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Abstract. We study the null set N(P) of the Fourier–Laplace transform of
a polytope P ⊂ Rd , and we find that N(P) does not contain (almost all) circles
in Rd . As a consequence, the null set does not contain the algebraic varieties
{z ∈ C

d | z21 + · · · + z2d = α2} for each fixed α ∈ C, and hence we get an explicit
proof that the Pompeiu property is true for all polytopes.
The original proof that polytopes (as well as some other bodies) possess the
Pompeiu property was given by Brown, Schreiber, and Taylor [7] for dimension 2.
Williams [14, p. 184] later observed that the same proof also works for d > 2
and, using eigenvalues of the Laplacian, also gave a proof (valid for d ≥ 2) that
polytopes have the Pompeiu property.
Here we use the Brion–Barvinok theorem, which gives a concrete formulation for
the Fourier–Laplace transform of a polytope. Hence our proof offers a more direct
approach, requiring less machinery.

1 Introduction

The Pompeiu problem is a fundamental problem that initially arose by intertwining
the basic theory of convex bodies with harmonic analysis. To describe it precisely,
consider the group M(d) of all rigid motions of Rd, including translations, and fix
any convex body P ⊂ R

d with dimP = d. In 1929, Pompeiu [10, 11] asked the
following question. Suppose that all of the following integrals vanish:

(1)
∫

σ(P)
f (x) dx = 0,

taken over all rigid motions σ ∈ M(d). Does it necessarily follow that f ≡ 0?
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If the answer is affirmative, then the convex body P ⊂ R
d is said to have the

Pompeiu property. It is a conjecture that in every dimension, balls are the only
convex bodies that do not have the Pompeiu property. As is immediately apparent,
the Pompeiu property is equivalent to the claim that the integral of f over P, as
well as the integrals of f over all the rigid motions of P, uniquely determine the
function f .

It is rather surprising that after almost 100 years, the Pompeiu problem remains
unsolved for general convex bodies in R

d. There are, however, infinite families of
convex bodies which are known to have the Pompeiu property, and we recall some
of these results.

More attention has been devoted to dimension d = 2, and a breakthrough
occurred with the results of Brown, Schreiber and Taylor [7], who showed that the
Pompeiu problem is very closely related to mean periodic functions, developed
by L. Schwartz [12]. In [7, Theorem 5.11] the authors prove that any Lipschitz
curve in the plane with a ‘corner’ has the Pompeiu property, and consequently all
polygons have the Pompeiu property. Williams [14] mentions that the proof of
Theorem 5.11 in [7] generalizes directly to d-dimensions, though such a proof is
not explicitly given there. Moreover, Williams [14] also proves that if a set does
not have the Pompeiu property and it has a portion of an (n − 1)-dimensional real
analytic surface on its outer boundary, then any connected real analytic extension
of the surface also lies on the boundary of the set. As a consequence large infinite
families of convex bodies have the Pompeiu property, including polytopes.

Despite these advances, even in dimension 2 the Pompeiu problem remains open
for general convex bodies. On the other hand, there has been a lot of interesting
work that relates the Pompeiu problem to other branches of Mathematics, such as
the recent work of Kiss, Malikiosis, Somlai, and Vizer [8], where a discretized
version of the Pompeiu problem is shown to be closely tied to the (unsolved)
Fuglede conjecture over finite abelian groups.

It turns out that the Pompeiu problem is equivalent to a few other long-standing
problems. One of these equivalences is the celebrated conjecture of Schiffer in
PDEs, relating the Pompeiu problem directly to eigenvalues of the Laplacian (see,
e.g., Section 3 of Berenstein [5]).

When we consider the Fourier–Laplace transform of the body P, a very useful
necessary and sufficient condition arises. To describe it precisely, suppose we are
given the indicator function 1P of a polytope P. We define the Fourier-Laplace
transform of P by

1̂P(z) :=
∫
P

e−2πi〈x,z〉 dx,
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for all z ∈ C
d, with the inner product 〈x, z〉 := x1z1 + · · · + xdzd (we note that this is

not the Hermitian inner product). The null set of the Fourier-Laplace transform of
a polytope P is defined by

N(P) := {ξ ∈ C
d | 1̂P(ξ) = 0},

which we also refer to simply as the null set of P. We define the complex algebraic
variety

SC(α) := {z ∈ C
d | z2

1 + · · · + z2
d = α2},

for each fixed α ∈ C.

Theorem 1.1 (Brown, Schreiber and Taylor [7]). A bounded set with positive
measure P ⊂ Rd has the Pompeiu property if and only if the Fourier–Laplace

transform of P, namely 1̂P(z), does not vanish identically on any of the complex
varieties SC(α), for any α ∈ C \ {0}.

In other words, Pompeiu’s problem is equivalent to the claim that the null
set N(P) does not contain any of the complex algebraic varieties SC(α). The
authors of [7] prove this condition for dimension d = 2, and they mention that
the same proof works in general dimension. Bagchi and Sitaram [1, pp. 74–75]
reprove Theorem 1.1, for d = 2, and they also mention that the same proof works
for general dimension. Berenstein comments (Section 3 of [5]) that the condition
‘α ∈ C \ {0}’ from Theorem 1.1 can be replaced by ‘α > 0’ (possibly under the
condition that P is simply-connected). We do not use this restriction in our proof,
however, since our arguments work for any complex ‘α ∈ C \ {0}’.

One direction of Theorem 1.1 is easy to see. If SC(α) ⊂ N(P) for some
α∈C\{0}, then taking ξ∈SC(α) and letting f (x) :=e−2πi〈x, ξ〉, we have

∫
σ(P) f (x) dx=0

for all σ ∈ M(d). For the other direction, first we notice that it is appar-
ent that SC(0) �⊂ N(P), because the zero element 0 ∈ SC(0), yet 0 /∈ N(P)
since 1̂P(0) = vol(P) �= 0. Berenstein [5, p. 133] observes that in [7], Brown,
Schreiber and Taylor show that if P does not have the Pompeiu property, then 1̂σ(P)

has a common zero z for all σ ∈ M(d). Next, using the fact that for a rota-
tion σ ∈ SO(d,R) ⊂ M(d) we get 1̂σ(P)(z) = 1̂P(σ−1z), we obtain that the or-
bit SO(d,R)z ⊂ N(P). Letting α := z2

1 + · · · + z2
d, we have that SO(d,R)z is a real

submanifold of SC(α), on which the analytic function 1̂P vanishes, hence it also
vanishes on the rest of SC(α) (see, e.g., Lemma 3.1.2 in [9]).

Here we prove, in an explicit manner, that the Pompeiu property is true for
all polytopes P ⊂ R

d, with d ≥ 2. In other words, we give a new proof that
all polytopes have the Pompeiu property, which is simple and is essentially self-
contained. In addition, the presentmethods allow us to prove slightly more: ‘most’
circles inRd are not contained in the null setN(P) (stated precisely in Theorem1.2).
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By way of comparison, the machinery developed in [14], from which it also
follows that polytopes have the Pompeiu property, is highly non-trivial; the present
proof uses an explicitly known formof the Fourier–Laplace transformof a polytope,
and is much simpler. Our main result is as follows.

Theorem 1.2. Let P ⊂ R
d be a d-dimensional polytope, H ⊂ R

d be a 2-
dimensional real subspace that is not orthogonal to any edge from P, and fix an

orthonormal basis {e, f } ⊂ R
d for H.

Then the null set N(P) does not contain the ‘circle’

Cα := {α(cos t)e + α(sin t) f ∈ C
d | t ∈ [−π, π]},

for any α ∈ C \ {0}.
As an immediate consequence of Theorem 1.2 and Theorem 1.1, we recover

Williams’ result [14] for polytopes, as follows.

Corollary 1.3. The null set N(P) does not contain the complex variety SC(α),
for any α ∈ C \ {0}. Consequently, all polytopes in R

d have the Pompeiu property,
for each d ≥ 2.

2 Preliminaries

2.1 Fourier–Laplace transform of a polytope via Brion’s theorem.
In this section we recall some standard definitions from the literature, especially
of tangent cones of polytopes, and their Fourier–Laplace transforms.

Given a d-dimensional polytope P ⊂ R
d with vertex set V(P), for each

v ∈ V(P) we denote by Kv its tangent cone, defined by

Kv := {v + λ(x − v) | x ∈ P, λ ≥ 0}.

This is a pointed cone with apex v and it has a set of generators wv
1 , . . . , wv

m , so
that it can also be written as Kv = {v + λ1w

v
1 + · · · + λmwv

m | λj ≥ 0}. Each wv
k is

a 1-dimensional edge of P, emanating from v . When m = d, we say that the cone
is simplicial and we define

detKv := | det(wv
1 , . . . , wv

d )|.

Every pointed cone can be triangulated into simplicial cones with no new gener-
ators, which means a collection Kv,1, . . . ,Kv,Mv

of simplicial cones with disjoint
interiors such that Kv =

⋃Mv

j=1 Kv,j (see Beck and Robins [4, Section 3.2]).
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The Fourier–Laplace transformof a polytopeP is the entire function 1̂P:Cd →C

defined by

1̂P(z) :=
∫
P

e−2πi〈ξ, z〉 dξ,

where 〈ξ, z〉 := ξ1z1 + · · · + ξdzd. The same integral can also be considered over a
cone K instead of a polytope, but then that integral over the unbounded domain K

would converge only on a restricted complex domain (see Barvinok [3, Chapter 8]
for a presentation of these integrals as exponential valuations on polyhedra). The
Fourier–Laplace transform of the cones Kv and the polytope P are related by the
following striking theorem, originally due to Brion [6] and extended to arbitrary
polytopes by Barvinok [2], which for some polytopes produces an effectivemethod
to compute 1̂P(z).

Theorem 2.1 (Brion–Barvinok). Let P ⊂ Rd be a d-dimensional polytope.

For each v ∈ V(P), there exist functions sv(z) := e−2πi〈z, v 〉qv(z), where qv(z) is a
rational function homogeneous of degree −d, such that

(2) 1̂P(z) =
∫
P

e−2πi〈ξ, z〉 dξ =
∑

v∈V(P)

sv(z)

holds for all z ∈ C
d that are regular for all sv . If z is such that Im(〈ξ − v, z〉) < 0

for all ξ ∈ Kv \ {v}, then

(3) sv(z) =
∫

Kv

e−2πi〈ξ, z〉 dξ.

Equation (3) enables us to derive an explicit formula for sv(z), especially in the
case when Kv is simplicial. Continuing to denote the generators of a simplicial Kv

by wv
1 , . . . , wv

d , we have

∫
Kv

e−2πi〈ξ, z〉 dξ =
e−2πi〈v,z〉

(2πi)d
detKv

〈wv
1 , z〉 · · · 〈wv

d , z〉 ,

for z such that Im(〈ξ − v, z〉) < 0 for all ξ ∈ Kv \ {v}.
The condition “Im(〈ξ − v, z〉) < 0 for all ξ ∈ Kv \ {v}” is used to guarantee

the convergence of the integral (3) to the function above; however, in (2) the latter
formula for sv(z) can be used for all z ∈ C

d for which the denominators do not
vanish.

More generally, we may triangulate vertex tangent cones as follows. If
Kv,1, . . . ,Kv,Mv

are simplicial cones with disjoint interiors such that Kv =
⋃Mv

j=1 Kv,j

and for each 1 ≤ j ≤ Mv , wv
j,1, . . . , w

v
j,d are the edges of Kv,j, then for z such that
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Im(〈ξ − v, z〉) < 0 for all ξ ∈ Kv \ {v},
∫

Kv

e−2πi〈ξ, z〉 dξ =
Mv∑
j=1

e−2πi〈v, z〉

(2πi)d
detKv,j

〈wv
j,1, z〉 · · · 〈wv

j,d, z〉 .

Therefore, we have

(4) 1̂P(z) =
∑

v∈V(P)

Mv∑
j=1

e−2πi〈v, z〉

(2πi)d
detKv,j

〈wv
j,1, z〉 · · · 〈wv

j,d, z〉 .

Since P is compact and 1̂P(z) is continuous for all z ∈ C
d, the formula above

can be used to evaluate 1̂P(z) for all z ∈ C
d; however, care has to be taken when

choosing z that makes any of the denominators of (4) vanish, but an appropriate
limiting procedure can take care of these cases as well.

2.2 Some properties of the Bessel functions. The Bessel functions
are a very well known family of functions that appear in physical problems with
spherical or cylindrical symmetry. One reason for their ubiquity is their appearance
as solutions of the wave equation when put into spherical or cylindrical coordinate
systems.

Here we collect some of their useful properties, all of which can be found,
e.g., in Chapter 9 of the book of Temme [13]. We will be interested in the Bessel
functions of the first kind, called Jn(z), which are defined for complex values of z,
and integer order n (although they may also be defined for complex n). They
appear in the present work since they have the following integral representation:

Jn(z) =
1
2π

∫ 2π

0
eiz sin te−int dt.

This identity implies that they are the coefficients of the Fourier series expansion
of eiz sin t:

(5) eiz sin t =
∑
n∈Z

Jn(z)e
int,

an identity that is also known as the Jacobi–Anger expansion. Another represen-
tation for Jn(z) is the hypergeometric series

Jn(z) =
( z

2

)n ∞∑
k=0

(−1)k

(n + k)!k!

( z
2

)2k
,

from which it easily follows that Jn(−z) = (−1)nJn(z), and also that there is the
following asymptotic behavior for large n and fixed z:

(6) lim
n→∞ Jn(z)

( 1
n!

( z
2

)n)−1
= 1.
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3 Proof of Theorem 1.2

We divide the proof into two parts using the following lemma.

Lemma 3.1. Let P ⊂ R
d be a polytope oriented in such a way that no edge

vector has both of its first two coordinates zero. For each vertex v ∈ V(P), represent

its first two coordinates in polar form:

v = (rv cosφv , rv sinφv , v3, . . . , vd).

Let Q be the intersection of the plane generated by the first two coordinates

of Cd, with the null set N(P). If Q contains a ‘circle’

C′
α := {(α cos t, α sin t, 0, . . . , 0) | t ∈ [−π, π]}

for some α ∈ C \ {0}, then there exist N and coefficients cv,k ∈ C for −N ≤ k ≤ N,
not all of them zero, so that α satisfies the following identity for every n ∈ Z:

(7)
∑

v∈V(P)

e−inφv

N∑
k=−N

cv,k Jn−k(2παrv)i
keikφv = 0.

Proof. As mentioned in Section 2.1, Brion’s theorem gives us Equation (4),
valid for any z ∈ Cd for which none of the denominators are zero:

(8) 1̂P(z) =
∑

v∈V(P)

Mv∑
j=1

e−2πi〈v, z〉

(2πi)d
detKv,j

〈wv
j,1, z〉 · · · 〈wv

j,d, z〉 .

We parameterize C′
α as z(t) = (z1, . . . , zd) ∈ C

d, with

(9) z1 = α cos t, z2 = α sin t, z3 = · · · = zd = 0,

for t ∈ (−π, π].
Substituting cos t = (eit + e−it)/2, sin t = (eit − e−it)/(2i) in (9) and using the

assumption that the directions wv
j,l do not have both of their first two coordinates

equal to zero, we may see each factor 〈wv
j,l, z(t)〉 as a trigonometric polynomial of

degree 1 (that is, a function of the form c−1e−it + c0 + c1eit, with c1 ∈ C \ {0}), as
well as the product of all these factors

p(t) :=
∏

v∈V(P)

Mv∏
j=1

d∏
l=1

〈wv
j,l, z(t)〉,

as a trigonometric polynomial. Multiplying (8) by (2πi)dp(t) and using the as-
sumption that 1̂P(z(t)) = 0 for all t ∈ (−π, π], we get

(10) 0 =
∑

v∈V(P)

pv(t)e
−2πi〈v, z(t)〉,
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where each pv(t) is also a trigonometric polynomial, since the factors in the de-
nominators of (8) and in p(t) cancel out. We denote the coefficients of pv(t) by cv,k,
as follows:

(11) pv(t) := p(t)
Mv∑
j=1

detKv,j

〈wv
j,1, z(t)〉 · · · 〈wv

j,d, z(t)〉 =
N∑

k=−N

cv,ke
ikt.

Defining

qv(t) :=
∏

y∈V(P)\{v}

My∏
j=1

d∏
l=1

〈wy
j,l, z(t)〉,

we may write pv(t) as

pv(t) = qv(t)
Mv∑
j=1

detKv,j

Mv∏
k=1
k �=j

d∏
l=1

〈wv
k,l, z(t)〉.

To confirm that no cancellation happens and that in particular the functions pv(t)
are not all identically zero, observe that because no edge has both of its first two
coordinates equal to zero, the intersection between the subspace of Rd spanned
by the first two coordinates and the spaces orthogonal to each edge is a finite set
of lines. Letting α = reiφ with r > 0 and φ ∈ (−π, π], we may also observe
that e−iφz(t) ∈ Rd. Thus we can choose t0 ∈ (−π, π] such that e−iφz(t0) is not
orthogonal to any edge. If we define

u := argminx∈V(P)〈x, e−iφz(t0)〉,

then 〈wu
k,l, e−iφz(t0)〉 > 0 for all k and l. Hence

Mu∑
j=1

detKu,j

Mu∏
k=1
k �=j

d∏
l=1

〈wu
k,l, e−iφz(t0)〉

= e−iφd(Mu−1)
Mu∑
j=1

detKu,j

Mu∏
k=1
k �=j

d∏
l=1

〈wu
k,l, z(t0)〉 > 0,

and therefore pu(t) is not identically zero.

Next, we use the generating functions for the Bessel functions (5). To adapt
the formulas for our context, we write the first two coordinates of v in polar form:
v = (rv cosφv , rv sin φv , v3, . . . , vd), so that

−〈v, z(t)〉 = −αrv cos(t − φv) = αrv sin(t − φv − π/2).
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Hence from (5) follows

e−2πi〈v, z(t)〉 =
∑
n∈Z

Jn(2παrv)e
inte−in(φv+π/2).

Substituting into (10),

0 =
∑
n∈Z

∑
v∈V(P)

pv(t)e
−in(φv+π/2)Jn(2παrv)e

int.

Next we substitute formula (11) into pv(t) and then replace n by n − k in the
summation:

0 =
∑
n∈Z

∑
v∈V(P)

N∑
k=−N

cv,ke
−in(φv+π/2)Jn(2παrv)e

i(n+k)t

=
∑
n∈Z

∑
v∈V(P)

N∑
k=−N

cv,ke
−i(n−k)(φv+π/2)Jn−k(2παrv)e

int.

The last expression is the Fourier series of the resulting function in t ∈ (−π, π],
and therefore all of the coefficients must vanish:

∑
v∈V(P)

e−inφv

N∑
k=−N

cv,k Jn−k(2παrv)e
ik(φv+π/2) = 0.

Using eikπ/2 = ik, we get the formula from the statement. �
To prove Theorem 1.2 we will now analyze Equation (7) for large n and

determine the asymptotically dominant terms.

Proof of Theorem 1.2. Let P ⊂ Rd be a d-dimensional polytope, H be a 2-
dimensional subspace not orthogonal to any edge from P and e, f ∈ R

d which form
an orthogonal basis forH. Suppose, byway of contradiction, thatN(P) does contain
a ‘circle’ Cα := {α(cos t)e + α(sin t)f ∈ C

d | t ∈ (−π, π]} for some α ∈ C \ {0}.
We may consider a rotation R that sends H to the plane spanned by the first

two coordinates of R
d and observe that N(P) contains Cα if and only if N(RP)

contains C′
α := {(α cos t, α sin t, 0, . . . , 0) | t ∈ [−π, π]}. The assumption that H is

not orthogonal to any edge gets translated to the assumption that no direction Rwv
j,l

has both of its first two coordinates equal to zero, and hence we have satisfied the
hypotheses of Lemma 3.1. For simplicity, we henceforth omit the rotation R and
we assume that P and H already have this orientation, in particular Cα = C′

α.
By Lemma 3.1, we know that identity (7) must be true. Since not all of the

coefficients cv,k are zero, we may assume that N is the highest degree of a nonzero
coefficient and we let u ∈ V(P) be such that cu,N �= 0. Because a translation of
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the polytope by a vector c ∈ R
d implies that 1̂P+c(z) = 1̂P(z)e−2πi〈z, c〉, we may

translate the polytope while preserving the assumption that its null set contains Cα.
By translating P in the direction of u, we may assume that u = argmaxv∈V rv and
that u is the only vertex that attains this maximum.

Using the asymptotic (6) for Jn(z), we have

(12)

lim
n→∞

(n − N)!2n−N

(2παru)n−N
Jn−k(2παrv) = lim

n→∞
(n − N)!2n−N

(2πruα)n−N

(2πrv α)n−k

(n − k)!2n−k

=

⎧⎨
⎩

1 if k = N and u = v,

0 if k < N or (k = N and u �= v).

For any n > N, wewould like to focus on the unique dominant termof (7), which
grows with n as 1

(n−N)! (
2πruα

2 )n−N . To be more precise, we multiply Equation (7)

by einφu (n−N)!2n−N

(2πruα)n−N to get:

∑
v∈V(P)

e−in(φv−φu)
N∑

k=−N

cv,k
(n − N)!2n−N

(2πruα)n−N
Jn−k(2πrv α)ikeikφv = 0.

Taking the limit as n → ∞, (12) tells us that all terms with k < N and v �= u tend
to 0, leaving us with only the k = N term:

cu,N iN eiNφu = 0,

implying that cu,N = 0, a contradiction.
Therefore we conclude that no α can satisfy Equation (7) for every n and hence

by Lemma 3.1, N(P) cannot contain Cα for any plane H that is not orthogonal to
any edge of P. �
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