
Ldry=a0+ |, ey (¢ 7 /IR (1 + [z2)2 dz)’

by setting y = yz(x)/d; as 6 — 0. Due to the intrinsic invariances, the kernel
of L in L*(R?) is non-empty and is spanned by 1 and Y;, j =0,1,2, where
Yi(y) = | esi=1,2,and Yo(y) =2 |7}5 . Since publications [20, 23, 25] it is by
now rather standard to show the invertibility of L in a suitable “orthogonal" space,
and a sketched proof of it will be given in Appendix A. However, as observed

in [23], for Dirichlet Liouville-type equations on bounded domains as in [20, 25],
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the corresponding limiting operator L takes the form L(¢) = A¢ + a +I§I2)2 ¢ and the
function 1 does not belong to its kernel, making it possible to disregard the “dilation
parameters” J; in the reduction. As we will see, two additional parameters g
and u, are needed in the reduction (one associated to all “positive bubbles” and
the other one to all “negative bubbles”) and in this respect our problem displays
a new feature w.r.t. Dirichlet Liouville-type equations, making our situation very
similar to the one arising in the study of critical problems in higher dimension.
Roughly speaking, L resemble a “direct sum” of linear operators for mean field
type equations.

To be more precise, fori=0,1,2andj =1, ..., mintroduce the functions

Iy (P
J <
vy 26j2+|y¢j(x)|2
5j - 49; g ()i

2
F+lyg ()2

and set Z; = ) [\ Zoyand Zp = 37", . Zo. Fori=1,2andj=1,...,m, let PZ
and PZ;; be the projections of Z;, Z;; as the solutions in H of

fori=0,
2 =Y,
fori=1,2,

1
AgPZ,' = XjAgZi — /XjAgZidl)ga
ST Js
4.1) 1
AgPZij = yjAoZij — 19| /SXjAgZideg-

In Appendix A we prove the following result:

Proposition 4.1. There exists oy > 0 so that for all 0 < 6 < dy, h € C(S)
with fshdvg =0, u e M, & € E there is a unique solution ¢ € HN W22(S) and
Coi, Cijj elR Of

L(¢) = h+ Y i [coiAgPZi+ S cjAPZy]  in S,
4.2) fsqﬁAgPZ,-dvg = fs PAGPZidv, =0
Vi=1,2,j=1,...,m.
Moreover, the map (u, &) — (@, coi, cjj) is twice-differentiable in u and once-
differentiable in & with
2

(4.3) Bl < Cllogdlllall, > {|col-| +) |c,-j|} < Cllhll.,

i=1 J=1

2 2 m
1
10uBlloo + 160 lloo + ) :5||a<¢j>i¢||oo}
- { = logdl

44) 5 =

< C|logd|*|hl|.

for some C > 0.
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Let us recall that u = W + ¢ solves (1.1) if ¢ € H does satisfy (3.7). Since
the operator L is not fully invertible, in view of Proposition 4.1 one can solve
the nonlinear problem (3.7) just up to a linear combination of A,PZ;, A PZ,
and AgPZj;, as explained in the following (see Appendix B for the proof):

Proposition 4.2. There exists oy > 0 so that for all 0 < 6 < 0y, 1 € M,
& € E the problem

L(¢) = —[R+ N(®)] + X7 [coiAgPZi+ Y 1L, cjAgPZy] in S,
(4.5) S [(pAPZidvg = [(PpAPZydvg =0
Vi=1,2,j=1,...,m

admits a unique solution ¢(u,<&) € HN W22(S) and coi(u, &), ci(u, &) € R,
i=1,2andj=1,...,m, whered; > 0 are as in (3.5) and N, R are given by (3.9),
(3.11), respectively. Moreover, the map (u, &) — (P(u, &), coil(u, £), cij(u, ) is
twice-differentiable in u and once-differentiable in & with

(46) ”¢||oo < C(5| 10g 5' |v(pm(§)|g +52—a| 10g 5|2),
2 ) 2 10l

4.7) Z |:”a,uz¢”oo + Z 5”6(@)1¢”00 + Z Milk oo]

=1 j=1 k=1 |10g 5'

< C(3|10g 1> IV @u(E)lg + 6° 7| log ).

The function [W + ¢](u, &) will be a true solution of (3.7)if u e Mand ¢ € E
are such that coi(u, &) = ¢j(u, &) = 0 foralli =1,2, and j=1,...,m. This
problem is equivalent to finding critical points of the reduced energy

E; 0, (1, &) = 0, 0,([W + @)1, ©)),
where J;, ;, is given by (1.4), as stated in (we omit its proof):

Lemma 4.1. There exists g such that, if (u, &) € M x E is a critical point
Of Ej, .1, for 0 < 0 < 0, then u=W(u, &)+ ¢(u, &) is a solution to (1.1), where J;
are given by (3.5).

Once equation (1.1) has been reduced to the searchof c.p.’sfor £, ,,, it becomes
crucial to show that the main asymptotic term of E;, ;, is given by Jj, ,,(W), for
which an expansion has been given in Theorem 5.1. More precisely, by estimates
in Appendix B we have
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Theorem 4.1. Assume (3.5)—(3.6). The following expansion does hold:

Ey (8

nip
= —871,'(1711 + 5
T

) — Ay log(mmy) — Az log(mwmy) + 2(A; — 8wmy) logd
+ 122(,1212 — 8wmy)log d — 327% ¢’ (&) + 2(A, — 8wmy) log u,
“-8) +A}(O)u3d logd + [AT(Eut log 1y — Byl
+ 112{2(/1212 — 8zwmy) log u»
+ A5(O)u30” 1og o + [A3(E) 3 log iz — B3 (3167}
+0(6%) + 75, 1,(u, )

in C2(R?) and C'(E) as § — 0%, where ¢} (&), A;(&) and Bi(&), k=1, 2 are given
by (1.7), (1.10) and (1.11), k = 1, 2, respectively. The term r;, ;,(u, &) satisfies

oIVers, 1, (1, O N IV 1770, (1, )
| log d| | log d|

\D% 77, (15 O
| log J/?

|72y, (1t, )| +
4.9)
< C(6*|1og | |V¢;,(f)|§ +6° 77| log d]*)

for some C > 0 independent of (1, &) € M x E.

We are now in position to establish the main result stated in the Introduction.
We shall argue similarly to [23, Theorem 1.5].

Proof of Theorem 1.1. According to Lemma 4.1, we just need to find a
critical point of E = E;, ;,(u, &) with g = (uy, 12). Recall that 7 > 0 is fixed.
Assumptions (1.12) and (1.13) allow us to choose uy = (A, &) for Axr?* =D
close to 8zmy, k = 1,2, respectively. Precisely, fixing £k € {1,2} we choose
2t * D — 8amy = 5% (=% resp.) if either A7(E) > 0 (< O resp.) or A*(&) = 0,
B;(&) > 0 (< Oresp.) in U. Thus, we deduce the expansions

Tz(k_l)a AE( s é) 2 * * %
BB S) 2 A (@i log 8 + ANk og i + i) — 2B
At k=D — Brmy, g

+o(1) + O(|1og ” [V (OI3)
and

TZ(k_l)a/lk,ukE(/u > é:) _

2 * * *
12D g = " 2t 2A5(E) log § + AL(E)(2log iy + 3) — 2B (&)

+o(1) +O( log o [V}, ()12,
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as 0 — 0. Arguing in the same way as in the proof of Theorem 3.2 in [23], we
conclude the existence of a C' map uy = (A, &) satisfying

a,ukE(lu (io 5)9 6) = Oo

with 4 = (41, 42) and u = (uy, o) for all & € U. Now, considering

E@©) = Ex(u1(21,9), u2(22,8), &)

and again arguing in the same way as in the proof of Theorem 3.2 in [23] it follows
that £(&) = —3272¢%,(&) + 0(6%| log ),

VeE(E) = VeE(u1(A1, E), 1a(22, ), &)
+ v/tE(/u l(lla E): ﬂ2(l23 E): f)vf,u(la 6)
= =3272°V: (&) + 05| log d]?)

uniformly in £ € U and there exists a critical point ;, ,, = {5 € U of E©),
since D is a stable critical set of ¢, (see Definition 2.1). Up to taking U smaller so
that Vg (&) #0forall & € U\ D, it can be deduced that the pair (u (41, 42, &), &)
is a c.p. of E(u, ¢) and, along a sub-sequence, & — g € D as d — 0, namely,
as Ay — 8mm, and A,7> — 8mm,. By construction, the corresponding solution
has the required asymptotic properties (1.14). See proof of Theorem 1.5 in [23]
for more details. This completes the proof. ([l

S The reduced energy

The purpose of this section is to give an asymptotic expansion of the “reduced
energy" Jy, ,,(W), where J,, ;, is the energy functional given by (1.4). For technical
reasons, we will be concerned with establishing it in a C>-sense in u and just in
a C'-sense in &. To this aim, the following result will be very useful; see [23,
Lemma 3.1] for a proof.
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Lemma 5.1. Letting f € C>7(S) (possibly depending in&), 0 < y < 1, denote
by Py(f) the second-order Taylor expansion of f(x) at &:

1
Paf(x) = £ +{(V(f 07 )0). 3:0) + , (D*(f 0 37 HO)ye(x), ye().

The following expansions do hold as 6 — 0:

/S xee f(x)e V< dvg

= 87(&) — 28° A f (&) {m 10g5+/ x(yDloglyl 71']

R? Iyl
852 [ 4 —p S ) = P2()(x)
" / xee el

X (yD

dy + 0(%),
IR

dvg +40%*f(&) /]R ]

d 4
/S g f@ets o = TR+ AL + 00

i
[ye(x)|?
and

ad® — |y 4

Lo Use =
fyreeeseoe @+ lye@P2 ™ 302

(2a = D) +(@ =2 Af(&) + 00"
fora e R.
We are now ready to establish the expansion of J;, ;,(W):
Theorem 5.1. Assume (3.5)—(3.6). The following expansion does hold
I, (W)

myp
= — 871'(m1 +
T

) — 1 log(zmmy) — Ao log(mwma) +2(2, — 87my) log &
2
* (A7 — 8wmy)logd — 327% 9" (&) + 2(A1 — 8wmy) log

+AJ(E 3 log o + [AT (Ol log 1y — Bi(E)u31d

(5.1)

1
+ 12{2(,1212 — 87my) log u»
+A3(O) 307 log 8+ [A3(O) 3 log s — By(E)u316%} + (%)

in C2(R?) and C'(E) as 6 — 0%, where @, (), AT(E), A5(E), Bi(&) and B3(E) are
given by (1.7), (1.10) and (1.11), k = 1, 2, respectively.

As in [23, Theorem 3.2], the proof will be divided into several steps.
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Proof of 5.1 in C(R?> x Z). First, let us consider the term. Integrating by
parts we have that

mi

/ IV Wzdv, =
N

—p: U; I s —p: U;
/S)(je %1eViWido, — . E E /S)(je %eViWido,
1

Jl= j=1 l=my+1

1 m m
— . Z Z/Xje_‘/’-’eu-’Wldvg
s

j=m+1 I=1

1 & s
+12 Z /S)(je %eViWido,

j,l=m1+1

in view of fs Wdv, = 0. Since by (1.6) and (3.2)

(5.2) /S xie~ eV G(x, &)dv, = /S (= APUNG(x, &)dvg = PUIE)

forallj,/=1,...,m, by Lemmata 3.1, 5.1, (5.2) and computations done in the
proof of [23, Theorem 3.2], we have that for [ =j

/S)(je_(perf W;dv,
= — 16z — 32z log J; + 64n°H(&}, &) + 16moas,
— 32w} F£ (&) + O log 6]).

Similarly, by Lemmata 3.1, 5.1 and (5.2) we have that for [ #j
/Xje_“’erledvg
s

=647>G(&, &) + 8m(as, s + as.5)
— 167(57F£ (&) + 6, F5(&) + 0(5*| log 1%).

Setting
my
O1,5¢ = Z 05,85
=1
m
02,56 = Z as.é
j=m1+1
mi
2
Fio0) =Y 6 Fsx)
J=1
and

Froex)= Y &Fs(),

j=m1+1
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we find that

m

/ije %ie” T Wido,
Jil=1

= — 16xm,

my

+y [ — 327 log(110) — 167 log Vi(&) — 64n2H(E, &)
Jj=1

m 2 m
— 6417 > G(&, &) + 1287 > G, 6,-)]

=1 i=m+1
i

+ 16mmyay e — 321 Y Fi56(E) + 0(0*| log o),
=1

m m
21: > /S xje” e Widv,

j=1 I=m+1

nmp m
= 6471'2 Z Z G(é, &+ 87rm2a1’5’§ + 87rm1a2,(5,¢

j=1 l=m+1

— 167 > Fis4&) — 161 Y F254(&) + 0% log o)),

J=mi+1 J=1
m ny
Z Z/Xje_(perledvg
jem+l =1 7S
m mi
2
=647" Y Y G(&, &)+ 8uman se + 8Tmian s
j=m1+1 =1

m ny
— 16w > Fis4&) — 161 Y Fa54(&) + 05" log o)),

j=m1+1 ]:1
and
m
E /Xje %ie”Wido,
jl=m+1 7S

= — 16zm, + Z { — 327 log(u20) — 167 log V(&) — 64E2H(§j, &)

Jj=my+1

— 1287%7 E G(&, &) — 64n? E G(&s é:i)}
i=1 i=my+1
i

+16mmaaz sz — 321 Y Fa5:(&)+ 0(0* log o)

Jj=my+1
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in view of (3.5). Now, setting

1 1
Wog = 0lo.5 = 02,68 and  Fse(x) = Fps6(x) — TFz,a,g(x),

summing up the four previous expansions, for the gradient term we get that

1
5 /S IVW|do,

- — hr; _ _ 2 %
53 = 87z:<m1+ 12) 167r(m1 log(u110) + 5 10g(,u25)) 327%9% (&)
m o 167 &
+8m(m =" o= 167 Y Fod@+ Y Far(§)+o(d)
Jj=1 Jj=mi+l1

in view of (1.7).
Let us now expand the potential terms in J;, ,,(W), similarly to the proof of
[23, Theorem 3.2]. By Lemma 3.1 forany j =1, ..., m; we find that

/ VieVdo,
B,y (&)
e [/ U . —2Fs: 2 XiPj
= xie ‘pie”""<dv —85~/ dv, + O(5*| log ) |.
807 [ Js o # ! Jasy @) g0l ¢

By Lemma 5.1 (with f(x) = e% pje“f’vi_ZF #¢) we can now deduce that

897 e < / VieVdo,
B,y (&)

= 87Z'pj(éfj)e—2F§,§(§j) _ 47T(Agp1(51) _ 2K(§J)pl(§l))52 log 5
1
~ 2846 = 2K [ VD )

Iyl /
/
(Iyl)
+497 pi(&) / :
[yl
+ 851'2 / [V1 BT L GG il 1 G _ =0 Pz(e(pfpi)] dvg
Bry(&) |J’g3(x)|

_o. P2(e%p))
— 867 / e " dvo, + 0(6%)
! Az,()(gy)X] lye o+ ¢

MGy BT S Y.
in view of Iyp](x)l“ = V87 2m1 OOG) = 2t GG iy B, (&) and by (3.1)

(5.4 Agle? pil(&) = Agpi(&) — 2K(E)pi(&)-
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Now, by Lemma 3.1 for any j = m; + 1, ..., m we find that

i VAR T > . 2
/ VeV dvg = / VI[PJ} o~ +LU=10g(83)+as+0(5%) dv,
B, (&) B, (&) V2

- eaﬂ[ / V87 S G0 Sl G060 gy 4 O 52)]_
B,y (&)

On the other hand, we have that

/ Vie"dv,
S\URE1 Bry (&)

my z\_ 8t §~m %
= o%oc [/ VleS” 2201 GO 3o G(x,gf)dvg + 0(52)] )
S\UL By (&)

Since
mi nmy

(5.5) ST =y — 23" F (&) + 0(0Y)
j=1 J=1

and by (3.5)

1
67 log 0; = pi(&)pj0* logd + pi(&)u;6* log pi+  pi(&) log pi(&)u;o”

holds, we then we then obtain that

1
e—aé,i,uféz / V] ervg
T S

(56) A* B m
=m — éf) w6 log(u10) + Ig;@ 118t =2 Fs (&) +0(0%),
Jj=1
where
Bi (&)= — 21 [Agpi(&) — 2K(E)pi(E)] log pi(&)
Jj=1
A’f@( 7 (IyD log |yl ) 2D, &
— d 4 d (&
21 /R po BT /R Nt y;p’@

my

m = 7 ~m = P-(e%p;
+8 / {VIESEZ,-_& D L P 2(e pﬂ dv,.
s = lys (0l

By integration by parts on integrals involving y and the splitting of S as the union
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of Um'1 B(&)and S\ Um'1 B,(&), r < ry, we easily deduce that

AT(©)

B ,(&) = =27 Y [Agpi(&) — 2K()pi(&Hllog pi(&) — )

=

mi
m zy__ 8w m = 87[
+38 / Vet S )= it G gy ST 3 s
S\UZ BA&) L

1
— A& log .

m

PSS [P0
B(‘..]

(x) d
Iy, (O %

j=1
in view of (5.4) and the definitions of A7(S), P2(e” p;). As a by-product we have
that By, (&) does not depend on y and r < ry. Since

i [ €O = Paep))

Dp, =0
. =
r—=0.JB,&) [ye, ()4

in view of %™ p;(x) — P2(e” pj)(x) = o(|ys(x)[?) as x — &, we have that By (&)
coincides with B}(¢) as defined in (1.11) with k= 1.
Similar to the above, by Lemmata 3.1, 5.1 (with f(x) = e% pje~™c*2F0c) (5.4),

(5.7) Y TP =my 420 > Fsa(&) + 0%

Jj=mi+1 Jj=m+1

and by (3.5), we then obtain that

1
e“"*fﬂ%52 / Vze—rWdUg =my — 2(5) 2521 g(,u 5) + Z’X(é)ﬂgéz
T S 87 87
(5.8) m
+21 Y Fye&)+0(0%),
Jj=my+1
where
By (&) = Y 430
2,,(0) = —2=n Z [Agpi(&) — 2K(E)pi(EHllog pi(&) — >
j=m1+l
+8 V2€_87” > G(x,g)+8m Z;iml-H G(Xsfl)dvg
S\Ut, 11 Br&)
87 —
TR Z Pi(&)

j—m1+l

e pi(x) — Pa(e” p)(x)
— A3(9) log +8 / / P e,
2 Zl 5,(&) lys (014 ¢
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Now B;_,(£) does not depend on y and r < ry, and coincides with B5() as defined
in (1.11) with k = 2.

Finally, from (3.6), expansions (5.3), (5.6) and (5.8) and Taylor’s expansion for
a>1,logla+t)=loga+ ; +O0(t*) as t — 0, we get the expansion (5.1) as § — 0
and the proof is complete. [

We establish now expansion (5.1) in a C'-sense in &, where the derivatives
in & are with respect to a given coordinate system. Recall we use ideas in [23,
Theorem 3.2].

Proof of (5.1) in C'(Z). We just need to expand the derivatives of Jo.2,(W)
iné. Letusfixie{1,2}andj e {1,...,m}. We have that
ﬂlvlew i]TVze_TW

- O, Wdv,.
fS Vlewdl)g fS Vze—rdeg} (&) Yavg

5<c“j>,-[Jxl,xz(W)]=—/S [AgW+

Notice that as in Lemma 3.1, it follows that

_n Xaq
07 + e, (02

— 4log |ye, ()0, xq + 8T H(x, &) + O0(6*| log )

AW = {%)f e, (I + 530, (log pq(é:q))}

5.9

does hold uniformly in S. Hence, by using (5.9) and expansions in the proof of (35)
in C'(2) in [23, Theorem 3.2], we deduce that

— / Ag W@(é)i Wdl)g
N

mip m
1
(5.10) — E /sze_“”eU’a(;,)invg — . E /SXle_(pleUla(g“j),-deg
=1

I=m+1

= —327%8¢), (&) + 0(5°| log d))

forj e {1,...,m;}. Similarly, forj € {m; + 1, ..., m} we compute
- /5 AWz, Wdvg = =321 0z, 0m(E) + O(S°| log 3)).

In order to give an expansion of the second term in ), [J1(W)], first observe that
by Lemma 3.1 we have

W %02 5:(x) U
VieV = o5 e I[1 + 0(5* log d))]
(5.11) ;

uniformly in B, (&), j=1...,m

nmy
(5.12) Vie" = 0(1) uniformly in S\ | ) B, (&).
j=1
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—W e—‘ra,i;+2‘rF(5_¢(x) U
Voe™™ = 052 pieY'[1+ 0(5*| log d))]
(5.13) ;
uniformly in B, (§),j=mi+1...,m
(5.14) and Voe~™" = O(1) uniformly in S\ | | B,,(&).

Jj=mi+1

So, arguing in the same way as in the proof of (35) in C'(Z) in [23, Theorem 3.2]
and taking into account that for k =1, 2
/ Vke(_’)kqwa@i Wdl)g

N
my

Tk 1
—Z/Vke( "W o, Wi —

=1y
/Ve( 2 a(g]),Wl,

l—m +1

we have that

Vke( olw )
(5.15) /sf Veet="Wei, Oy Wdvg = O(P|log o)),  k=1,2.
S

In conclusion, by (5.10)—(5.15) we can write
0elJi1,1(W)] = =327°8(5),0,,(&) + O | log d)

and the proof is complete. (]

Finally, we address the expansions for the derivatives of J;, ;,(W) in . Recall
that we argue similarly to the proof of (35) in C*(R) in [23, Theorem 3.2].

Proof (of (5.1) in C>(R?)). We just focus on the first and second derivative
of J;, ,,(W)in u;,i=1,2. Since 0,, = 5plé(§l)6(5,, i=1forle{l,...,m}and
i=2forl e {m+1,...,m}, in view of (3.5), arguing as in Lemma 3.1, it is easy
to show that

s 45
—1 _ / 3
(5.16) o P z(éfl)a,uiWZ =—x 512 N |y§l(x)|2 +ﬂ§,’§, — 45[F§, + 0(0°| logd)),
0 — lya@®)]?

(517 02 ME)O Wi = 41 + V6.6 — 4F + O(5°| log 8|)

(67 + ye (0)]%)?

do hold uniformly in S, where

46, P — 1 / lo
Boe = — T 5logdr + < / 20 dy — / 2D g'y'dy)
| | N P2 eyl
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and

87 4 e?0) — 1 2(yD log |yl
5.6 =— . logd + </ Iy dy—27r—/ dy>.
A T T A o P2 eyl

Note that 0,,W; = O either if i = 1 and l € {m; +1,...,m} or i = 2 and
le{l,...,m}. Let us stress that 9, W; = Oforall l =1,...,m and i # k,
so that 9,,,, W = 0 for i # k. By Lemma 5.1 we then have that either for i = 1,
le{l,.... m}ori=2,le{m+1,...,m}

_1
lp[ Z(él)/Xje_(pjera,uindUg
S
167 3 )
= — 5 5]'[ + 87[,85,,5, — 3271'51F§l(gzj) + 0(5 |10g 5| ),
J
5_2pl_1(é:l)/SXje_wjera/t,-,u,-Wldvg

_ 167
35]2

(5.18)
S+ 87 ys. — 327F (&) + 0% log 5]%)

and foreitherk=1,je {1,...,m}ork=2,le{m +1,...,m}
!
'pi 2(5[)/Xje_wjeujalukl]jaﬂiW[di)g
s

U |J’g,( )|2

2 _1
= 5_1 2 / i —(/J]
(5.19) P2 &) | xje 52 + |yg](x)|2 Oy,

Wldl)g

3 52 5/),(5,) 91+ 0(37)

in view of fRZ a +|y|2)3 dy = 0, where dj; denotes the Kronecker’s symbol. Note that
0, Uy =0foreitherk=1andje {m +1,..., mjork=2andje {1,...,m}.
Since [0, Wdv, = [ 8y, Wdvg = 0, we then deduce the following expansions:

/ (= A W)d,, Wb,

m
_Z/Xe veYio, Widog — Z Z/xe %eY10,, Wido,

Ji1=1 1—m1+1 =1
16zm AL e
(5.20) =T "+ 8rmy 6 > piEDBsa — 32mu1d” Y pi&IFE(E)
I=1 Jjil=1
87'L'm “
) Z PEE B

=1

2 “
T S S p@FL(E) + 00 log ),

Jj=m+1 [=1
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and

/ (= AW)d,,, Welv,

my

Z Z /X] —¢i el 710, Widvg

]_1 l=m;+1

1 m

3 o0l
+ 2 xje "e”0,,Wido,
jl=my+1 VS

(5.21) 16wm; my

8 my
- ”’"léZpl et RS 3 )

2
M2t =1 l=mi+1

8
ﬂm25 Z pl (éfl)ﬂél &

I=m+1

32
o 2 Z PUENF(E) + 0 log o),

j,l=m1+l

as 0 = 0. Since by Lemma 3.1 (5.11) and (5.12) hold and 0, W = 0(6?|log d|)
uniformly in S \ U~} B, (&), by Lemma 5.1 we can write that

/ VieVo,, Wdv,
N

m
= Z/B (V)V16W6ﬂ1W1d0g+0(52|10g5|)
jil=1 7 Proles

m .
1 ea,;,g p]e ]

— / —2F,)VS(JC) d g
=241 Jp, &) G} + |y (0

+7 ;5 (fm Z ,01 EDBsa =4 pl (EDIIF, (@-)) + 0@ log J))

Jl=1

ers 2my
:n,uféz(_ m +m1521:pl (fl)ﬁﬁlcl_ A (é:)

4
Z Fa56(&) + 0(52%)
e
in view of (5.4) and from (5.5)

Z —2F5:E) =y, — 22521:@(51) + ZFz s5,6(&) + o).

j=1 J»l=1 ] 1
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Combining with (5.6) we then get that
fs Vie" o, Wdv,

fS Vlerl)g
PA}(©)
(5.22) = - 0 +5Z,01 (EDPs.c — S [ﬂ1+2,u110g/¢1]
Z_
AT(&) 2 l(éf) 2 4 o s 2
dm, P197T0g0+ S = I;Fl,a,é(f])+o(5 ).

Similarly as above, (5.13) and (5.14) hold and 0, W = 0(52| log 8]) uniformly in
S\ U~ B, (&), so that

/ Vze_fwa,,l Wdv,
s

mi
=y / 2e” ™6, Widv, + Z Z / e, Wido,
B,y (&)

pl=1 jemi+1 1=1 Y Br&)
+O0(8?|log d|)
e s M 4
= (mzézpf b=+ S Fipu@) + 00 log 5|>)
/‘25 =1 “ j=mi+1

in view of 7 > 0, (5.7) and

/ Vaert :0(/ (2 + |y 01" Ldo ) - 0(1)
B, O+ ys > * By ¢

Combining with (5.8) we then get that
[sVaem™o, Wdv, - 4 M

5.23 =9 F1.54(&) + 0(0%),
(5.23) [ Vae Ve, Zpl (EDBsc — M; 1.6.4(&) + ()
which yields

0y, 31,1, (W)]

vie"o,, wd Vee=™o,, Wd

=/(—AgW)6/,levg—/11fS e % 4 1peds V26 O Vs

(5.24) Js VieVdo, Js Vae=™Vdo,
2(),1—871,’1711) % 2 %
= ) +2A7(O 10" log o + [AT(O{ p1 + 201 log ur}

— 2B(&)u116” + 0(5%)

in view of (5.20), so that we deduce the validity of (5.1) for the first derivative
in ;. Now, for the first derivative in u,, similarly as above we have that

Js VieV o, Wdv, _

5.25
( ) fS Vlerl)g

4 &
Z PP EDBsa + - 2TZF2,5,§(43)+0(52)-
j=1

l—ml +1
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in view of (5.6), and

[ Vae=™ 3, Wdb,
fs Voe=Wdo,

2 0 ?A3(&)
= - G 2us1
(5260 = 4, T%jﬂ PGB+ g = Tha + 2palog o]
A0 o BO L, 4 & i
1 - E Fr s (& )
+ 47Tm2TIu25 0g5 47[m21- 25 + m2,u T 2,635(5]) +O(6 )

j=m1+l

by using (5.7) and combining with (5.8). Thus, by using (5.21) we conclude the
validity of (5.1) for the first derivative in u;:

2(Ar7? — 87m 2A3
aﬂz[JXl,Xz(W)] — ( 2 N 2) + 22(5)[(252 10g5
Uzt T
5.27 52
62D +IASO w2 + 2402 Tog o) — 23]
+0(6%)

Towards the expansion of the second derivatives in x, we proceed in a similar
way to obtain (5.24) and (5.27) with the aid of the expansions (5.16) for 0, W
and (5.17) for &,,,,W;, (5.18) and (5.19) (see also the validity of expansion (35)
in C2(R) in [23, Theorem 3.2]). We omit the details, so we conclude the validity
of (5.1) also for the second derivatives in x and the proof is complete. (|

6 Proof of Theorem 1.2

In this section, we shall study the existence of blowing-up solutions as A, — 8zm;
and 1,7> — 0, which resembles the equation (1.3). For simplicity, we shall denote
m; = m so that our approximating solution is W(x) = Z]"il Wi;(x), and we look for
solutions to (1.1) in the form u = W + ¢. Assumptions (3.5)—(3.6) are replaced by

6 =18 pi(&), j=1,....m with0 < u < Cy,

(6.1) 5 5 5
|21 — 8zwm| < Co°|logd| and O <A7° < Co|logdl.

Notice that from similar computations above to obtain (5.8), we have that
/S Vaem Vv, = e [ /S Ve 8RR G gy, + O | = 19 > 0

for some 7y > 0. By conditions (6.1) we get that

AQTVQE_TW

(6.2) [ Vot

= 0(6*|logd|) uniformly in S.
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Hence, estimate (3.12) follows. Now, denote Z = }_}", Zy and PZ its projection
according to (4.1). By using (6.2) and similar arguments used in the proofs of [23,
Proposition 4.1] and Proposition 4.1, the invertibility of L in (3.8) follows in this
case (as A; — 8zm and 1,7> — 0), and we have deduced the following fact.

Proposition 6.1. There exists g > 0 so that for all 0 < J < &y, u € (0, Co],
& € E, the problem

L(p) = —[R+ N(p)] + coAPZ + Z?:] Yo ciAgPZy in S,

JspAPZdvg = [{pA PZidv, =0
Vi=1,2,j=1,...,m

admits a unique solution ¢(u,&) € H N W2(S) and co(u, &), ci(u, &) € R,
i=1,2andj=1,...,m whered; > 0 are as in (6.1) and N, R are given by (3.9),

(3.11), respectively. Moreover, the map (1t,&) — ($(u, &), colit, O, i, &) is
twice-differentiable in u and once-differentiable in & with

10ulloe o~ o S8 Pllos . 18uulloo

0 + + +
Il | log d| lzzl: ]z:; | log d| | log o|?

< C(8]10g 8|V, (D)l +0° 7| log 5]%).

As in the case my > 1, the function [W +¢](u, &) will be a true solution of (3.7)
if u e [Co_l, Col and £ € E are such that co(u, ) = ¢;j(u, &) =0foralli= 1,2,
andj = 1,...,m. Similarly to Lemma 4.1, this problem is equivalent to finding
critical points of the reduced energy E;, ,,(u,<$) = J;,.5,(W + ¢l(u, £)), where
J;..4, 1s given by (1.4). Notice that

iz log (/Vze_TWdUg>
S

= —Jatase + Ay log ( / Vye 877 2 G(x’éf)dug) + 0(5*| log ).
N

Let us stress that 1, log([g Vye 87T Gt dp,) is independent of x. Taking into
account computations in the proof of [23, Theorem 3.2] and similar ones in the
proof of Theorem 5.1, we have that

Jr0, (W)
= —8xm — A log(mm) + 2(A; — 8mm) log(ud) — 327% " (&) + A(E) 0> log &

+ A log 1 — B(E)*10% — A2 log < / Vye 7T G(x@dug) +0(6%).
S

Consequently, from estimates in Appendix B we obtain
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Theorem 6.1. Assume (6.1). The following expansion holds:

Ey o, 8)
= — 8mm — Ay log(wm) — 2(A, — 8wm)logd — 327% ¢’ (&)
+2(21 — 8zm) log pu + A(&) 8 log 6 + [A(&) u” log . — B(O) u*16

— Ay log (/Vze_g’”zﬂl G(x’@)dug) +0(0%) + 17, 2,1, &)
s

in C2(R) and C'(E) as 5 — 0, where ¢},(5), AE) and B(¢) are given by (1.7),
(1.10) and (1.11) with k = 1, respectively. The term r;, ;,(u, &) satisfies (4.9) for
some C > 0 independent of (u, ) € (0, Cy] x E.

Proof (of Theorem 1.2). We argue in the same way as in the proof of
Theorem 1.1 with k = 1. (]

7 Appendix A

We shall argue in the same way as in Appendix A in [23]. We first address a-priori
estimates for the operator L when all the ¢;;’s vanish:

Proposition 7.1. There exist &g > 0 and C > 0 so that, for all 0 < ¢ < J,
h € C(S) with fs hdvy =0, ¢ € Eand ¢ € Hé(S) N W22(S) a solution of (4.2)
withcoi=c;=0,i=1,2andj=1, ..., m, one has

[Pllec < Cllogdlllnll..

Proof. By contradiction, assume the existence of sequencesd— 0, u=(u1, 12)
with g — wu*, points & € E with & — £, functions & with |log d| ||/« = o(1) and
solutions ¢ with [|¢|lo = 1. Recall that 67 = ;6% p;()). Setting

2,72G=D Vie(—z)"—1 w

il

‘ _ JsVie™? Wepdo,
[ i—

[ Vi Wap,

[ Vi Wy,
fori=1,2,

) Yi = ¢ + El(¢): El(¢) =

we have that

w1 — C1(@) = ya — C2(9),
Agy1 + Ky + Koy — E1(P) +Ca(P)] = h

and
Agyr + Kilyr — Ca(P) + E1(P)] + Koy = h

in S and y;, i = 1, 2 does satisfy the same orthogonality conditions as ¢.
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Since | Winlloo < 2ll@nllo < 2 and Agy; = o(1) in Cioe(S\ {<T, ..., & D), we

can assume that y; , = ;o In Clloc(S\ {&r, ... &L, Since y; o 1s bounded, it
extends to an harmonic function in S, and then

Js V,-e(_f)iflwqﬁdug

i =Cj0 = — lim i
WI,OO i, fS Vie(_r) IWdUg

in view of (g, [ ¥indvg = & n().

The function ¥;; = u/,-(ygl(éjy)) i=1,forj=1,...,m and i = 2 for
j =m+1,....,m satisfy A\Pl’j + j(:l,j\PlJ + j(:z’j[‘l’]’j —C1+ 3] = Ej and

A\II2’]' + 5(1,]'[‘{’” - 52 + 51] + jzzjj\}lz’j = 711' in Bz;p (0),
where K, = 2K,(vz(3v) and Ty () = S2h(yz (3. Since |fy| < Cllhl..

. Qeppy (1+ 0@ logal))  forj=1,...,m,

Xij= .
0(5].2) forj=m+1,...,m,
and
% 0(57) forj=1,...,m,
2j = .
Geppy (L+0@logal))  forj=mi+1,....m,

uniformly in B, (0), in view of Lemma 3.1, (5.6) and (5.8), up to a sub-sequence,
by elliptic estimates W;; — W0 with i = 1if j = 1,...,m; and i = 2 if
j=mi+1,...,min CL(R?), where ¥;  is a bounded solution of

AY; o + Y
T (L pypy A

=0
of the form ¥ o = Efzo a;;Y; (see for example [2]). Since
— A PZ;j = yje e Z; — |;| /S)(je_‘”-’eu"Zijdvg
in view of (4.1) and A, = e™% A in By,(g;) through y:, we have that

0= —/ WlAgPZij
S

Vi 32 Vi / 3
=32/‘I’< dy — d n+ 0(07),
w3 TS S (1 3@ S

withl=1ifj=1,...,mand[=2ifj=my +1, ..., m. Since then

Vi
Y s dy =0,
/Rz 59 (1 4 [y @
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we deduce that aj; = ap; = 0. By the orthogonality condition [(¢APZ; = 0,
similarly we deduce that

my
0=— Z/S 741 AgPZOjdl)g
j=1

S LR 16 1= DP
=16 /‘P dy— . m dy/ n+ 00,
,21: R TS S S

which implies Y| ag; = 0 in view of

L= bl
e (14 Y1)

By using the same argument, the orthogonality condition [(¢A,PZ, = 0 implies
that 377 .| ao; = 0. By dominated convergence we have that

/S Gy, YK, yr1 o,

1 1
=~ logé )ﬂClt//ldvg+/Rz [ loglyl+HG. &) dy

\IJ.
B,y (& (1+]y»? >

mp 8
+Y6@ &) /R e ey Fioeds + oD

i=1

i

1
=—_ logo Kiyidog +4ag; + o(1)
2z By (&)
. . - 2
in view of [, log |y| (11+|Ly|l)3 dy=—7 and

m 8
/5 GO, & Kayndvg = Y G &) /R s VO

i=m;+1

+0<52/B 160 fj)|dug> +o(1) = o(1)

forj=1,...,my. Inview of [(K;y;=0,1=1,2and

17211

i G(y, &)dvg

‘ /5 G(y, &Hhdv,

< C| 10g5|/|h|dvg+
s

Bs(&)

< C'llogdll|All. = o(D),
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by the Green’s representation formula

nmp mg m nmp
> w0 =3 @ =g [wdn+ [ G011+ Koy — hldog
= = s =178

nmy

= m151j0 +4 Zaoj + 0(1)
j=1
which gives

mi ny
2 E a0j=m151j0+4 E aoj
j=1 j=1

asn — +00. Since E;i‘l agj = 0, we get that ¢; o = 0. By using a similar argument,
we obtain that

/G(y, K yidog =0(1) forj=1,...,m
s

and

1
/G(y, K oyndog = — 5 logo Kaowodvog +4ag; + o(1)
s T B,y (&)
forj=m;+1,...,m, so that, from the Green’s representation formula for ¥;(0)
forj=m; +1,...,mwe getthat & = 0.

Following [25], let PZ; € H(S) be s.t. AgPZ; = xiAoZi— (g [s xjAgZidvg in S,
where
I—yP? 8 1

Y& (x)
+ s
L+]y]? 3 1+]yP?

4
5 ) A= 5210gd +log(l+ )]

20 = (
satisfies e” A Z; + eYiZ; = eUiZy; in By, (&). Since it is easily seen that
R . lérm > ’
PZ; = x;Z; + 3 H(, &)+ 00| logd|”)

uniformly in S, we test the equation of v, against PZ;, j=1,..., m; to get:

. , 1 5
o(l) = /hPZj :/V/l [XjAng - /XngZdeg]dvg
s s IS1 Js
+ /[Kll//l + Ko (y1 — & + &)PZidv,
s

=/ij1[Ang+9<12j]dvg+0(l)=/le//eUfZOjdvg+0(l)
N N

1=yl

=16 j
w7 (L+]yP)3

dy + o(1)
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in view of
/:Kl wldug = O,
S
/Sﬂcz[% — &1 + &1PZidv, = o(1),
/wldvg = o(1),
/X]A Zdvg (1),

/ 2w K1 = eVZ5dv, = O] log o)

and
/hPZ}- = O0(logdlIhll) =o(1), j=1,...,mi.
Since fRz ¥, (11+_|y|2)3 dy = 0 we have that ap; = 0, j = 1, ,my. Now, testing the

equation of y, against PZ,] =my +1,...,m, leads us to deduce that ag; = 0,
j=mi+1,...,m. So far, we have shown that y; — 0in Ci,c(S\ {<], ..., <)) and
uniformly in [ J7, Brs (&), forall R > Oforbothi =1, 2,in view of y—¢; = yr—0C;.
Setting ¥i,() = wi(yz'0)). K;() = [K1 + K1z ) and 7y(y) = h(yz' ()
for y € By, (0), we have that e(/A’f'AyA/IJj + jACj‘/A’l,j = izj + Kz(y;(y))[fl — ¢3]. By
now it is rather standard to show that the operator f,j =e%A + 9A<j satisfies the
maximum principle in B,(0) \ Bgs;(0) for R large and r > 0 small enough, see for
example [20]. As a consequence, we get that ; — 0 in L°°(S). Similarly, we
also get that w, — 0 in L>(S). Since y; = ¢ + ¢;(¢) and &i(¢) — &;p = 0 along a
sub-sequence, || i;]lco — 0 implies ¢ — 0 in L*°(S), in contradiction to ||¢|| = 1.
This completes the proof. (|
We are now ready for

Proof of Proposition 4.1. Since [|AgPZill. < C for all i = 0,1,2,

j=1,...,m, by Proposition 7.1 any solution of (4.2) satisfies

2 m
Il < Cllogd [nhn* +y (|00i| +> |c,-,~|)}
i=1 j=1

To estimate the values of the ¢;;’s, test equation (4.2) against PZ;, i = 1,2 and
j=1,...,m

/s PL(PZ;j)dv,

2 m m
= / hPZydog + > [COkZ / AgPZyPZjdvg + Y ciy / Angkle,jdug}
S k=1 1=0 7S I=1 S
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Since forj =1, ..., m we have the following estimates in C(S):
(7.1) PZj = xiZij+005), i=1,2 PZy = xi(Zoj+2)+ O(5°|log d|),

it readily follows that |, ¢ AgPZyPZjdv, = — 3%” Okid;j + O(6), where the J;;’s are the
Kronecker’s symbols. By Lemma 3.1, (3.5), (5.6), (5.8) and (7.1) we have that for
i=1,2
m
L(PZU) = XjAgZij + erPZ,'j + 0(52 + 52 eU")

k=1

_ €Uj[PZij — ey Zij] + 0(52 + 52 ew)

k=1
in view of
VieWPZyd Vo~ PZ;d
fsfl‘i Wi ¥ =00) and fsfz‘i g K =0@) forallj=1,....m,
s Vie"dog s V2em " dog

leading to || L(PZ;)||. = O(6). Similarly, we have that

L(PZ)) = Z er[PZOj — ){je_(ijOj — 2){1] + 0(52) + 0(52 eUk>

j=1 k=1

P Vie" PZyd, Voo™ PZ0 d
in view of Js\1¢ PAudve _ 2 O(5*|log d|) and Js Vae 0/t0g

_ 2
JsVieWdo, T my JoVaer Vo, T oo | IOg 5') for
j=1,...,my, leading to ||L(PZ))||. = O(5). Also, by using a similar argument for
j=mi+1,...,m, we find that | L(PZ,)||. = O(d). Hence, we get that

2 m 2 m
[|co,-| +) |c,-,~|} < C'||l. + 5| log 5|0( > [|co,~| +> |c,-,~|] )
=1 1 j=1

j=1 i=

1

yielding the desired estimates ||¢|| = O(|logd|||A]|.) and

2 m
> eoil + Y legll = OCllAll).
i=1 j=1

To prove the solvability assertion, problem (4.2) is equivalent to finding ¢ € H
such that

/S<v¢av‘//>gdvg
_/[ iIVIeW ( _fSV16W¢dUg)
~ JsLfgVieVdo, Js VieWdo,

A2 Voe™™W < [ Vaem ™V do,

- —hlpdv, VyeX,
Vae=WVd Vae=™Wdp > }‘/’ Vs VY E
S 8 S 8
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where
H= {¢ e H)(S) : /¢Agpzijdug:/¢AgPZidug:0, i=1,2,j= lm}
S S

With the aid of Riesz representation theorem, the Fredholm’s alternative guarantees
unique solvability for any & provided that the homogeneous equation has only the
trivial solution: for (4.2) with & = 0, the a-priori estimate (4.3) gives that ¢ = 0.

So far, we have seen that, if 7(%) denotes the unique solution ¢ of (4.2), the
operator T is a continuous linear map from {h € L>(S) : [ hdv, = 0}, endowed
with the || - ||«,-norm, into {¢ € L*°(S) : fsqﬁdug = 0}, endowed with || - ||oo-
norm. The argument below is heuristic but can be made completely rigorous. The
operator T and the coefficients cy;, c; are differentiable w.r.t. &, [ = 1,...,m,
or ui, k =1,2. We shall argue in the same way to obtain (57) in [23, Appendix AJ;
differentiating equation (4.2), we formally get that X = g, where f = & with
[=1,...,mor = pu k=1,2, satisfies

LX) =h(¢)+ > doiAPZ+Y  diAPZy,
i ij
for a suitable choice of 7z(¢), do; = 0pco;, dij = Opcyj, and the orthogonality conditions
become

/ XA PZjdvg=— / P0p( A PZ;j)dvg, / XA PZidvy=— / $0p(APZ)dv,.
S S S S
Now, finding and estimating suitable coefficients by;, b;; so that
Y=X+Y buPZ+» buPZy
k ki

satisfies the orthogonality conditions
/5 YA,PZdv, = /5 YAy PZjidvo, =0,
the function X can be uniquely expressed as

X = T(f) - ZbOPZi - Z bijPZija
i inj

where
f=h@)+> buL(PZ)+ Y b;L(PZy).
i i
Moreover, we find that ||f]l. < C'"°¢”||a|. for # =& and ||f|l.. < C|logd|||A]. for
S = pur. By (4.3) we deduce that for any first derivative

I$llsc] _ o108 0P
Poe] < o8y

102¢lloc < C|llogdllIf]l« + < 5
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and [|0,,¢ll.c < Cl|logd|*||h|l.. Differentiating once more in x; the equation

satisfied by 0,,¢ and arguing as above, we finally obtain that

18y, Plloc < Cl1og S|l

and the proof is complete. (]

8 Appendix B

We shall argue in the same way as [23, Proposition 4.2], so that by Proposition 4.1
we now deduce the following.

Proof of Proposition 6.1. In terms of the operator T, problem (4.5) takes
the form A(¢) = ¢, where A(¢p) := —T(R + N(¢)). After [20, 23, 24, 25, 28], a
standard fixed point argument can be used to obtain that A is a contraction mapping
of F, into itself, where

F, = {qs € CS): llglloo < v[(ﬂ logd| Y 1V log(p; o yz (O] +52—"|log5|2] }
Jj=1

Therefore it has a unique fixed point ¢ € F,,.
By the Implicit Function Theorem it follows that the map

(,uo 5) — (¢(IU s é)a C()i(lu D é)a cij(lu s é))

is (at least) twice-differentiable in x and once-differentiable in £. Differentiating
¢p=—TR+N@@)wrt. f=&,1=1,...,m,or f=u, we get that

Opp = —0T(R+ N(p)) — T(OgR + 0gN(¢)).
By Lemma 3.2 and (4.4) we have that

log 5|2
105T(R+ N(@P) oo < CI Oi | (IRl + IN(D)I+)

= 0(110gd 3 IV log(s; 035 ) + 6 og oF ),
=1

forl=1,...,m,in view of ||05W|ls < g and

18, T(R+N(@)lleo < Cllog (IRl + IN()II.)

= 0(5| log 6> Y _ [V log(p; o yz")(0)| + 6> log 5|3),
j=1
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in view of [0, Wl < C. So, differentiating dsN;(¢) as in [23, Appendix A] with
Ni(¢) in (3.10), we find that

(8.1) 185N (@)l < CLIEW lloo I BlI% + 1P ll ool Dppll o]

and

lezN@)Il. = 0(5| log 61> > IV 1og(p; o yz " )O)* +6° | log 5|“)

=1
0( II5§I¢IIOO)
|logd| /’
6. N@)l. = 0(52| log o> > [V 1og(p; o yz)O)* + 5| log 5|“)
=1
10,1l
+ .
O( | log d| )
Since
- 8uzdpi(&)
evetidn = [ xS,
/SX’ 7 Je BV (2 pi&) + 1y
ifeitherk=1forj=1,..., mork=2forj=m; +1,...,m, we have that

—o U 1=yl
- o %ol = p (F: 2y = 2
ag,(/s;(,e e dvg) 80z log p;i(<&) /]Rz 1+ 2y + 0(6%) = O(5°)

and similarly,

16 u1x0% pi(&; 2 _ 282 (&
a#k<AXj€_¢jewdvg> = ‘/RZ 2(IyD Hi (5?5;;(]'(}2})4- |/;|k2)3pj(é:j))dy: 0(52)

Since ¢j(&) = 0 and Vg;() = 0, we have that e™% = 1 + O(|y5j(x)|2) and
op(xje” " (x)) = O(]yg(x)|), and then
nj l m
AW ==> xeios Ui+ Y ye"0,U;+0(8'™),
j=1 Tj=m1+l
in view of [0;U;| = O(}),l1=1,...,mand
m 1 m
Ao W == yieY0,Ui+ > xe%0,U;+ 05,
T
j=1 j=my+1

in view of |3, U;| = O(1), where the big O is estimated in || - ||,-norm. Note that
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in B, (&)
05U + O(8?| log 9] + |y, (0)| + |V log(p; o yzH(O)D),
forje{l,...,m},
6§1Wz 1 5 _1
— . [05U; + 06| log 3] + |y, ()| + [V log(p; o yz )(O)D],
forje {m +1,...,m},
and
B = 0 Uj— 1 +O(| logd]), forje {1,...,my},
—6,,U; — ,i +0(?|logd|)], forje{mi+1,...,m}.

Furthermore, 05W = O(1) and 0, W = 0(*|logd]) in S\ U]”;1 B, (). From
computations in the proof of Lemma 3.1 we find that

/11V1€W
fS Vlewdvg

my

Al Z
= X]
(82) 871,'1711 =
V(pj o yz"H(0) . .
% [1 < pi(E) °yfj(x)>+0(|y:j(x)| +0 Ilogél)}e
+ 0(52)XS\U7;11 B,y (&)’
and

AotVae™ ™
Js Vae=Wdo,
It &
83 S ,%:HX’
y [1 <V(pjoy¢jl)(0)
Pi(&)
+ 0(52))(S\U_;';ml+1 B,y (&)

Y5(0) + Olyg I + 8% log o) ¥

By (5.15), (5.22), (5.23), (5.25), (5.26), (8.2) and (8.3) we deduce for dgzR the
estimate

1 < _ _
05RI+ 110, R1. = O 3 1V log(p; 0300+~ Hogal ).

=
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Combining all the estimates, we then get that

16z #llc0 = 0(| log > > IV log(p; o yz")(0)] +6' | log 5|3) +0([1056ll0)
j=1

and
10BNl oo = 0(5| log 8>y |V log(pj 0y )O)] + 8| log 5|3> + 0(1 0 bl o0)-
Jj=1

which in turn provides the validity of (4.7). We proceed in the same way to obtain

the estimate (4.7) on 0,,,.¢, and the proof is complete. (]

Hiltj
Lemma 4.1 is rather standard and we will omit its proof. Since the problem has
been reduced to finding c.p.’s of the reduced energy

Ell,/lz(/ua 6) = J/ll,lz(W + ¢(/ua é:))a

where J;, ;, is given by (1.4), the last key step is to show that the main asymptotic
term of E;, ;, is given by J;, ;,(W).

Proof of Theorem 4.1. We argue in the same way as in the proof of [23,
Theorem 4.4]. For simplicity we write J instead of J;, ;,. Thus, we get that

JW + @) — J(W)
1,1
= —; /[R¢ - N(¢)¢]dl)g + // [D2J(W+ tS¢) _ DZJ(W)][¢’ ¢] tdsd[,
S 0Jo
so that it is straighforward to deduce that

(W + @) —J(W)| = OUIRI|. | Blloo + 1P 113)
= 0(0°[10g 8| [V, (O)I* +6° 7| log 61%)

in view of (4.6),
4V (&) = Viog(pjoyz ' )0) forj=1,...,m

and
AmTVepn (&) = Viog(p; o yz)(O0) forj=mi+1,....m.

Now, differentiating w.r.t. =&, 0=1,...,m,or f = u, k=1,2 we get that

10plJ(W + ) — J(W)]]
= 0| 0pR 1Pl oo + I1RI| 10 lloo + 2112610500 + I1BI12 1105 W ll o)
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by using (8.1), so that,

|10g5|)

03 1J(W + $) = JW)]| = O(15°] 1og 3| [V, (I + 5* " logo’] |

and |0, [J(W+¢) —J(W)]| = O([6*| log 8] |V ¢ (E)* +57 7] log 5|*]| log 8]) in view
of (4.6)—-(4.7), |05 Wlleo = O(;) and [0, Wlle = O(1). Arguing similarly for the
second derivative in u, we get that

10 [TW + @) = JW)]| = O log 6] [V, (D) + 6| log ]| Tog 61%).

Combining the previous estimates on the difference J(W + ¢) — J(W) with the
expansion of J(W) = J;, ,,(W) contained in Theorem 5.1, we deduce the validity

of the expansion (4.8) with an error term which can be estimated (in C*>(R?) and

Cl(2)) like 0(6%) + ri.2,(1, &) as 0 — 0, where ry, 5, (u, &) does satisfy (4.9). O
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