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Abstract. We use recent results about linking the number of zeros on al-
gebraic varieties over C, defined by polynomials with integer coefficients, and
on their reductions modulo sufficiently large primes to study congruences with
products and reciprocals of linear forms. This allows us to make some progress
towards a question of B. Murphy, G. Petridis, O. Roche-Newton, M. Rudnev and
I. D. Shkredov (2019) on an extreme case of the Erdős–Szemerédi conjecture in
finite fields.

1 Introduction

1.1 Description of our results In this paper we give a new application
of a recent result due to D’Andrea, Ostafe, Shparlinski and Sombra [7, Theo-
rem 2.1], which establishes an effective link between the number of points on
zero-dimensional varieties considered over C and also considered in the field Fp;
see Lemma 3.1 below.

In particular, we give sharp upper bounds on the number of solutions to some
multiplicative and additive congruences modulo primes with variables from sets
with small doubling; see Section 2.1.

These results complement those of Grosu [10], who has previously applied a
similar principle which allows one to study arithmetic in subsets of a finite field by
lifting to zero characteristic. The results of Grosu [10] restrict one to consider sets
A ⊆ Fp of triple logarithmic size; see (2.5) below. Our results (see Section 2.1)
extend the cardinality of the sets considered in some applications (see [10, Sec-
tion 4]) to the range |A| � pδ for some fixed δ > 0 which is given explicitly and
depends only on the size of |A + A|. We also obtain sharper quantitative bounds
for δ which hold for almost all primes (in the sense of relative asymptotic density).
For example, we prove that if such a set has small doubling, then its product set is
of almost largest possible size, see Theorem 2.2 below. This provides some partial
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progress towards a question raised by Murphy, Petridis, Roche-Newton, Rudnev
and Shkredov [15, Question 2] which has also been considered by Shkredov [16,
Corollary 2] in a different context and can be considered a mod p variant of a few
sums, many products estimate due to Elekes and Ruzsa [8]; see Section 2.2 for
more details.

We note that some arithmetic applications of [7, Theorem 2.1] have already
been given in [4, 7] (to periods of orbits of some dynamical systems) as well as [17]
(to torsions of some points on elliptic curves).

1.2 General notation. Throughout this work N = {1, 2, . . .} is the set of
positive integers.

For a field K, we use K to denote the algebraic closure of K.

For a prime p, we use Fp to denote the finite field of p elements and F∗
p the

multiplicative subgroup of Fp.

We freely switch between equations in Fp and congruences modulo p.

The letters k, �, m and n (with or without subscripts) are always used to denote
positive integers; the letter p (with or without subscripts) is always used to denote
a prime.

As usual, for given quantities U and V , the notations U � V , V � U and
U = O(V) are all equivalent to the statement that the inequality |U| � cV holds
with some constant c > 0, which may depend on the integer parameter d.

Furthermore V = Uo(1) means that log |V|/ log U → 0 as U → ∞.

We use |S| to denote the cardinality of a finite set S.

For a generic point x ∈ Rd, we write xi for the i-th coordinate of x. For example,
if α,h ∈ Rd then

α = (α1, . . . , αd) and h = (h1, . . . , hd).

Let

〈α,h〉 = α1h1 + · · · + αdhd

denote the Euclidian inner product and ‖h‖ the Euclidean norm of h.

For α ∈ Rd and λ ∈ C we let λα denote scalar multiplication

λα = (λα1, . . . , λαd).

Given a set D ⊆ Rd and λ > 0 we define

λD = {λx : x ∈ D}.



LOCAL-GLOBAL PRINCIPLE AND ADDITIVE COMBINATORICS 111

2 Main results

2.1 Multiplicative equations over sets with small sumsets. Let p be
prime and for subsets A,B ⊆ Fp and λ ∈ Fp we define Ip(A,B, λ) by

(2.1) Ip(A,B, λ) = |{(a, b) ∈ A × B : ab = λ}|,

where the equation ab = λ is in Fp.

A generalised arithmetic progression A (defined in any group) is a set of the
form

A = {α0 + α1h1 + · · · + αdhd : 1 � hi � Ai}.
We define the rank of A to be d and say A is proper if

|A| = A1 · · ·Ad.

It is convenient to define

(2.2) γs =
1

(11s + 15)23s+5
.

Since our bounds depend only on max{A1, . . . ,Ad,B1, . . . ,Be}, without loss
of generality we now assume that

A1 = · · · = Ad = B1 = · · · = Be = H.

We recall that an integer k 
= 0 is called y-smooth if all prime divisors of k do
not exceed y.

Theorem 2.1. Let H, d, e be positive integers with e � d. There exists a

constant bd depending only on d, and an integer Z, which is O(H1/γd+e+1)-smooth
and satisfies

logZ � H(d+e)(d+e+2)2/4 logH,

such that for each prime number p � Z the following holds. For any generalised
arithmetic progressions A,B ⊆ Fp of the form

A = {α0 + α1h1 + · · · + αdhd : 1 � hi � H, i = 1, . . . , d},
B = {β0 + β1j1 + · · · + βeje : 1 � ji � H, i = 1, . . . , e},

and λ ∈ F
∗
p we have

Ip(A,B, λ) � exp(bd logH/ log logH).
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The integer Z in Theorem 2.1 is constructed explicitly in Lemma 4.1 below
and is divisible by all primes p � Hd+e+o(1) (note that o(1) here denotes a negative
quantity). This is established at the end of the proof of Lemma 4.1.

From Theorem 2.1 we may deduce an estimate which holds for all primes
provided our generalised arithmetic progressions are not too large. We also obtain
better results for almost all primes. In particular, using the fact that no primes
p � Z divide a Z-smooth integer, we obtain:

Corollary 2.1. Let notation be as in Theorem 2.1. For any prime p and

integer H satisfying

H � C0(d)pγd+e+1,

for some constant C0(d) depending only on d, we have

Ip(A,B, λ) � exp(bd logH/ log logH).

As a second application, using the fact that any integer Z has at most
O(logZ/ log logZ) prime divisors, we obtain:

Corollary 2.2. Let notation be as in Theorem 2.1. For all but at most
O(H(d+e)3+(d+e)) primes p, we have

Ip(A,B, λ) � exp(bd logH/ log logH).

We note an important feature of Theorem 2.2: the set of primes is independent
of the generalized arithmetic progressions A,B.

Corollaries 2.1 and 2.2 immediately yield an estimate for equationswith Kloost-
erman fractions and squares. Indeed using that over any field and λ 
= 0, if

a−1 + b−1 = λ

then

(a − λ−1)(b − λ−1) = λ−2,

and over any algebraically closed field, if λ 
= 0 and a, b satisfy

a2 + b2 = λ,

then

(a + ia)(a − ib) = λ,

where i is a square root of −1, we obtain the following results.
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Corollary 2.3. With notation and conditions as in either Corollary 2.1 or

Corollary 2.2, the number of solutions to the equations

a−1 + b−1 = λ, a ∈ A, b ∈ B,

and

a2 + b2 = λ, a ∈ A, b ∈ B,

in Fp are bounded by Ho(1).

We remark that our method, with minor changes, can allow us to extend our
results to equations

(2.3) a1 · · · aν = λ, ai ∈ Ai, i = 1, . . . , ν, ai ∈ Ai,

with any ν � 2 and generalised arithmetic progressions A1, . . . ,Aν ⊆ Fp. A
direct application of such techniques gives a poor dependence on the parameter ν.
An interesting problem is to determine the largest real numbers γν,d such that the
number of solutions to (2.3) is bounded by (|A1| · · · |Aν|)o(1) provided A1, . . . ,Aν

are generalized arithmetic progressions of rank at most d satisfying

|Ai| � pγν,d .

2.2 Applications to the Erdős–Szemerédi conjecture in finite fields.
As usual, given a set A ⊆ G with a group operation ∗, we write

A ∗ A = {a ∗ b : a, b ∈ A}.

Clearly for sets in rings we can use ∗ ∈ {+,×}.
Here we also denote

A−1 = {a−1 : a ∈ A}, A2 = {a2 : a ∈ A}.

Combining the above results with some modern results [6, Theorem 4] of
additive combinatorics towards the celebrated theorem of Freiman [9], we, in
particular, verify the Erdős–Szemerédi conjecture for sets with small sumset and
small cardinality. This can be considered an extension of some ideas of Chang [3]
into the setting of prime finite fields.
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Theorem 2.2. For any fixed K � 2 and

δ =
1

(44K + 26)212K+8
,

there exist some constants b0(K) and c0(K), depending only on K, such that for
each prime p, if A ⊆ Fp satisfies

|A + A| � K|A| and |A| � c0(K)pδ

then for any λ ∈ F∗
p the number of solutions to each of the equations

a1a2 = λ, a−1
1 + a−1

2 = λ, a2
1 + a2

2 = λ

with variables a1, a2 ∈ A is exp(b0(K) log |A|/ log log |A|).
An immediate consequence of Theorem 2.2 is an estimate for the cardinality

of sets related to the Erdős–Szemerédi conjecture. Indeed, using Theorem 2.2 one
has that

|A|2 =
∑

λ∈AA

Ip(A,A, λ) � 2|A| +
∑

λ∈AA
λ
≡0 mod p

Ip(A,A, λ) � |AA||A|o(1).

A similar argument also works for the sets A−1 +A−1 and we obtain the following
result.

Corollary 2.4. With notation and conditions as in Theorem 2.2, for any

fixed K we have

|AA| � |A|2+o(1) and |A−1 + A−1| � |A|2+o(1).

We note that Corollary 2.4 is a step towards a positive answer to a question
raised by Murphy, Petridis, Roche-Newton, Rudnev and Shkredov [15, Question 2]
whether for any ε > 0 there exists some η(ε) depending only on ε with η(ε) → 0
as ε → 0, such that if A ⊆ Fp satisfies |A + A| � |A|1+ε then

|AA| � |A|2−η(ε).

Theorem 2.2 confirms this in the extreme case of rapidly decaying (as |A| grows)
values of ε. In other words instead of fixed K in Corollary 2.4 we can take K as a
very slowly growing function of |A|. We also recall that Shkredov [16, Corollary 2]
has shown that if

(2.4) |A + A| � |A|
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for a set A ⊆ Fp of cardinality |A| � p13/23 then the number of solutions to

a1a2 = λ, a1, a2 ∈ A,

is bounded by |A|149/156+o(1). Clearly, this result and Theorem 2.2 are of similar
spirit, however they are incomparable. In particular, the cardinality of the sets
considered in [16, Corollary 2] is uniform with respect to the implied constant
in (2.4), which is a feature not present in our bound. We refer the reader to [14]
for various incidence results related to counting solutions to multiplicative equa-
tions with variables belonging to sets with small sumset. Our result does give a
direct improvement on Grosu [10, Section 4], who obtains similar estimates to
Theorem 2.2 with the condition, which we slightly simplify as

(2.5) |A| � 1
log 2

log log log p − 1 − ε,

for any ε > 0 provided that p is large enough. However, the paper of Grosu [10]
contains other interesting results which allow one to lift problems in Fp to C

while preserving more arithmetic information than counting solutions to equations
considered in Theorem 2.2.

We now obtain a version of Theorem 2.2 which holds for almost all primes.

Theorem 2.3. Let A � 3 be sufficiently large and let K � 2 be a fixed integer.
For all but at most O(A8K3+4K2

logA/ log log A) primes p with

p > c0(K)A2K

for some sufficiently large constant c0(K) depending only on K, the following holds.
If A ⊆ Fp satisfies

|A + A| � K|A| and |A| � A

then for any λ ∈ F∗
p the number of solutions to each of the equations

a1a2 = λ and a−1
1 + a−1

2 = λ

with variables a1, a2 ∈ A is |A|o(1).

As before, we obtain a result towards the Erdős–Szemerédi conjecture modulo
almost all primes.

Corollary 2.5. With notation and conditions as in Theorem 2.3 we have

|AA| � |A|2+o(1) and |A−1 + A−1| � |A|2+o(1).
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2.3 Overview of our approach. We first illustrate the main ideas of our
paper in the setting of Corollary 2.1. With H as in Theorem 2.1, let A,B ⊆ Fp be
generalised arithmetic progressions of rank d, e respectively and recall we aim to
show

Ip(A,B) = Ho(1).

Our main input is the following iterative inequality, see Lemma 4.1, that there
exists generalised arithmetic progressions Ã, B̃ of rank d̃, ẽ respectively, satisfying

Ip(A,B) � Ho(1)Ip(Ã, B̃),

and

d̃ + ẽ < d + e, |Ã||B̃| � |A|B|.
Proceeding by induction on d + e, the above properties are sufficient to establish
the desired result. Suppose A,B ⊆ Fp are given by

A = {α0 + α1h1 + · · · + αdhd : 1 � hi � H, i = 1, . . . , d},
B = {β0 + β1j1 + · · · + βeje : 1 � ji � H, i = 1, . . . , e},

and for simplicity assume A,B are proper. Hence we aim to count the number of
solutions to the equation

(2.6)
(α0 + α1h1 + · · · + αdhd)(α0 + β1j1 + · · · + βdje) = λ,

1 � h1, . . . , hd, j1, . . . , je � H.

Fix a pair

(h1,0, . . . , hd,0) ∈ [1,H]d, (j1,0, . . . , je,0) ∈ [1,H]e,

satisfying

(α0 + α1h1,0 + · · · + αdhd,0)(β0 + β1j1,0 + · · · + βdje,0) = λ,

and consider the variety Vp ⊆ F
d+e+2

defined by the system of equations

(X0 + X1h1 + · · · + Xdhd)(Y0 + Y1j1 + · · · + Yeje)

− (X0 + X1h1,0 + · · · + Xdhd,0)(Y0 + Y1j1,0 + · · · + Yeje,0) = 0,

such that h1, . . . , hd, j1, . . . , de satisfy (2.6) and in variables X0, . . . ,Ye. Let V
denote the corresponding variety over C. By assumption, we have

(α0, . . . , αd, β0, . . . , βe) ∈ Vp.
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Assuming H is sufficiently small in terms of p, a local-global result of D’Andrea,
Ostafe, Shparlinski and Sombra [7], see Lemma 3.1 below, implies that there exists

(ρ0, . . . , ρd, γ0, . . . , γe) ∈ V.

Hence any solution h1, . . . , je to (2.6) also satisfies

(ρ0 + ρ1h1 + · · · + ρdhd)(γ0 + γ1j1 + · · · + γeje) = λ0,

for some λ0 ∈ C. A result of Chang [3], see Lemma 3.4 below, implies that there
exist Ho(1) possible values for either

(2.7) ρ0 + ρ1h1 + · · · + ρdhd = μ1,

or

γ0 + γ1j1 + · · · + γeje = μ2.

Assuming (2.7), our set of solutions to (2.6) is restricted to the union of Ho(1) cosets
of a lattice L of rank smaller than d. After performing basis reduction to L and
back-substitution, the desired iterative inequality follows.

3 Preliminaries

3.1 Tools from Diophantine geometry. For a polynomialGwith integer
coefficients, its height is defined as the logarithm of the maximum of the absolute
values of the coefficients of G. The height of an algebraic number α is defined as
the height of its minimal polynomial (we also set it to 1 for α = 0).

We now recall the statement of [7, Theorem 2.1] which underlies our approach.

Lemma 3.1. Let Gi ∈ Z[T1, . . . ,Tn], i = 1, . . . , s, n ≥ 1 be polynomials
of degree at most r ≥ 2 and height at most h, whose zero set in Cn has a finite

number κ of distinct points. Then there is an integer A ≥ 1 with

logA ≤ (11n + 4)r3n+1h + (55r + 99) log((2n + 5)s)r3n+2

such that, if p is a prime not dividingA, then the zero set in F
n
p of the polynomials Gi

reduced modulo p, i = 1, . . . , s, consists of exactly κ distinct points.

Similar results have previously appeared. For example, Chang [3, Lemma 2.14]
has shown the following result. Let

V =
⋂

j=1,...,s

[Fj = 0]
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be an affine variety in Cn defined by polynomials Fj ∈ Z[X1, . . . ,Xn], j = 1, . . . , s,
of height at most h and let F ∈ Z[X1, . . . ,Xn] be a polynomial of height at most h
such that there is α ∈ V with F(α) 
= 0. Then there is β ∈ V with F(β) 
= 0 whose
coordinates are algebraic numbers of height O(h).

There are also modulo p analogues of [3, Lemma 2.14] which allow one to lift
solutions to C from a variety modulo p and we refer the reader to [10] for results
of this type. One may also use effective versions of the Bézout identity, and more
generally the Hilbert Nullstellensatz, to lift points on a variety modulo p to C, and
this idea has previously been used in [1, 2, 5, 13, 17].

3.2 Tools from geometry of numbers. Let {b1, . . . ,bm} be a set of
m � d linearly independent vectors in Rd. The set of vectors

L =
{ m∑

i=1

nibi : ni ∈ Z

}
is called a d-dimensional lattice of rank m. The set {b1, . . . ,bm} is called a basis
of L. Each lattice has multiple sets of basis vectors, and we refer to any other set
{b̃1, . . . , b̃m} of linearly independent vectors such that

L =
{ m∑

i=1

nib̃i : ni ∈ Z

}
as a basis. We also define the determinant of L as

detL =
√| detB · BT |,

where B is the (m × d)-matrix with rows b1, . . . ,bm, and is independent of the
choice of basis. We refer to [11] for a background on lattices.

The following is [12, Lemma 1].

Lemma 3.2. LetL ⊆ Zd be a lattice of rankm. ThenL has a basis b1, . . . ,bm

such that, for each x ∈ L, we may write

x =
m∑
j=1

λjbj,

with

λj � ‖x‖
‖bj‖ .

We also have

detL �
m∏
j=1

‖bi‖ � detL.
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Lemma 3.3. Let α1, . . . , αd ∈ C and let L denote the lattice

L = {(n1, . . . , nd) ∈ Zd : α1n1 + · · · + αdnd = 0}.
For integers H1, . . . ,Hd we consider the convex body

D = {(x1, . . . , xd) ∈ Rd : |xi| � Hi}.
IfL∩D contains d−1 linearly independent points and there exists some 1 � � � d
such that α� 
= 0, then there exists some 1 � j � d such that for each i = 1, . . . , d

there exist integers ai and bi satisfying
αi

αj
=

ai

bi
, gcd(ai, bi) = 1, ai, bi � Hd,

where

H = max
1�i�d

Hi.

Proof. Choose d − 1 linearly independent points x(1), . . . ,x(d−1) satisfying

x(i) = (xi,1, . . . , xi,d) ∈ L ∩ D, 1 � i � d − 1.

Let X denote the (d − 1) × d matrix whose i-th row is x(i) and let X(j) denote
the (d − 1) × (d − 1) matrix obtained from X by removing the j-th column. By
assumption, the rank of X equals d − 1. Hence there exists some 1 � j � d such
that

(3.1) detX(j) 
= 0.

By symmetry we may suppose j = d. Since each x(i) ∈ L ∩ D, we have

X(d)

⎛⎜⎜⎜⎜⎝
α1

α2
...

αd−1

⎞⎟⎟⎟⎟⎠ = −αd

⎛⎜⎜⎜⎜⎝
x1,d

x2,d
...

xd−1,d

⎞⎟⎟⎟⎟⎠ .

Note that (3.1) and the assumption α� 
= 0 implies αd 
= 0. Let Y (d) denote the
adjoint matrix of X(d), thus

X(d)Y (d) = detX(d)Id−1,

where Id−1 is the (d − 1) × (d − 1)-identity matrix. Hence, the above implies

detX(d)

⎛⎜⎜⎜⎜⎝
α1

α2
...

αd−1

⎞⎟⎟⎟⎟⎠ = −αdY
(d)

⎛⎜⎜⎜⎜⎝
x1,d

x2,d
...

xd−1,d

⎞⎟⎟⎟⎟⎠ .
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By Hadamard’s inequality and the definition of H,

detX(d) � Hd,

and

Y (d)

⎛⎜⎜⎜⎜⎝
x1,d

x2,d
...

xd−1,d

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
y1

y2
...

yd−1

⎞⎟⎟⎟⎟⎠ ,

for some integers y1, . . . , yd−1 � Hd, from which the result follows. �

3.3 Tools from additive combinatorics. In our proof of Theorem 2.1
we use Lemma 3.1 to reduce to counting solutions to multiplicative equations
over C to which the following result of Chang [3, Proposition 2] may be applied;
see also [3, Remark 1].

Lemma 3.4. For each integer d � 1 there exists a constant Bd, depending
only on d, such that the following holds. Let γ0, . . . , γd ∈ C and define the set A

by
A = {γ0 + γ1h1 + · · · + γdhd : |hi| � Hi}.

For any λ ∈ C∗ the number of solutions to

a1a2 = λ, a1, a2 ∈ A,

is bounded by exp(Bd log |A|/ log log |A|).

4 An iterative inequality

4.1 Formulation of the result. Our main input for the proof of The-
orem 2.1 is the following iterative inequality which combines some ideas of
Chang [3] with lattice basis reduction. Note that, as in [3], it is not necessary
to assume our generalised arithmetic progression is proper.

Recall that for A,B ⊆ Fp and λ ∈ Fp we define Ip(A,B, λ) by (2.1).
We also recall that an integer n is called y-smooth if all prime divisors p of n

satisfy p � y.

Lemma4.1. LetH, d, e be positive integers with e � d and letH be sufficiently
large. There exists a constant Bd depending only on d, and an integer Zd,e which

(i) is O(H1/γd+e+1)-smooth with γd+e+1 given by (2.2),
(ii) is divisible by all primes p � Hd+e+o(1),
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(iii) satisfies

log Zd,e � H(d+e)(d+1)(e+1) logH,

such that for any prime p � Zd,e the following holds. Let λ ∈ F
∗
p and A,B ⊆ Fp be

generalised arithmetic progressions of the form

(4.1) A = {α0 + α1h1 + · · · + αdhd : |hi| � H, i = 1, . . . , d},
and

(4.2) B = {β0 + β1j1 + · · · + βeje : |ji| � H, i = 1, . . . , e},
with d, e � 2 and

α1, . . . , αd, β1, . . . , βe ∈ F
∗
p.

There exists a constant C̃d depending only on d and e, integers d̃ and ẽ satisfying

d̃ � d, ẽ � e, d̃ + ẽ < d + e,

generalised arithmetic progressions Ã, B̃ of the form

Ã = {α̃0 + α̃1h1 + · · · + α̃
˜dh˜d : |hi| � C̃dH, i = 1, . . . , d̃},

B̃ = {β̃0 + β̃1j1 + · · · + β̃ẽjẽ : |ji| � C̃dH, i = 1, . . . , ẽ},
with

α̃1 · · · , α̃d, β̃1 · · · β̃e ∈ F
∗
p,

and some μ ∈ F
∗
p such that

Ip(A,B, λ) � exp(Bd log H/ log logH)Ip(Ã, B̃, μ).

We split the proof of Lemma 4.1 in a series of steps.

4.2 Elimination undesired primes. We first denote

(4.3) Z0 =
∏

p�CdHd

p

for an appropriately large constant Cd, which depends only on d. We now fix p � Z0,
thus

(4.4) p > CdH
d.

We first construct the integer Zd,e. For h,h0 ∈ Zd and j, j0 ∈ Ze define the
polynomial

(4.5)
Ph,h0,j,j0 (X,Y) = (X0 + X1h0,1 + · · · + Xdh0,d)(Y0 + Y1j0,1 + · · · + Yej0,e)

− (X0 + X1h1 + · · · + Xdhd)(Y0 + Y1j1 + · · · + Yeje).
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We may identify the polynomial Ph,h0j,j0 (X,Y) with a point in the vector spaceC

where

 = (d + 1)(e + 1) − 1 = de + d + e,

which is formed by its coefficients. Suppose M ⊆ Zd × Ze satisfies |M| �  and
the set

{Ph,h0,j,j0 (X,Y) : (h, j) ∈ M}
is linearly independent over C.

Let M(h0, j0,K) denote the |M| ×  matrix whose rows correspond to coeffi-
cients of the polynomials Ph,h0,j,j0 (X,Y) with (h, j) ∈ M. Define

(4.6) Z1(h0, j0,M) = detM0(h0, j0,M),

where M0(h0, j0,M) is |M| × |M| submatrix of M(h0, j0,M) with nonzero deter-
minant. If

h0 ∈ [−H,H]d, j0 ∈ [−H,H]e, M ⊆ [−H,H]d × [−H,H]e

then for each (h, j) ∈ M the polynomial Ph,h0,j,j0 has height at most 2 logH +O(1).
Clearly there are

W = (2H + 1)d · (2H + 1)e ·
∑

r=1

(
(2H + 1)d+e

r

)
� Hd+e+(d+e) = H(d+e)(+1)

(4.7)

choices for the above triple (h0, j0,M).

By Hadamard’s inequality

(4.8) Z1(h0, j0,K) � H2|M| � H2.

Define

(4.9) Z1 =
∏

h0,∈[−H,H]d
j0∈[−H,H]e

M⊆[−H,H]d×[−H,H]e
|M|�

Z1(h0, j0,M),

so, recalling (4.7) and (4.8), we see that

log Z1 � W logH � H(d+e)(+1) log H,

and that Z1 is O(H2)-smooth.
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For each h0, j0,M as above, let V(h0, j0,M) denote the variety

V(h0, j0,M) =
⋂

(h,j)∈M
{(x,y) ∈ Cd+1 × Ce+1 : Ph,h0,j,j0 (x,y) = 0}

∩ {(x,y) ∈ Cd+1 × Ce+1 : x1 = 1, y1 = 1},

and let Vp(h0, j0,M) be the reduction of V(h0, j0,M) modulo p

Vp(h0, j0,M) =
⋂

(h,j)∈M
{(x,y) ∈ F

d+1
p × F

e+1
p : Ph,h0,j,j0 (x,y) = 0}

∩ {(x,y) ∈ F
d+1 × F

e+1
p : x1 = 1, y1 = 1}.

If |V(h0, j0,M)| = ∞ then define

Z2(h0, j0,M) = 1.

Otherwise, that is, if |V(h0, j0,M)| < ∞, by Lemma 3.1 there exists a positive
integer Z2(h0, j0,M) satisfying

Z2(h0, j0,M) � H1/γd+e+1 ,

such that for each prime p not dividing Z2(h0, j0,M), we have

|V(h0, j0,M)| = |Vp(h0, j0,M)|.

Denote

(4.10) Z2 =
∏

h0,∈[−H,H]d
j0∈[−H,H]e

M⊆[−H,H]d×[−H,H]e
|M|�

Z2(h0, j0,M).

With Z1 and Z2 as in (4.9) and (4.10) we define

Zd,e = Z0Z1Z2.

Since γd+e+1 � −1 we see that Zd,e is O(H1/γd+e+1)-smooth and satisfies

logZd,e � H(d+e)(+1) logH.

From now on we only consider primes p � Zd,e.
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4.3 Local to global lifting of rational points on some varieties. Fix
some prime p not dividing Zd,e. With A,B as in (4.1) and (4.2), choose

H ⊆ [−H,H]d ∩ Zd,

J ⊆ [−H,H]e ∩ Ze,

such that the points

α0 + h1α1 + · · · + hdαd, (h1, . . . , hd) ∈ H,

β0 + j1β1 + · · · + jeβe, (j1, . . . , je) ∈ J,

are distinct modulo p and for each a ∈ A there exists some integer vector
(h1, . . . , hd) ∈ H such that

a = α0 + h1α1 + · · · + hdαd

and for each b ∈ B there exists some (j1, . . . , je) ∈ J such that

b = β0 + j1β1 + · · · + jeβe.

Write

h = (h1, . . . , hd) and j = (j1, . . . , je),

so that Ip(A,B, λ) is bounded by the number of solutions to

(4.11) (α0 + α1h1 + · · · + αdhd)(β0 + β1j1 + · · · + βeje) ≡ λ mod p,

with h ∈ H and j ∈ J. Dividing both sides of (4.11) by α1β1 and modifying
α0, . . . , αd, β0, . . . , βe, λ if necessary, we may assume

(4.12) α1 = β1 = 1.

This reduction allows for a convenient application of Lemma 3.1. In what follows,
wewill construct a variety overFp which contains the point (α0, . . . , αd, β0, . . . , βd)
and the assumption that α1 = β1 = 1 allows us to obtain a nonzero point in the
corresponding variety over C after applying Lemma 3.1.

Let K ⊆ H × J denote the set

K = {(h, j) ∈ H × J : h, j satisfy (4.11)},

so that

(4.13) Ip(A,B, λ) = |K|.
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Since we may assumeK
=∅, fix some (h0, j0)∈K and for each (h, j)∈K consider
the polynomial Ph,h0,j,j0 (X,Y), given by (4.5). Clearly for (h0, j0) 
=(h, j) the poly-
nomial Ph,h0,j,j0 (X,Y) is not identical to zero over C. Indeed, it is enough to con-
sider the specialisations Ph,h0,j,j0 ((1, 0, . . . , 0),Y) and Ph,h0,j,j0 (X, (1, 0, . . . , 0))
to see this. Furthermore, if p > 2H (which is guaranteed by our assumption), then
(h0, j0) 
= (h, j) implies (h0, j0) 
≡ (h, j) mod p and we see that Ph,h0,j,j0 (X,Y) is
also not identical to zero over Fp.

Let Vp ⊆ F
d+e+2
p denote the variety

Vp =
⋂

(h,j)∈K
{(x,y) ∈ F

d+1
p × F

e+1
p : Ph,h0,j,j0 (x,y) = 0}

∩ {(x,y) ∈ F
d+1
p × F

e+1
p : x1 = 1, y1 = 1}.

LetM⊆K be a maximal set of (h, j)∈K, such that the polynomials Ph,h0,j,j0 (X,Y)
are linearly independent overC. With Z1(h0, j0,M) defined as in (4.6), with respect
to such K, since

p � Z1(h0, j0,M)

we conclude that M ⊆ K is also a maximal set such that the polynomials
Ph,h0,j,j0 (X,Y) are linearly independent over Fp. Hence

Vp =
⋂

(h,j)∈M
{(x,y) ∈ F

d+1
p × F

e+1
p : Ph,h0,j,j0 (x,y) = 0}

∩ {(x,y) ∈ F
d+1
p × F

e+1
p : x1 = 1, y1 = 1}

and 1 � |M| � . By definition of K and (4.12), we have

(4.14) (α0, . . . , αd, β0, . . . , βe) ∈ Vp.

Let V ⊆ Cd+e+2 denote the variety

V =
⋂

(h,j)∈M
{(x,y) ∈ Cd+1 × Ce+1 : Ph,h0,j,j0 (x,y) = 0}

∩ {(x,y) ∈ Cd+1 × Ce+1 : x1 = 1, y1 = 1}.
(4.15)

We next show there exists some

(ρ, τ) = (ρ0, ρ1, . . . , ρd, τ0, τ1, . . . , τe) ∈ Cd+1 × Ce+1

satisfying

(4.16) (ρ, τ) ∈ V, (ρ1, . . . , ρd) 
= 0, (τ1, . . . , τe) 
= 0.
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Certainly it is enough to show that

(4.17) |V| � 1,

as the non-vanishing conditions in (4.16) are obvious because any point (ρ, τ) ∈ V

satisfies ρ1 = τ1 = 1.
We may assume

(4.18) |V| < ∞,

since otherwise (4.16) is trivial. We next apply Lemma 3.1. The assumption (4.18)
and that

p � Z2(h0, j0,M)

implies

(4.19) |V| = |Vp|.
We see from (4.14) that

|Vp| � 1.

Combining the above with (4.19), we obtain (4.17).
Hence there exists some (ρ, τ) ∈ Cd+1 × Ce+1 satisfying (4.16). Note that

from (4.15) we have

(4.20) ρ1 = τ1 = 1.

4.4 Reduction to counting solutions to a multiplicative congruence
on a complex line. We see that any solution to (4.11) satisfies

(4.21) (ρ0 + ρ1h1 + · · · + ρdhd)(τ0 + τ1j1 + · · · + τeje) = ϑ,

where
ϑ = (ρ0 + ρ1h0,1 + · · · + ρdh0,d)(τ0 + τ1j0,1 + · · · + τej0,e).

Consider the following two cases
• If ϑ = 0, then either

ρ0 + ρ1h1 + · · · + ρdhd = 0,

or
τ0 + τ1j1 + · · · + τeje = 0.
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• If ϑ 
= 0, then by Lemma 3.4, there exists a set of

exp(Bd logH/ log logH)

pairs � = {(ω1, ω2)} such that any solution to (4.21) satisfies

ρ0 + ρ1h1 + · · · + ρdhd = ω1, τ0 + τ1j1 + · · · + τeje = ω2,

for some (ω1, ω2) ∈ �.
Taking a maximum over the above two cases, we see that there exists some

ξ ∈ C and some i = 1, 2 such that

Ip(A,B, λ) � exp(Bd logH/ log logH)Ji(A,B, λ),

where J1(A,B, λ) counts the number of solutions to

(4.22) (α0 + α1h1 + · · · + αdhd)(β0 + β1j1 + · · · + βeje) ≡ λ mod p,

and

(4.23) ρ1h1 + · · · + ρdhd = ξ,

with variables h ∈ H, j ∈ J and J2(A,B, λ) counts the number of solutions
to (4.22) and

τ1j1 + · · · + τeje = ξ,

with variables h ∈ H, j ∈ J.
Suppose first that

(4.24) Ip(A,B, λ) � exp(Bd log H/ log log H)J1(A,B, λ);

the case

(4.25) Ip(A,B, λ) � exp(Bd logH/ log logH)J2(A,B, λ),

may be treated with a similar argument which we indicate at the end of the proof.

4.5 Application of geometry of numbers to derive the desired in-
equality. Let L denote the lattice

L = {(n1, . . . , nd) ∈ Zd : ρ1n1 + · · · + ρdnd = 0},
and D the convex body

D = {(n1, . . . , nd) : |ni| � H}.
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Assuming J1(A,B, λ) 
= 0, there exists some h∗ = (h∗
1, . . . , h

∗
d) ∈ D ∩Zd such that

if h = (h1, . . . , hd) satisfies (4.23) then

(4.26) h − h∗ ∈ L ∩ 2D.

By (4.20) we have

dimL < d.

Hence we may consider two cases: either

(4.27) dim(L ∩ 2D) < d − 1,

or

(4.28) dim(L ∩ 2D) = d − 1.

Suppose that we have (4.27). Let L∗ denote the lattice generated by L∩ 2D, so
that dimL∗ = r for some r < d − 1. By Lemma 3.2 there exists a basis λ1, . . . , λr,

for L∗ such that each h satisfying (4.26) may be expressed in the form

(4.29) h − h∗ = k1λ1 + · · · + krλr,

where from (4.26)

k1, . . . , kr � ‖h − h∗‖
‖λj‖ � H.

Substituting (4.29) into (4.22), there exist α̃0, . . . , α̃r ∈ Fp such that for any
h ∈ H, j ∈ J satisfying (4.22) and (4.23) there exist �1, . . . , �r such that

(α̃0 + α̃1�1 + · · · + α̃r�r)(β0 + β1h1 + · · · + βehe) ≡ λ mod p,

and

α̃0 + α̃1�1 + · · · + α̃r�r = α0 + α1h1 + · · · + αdhd.

Let d̃ = r and let Ã denote the generalized arithmetic progression

Ã = {α̃0 + α̃1h̃1 + · · · + α̃
˜dh̃˜d : |h̃i| � C̃dH, i = 1, . . . , d̃}.

From construction of H, for each a ∈ A there exists a unique h ∈ H such that

a = α0 + α1h1 + · · · + αdhd.

For each h ∈ H, there exists some h̃ satisfying

|h̃i| � C̃dH, i = 1, . . . , d̃,
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such that
α0 + α1h1 + · · · + αdhd = α̃0 + α̃1h̃1 + · · · + α̃

˜dh̃˜d.

The above implies we may choose a set

H̃ ⊆ [−C̃dH, C̃dH]
˜d,

such that the points

α̃0 + α̃1h̃1 + · · · + α̃
˜dh̃˜d, h̃ ∈ H0,

are distinct and for each h ∈ H satisfying (4.22) and (4.23) there exists some
h̃ ∈ H0 such that

α0 + α1h1 + · · · + αdhd = α̃0 + α̃1h̃1 + · · · + α̃
˜d.h̃˜d.

The above combined with (4.13) implies that

J1(A,B, λ) � Ip(Ã,B, λ).

Hence, recalling (4.24), we obtain the desired result provided (4.27) holds.
If we are in the case of (4.28), then by Lemma 3.3 there exist integers ai and bi

satisfying
ρi

ρd
=

ai

bi
, gcd(ai, bi) = 1, ai, bi � Hd, 1 � i � d,

where by symmetry we assume j = 1 and also use that ρ1 = 1 in our application of
Lemma 3.3. By (4.4), provided that Cd is large enough, we see that

if ai, bi 
= 0 then ai, bi 
≡ 0 mod p.

By (4.23) and (4.26)

hd − h∗
d =

α1

αd
(h∗

1 − h1) + · · · +
αd−1

αd
(h∗

d−1 − hd−1),

which combined with the above implies

(4.30) hd ≡ h∗
d − a1b1(h1 − h∗

1) − · · · − ad−1bd−1(hd−1 − h∗
d−1) mod p,

where x denotes the multiplicative inverse of x modulo p. As before, substitut-
ing (4.30) into (4.22), there exists a generalized arithmetic progression

Ã = {α̃0 + α̃1�1 + · · · + α̃
˜d�˜d : |�i| � C̃dH, i = 1, . . . , d̃},

with d̃ < d such that
J1(A,B, λ) � Ip(Ã,B, λ),

and the result follows combining this with (4.24).
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In the case of (4.25), we apply a similar argument as before, except with the
lattice

L = {(n1, . . . , ne) ∈ Ze : τ1n1 + · · · + τene = 0},
and convex body

D = {(n1, . . . , ne) : |ni| � H, i = 1, . . . , e},
to obtain

J2(A,B, λ) � Ip(A, B̃, λ),

for some generalized arithmetic progression B̃ of the form

B̃ = {β̃0 + β̃1h1 + · · · + β̃ẽhẽ : |hi| � C̃dH, i = 1, . . . , ẽ},
with ẽ < e. Combining this with (4.25) we obtain the desired inequality under
the assumption (4.4). To conclude that proof it remains to verify (ii), about the
divisibility of Zd,e.

4.6 Primedivisors of Zd,e. Wenow show thatZd,e is divisible by all primes
p � Hd+e+o(1). Fix some small ε > 0 and consider generalised arithmetic progres-
sions of the form (4.1) and (4.2).

We next use the Dirichlet pigeon-hole principle to show the statement of
Lemma 4.1 fails for any prime Hd < p � Hd+e−ε provided that H is large enough.
This is sufficient from (4.3) and the fact that Z0|Zd,e, (provided Cd > 1).

Indeed, since the value of Zd,e does not depend on the generalised arithmetic
progressions A0 and B0, we can choose

α0 = 0 and αi = (2H + 1)i−1, i = 1, . . . , d,

and
β0 = 0 and βi = (2H + 1)j−1, j = 1, . . . , e.

Hence A0 and B0 are proper and in fact contain (2H + 1)d and (2H + 1)e distinct
residues modulo p, respectively. Next, there are (2H + 1)d+e products in Fp

(α0 + α1h1 + · · · + αdhd)(β0 + β1j1 + · · · + βeje)

over all choices of |hi| � H, i = 1, . . . , d and |ji| � H, i = 1, . . . , e, except for
at most O(Hd+e−1) choices for which this product is divisible by p. Hence, there
exists a non-zero residue class λ0 modulo p into which at least

(2H + 1)d+e(1 + O(H−1))/p � Hε
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of such products fall, thus giving

Ip(A0,B0, λ0) � Hε

contradicting the assumed bound.
Hence we have p | Zd,e for such primes. This also implies that the assump-

tion (4.4) holds for any prime p � Zd,e.

5 Proofs of results on factorisation in generalised arith-
metic progressions

5.1 Proof of Theorem 2.1. We proceed by induction on d + e with base
case

d + e = 1.

In this case, there exists some λ0 ∈ Fp such that

Ip(A,B, λ) = |{1 � h � H : h = λ0}|,
for which there is at most 1 solution provided H � p. Hence the result follows by
taking

Z =
∏
p�H

p.

Let C∗(�) be sufficiently large depending only on the implied constants in
Lemma 4.1.

We next set up some notation related to our induction hypothesis. Let H � 1,

� � 2 and for each pair of positive integers d, e satisfying

e � d and d + e � �,

let Zd,e be as in Lemma 4.1. Define

Z� =
∏

0<e�d
d+e��

Zd,e,

so that Z� is O(H1/γ�)-smooth and satisfies

log Z� � log H
∑

3�j��

∑
0<e�d
d+e=j

Hj(d+1)(e+1) � H(�−1)(�+2)2/4 log H

where we have used

j(d + 1)(e + 1) � j
(d + e + 2

2

)2
� �

(� + 2)2

4
.
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We formulate our induction hypothesis as follows. There exists a constant b�−1

such that for any positive integers e � d satisfying d + e � � − 1 and prime

(5.1) p � C∗(�)H�−1

not dividing Z�−1 (which by Lemma 4.1 (ii) holds for any p � Z�−1), for any λ ∈ Fp

and generalized arithmetic progressions

A = {α0 + α1h1 + · · · + αdhd : 1 � hi � H, i = 1, . . . , d},
B = {β0 + β1j1 + · · · + βeje : 1 � ji � H, i = 1, . . . , e},

we have
Ip(A,B, λ) � exp(b�−1 log (|A||B|)/ log log (|A||B|)).

Let e � d be positive integers satisfying

d + e = �

and H � 1.
By Lemma 4.1, for any prime p � Z�, and thus satisfying

p � Hd+e,

the following holds.
Let λ ∈ F

∗
p and A,B ⊆ Fp be generalised arithmetic progressions as in (4.1)

and satisfying (4.2) with d, e � 2 and

α1, . . . , αd, β1, . . . , βe ∈ F
∗
p.

There exists a constant C̃d depending only on d, e, integers d̃ and ẽ satisfying

d̃ � d, ẽ � e, d̃ + ẽ < d + e,

generalised arithmetic progressions Ã, B̃ of the form

Ã = {α̃0 + α̃1h1 + · · · + α̃
˜dh˜d : |hi| � C̃dH, i = 1, . . . , d̃},

B̃ = {β̃0 + β̃1j1 + · · · + β̃ẽjẽ : |ji| � C̃dH, i = 1, . . . , ẽ},
with

α̃1, . . . , α̃d, β̃1, . . . , β̃e ∈ F
∗
p,

and some μ ∈ F
∗
p such that

Ip(A,B, λ) � exp(Bd log H/ log logH)Ip(Ã, B̃, μ).
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If p � Z�, then we obviously have p � Z�−1 (since Z�−1 | Z�) and also p satis-
fies (5.1). Therefore, by our induction hypothesis (where we can also assume that
Cd � C∗(d + e − 1))

Ip(A,B, λ) � exp((Bd + b�−1) logH/ log logH).

The result now follows by taking

b� = max
d��

Bd + b�−1, Z = Z�

and noting that Z� is O(H1/γ�+1)-smooth and satisfies

log Z� � H�(�+2)2/4 log H.

6 Proofs of results towards the Erdős–Szemerédi con-
jecture

6.1 Proof of Theorem 2.2. The celebrated theorem of Freiman [9] states
that if A ⊆ Z is a finite set satisfying

|A + A| � K|A|,

then there exist constants b(K) and d(K) depending only onK, and some generalised
arithmetic progression B of rank d(K) and size

|B| � b(K)|A|,

such that
A ⊆ B.

The theorem of Freiman [9] has gone through a number of improvements and
generalisations to sets from arbitrary abelian groups.

A version of this result convenient for our application is due to Cwalina and
Schoen [6, Theorem 4], which states that we may take B proper,

b(K) � exp(cK4(logK + 2)) and d(K) � 2K,

for some absolute constant c (note the additive group ofFp has no proper subgroups,
so only the first alternative of [6, Theorem 4] applies).

Thus, using Corollaries 2.1 and 2.3 with H = |A|, d = e = d(K),

δ = γ2d(K)+1 =
1

(44K + 26)212K+8 and c0(K) = C0(2K),
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where C0(d) is as in Corollary 2.1 (which we can assume to be monotonically
increasing with respect to both d and e), we obtain that for each λ ∈ F∗

q, the
number of solutions to each of the equations

a1a2 = λ, a−1
1 + a−1

2 = λ, a2
1 + a2

2 = λ,

over Fp with variables a1, a2 ∈ A is |A|o(1) since we assume that K is fixed, from
which the desired result follows.

6.2 Proof of Theorem 2.3. We follow the proof of Theorem 2.2, however
apply Corollary 2.2 instead of Corollary 2.1.
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