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Abstract. We study the heat kernel of the supercritical fractional diffusion
equation with the drift in the critical Hölder space. We show that such a drift can
have point irregularities strong enough to make the heat kernel vanish at a point
for all t > 0.

1 Introduction and main result

1. The present paper concerns the fractional diffusion equation

(1) ∂tu + (−�)
α
2 u − f · ∇u = 0, f : Rd → R

d, d ≥ 3

in the critical (α = 1) and the supercritical regimes (0 < α < 1). The terminology
“critical” and “supercritical” refers to the fact that when α = 1 the drift term f · ∇
is of the same weight as the diffusion term (−�)

α
2 , while if α < 1 then, formally,

f · ∇ dominates (−�)
α
2 , so the standard perturbation-theoretic techniques are not

applicable.

This equation continues to attract interest, motivated, in particular, by applica-
tions in hydrodynamics. In the supercritical regime, it was studied by Constantin–
Wu [6] who established Hölder continuity of solution u assuming that the vector
field f is in C0,1−α and div f = 0. Later the Hölder continuity of solution without
the divergence-free assumption on the drift was established by Silvestre [23]. The
Hölder continuity exponent 1−α arises in both papers from the scaling arguments
(in a variant of the De Giorgi method and a comparison principle, respectively).
Maekawa–Miura [17] considered (1), in particular in the supercritical regime,
and established an upper bound on the heat kernel when f ∈ C0,1−α, div f = 0.
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Zhao [25] established weak well-posedness for the SDE associated with (1) as-
suming that ‖f‖C0,1−α is sufficiently small. Regarding the two-sided heat kernel
bound for (1), see Menozzi–Zhang [18] where such bounds were established in
the “sub”-supercritical case |f| ∈ C0,γ, γ > 1 − α; see also [15, 24, 26] and refer-
ences therein. ([17, 18] allow time-dependent coefficients that can grow at infinity,
[15, 18, 24, 25, 26] deal with the more general than (−�)

α
2 diffusion term.)

Below we show that the class C0,1−α contains vector fields that have point
irregularities strong enough to make the heat kernel of (1) vanish (in the y variable,
for all t > 0). More precisely, we consider as the drift f a bounded, infinitely
differentiable outside of the origin vector field b : Rd → R

d such that

(2) b(x) = κ|x|−αx in {|x| < 1}

where κ > 0. The vector field b is, in a sense, a prototypical representative of
the class C0,1−α. We establish a vanishing upper bound on the heat kernel; see
Theorem 1.

In order to keep the paper short, we will be assuming that on {|x| ≥ 1}
the derivatives of the vector field b are uniformly bounded, and |div b| is less
than C|x|−α for some constant C > 0 (e.g., b can have compact support). The
method of the paper can handle b(x) = κ|x|−αx, x ∈ R

d.

The critical regime α = 1, with f in BMO and divergence-free, was studied by
Caffarelli–Vasseur [4] and, later, by Kiselev–Nazarov [14]. The critical regime
without the divergence-free condition but assuming that |f| ∈ L∞ was considered
by Silvestre [23]. Our result includes α = 1 as well.

Set

γ(s) :=
2sπ

d
2�( s

2)

�( d
2 − s

2 )
.

Theorem 1. Let d ≥ 3, 0 < α ≤ 1. Let b be defined by (2) with κ > 0. Then

the heat kernel of the operator 	 = (−�)
α
2 − b · ∇, constructed in Proposition 1

below, determines a C0 semigroup in Lr = Lr(Rd) for all r ∈ [1,∞[, and satisfies
for all 0 < t ≤ 1, x, y ∈ R

d

(3) 0 ≤ e−t	(x, y) ≤ Ct−
d
α [1 ∧ t−

β
α |y|β]

(possibly after a modification on a measure zero set in R
d × R

d), where the order
of vanishing β ∈]0, α[ is determined from the equation

(4) β
d + β− 2
d + β− α

γ(d + β− 2)
γ(d + β− α)

= κ (see Figure 1).
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Figure 1. The graph of β as a function of the coefficient κ for d = 3 and α = 1
2 .

The equation (4) is the condition that |x|β is the Lyapunov function of the formal
(adjoint) operator	∗ = (−�)

α
2 + ∇ · κ|x|−αx, i.e., [(−�)

α
2 + ∇ · κ|x|−αx]|x|β = 0.

Theorem 1 is proved by considering operator 	r in the weighted space
L1(Rd, ψdx), with appropriate vanishing weight ψ(x) ≈ (1 ∧ |x|)β, where the
operator is “desingularized”, and the semigroup e−t	r is L1(Rd, ψdx) → L∞

ultracontractive. The desingularization procedure was introduced by Milman–
Semënov to establish two-sided heat kernel bounds for the Schrödinger opera-
tor −� + κ|x|−2 [19, 20, 21]. The non-symmetric, non-local desingularization
for 	 = (−�)

α
2 − κ|x|−αx · ∇ in the subcritical case 1 < α < 2 was developed in

Kinzebulatov–Semënov–Szczypkowski [13] (κ < 0) and Kinzebulatov–Semënov
[10] (κ > 0). (Regarding similar weighted heat kernel bounds in the non-local
symmetric case (−�)

α
2 + κ|x|−α, see [2, 5, 8].) The desingularization procedure

also works in the critical α = 1 and the supercritical α < 1 regimes, as we show
in this paper. This is rather notable, since, generally speaking, α ≤ 1 is known to
present its own set of difficulties compared to 1 < α < 2. See Remark 1 below for
comments regarding the difference between the cases 0 < α ≤ 1 and 1 < α < 2
in the context of the present paper.

It should be noted that in [10] (1 < α < 2) the authors proved, using
perturbation-theoretic arguments, the following two-sided heat kernel bound:

(5) e−t	(x, y) ≈ e−t(−�)
α
2 (x, y)[1 ∧ t−

1
α |y|]β
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for β ∈]0, α[ determined by (4). The bound (3) describes the behaviour of the
heat kernel around the singularity of the drift, but it leaves open the question of
the two-sided bound for (1) with f := b in the critical and the supercritical regimes.
We plan to address it in the future.

The case of b with κ < 0, which corresponds to the attracting drift, can be
treated by modifying the argument in [13]:

e−t	(x, y) ≤ Ct−
d
α [1 ∧ t−

β
α |y|β] for β ∈ ] − d + α, 0] such that 	∗|x|β = 0.

We will not be proving this bound here (in fact, to make this result complete one
has to prove the lower bound). Let us only mention that the construction of the heat
kernel requires an energy inequality in some Lr, r ≥ 2 (see [13]), which imposes
a constraint from below on the admissible values of κ < 0 (cf. [25]). Namely,
multiplying the equation by u|u|r−2 and integrating, we have

2
r
∂t〈|u|r〉 − λ〈|u|r〉 + Re〈(−�)

α
2 u, u|u|r−2〉 − |κ|d − α

r
〈|x|−α, |u|r〉 ≤ 0,

for some λ > 0.

Now, applying the fractional Hardy inequality

Re〈(−�)
α
2 u, u|u|r−2〉 ≥ cd,α,r〈|x|−α, |u|r〉

with the sharp constant cd,α,r (see [3]), we arrive at the condition |κ| d−α
r < cd,α,r,

which yields a constraint on κ < 0 frombelow. In fact, in the local caseα = 2, some
aspects of the regularity theory of the corresponding parabolic equation depend
on this constraint; see [11]. We note that, for α < 2, for every κ < 0 there exists
a β ∈] − d, 0[ such that 	∗|x|β = 0. (In principle, this opens up a possibility to
verify accretivity of 	 in the weighed space L1(Rd, ψdx), ψ(x) ≈ (1 ∧ |x|)β, for
any κ < 0, and hence to construct a C0 semigroup there. We plan to address this
matter in detail elsewhere.)

It is interesting to note that in the subcritical regime 1 < α < 2 there is a
greater variety of classes of admissible drifts having critical-order singularities.
In particular, Bogdan–Jakubowski [1] established two-sided heat kernel bounds
for (1) with f in the Kato class. Regarding the case div f = 0, see Jakubowski
[7], Maekawa–Miura [17] who considered f in the Campanato–Morrey class. The
(unique) weak solvability and the Feller property for the corresponding SDE with
drift f in an even larger class of weakly form-bounded vector fields were proved in
Kinzebulatov–Madou [9].
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2. Let us describe the construction of the heat kernel in Theorem 1. Put
|x|ε :=

√|x|2 + ε. Let us fix smooth vector fields b ∈ Cb(Rd)∩C∞(Rd), ε > 0 such
that

bε(x) :=

⎧⎨
⎩

b(x), |x| > 2,

κ|x|−αε x, |x| < 1.

In {1 ≤ |x| ≤ 2}, we require uniform convergence

bε → b, ∇xibε → ∇xib, ∇2
xixj

bε → ∇2
xixj

b

and |∇xibε| ≤ σ1 (i = 1, . . . , d), |div bε| ≤ σ2 on {|x| ≥ 1} with constants σ1, σ2

independent of ε.

For r ∈ [1,∞[ put

(6) 	ε
r := −ε� + (−�)

α
2 − bε · ∇, D(	ε

r) = W2,r (Bessel space),

the generator of a positivity preserving L∞ contraction quasi contraction holomor-
phic semigroup (e.g., by the Hille Perturbation Theorem, cf. [10, Sect. 8]).

Proposition 1. Let d ≥ 3, 0 < α ≤ 1. Let b be defined by (2) with κ > 0. For
every r ∈ [1,∞[, the limit

s-Lr- lim
ε↓0

e−t	εr (loc. uniformly in t ∈ [0,∞[)

exists and determines a L∞ contraction positivity preserving quasi-contraction

semigroup on Lr, say, e−t	r . Its generator	r is an appropriate operator realization
of the formal operator (−�)

α
2 − b · ∇ in Lr.

The Sobolev embedding property and the ultracontractivity property hold:

〈	2u, u〉 ≥ cS‖u‖2
2d

d−α
, u ∈ D(	2),

‖e−t	r‖r→q ≤ cNeωrtt−
d
α ( 1

r − 1
q ), t ∈ [0,∞[, 1 ≤ r < q ≤ ∞,

where cS, cN are generic constants.

e−t	r is a semigroup of integral operators.

By construction, the integral kernel e−t	(x, y) of e−t	r does not depend on r.
It is defined to be the heat kernel of (−�)

α
2 − b · ∇. One can easily see that

u(t) := e−t	2 f with f ∈ L2 is a weak solution to (1).
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Notations. We write

〈u, v〉 = 〈uv̄〉 :=
∫
Rd

uv̄dx.

The fractional Laplacian (−�)
α
2 is defined in Lr, r ∈ [1,∞[ or Cu (bounded

uniformly continuous functions with the sup-norm) in the sense of Balakrishnan.
(Here −� is defined in Lr or Cu as the generator of the heat semigroup in these
spaces.)

We denote by B(X,Y) the space of bounded linear operators between Banach
spaces X → Y , endowed with the operator norm ‖ · ‖X→Y . Set B(X) := B(X,X).

We write T = s-X- limn Tn for T , Tn ∈ B(X) if Tf = limn Tnf in X for every
f ∈ X. We also write Tn

s→ T if X = L2.

Denote ‖ · ‖p→q := ‖ · ‖Lp→Lq .

We say that a constant is generic if it only depends on d, κ, α, σ1, σ2.

2 Proof of Proposition 1

The proof is essentially contained in the next three claims.

Claim 1. For every r ∈ [1,∞[ and all ε > 0,

‖e−t	εr‖r→r ≤ eωrt.

There exists constant cN independent of ε such that, for all 1 ≤ r < q ≤ ∞,

‖e−t	εr‖r→q ≤ cNeωrtt−
d
α ( 1

r − 1
q ), t > 0.

There exists constant cS independent of ε such that

〈	ε
2u, u〉 ≥ cS‖u‖2

2d
d−α
, u ∈ D(	ε

2) = W2,2.

Although the proof of Claim 1 is standard, we included it in Appendix A for
the sake of completeness.

To prove that s-Lr- limε↓0 e−t	εr exists and determines a C0 semigroup, we will
show that {e−t	εnr f } is a Cauchy sequence in L∞([0, 1],Lr), for any f ∈ C∞

c and
any {εn} ↓ 0. For that, we will need a uniform bound on the L2 norm of the
gradient of uε(t) := e−t	ε f .

Claim 2. There exists a constant ω3 independent of ε such that

‖∇uε(t)‖2 ≤ etω3‖∇f‖2, t ≥ 0.
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Proof of Claim 2. Denote u ≡ uε, w := ∇u, wi := ∇iu. Since f ∈ C∞
c

and ∇n
i b

i
ε ∈ C∞ (n = 0, 1) are bounded and continuous, we can differentiate the

equation ∂tu +	εu = 0 in xi, obtaining

∂twi − ε�wi + (−�)
α
2wi − bε · ∇wi − (∇ibε) ·w = 0.

Multiplying the latter by w̄i, integrating by parts and summing up in i = 1, . . . , d,
we obtain

1
2
∂t‖w‖2

2 + ε
d∑

i=1

‖∇wi‖2
2+

d∑
i=1

‖(−�)
α
4wi‖2

2

− Re
d∑

i=1

〈bε · ∇wi, wi〉 − Re
d∑

i=1

〈(∇ibε) ·w,wi〉 = 0.

Here, using the integration by parts, we obtain

(7)
−Re〈bε · ∇wi, wi〉 =

1
2
〈(div bε)wi, wi〉

≥ κ

2
〈1|x|<1(d|x|−αε − α|x|−α−2

ε |x|2)wi, wi〉 − σ2

2
〈wi, wi〉.

Also,

−〈(∇ibε) ·w,wi〉
≥ −κ〈1|x|<1|x|−αε wi, wi〉 + κα〈1|x|<1|x|−α−2

ε xiw̄i(x ·w)〉 − σ1〈1|x|≥1|w|2〉,
and so

−Re
d∑

i=1

〈(∇ibε) ·w,wi〉 ≥ −κ〈1|x|<1|x|−αε |w|2〉 − σ1d〈|w|2〉.

Thus,

1
2
∂t‖w‖2

2 + ε
d∑

i=1

‖∇wi‖2
2 +

d∑
i=1

‖(−�)
α
4wi‖2

2

+ κ
d − α− 2

2
〈1|x|<1|x|−αε |w|2〉 +

καε

2
〈1|x|<1|x|−α−2

ε |w|2〉 −
(
σ1d +

σ2

2

)
‖w‖2

2 ≤ 0,

and so, since κ > 0,

(8)
1
2
∂t‖w‖2

2 + κ
d − α− 2

2
〈1|x|<1|x|−αε |w|2〉 ≤

(
σ1d +

σ2

2

)
‖w‖2

2.

Since d ≥ 3, α ≤ 1, we have d − α− 2 ≥ 0. Thus, integrating in t, we obtain

‖w(t)‖2
2 ≤ etω3‖∇f‖2

2, t ≥ 0, ω3 := σ1d +
σ2

2
. �
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Next, set un := uεn , bn := bεn , where εn ↓ 0, and put

g(t) := un(t) − um(t), t ≥ 0.

Claim 3. ‖g(t)‖2 → 0 uniformly in t ∈ [0, 1] as n,m → ∞.

Proof of Claim 3. We subtract the equations for un and um and obtain

∂tg − εn�g − (εn − εm)�um + (−�)
α
2 g − bn · ∇g − (bn − bm) · ∇um = 0,

so, after multiplying by g and integrating, we have

(9)

1
2
∂t‖g‖2

2 + εn‖∇g‖2
2 + (εn − εm)〈∇um,∇g〉

+ ‖(−�)
α
4 g‖2

2 − Re〈bn · ∇g, g〉− Re〈(bn − bm) · ∇um, g〉 = 0.

Concerning the last two terms, we have (uniformly in t ∈ [0, 1])

−Re〈bn · ∇g, g〉 ≥ −σ2

2
‖g‖2

2

(arguing as in the proof of Claim 2), and

|〈(bn − bm) · ∇um, g〉|
= |〈1|x|<2(bn − bm) · ∇um, g〉|

(we use ‖g‖∞ ≤ 2‖f‖∞)

≤ ‖1|x|<2(bn − bm)‖2‖∇um‖22‖f‖∞
(we are using Claim 2)

≤ 2eω3‖1|x|<2(bn − bm)‖2‖∇f‖2‖f‖∞ → 0 as n,m → ∞.

Using again Claim 2, we have

|(εn − εm)〈∇um,∇g〉| ≤ |εn − εm|‖∇um‖2‖∇g‖2 → 0 as n,m → ∞.

Thus, integrating (9) in t and using the last three observations, we have for all
0 < τ ≤ 1

sup
t∈[0,τ]

‖g(t)‖2
2 − σ2

∫ τ

0
‖g(s)‖2

2ds ≤ o(ε),

where o(ε) → 0 as ε ↓ 0. It follows that

(1 − σ2τ) sup
t∈[0,τ]

‖g(t)‖2
2 ≤ o(ε),

where τ > 0 is fixed so that σ2τ < 1. This yields the required convergence on [0, τ].
Now, the latter and the reproduction property of the approximating semigroups end
the proof of Claim 3. �
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We can now end the proof of Proposition 1. By Claim 3, {e−t	εn f }∞n=1, f ∈ C∞
c

is a Cauchy sequence in L∞([0, 1],L2). Set

Tt
2f := s-L2- lim

n
e−t	εn f uniformly in 0 ≤ t ≤ 1.

(Clearly, the limit does not depend on the choice of {εn} ↓ 0.) Extending Tt
2 by

continuity to L2, and then to all t > 0 by postulating the reproduction property, we
obtain a C0 semigroup on L2. Put e−t	2 := Tt

2, t ≥ 0. Now Claim 1 and the standard
density argument yield convergence in all Lr, 1 ≤ r < ∞. The ultracontractivity
property follows. The fact that the resulting semigroups are integral operators is an
immediate consequence of the ultracontractivity and the Dunford–Pettis Theorem.

Let us prove the Sobolev embedding property. By Claim 1 (	ε ≡ 	ε
2),

Re〈	ε(1 +	ε)−1g, (1 +	ε)−1g〉 ≥ cS‖(1 +	ε)−1g‖2
2d

d−α
, g ∈ L2, cS �= cS(ε),

i.e.,
Re〈g − (1 +	ε)−1g, (1 +	ε)−1g〉 ≥ cS‖(1 +	ε)−1g‖2

2d
d−α
.

Using the convergence (1 +	ε)−1 s→ (1 +	)−1 in L2 as ε ↓ 0, we obtain

Re〈	(1 +	)−1g, (1 +	)−1g〉 ≥ cS‖(1 +	)−1g‖2
2d

d−α
for all g ∈ L2,

and so the Sobolev embedding follows.
Finally, we note that e−t	2 is positivity preserving (so the heat kernel e−t	(x, y)

is non-negative) since the approximating semigroups e−t	ε are (see, if needed,
Appendix B).

3 Proof of Theorem 1

3.1 Desingularization theorem. We first state an abstract desingular-
ization theorem from [10]. We will apply it in the next section to the operator

(−�)
α
2 − b · ∇.

Let X be a locally compact topological space, and μ a σ-finite Borel measure
on X. Set Lp = Lp(X, μ), p ∈ [1,∞], a (complex) Banach space. Let

‖ · ‖p→q := ‖ · ‖Lp→Lq .

Let −	 be the generator of a contraction C0 semigroup e−t	, t > 0, in L2.
Assume that, for some constants M ≥ 1, cS > 0, j > 1, c > 0,

‖e−t	f‖1 ≤ M‖f‖1, t ≥ 0, f ∈ L1 ∩ L2;(B11)

Sobolev embedding property: Re〈	u, u〉 ≥ cS‖u‖2
2j, u ∈ D(	);(B12)

‖e−t	‖2→∞ ≤ ct−
j′
2 , t > 0, j′ =

j
j − 1

.(B13)
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Assume also that there exists a family of real-valued weights ψ = {ψs}s>0 on X

such that, for all s > 0,

(B21) 0 ≤ ψs, ψ
−1
s ∈ L1

loc(X − N, μ), where N is a closed null set,

and there exist constants θ ∈]0, 1[, θ �= θ(s), ci �= ci(s) (i = 2, 3) and a measurable
set �s ⊂ X such that

ψs(x)
−θ ≤ c2 for all x ∈ X −�s,(B22)

‖ψ−θ
s ‖Lq′ (�s) ≤ c3s

j′/q′
, where q′ =

2
1 − θ

.(B23)

Theorem 2 ([10, Theorem 1]). In addition to (B11)–(B23) assume that there
exists a constant c1 �= c1(s) such that, for any s > 0 and all s

2 ≤ t ≤ s,

(B3) ‖ψse
−t	ψ−1

s f‖1 ≤ c1‖f‖1, f ∈ L1.

Then there is a constant C such that, for all t > 0 and μ a.e. x, y ∈ X,

|e−t	(x, y)| ≤ Ct−j′ψt(y).

Theorem 2 is a weighted Nash initial estimate [22].

3.2 Proof of Theorem 1. Define weights ψt ∈ C2(Rd − {0}) ∩ Cb(Rd) by

ψt(y) = η(t−
1
α |y|), y ∈ R

d,

where

η(τ) =

⎧⎪⎪⎨
⎪⎪⎩

τβ, 0 < τ < 1,

βτ(2 − τ
2 ) + 1 − 3

2β, 1 ≤ τ < 2,

1 + β
2 , τ ≥ 2

(the constant β is determined from the equation (4)).
Theorem 1 will follow from Theorem 2 applied to the semigroup e−t	 ≡ e−t	2 ,

	2 ⊃ (−�)
α
2 −b ·∇, which was constructed in Proposition 1. Thus, we will prove

that for all t ∈ [0, 1], for a.e. x, y ∈ R
d,

e−t	(x, y) ≤ Ct−
d
α ψt(y),

which yields Theorem 1.
In Proposition 1 we proved that e−t	 satisfies conditions (B11), (B12) and (B13)

with j′ = d
α
. The condition (B21) is evident. It is easily seen that (B22), (B23) hold

with

�s = B(0, s
1
α ), θ =

(2 − α)d
(2 − α)d + 8β

.
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It remains to verify (B3). This step presents the main difficulty. We will show
that ψse−t	ψ−1

s is a quasi contraction semigroup in L1, i.e., there exists ĉ > 0 such
that for any s > 0

(10) ‖ψse
−t	ψ−1

s f‖1 ≤ e(ĉs−1+σ2)t‖f‖1, t > 0.

Then, taking s
2 ≤ t ≤ s and t ∈ [0, 1], we obtain (B3).

Intuitively, the generator of ψse−t	ψ−1
s should be ψs	1ψ

−1
s . Thus, it would

suffice to show that λ + ψs	1ψ
−1
s is accretive in L1 for some λ > 0, i.e. formally,

for all admissible f , 〈
(λ + ψs	1ψ

−1
s )f,

f
|f |

〉
≥ 0.

However, a direct calculation is problematic: 	1 is not an algebraic sum of (−�)
α
2
L1

and (b ·∇)L1 , there is no explicit description of the domain D(	1) and, furthermore,
ψ−1

s is unbounded. Instead, we will carry out an approximation argument, replac-
ing	1 by the approximating operators	ε, ε > 0 introduced in Section 1, and then
replacing the weight ψs by its smooth approximations φs,ε bounded away from 0
and so that φ−1

s,ε is bounded. Now, however, if we define φs,ε by applying a standard
(e.g., Friedrichs) mollifier to ψs, the task of evaluating φs,ε	

εφ−1
s,ε f remains quite

non-trivial. We overcome this difficulty by considering a mollifier defined in terms
of 	ε; see (12) below. This choice of the mollification is a key step in the proof.

In addition to the approximating operators 	ε
r , ε > 0 in Lr, r ∈ [1,∞[, we

define in Cu

	ε
Cu

:= −ε� + (−�)
α
2 − bε · ∇, D(	ε

Cu
) = D((−�)Cu).

Similarly to 	ε
r , for every ε > 0 the operator 	ε

Cu
is the generator of a positivity

preserving contraction holomorphic semigroup (cf. [10, Sect. 8]).
We will also need

(	ε)∗r := −ε� + (−�)
α
2 + ∇ · bε, D(	ε

r) = W2,r, r ∈ [1,∞[

(	ε)
∗
Cu

:= −ε� + (−�)
α
2 + ∇ · bε, D(	ε

Cu
) = D((−�)Cu).

These are also generators of positivity preserving L∞ contraction quasi-contraction
holomorphic semigroups. Moreover, there exists a constant cN independent of ε
such that, for all 1 ≤ r < q ≤ ∞,

(11) ‖e−t(	ε)∗r ‖r→q ≤ cNt−
d
α
( 1

r − 1
q ), t > 0.

Indeed, for 1 < r ≤ q < ∞ the ultracontractivity estimate follows from Claim 1
by duality, and for all 1 ≤ r ≤ q ≤ ∞ upon taking limits r ↓ 1, q ↑ ∞.
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In what follows, s is fixed (since s
2 ≤ t ≤ s, we have s ≤ 2). We introduce the

following two-parameter approximation of ψ ≡ ψs:

(12) φn,ε := n−1 + e− (	ε)∗
n ψ (ε > 0, n = 1, 2, . . . ).

In L1, define operators

Q = φn,ε	
ε
1φ

−1
n,ε, D(Q) = φn,εD(	ε)

and strongly continuous semigroups

e−tG := φn,εe
−t	ε1φ−1

n,ε.

Our goal is to show that e−tG satisfies

(13) ‖e−tGf‖1 ≤ e(ĉs−1+σ2+n−1)t‖f‖1, t > 0,

so that we can pass to the limit (first in ε and then in n) to establish (10). The
difficulty is that a priori we have little information about G to conclude (13). On
the other hand, we have detailed information about Q and, moreover, intuitively Q

should coincide with G. We prove this in Steps 1–3 below.
Step 1. Set

M :=φn,ε(1 −�)−1[L1 ∩ Cu].

This is a dense subspace of L1 such that

M ⊂ D(Q), M ⊂ D(G)

and, furthermore,
Q � M ⊂ G.

(Indeed, for f = φn,εu ∈ M,

Gf = s-L1- lim
t↓0

t−1(1 − e−tG)f = φn,εs-L
1- lim

t↓0
t−1(1 − e−t	ε)u = φn,ε	

εu = Qf.)

Thus Q � M is closable and

Q̃ := (Q � M)clos ⊂ G.

A standard argument shows that the range λε + Q̃ is dense in L1 (see [10, Proof of
Prop. 1] for details).

Step 2. There are constants ĉ > 0 and εn > 0 such that, for every n and all
0 < ε ≤ εn, the operator λ + Q̃ is accretive whenever λ ≥ ĉs−1 + σ2 + n−1, i.e.,

(14) Re
〈
(λ + Q̃)f,

f
|f |

〉
≥ 0 for all f ∈ D(Q̃),

where s > 0 is from the definition of the weight φn,ε.
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Proof of (14). We can represent ψ ≡ ψs as

ψ = ψ(1) + ψ(u), where 0 ≤ ψ(1) ∈ D((−�)1), 0 ≤ ψ(u) ∈ D((−�)Cu)

(e.g.ψ(u) := 1 + β
2 so ψ(1) has compact support and coincides with s− β

α |x|β around
the origin). Therefore,

(	ε)∗ψ = (	ε)∗L1ψ(1) + (	ε)∗Cu
ψ(u)

is well defined and belongs to L1 + Cu = {w + v | w ∈ L1, v ∈ Cu}.
By the construction of Q̃, it suffices to prove that

(15) Re
〈
(λ + Q)f,

f
|f |

〉
≥ 0 for all f ∈ M.

In what follows, we use the fact that both e−t	ε , e−t(	ε)∗ are holomorphic in L1

and Cu. We have, for a f = φn,εu, u ∈ (1 −�)−1[L1 ∩ Cu],

〈
Qf,

f
|f |

〉
=
〈
φn,ε	

εu,
f
|f |

〉
= lim

t↓0
t−1

〈
φn,ε(1 − e−t	ε)u,

f
|f |

〉
,

so

Re
〈
Qf,

f
|f |

〉
≥ lim

t↓0
t−1〈(1 − e−t	ε)|u|, φn,ε〉

= lim
t↓0

t−1〈(1 − e−t	ε)|u|, n−1〉 + lim
t↓0

t−1〈(1 − e−t	ε)e−	ε

n |u|, ψ〉

= lim
t↓0

t−1〈|u|, (1 − e−t(	ε)∗ )n−1〉 + lim
t↓0

t−1〈e−	ε

n |u|, (1 − e−t(	ε)∗)ψ〉

= 〈|u|, (	ε)∗n−1〉 + 〈e−	ε

n |u|, (	ε)∗ψ〉 =: J1 + J2.

A simple calculation shows that div bε ≥ −σ2 on R
d (cf. the proof of Claim 2) and

so, since φ−1
n,ε ≤ n,

J1 ≥ −σ2‖f‖1.

We estimate J2 using the next lemma. (It is in its proof that we use the fact that
|x|β is a Lyapunov function of the formal operator (−�)

α
2 + ∇ · κ|x|−αx.)

Lemma 1.

(	ε)∗ψ ≥ −ĉs−1ψ− Vε on R
d,

whereVε = εc01|x|≤41/α |x|−2+β+1|x|<1κ(d+β−α)(|x|−αε −|x|−α)|x|β+c11≤|x|≤2|bε−b|
for generic constants ĉ, c0, c.
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We will show below that the auxiliary potential Vε becomes negligible as ε ↓ 0.
Lemma 1 yields

J2 ≥ −cs−1〈e−	ε

n |u|, ψ〉 − 〈e−	ε

n |u|,Vεψ〉.
Hence, taking into account the estimate on J1,

(∗)

Re
〈
Qf,

f
|f |

〉
≥ −σ2‖f‖1 − ĉs−1〈|u|, e− (	ε)∗

n ψ〉 − 〈e− (	ε)
n |u|,Vε〉

(recall that |u| = φ−1
n,ε|f | and φn,ε = n−1 + e− (	ε)∗

n ψ )

≥ −(cs−1 + σ2)‖f‖1 − 〈|u|, e− (	ε)∗
n (Vε)〉.

By the ultracontractivity of e−t(	ε)∗ , see (11), and the fact that ‖Vε‖1 ↓ 0 as ε ↓ 0,
we have for every n ≥ 1

‖e− (	ε)∗
n Vε‖∞ ≤ cNn

d
α ‖Vε‖1

(we choose εn > 0 such that for all ε ≤ εn ‖Vε‖1 ≤ n−2(cNn
d
α )−1)

≤ n−2.

Thus, since φn,ε ≥ n−1, we have, for every n = 1, 2, . . . and all 0 < ε ≤ εn,

〈|u|, e− (	ε)∗
n (Vεψ)〉 ≤ n−1‖f‖1.

Applying the latter in (∗), we obtain (15) ⇒ (14).
Step 3. Since Q̃ is closed and the range of λ+Q̃ is dense in L1, the accretivitiy of

λ+Q̃ in L1 implies that the range of λε+Q̃ is in fact L1 (see, e.g., [10, Appendix C]).
Hence, by the Lumer–Phillips Theorem, λ + Q̃ is the generator of a contraction
semigroup, and, since Q̃ ⊂ G, we have

Q̃ = G.

As a consequence of Steps 1–3, we obtain: for all ε ≤ εn, n = 1, 2, . . . ,

(�) ‖e−tG‖1→1 ≡ ‖φn,εe
−t	εφ−1

n,ε‖1→1 ≤ e(ĉs−1+σ2+n−1)t.

We pass to the limit in (�) in ε ↓ 0 using Proposition 1, and then take n → ∞. (See
the detailed argument in [10].) This yields (B3) and ends the proof of Theorem 1.�

4 Proof of Lemma 1

Recall ψ ≡ ψs, s ≤ 2. We estimate the right-hand side of

(16) (	ε)∗ψ = −ε�ψ + (−�)
α
2ψ + div (bεψ)

in the next three claims. The first claim is straightforward:
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Claim 4. −ε�ψ ≥ −Pε, where Pε = εc01|x|≤41/α |x|−2+β for a generic con-

stant c0.

To estimate the second term in (16), we introduce

ψ̃(x) := s− β
α |x|β.

Clearly, ψ and ψ̃ coincide in B(0, s
1
α ), however, in contrast to ψ, the Lyapunov

function ψ̃ grows at infinity.

Claim 5. (−�)
α
2ψ ≥ −β(β− 2 + d) γ(d+β−2)

γ(d+β−α) |x|−αψ̃.

Proof. We represent (−�)
α
2 h = −�I2−αh = −I2−α�h, where Iν = (−�)− ν

2 is
the Riesz potential. Then

(−�)
α
2ψ = −I2−α�ψ = −I2−α�ψ̃− I2−α�(ψ− ψ̃)

(all identities are in the sense of distributions). We evaluate the first term in the
right-hand side as

−I2−α�ψ̃ = −s− β
α β(d + β− 2)I2−α|x|β−2

= −s− β
α β(d + β− 2)

γ(d + β− 2)
γ(d + β− α)

|x|β−α

and drop the second term since −�(ψ − ψ̃) ≥ 0 (see [10, Remark 4] for the
calculations). �

Claim 6.
div (bεψ) ≥ div (bψ̃) − ĉs−1ψ− Uε − Wε,

where Uε(x) = 1|x|<1κ(d + β− α)(|x|−αε − |x|−α)|x|β and Wε = c11≤|x|≤2|bε − b| for
constants ĉ and c.

Proof. We represent

div (bεψ) = div (bψ̃) + [div (bεψ) − div (bψ̃)].

It is the difference div (bεψ) − div (bψ̃) that we need to estimate from below in
terms of Uεψ̃ and cs−1ψ. We represent

[div (bεψ) − div (bψ̃)] = h1 + div [(bε − b)ψ],

where h1 := div [b(ψ − ψ̃)] is zero in B(0, s
1
α ), continuous and vanishes at in-

finity. (Indeed, on {|x| ≥ 2}, h1 = κ|x|−αx∇(ψ − ψ̃) + (div b)(ψ − ψ̃), where
|∇(ψ− ψ̃)| ≤ C1|x|β−1, β < α, while |div b| ≤ C|x|−α by our assumption. Hence
h1(x) → 0 as x → ∞.) Moreover, a straightforward calculation shows that

h1 ≥ −ĉs−1ψ.
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In turn, we bound div [(bε − b)ψ] from below as follows:
(1) On {|x| > 2} we have bε = b, so div [(bε − b)ψ] = 0.
(2) On {|x| < 1},

div [(bε − b)ψ]

= (bε − b) · ∇ψ + (div bε − div b)ψ

≥ 1|x|<1κ(|x|−αε − |x|−α)x · ∇|x|β + 1|x|<1κ(d − α)(|x|−αε − |x|−α)|x|β
= 1|x|<1κ(d + β− α)(|x|−αε − |x|−α)|x|β.

(3) On {1 ≤ |x| ≤ 2},
div [(bε − b)ψ] ≥ −c11≤|x|≤2|bε − b|

for generic c.
Thus, everywhere on R

d

div [(bε − b)ψ] ≥ 1|x|<1κ(d + β− α)(|x|−αε − |x|−α)|x|β − c11≤|x|≤2|bε − b|,
as needed. �

Applying Claims 4–6 in (16) and taking into account that, by our choice of β,

−β(β− 2 + d)
γ(d + β− 2)
γ(d + β− α)

|x|−αψ̃ + div (bψ̃) = 0,

we obtain the assertion of the lemma with Vε := Pε + Uε + Wε. �

Remark 1. There is a number of notable differences between the proof of
the bound of type (3) in [10] (case 1 < α < 2) and the present paper (dealing
with 0 < α ≤ 1). Having α ≤ 1 essentially forces us to work with the vanishing
viscosity regularization of	 = (−�)

α
2 − b ·∇ in order to construct the semigroup

(and hence the heat kernel) in Theorem 1; cf. (6). This changes, in comparison
with [10], the proof of the key Lemma 1, i.e., the verification of the accretivity
of the “weighted” 	. In particular, we now have an additional singular “virtual
potential” Pε; see Claim 4. At the same time, surprisingly, having α ≤ 1 simplifies
the construction of the semigroup (irrespective of adding the vanishing viscosity
term −ε� in (6)). Indeed, in [10], in order to construct the semigroup in dimension
d = 3 the authors had to develop some vector inequalities for symmetric Markov
generators. The reason is the sign of the coefficient κ d−α−2

2 in (8) in the proof
of Claim 2: if α > 1, d = 3, then the coefficient is negative, and so the proof of
Claim 2 does not work. Another, more sophisticated method had to be used in [10].
Interestingly, having α ≤ 1, one does not encounter this problem (in any dimension
d ≥ 3). We do not have an intuitive explanation for this phenomenon yet.
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The proofs in [10] and in the present paper are different realizations of the same
method that, as it turns out, is quite flexible and, we believe, can be applied to other
operators.

Appendix A Proof of Claim 1

The proof below follows closely, e.g., [10, Proof of Proposition 8] or [12, Proof of
Theorem 4.2].

Fix ε > 0 and put

u(t) := e−t	εf, f ∈ C∞
c ,

where 	ε = −ε� + A − b · ∇, A := (−�)
α
2 . First, let 1 < r < ∞. Multiplying

the equation ∂tu +	ε
ru = 0 by ū|u|r−2 and integrating in the spatial variables, we

obtain

(17)
1
r
∂t‖u‖r

r + ε
4
rr′ ‖∇(u|u| r

2 −1)‖2
2 + Re〈Au, u|u|r−2〉− Re〈bε · ∇u, u|u|r−2〉 = 0.

Since −A is a Markov generator, we have using [16, Theorem 2.1]

Re〈Au, u|u|r−2〉 ≥ 4
rr′ ‖A

1
2 u

r
2 ‖2

2, u
r
2 := u|u| r

2 −1.

Next, the integration by parts yields

−Re〈bε · ∇u, u|u|r−2〉 =
1
r
〈div bε, |u|r〉,

where on {|x| < 1} we have

div bε = κ(d|x|−αε − α|x|−α−2
ε |x|2) ≥ κ(d − α)|x|−αε > 0,

and on {|x| ≥ 1}, |div bε| ≤ σ2 by our assumption. Therefore,

−Re〈bε · ∇u, u|u|r−2〉 ≥ −σ2

r
〈|u|r〉.

Thus, we obtain from (17)

(18) −∂t‖u‖r
r ≥ 4

r′ ‖A
1
2 u

r
2 ‖2

2 − σ2‖u‖r
r.

From (18) we obtain ‖u(t)‖r ≤ etωr‖f‖r for appropriateωr > 0. Hence taking r ↓ 1
and r ↑ ∞, we obtain the first assertion of Claim 1, i.e., the quasi-contractivitiy of
e−t	εr in Lr, r ∈ [1,∞[ and its L∞ contractivity.
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Let us prove the ultracontractivity of e−t	εr . By (18),

−∂t‖u‖2r
2r ≥ 4

(2r)′
‖A

1
2 ur‖2

2 − σ2‖u‖2r
2r, 1 ≤ r < ∞.

Using the Nash inequality ‖A
1
2 h‖2

2 ≥ CN‖h‖2+ 2α
d

2 ‖h‖− 2α
d

1 and ‖u(t)‖r ≤ eωrt‖f‖r,
integrating the previous inequality (see details, e.g., in [10, Proposition 8], [12,
Theorem 4.2]), we obtain

‖e−t	εr‖r→2r ≤ c3e
ωrtt−

d
α ( 1

r − 1
2r ), t > 0.

Now, using either the reproduction property or the Coulhon–Raynaud extrapolation
(see, e.g., [12, Theorem F.1]), we obtain the required ultracontractivity bound.

The previous argument yields: for u ∈ D(	ε
2) = W2,2, Re〈	ε

2u, u〉 ≥ ‖A
1
2 u‖2

2,
so the fractional Sobolev Embedding Theorem now yields the required Sobolev
embedding property. �

Appendix B e−t	ε preserve positivity

The fact that semigroups e−t	ε preserve positivity follows, e.g., from the Phillips
criterion. Namely, e−t	ε is a quasi contraction in L2, so it is positivity preserving
if and only if it maps ReL2 to ReL2 (real-valued functions in L2), and

〈	εu, u+〉 ≥ −c〈|u+|2〉, u ∈ W2,2 ∩ ReL2,

where u+ := u∨0, for some fixed c ≥ 0. Recalling that	ε
2 := −ε�+(−�)

α
2 −bε ·∇,

we have 〈(−�)u, u+〉 ≥ 0, 〈(−�)
α
2 u, u+〉 ≥ 0 (indeed, the semigroups generated by

−�, (−�)
α
2 in L2 are positivity preserving, so the Phillips criterion itself, applied

in the other direction, yields the result). Also, repeating calculation (7), we have

〈−bε · ∇u, u+〉 ≥ κ

2
〈1|x|<1(d|x|−αε − α|x|−α−2

ε |x|2)u+, u+〉 − σ2

2
〈u2

+〉 ≥ −σ2

2
〈u2

+〉,

so we can take c = σ2
2 .
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