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Abstract. We study the orthogonal structure and Fourier orthogonal series
on the surface of a paraboloid

V
d+1
0 = {(x, t) : ‖x‖ =

√
t, x ∈ R

d, 0 ≤ t < 1}.
The reproducing kernels of the orthogonal polynomials with respect to tβ(1 − t)γ

on V
d+1
0 are related to the reproducing kernels of the Jacobi polynomials on the

parabolic domain {(x1, x2) : x2
1 ≤ x2 ≤ 1} in R

2. This connection serves as
an essential tool for our study of the Fourier orthogonal series on the surface
of the paraboloid, which allow us, in particular, to study the convergence of the
Cesàro means on the surface. Analogous results are also established for the solid
paraboloid bounded by V

d+1
0 and the hyperplane t = 1.

1 Introduction

The Laplace series, so named the generalized Fourier series in spherical harmonics
on the unit sphere, has been extensively studied. One essential ingredient for under-
standing these series is the addition formula for spherical harmonics, which states
that the reproducing kernel of the orthogonal projection operator from L2(Sd−1)
onto the space of spherical harmonics of degree n can be written as Zn(〈ξ, η〉),
where Zn is a Gegenbauer polynomial of degree n in one variable and 〈ξ, η〉 is
the Euclidean inner product of ξ, η ∈ S

d−1. Because of this closed formula of the
reproducing kernels, much of the study of the Laplace series can be reduced to the
study of the Fourier–Gegenbauer series of one variable [1, 5, 14].

The above narrative turns out to be the prototype for Fourier orthogonal series
domains in higher dimensions. In the past two decades, starting from the addition
formula for classical orthogonal polynomials on the unit ball [21], closed form
formulas for reproducing kernels of orthogonal polynomials have been discovered
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for several regular domains, including the unit ball, regular simplex, cylinder, as
well as the unit sphere with inner product defined by weighted integrals, which
makes study of the Fourier orthogonal series on these domain feasible; see, for
example, [4, 3, 5, 6, 7, 10, 11, 13, 18, 19, 20, 21, 22] and their references. For
unbounded classical domains, we refer to [16] as well as to [2, 17] for references
on more recent works, which however require techniques beyond our narrative.

To step beyond the regular domains, we recently started to analyze orthogonal
structure on quadratic surfaces of revolutions other than the unit sphere as well as
on domains bounded by such quadratic surfaces. Let Vd+1

0 be a quadratic surface
in R

d+1, parametrized in (x, t), x ∈ R
d and t ∈ R, that is a surface of revolution

around the t axis. We consider orthogonal structure defined by the inner product

〈f, g〉 =
∫
Vd+1

0

f (x, t)g(x, t)�(t)dσ(x, t),

where �(t) is a weight function and dσ is the Lebesgue measure of Vd+1
0 . Taking

the cue of spherical harmonics, we look for families of orthogonal polynomials
that share two characteristic properties of spherical harmonics, one is an addition
formula and the other is the existence of a second order partial differential operator
that has orthogonal polynomials as eigenfunctionswith eigenvalues dependingonly
on the degree of the polynomials, which is an analogue of the Laplace–Beltrami
operator on the unit sphere.

In [23] we studied orthogonal polynomials on the surface of the cone

V
d+1
0 = {(x, t) : ‖x‖ = t, 0 ≤ t ≤ b, x ∈ R

d},
where b = 1 or b = ∞. Two families of orthogonal polynomials are identified
as eigenfunctions of a differential operator, the Laguerre polynomials on the cone
with b = +∞ and the Jacobi polynomials on the cone with b = 1. The Jacobi
family is shown to possess an addition formula, which is utilized to carry out
a preliminary study of the Fourier orthogonal series on the surface of the cone.
Moreover, analogous results are also established on the domain bounded by the
surface of the cone, together with the hyperplane t = 1 when b = 1. In [24], we
considered the orthogonal structure on the surface of the hyperboloid

V
d+1
0 = {(x, t) : ‖x‖2 = c2(t2 − �2), x ∈ R

d, � ≤ |t| ≤ b},
where � ≥ 0 and b = 1+� or ∞, which degenerates to the double cone when � = 0.
In this case the weight function � is an even function. We again identified two
families of orthogonal polynomials, the Hermite polynomials on the hyperboloid
with b = ∞ and the Gegenbauer polynomials on the hyperboloid with b = 1 + ρ.
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However, for these two families, only those polynomials that are even in t are
eigenfunctions of a differential operator. Furthermore, the addition formula holds
for the Gegenbauer polynomials on the hyperboloid that are even in t. These
results are used to carry out a study of the Fourier orthogonal series for functions
that are even in t over the hyperboloid in [24], and analogous results are also
established on the domain bounded by the surface of the hyperboloid, together
with the hyperplane t = 1 when b = 1 + �.

In the present paper, we study the orthogonal structure on a paraboloid of
revolution, which turns out to be very different from those on the cone and on the
hyperboloid. We shall consider the surface of a paraboloid, defined by

V
d+1
0 = {(x, t) : ‖x‖ =

√
t, x ∈ R

d, 0 ≤ t ≤ b},

as well as the solid paraboloid V
d+1 bounded by V

d+1
0 and the hyperplane t = b.

For our study, we shall consider only b = 1, or the compact case, since there is not
as much that makes the case b = ∞ standing out for paraboloids.

On the surface of the paraboloid, we consider a family of orthogonal polyno-
mials with respect to the weight function �(t) = tβ(1 − t)γ, which shall be called
the Jacobi polynomials on the paraboloid. These polynomials will be shown to
be eigenfunctions of a second order differential operator but with the eigenvalues
depending on two indices, the degree of the polynomials and another index that de-
pends on the particular orthogonal basis, in contrast to the cone and the hyperboloid
for which the corresponding eigenvalue property is independent of the choice of
orthogonal bases. The Jacobi polynomials on the paraboloid also do not possess
an explicit addition formula. What they do have is a connection to an orthogonal
structure on the parabolic domain U = {(x1, x2) : x2

1 ≤ x2 ≤ 1} in R
2, bounded

by the parabola x2 = x2
1 and the line x2 = 1. A family of orthogonal polynomials

on U, called the Jacobi polynomials on the parabolic domain, was first considered
in [8] and shown to satisfy a product formula in [9]. The latter was used to study
the Fourier orthogonal series in [3], where the essential ingredient is an addition
formula that holds when one argument of the reproducing kernel is at the corner
(1, 1) of the domain. Our essential realization is that the reproducing kernels of
the orthogonal polynomials on the paraboloid can be expressed in terms of the
reproducing kernel on the parabola domain, which provides the tool for studying
the Fourier orthogonal series on the paraboloid. In particular, it allows us to study
the convergence of the Cesàro means of the series. We shall also show that the
connection to the structure on U also extends to the solid paraboloid, which allows
us to carry out our study of the Fourier orthogonal series on the solid paraboloid.
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The paper is organized as follows. In the next section, we review the orthogonal
structure on the parabolic domain, where enough details will be provided to prepare
for their usage in the latter sections. The orthogonal structure and the Fourier series
on the surfaceof the paraboloidwill be discussed in Section 3, and analogous results
on the solid paraboloid will be discussed in Section 4.

2 Orthogonal polynomials on a parabolic domain

As mentioned in the introduction, our development on V
d+1 depends heavily on

what is known on the parabolic domain

U = {x ∈ R
2 : x2

1 ≤ x2 ≤ 1},
bounded by the parabola x2 = x2

1 and the line x2 = 1, which we review in this
section. For a > −1 and b > −1

2 , we define the weight function

Ua,b(x) = (1 − x2)
a(x2 − x2

1)
b− 1

2

on U and consider orthogonal polynomials with respect to the inner product

(2.1) 〈f, g〉U := da,b

∫
U

f (x)g(x)Ua,b(x)dx,

where the normalization constant da,b is chosen so that 〈1, 1〉a,b = 1 and its value
can be verified by writing the integral over U as

(2.2)
∫
U

f (x1, x2)dx1dx2 =
∫ 1

0

∫ 1

−1
f (u

√
x2, x2)

√
x2dudx2.

An orthogonal basis for this inner product was defined in [8] in terms of the Jacobi
polynomials. The Jacobi polynomials P(α,β)

n are defined by

P(α,β)
n (t) =

(α + 1)n
n! 2F1

(
−n, n + α + β + 1

α + 1
;
1 − t

2

)
,

for α, β > −1. They are also orthogonal with respect to the weight function
wα,β(x) := (1 − x)α(1 + x)β,

c′
α,β

∫ 1

−1
P(α,β)

n (t)P(α,β)
m (t)wα,β(t)dt = h(α,β)

n δn,m,

where c′
α,β = 2−α−β−1cα,β with

cα,β :=
�(α + β + 2)

�(α + 1)�(β + 1)
and h(α,β)

n :=
(α + 1)n(β + 1)n(α + β + n + 1)
n!(α + β + 2)n(α + β + 2n + 1)

.(2.3)

In terms of cα,β, the constant da,b in (2.1) is given by da,b = cb− 1
2 ,b− 1

2
cb,a.
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Let Vn(U,Ua,b), n = 0, 1, . . ., be the space of orthogonal polynomials of de-
gree n with respect to the inner product 〈·, ·〉U on the parabolic domain. Then
dimVn(U,Ua,b) = n + 1. The orthogonal basis for Vn(U,Ua,b) given in [8] consists
of polynomials

(2.4) Pa,b
k,n(x1, x2) = P(b+k,a)

n−k (1 − 2x2)x
k
2
2 P

(b− 1
2 ,b− 1

2 )
k

( x1√
x2

)
, 0 ≤ k ≤ n.

Their orthogonality can be verified by using (2.2) and so are their L2 norm. In
particular, in terms of the quantities in (2.3),

(2.5) ha,b
k,n = da,b

∫


|Pa,b
k,n(x)|2Ua,b(x)dx =

cb,a

cb+k,a
h(b+k,a)

n−k h
(b− 1

2 ,b− 1
2 )

k .

The polynomials P(α,β)
k,n satisfy a product formula due to Koornwinder and Schwartz

[9]. The formula is rather complicated and takes the following form:

Theorem 2.1. Let a ≥ b ≥ 0. For x = (x1, x2), y = (y1, y2) ∈ U,

(2.6)
Pa,b

n,k(x1, x2)P
a,b
n,k(y1, y2)

= Pa,b
n,k(1, 1)

∫
[0,1]×[0,π]3

Pa,b
n,k(ξ1(x, y; r, ψ1), ξ2(x, y; r, ψ))dma,b(r, ψ),

where ψ = (ψ1, ψ2, ψ3) and dma,b(r, ψ) is a probability measure given by

dma,b(r, ψ)

= ca,b(1 − r2)a−b−1r2b+1(sinψ3)
2b−1(sinψ2)

2b−1(sinψ1)
2bdrdψ1 dψ2 dψ3.

The complication of the product formula lies in the functions ξ1(x, y; r, ψ1)
and ξ2(x, y; r, ψ), which are explicitly given by fairly involved formulas, and they
satisfy ξ = (ξ1, ξ2) ∈ U. Since we do not need their explicit formulas, we will not
state them here but refer to [9].

For f ∈ L2(U;Ua,b), its Fourier orthogonal series is defined by

f =
∞∑
n=0

projn(Ua,b; f ) with projn(Ua,b; f ) =
n∑

k=0

〈f,Pa,b
k,n〉U

ha,b
k,n

Pa,b
k,n .

The operator projn(Ua,b) : L2(U;Ua,b) �→ Vn(U,Ua,b) is the orthogonal projection
operator, which can be written as an integral

projn(Ua,b; f, x) = da,b

∫
U

f (y)Pn(Ua,b; x, y)Ua,b(y)dy

in terms of the reproducing kernel Pn(Ua,b) of Vn(U,Ua,b). The kernel is uniquely
determined and it satisfies, in terms of the orthogonal basis (2.4),

Pn(Ua,b; x, y) =
n∑

k=0

Pa,b
k,n(x)P

a,b
k,n(y)

ha,b
k,n

.
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The product formula (2.6) leads to a convolution structure, which can be defined
as follows. Let ξ1(x, y; r, ψ1) and ξ2(x, y; r, ψ) be given in (2.6). For g ∈ C(U),
define

(Txg)(y) :=
∫

[0,1]×[0,π]3
g(ξ1(x, y; r, ψ1), ξ2(x, y; r, ψ))dma,b(r, ψ).

The operatorTx is an analogue of the translation operator, since the product formula
can be written as

(2.7) Pa,b
k,n(x)P

a,b
k,n(y) = Pa,b

k,n(1)(TxP
a,b
k,n)(y), 1 = (1, 1).

This generalized translation operator is bounded in the space Lp(U;Uα,b).

Lemma 2.2. Let g ∈ Lp(U;Ua,b), 1 ≤ p < ∞, or g ∈ C(U), p = ∞. Then,
for x ∈ U,

(2.8) ‖Txg‖Lp(U;Ua,b) ≤ ‖g‖Lp(U;Ua,b), 1 ≤ p ≤ ∞,

where the norm is taken as the uniform norm on U when p = ∞.

This is stated and used in [3]. Its proof follows from the product formula.
Indeed, for p = 1, we use |Txg(y)| ≤ Tx(|g|)(y) and expand |g| in its Fourier
orthogonal series over U, then we use the product formula on the Fourier series
of Tx(|g|) and integrate it to obtain, by orthogonality, the identity

‖Tx|g|‖L1(U;Ua,b) = ‖g‖L1(U;Ua,b).

Thus, (2.8) holds for p = 1. The inequality is also trivial for p = ∞. The case
1 < p < ∞ then follows from the Riesz–Thorin theorem.

The boundedness of Txg can be used to study the convergence of the Fourier
orthogonal expansion on U. For p 	= 2, we need to consider a summability method.
We choose the Cesàro (C, δ) means, which can be given in terms of projn(Ua,b; f )
or the partial sum operator Sn(Ua,b; f ) =

∑n
k=0 projk(Ua,b; f ). For the reason that

will become clear later, we choose the latter one. The operator Sn(Ua,b; f ) has the
kernel

Kn(Ua,b; x, y) =
n∑

k=0

Pk(Ua,b; x, y).

For δ > 0, let Kδ
n(Ua,b) denote the kernel for the Cesàro (C, δ) means, which can

be written in terms of Pk(Ua,b) or Km(Ua,b). In particular,

(2.9) Kδ
n(Ua,b; x, y) =

1(n+δ
n

) n∑
m=0

(
n − m + δ − 1

n − m

)
Km(Ua,b; x, y).
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Then the (C, δ) means Sδn(Ua,b; f ) of the Fourier orthogonal series satisfy

Sδn(Ua,b; f ) = da,b

∫
U

f (y)Kδ
n(Ua,b; x, y)Ua,b(y)dy.

Since this is a linear integration operator, a standard argument shows that Sδnf

converges to f in L1(U,Ua,b) norm or in the uniform norm if and only if

(2.10) max
x∈U

‖Kδ
n(Ua,b; x, ·)‖L1(U;Ua,b) = max

x∈U
da,b

∫
U

|Kδ
n(Ua,b; x, y)|Ua,b(y)dy < ∞

uniformly in n. Now, by the definition of Tx, we have

Kδ
n(Ua,b; x, y) = TxKδ

n(Ua,b; 1, ·)(y),
so that it follows from the inequality (2.8) that

(2.11) max
x∈U

‖Kδ
n(Ua,b; x, ·)‖L1(U;Ua,b) ≤ ‖Kδ

n(Ua,b; 1, ·)‖L1(U;Ua,b).

In particular, this shows that the convergence of Sδn(Ua,b; f ) follows from the con-
vergence at the point x = 1 = (1, 1).

More generally, we could define a convolution structure for f, g ∈ L1(U;Ua,b)
by

f ∗U g(x) :=
∫
U

f (y)(Txg)(y)Ua,b(y)dy, x ∈ U.

Since Txg(y) is symmetric in x and y by (2.7), it is not difficult to see that this
convolution is associative and commutative, as can be seen by first considering
polynomials. Furthermore, using (2.8), it follows readily that, for f ∈ Lp(U;Ua,b)
and g ∈ L1(U;Ua,b),

(2.12) ‖f ∗U g‖Lp(U;Ua,b) ≤ ‖f‖Lp(U;Ua,b) ‖g‖L1(U;Ua,b), 1 ≤ p ≤ ∞.

The projection operators projn(Ua,b; f ) and the Cesàro means can be written as

(2.13) projn(Ua,b; f ) = f ∗U Pn(Ua,b; 1, ·), Sδn(Ua,b; f ) = f ∗U Kδ
n(Ua,b; 1, ·),

so that it again follows, by (2.12), that the convergence of Sδn(Ua,b; f ) reduces to
the boundedness of ‖Kδ

n(Ua,b; 1, ·)‖L1(U;Ua,b) of a single point.
It turns out that the kernel Kn(Ua,b; 1, ·) satisfies a closed formula [3].

Theorem 2.3. For a > −1, b > −1
2 and x ∈ U,

Kn(Ua,b; 1, x) =
P(a+b+1,b)

n (1)

h(a+b+1,b)
n

cα+b+1,b

∫ 1

−1
P(a+b+1,b)

n (z(x, t))wa+b+1,b(t)dt,(2.14)

where

z(x, t) = 1 − (1 − t2)(1 − x1) − 1
2
(1 − t)2(1 − x2).
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In particular, let us denote by kδn(wα,β; ·, ·) the kernels of the Cesàro means of
the Jacobi polynomials that are given by

kδn(wα,β; s, t) =
1(n+δ
n

) n∑
k=0

(
n − k + δ

n − k

)
P(α,β)

k (s)P(α,β)
k (t)

h(α,β)
k

,

which are the kernels of the Cesàro (C, δ) means of the Fourier–Jacobi series. Then
(2.14) leads to

(2.15) Kδ
n(Ua,b; 1, x) =

δ

n + δ
cα+b+1,b

∫ 1

−1
kδ−1
n (wa+b+1,b; 1, z(x, t))wa+b+1,b(t)dt.

The identity (2.15) allows us to bound the L1 norm of Kδ
n(Ua,b; 1, x) and, as

a result, obtain the convergence of the (C, δ) means Sδn(Ua,b; f ). The result is the
following theorem established in [3].

Theorem 2.4. Let a ≥ b ≥ 0. Then the Cesàro means of the Fourier orthog-

onal series with respect to Ua,b satisfy:

(1) if δ ≥ a + 2b + 4, then Sδn(Ua,b; f ) is nonnegative if f is nonnegative;
(2) if δ > a + b + 3

2 , then Sδn(Ua,b; f ) converge to f in Lp(U;Ua,b), 1 ≤ p < ∞,

and in C(U).

Remark 2.1. The proof in [3] shows the boundedness of the L1 norm
of Kδ

n(Ua,b; 1, x) for a > −1 and b > −1
2 , so that the convergence of Sδn(Ua,b; f )

at x = 1 holds for δ > a + b + 3
2 without the restriction a ≥ b ≥ 0. The latter

condition is imposed because of the product formula.

The method that we outlined above also applies to other summability methods
of the Fourier orthogonal series on U. In particular, it shows that the convergence
can often be reduced to that at the point x = 1.

3 Orthogonality and Fourier orthogonal series on the
surface of paraboloid

We consider orthogonal structure on the surface of the paraboloid of revolution

V
d+1
0 := {(x, t) : ‖x‖2 = t, 0 ≤ t ≤ 1, x ∈ R

d},

which is compact since its t direction is bounded by 0 ≤ t ≤ 1. For x =
√

tξ,
ξ ∈ S

d−1, we define the measure dσ(x, t) on the surface Vd+1
0 by

dσ(x, t) = t
d−1

2 dσS(ξ)dt,
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where dσS denotes the surface measure of the unit sphere S
d−1. For d ≥ 2,

β > −d+1
2 and γ > −1, we define an inner product on the surface Vd+1

0

〈f, g〉β,γ = bβ,γ

∫
Vd+1

0

f (x, t)g(x, t)�β,γ(t)dσ(x, t),

where the weight function is defined by

�β,γ(t) := tβ(1 − t)γ, 0 ≤ t ≤ 1,

and bβ,γ is the normalization constant given by

bβ,γ =
1
ωd

1∫ 1
0 t

d−1
2 �β,γ(t)dt

=
1
ωd

cβ+ d−1
2 ,γ,

where the constant ca,b is defined in (2.3) and ωd = 2π
d
2 /�( d

2 ) is the surface area
of Sd−1. The value of bβ,γ can be verified by the decomposition of the integral on
the surface of the paraboloid

∫
Vd+1

0

f (x, t)dσ(x, t) =
∫ 1

0

∫
‖x‖2=t

f (x, t)dσ(x, t) =
∫ 1

0
t

d−1
2

∫
Sd−1

f (
√

tξ, t)dσS(ξ)dt.

3.1 Spherical harmonics. In order to understand the orthogonal structure
on the surface of the paraboloid, we first review orthogonal polynomials on the
unit sphere, which are spherical harmonics. A harmonic polynomial of degree n
is a homogeneous polynomial of degree n that satisfies �Y = 0, where � is the
Laplace operator. Its restriction on the unit sphere is called a spherical harmonic.
Let Hd

n denote the space of spherical harmonics of degree n in d variables. It is
known that

dimHd
n =

(
n + d − 1

n

)
−
(

n + d − 3
n − 2

)
.

Spherical harmonics of different degrees are orthogonal on the sphere. For n ∈ N0

let {Yn
� : 1 ≤ � ≤ dimHd

n} be an orthonormal basis of Hd
n in this subsection; then

1
ωd

∫
Sd−1

Yn
� (ξ)Y

m
�′ (ξ)dσS(ξ) = δ�,�′δm,n.

A fundamental property of the spherical harmonics is that they are eigenfunctions
of the Laplace–Beltrami operator�0 [5, (1.4.9)],

(3.1) �0Y = −n(n + d − 2)Y, Y ∈ Hd
n,
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where �0 is the restriction of � on the unit sphere. Another important property
is that they satisfy an addition formula [5, (1.2.3) and (1.2.7)]: for ξ ∈ S

d−1

and η ∈ S
d−1,

(3.2)
dimHd

n∑
�=1

Yn
� (ξ)Y

n
� (η) = Z

d−2
2

n (〈ξ, η〉), Zλn (t) =
n + λ
λ

Cλn(t),

where Cλn is the Gegenbauer polynomial of degree n that satisfies

cλ

∫ 1

−1
Cλn(t)C

λ
m(t)(1 − t2)λ−

1
2 dt =

λ

n + λ
Cλn(1)δm,n,

where Cλn(1) = (2λ)n/n! and cλ is the constant determined by

(3.3) cλ =
(∫ 1

−1
(1 − t2)λ−

1
2 dt
)−1

=
�(λ + 1)

�( 1
2)�(λ + 1

2)
.

The left-hand side of (3.2) is the reproducing kernel of Hd
n and the kernel of the

projection operator projn : L2(Sd−1) → Hd
n:

projn f (ξ) =
1
ωd

∫
Sd−1

f (y)Pn(ξ, η)dσS(η), Pn(ξ, η) =
dimHd

n∑
�=1

Yn
� (ξ)Y

n
� (η).

Thus, the product formula shows that projn f , hence the Fourier series on the sphere
defined by

L2(Sd−1) =
∞⊕
n=0

Hd
n : f =

∞∑
n=0

projn f,

has a one-dimensional structure that can be used to reduce a large portion of the
Fourier analysis on the sphere to that of the Fourier–Gegenbauer series (e.g., [5]).

3.2 Orthogonal structure on the surface of the paraboloid. The
space of polynomials on V

d+1
0 is the restriction of polynomials in (x, t) variables

on the surface Vd+1
0 , determined by replacing every presence of ‖x‖2 with t. In

particular, the space of polynomials of degree at most n on V
d+1
0 is the direct sum

of tjHd
k for 0 ≤ j + k ≤ n, where Hd

n is the space of solid spherical harmonics in x

variables.
For n = 0, 1, 2, . . . , let Vn(Vd+1

0 ,�β,γ) be the space of orthogonal polynomials
of degree n with respect to the inner product 〈·, ·〉β,γ on the surfaceVd+1

0 . SinceVd+1
0

is a quadratic surface, the dimension of Vn(Vd+1
0 ,�β,γ) is equal to that of Hd+1

n as
established in [12, Cor. 4.2], that is,

dimVn(V
d+1
0 ,�β,γ) =

(
n + d

n

)
−
(

n + d − 2
n − 2

)
.
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Anorthogonal basis ofVn(Vd+1
0 ,�β,γ) can be given in terms of the Jacobi polynomi-

als and spherical harmonics [12]. We also need norms of the elements in this basis.

Proposition 3.1. Let β>−d+1
2 and γ>−1. Let {Ym

� : 1≤�≤dimHd
m} be an

orthonormal basis of Hd
m. For 0 ≤ m ≤ n, define

(3.4) Qn
m,�(x, t) = P

(β+m+ d−1
2 ,γ)

n−m (1 − 2t)t
m
2 Ym

�

( x√
t

)
.

Then {Qn
m,� : 0≤m≤n, 1≤�≤dimHd

m} is an orthogonal basis of Vn(Vd+1
0 ,�β,γ).

Moreover, the norm square of Qn
m,� is given by

(3.5) hβ,γm,n = 〈Qn
m,�,Qn

m,�〉β,γ =
cβ+ d−1

2 ,γ

cm+β+ d−1
2 ,γ

h
(m+β+ d−1

2 ,γ)
n−m .

Proof. A simple combinatorial identity shows that the cardinality of

{(m, �) : 0 ≤ m ≤ n, 1 ≤ � ≤ dimHd
m}

is equal to dimVn(Vd+1
0 ,�β,γ), so we only need to verify the orthogonality.

Since Ym
� is homogeneous of degree m, the polynomial Qn

m,� is of total degree n

in (x, t) variables. Let α = β + d−1
2 . Setting ξ = x/

√
t, we obtain

bβ,γ

∫
Vd+1

0

Qn
m,�(x, t)Q

n′
m′,�′(x, t)�β,γ(t)dσ(x, t)

=
1
ωd

∫
Sd−1

Ym
� (ξ)Ym′

�′ (ξ)dσS(ξ)

× cα,γ

∫ 1

0
P(m+α,γ)

n−m (1 − 2t)P(m′+α,γ)
n′−m′ (1 − 2t)t

m+m′
2 +α(1 − t)γdt.

Since Ym
� are orthonormal, the orthogonality of Qn

m,� follows from that of the Jacobi
polynomials in the identity, and so is the formula for hβ,γm,n. �

In an analog of spherical harmonics, we have shown in [23, 24] that on the
surface of the cone and the hyperboloid, orthogonal polynomials of degree n or
those that are even in the t variable and of degree n are eigenfunctions of a second
order differential operator with eigenvalues depending only on n. This important
property, however, does not hold for the paraboloid. The best we can do is the
following proposition.

Proposition 3.2. Let β = −1
2 and γ > −1. Then Qn

m,� in (3.4) satisfies the

differential equation

(3.6)

[
t(1 − t)∂2

t +
(d

2
−
(
γ +

d
2

+ 1
)
t
)
∂t +

1 − t
4t

�(ξ)
0

]
y

= −
(
n
(
n + γ +

d
2

)
− m

(
n +

γ + d − 1
2

))
y,

where�(ξ)
0 is the Laplace–Beltrami operator acting on ξ = x/

√
t ∈ Sd−1.
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Proof. Let fn,m(t) = P(m+α,γ)
n−m (1 − 2t)t

m
2 and α = β + d−1

2 , so that

Qn
m,�(x, t) = fn,m(t)Ym

� (ξ),

where ξ = x/
√

t. Since the Jacobi polynomial P(α,γ)
n (1−2t) satisfies the differential

equation

(3.7) t(1 − t)y′′ + (1 + α− (α + γ + 2)t)y′ + n(n + α + γ + 1)y = 0,

a straightforward computation shows that fn,m satisfies

t(1 − t)f ′′
n,m(t) + (1 + α−(2 + α + γ)t)f ′

n,m(t) − m(m + 2α)
1 − t
4t

fn,m(t)

= −
(
n(n + α + γ + 1) − 1

2
m(2n + 2α + γ)

)
fn,m(t).

For β = − 1
2 , we have 2α = d − 2, so that −m(m + 2α) is the eigenvalue of the

Laplace–Beltrami operator �(ξ)
0 . Hence, multiplying the above identity by Ym

� (ξ)
and replacing −m(m + 2α)Ym

� by �(ξ)
0 Ym

� , we have proved (3.6). �

Remark 3.1. The right-hand side of (3.6) depends on m so that Qn
m,� is the

eigenfunction of the operator in the left-hand side of (3.6) where the eigenvalue
depends on both m and n. This is in sharp contrast with the orthogonal structure
on the cone and on the hyperboloid, for which the eigenvalue depends only on the
degree of the orthogonal polynomials.

The reproducing kernel of Vn(Vd+1
0 ,�β,γ) is defined by

Pn(�β,γ; (x, t), (y, s)) =
n∑

m=0

dimHd
m∑

�=1

Qn
m,�(x, t)Q

n
m,�(y, s)

hβ,γm,n

,

which is the kernel of the orthogonal projection operator projn(�β,γ) from the
space L2(Vd+1

0 ;�β,γ) onto Vn(Vd+1
0 ;�β,γ). In contrast to the cone and to the hyper-

boloid, this kernel does not satisfy an addition formula that is of a closed formula
one-dimensional in essence. Instead, however, we can express this kernel in terms
of the reproducing kernel Pn(Ua,b; ·, ·) on the parabola domain U.

Theorem 3.3. Let d ≥ 2 and γ > −1. Let (x, t) = (
√

tξ, t) ∈ V
d+1
0

and (y, s) = (
√

sη, s) ∈ Vd+1
0 with ξ, η ∈ Sd−1. Then for β > −1

2 ,

(3.8)

Pn(�β,γ; (x, t), (y, s))

= c d−2
2 ,β− 1

2
cβ+ 1

2

×
∫ 1

−1

∫ 1

−1
Pn

(
Uγ,β+ d−1

2
; (
√

t, t),
(√

s
(1 − z1

2
〈ξ, η〉 +

1 + z1

2
z2

)
, s
))

× (1 − z1)
d−2

2 (1 + z1)
β− 1

2 (1 − z2
2)
βdz1dz2,
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and for β = − 1
2 ,

Pn(�− 1
2 ,γ

; (x, t), (y, s)) = Pn(Uγ, d−2
2

; (
√

t, t), (〈ξ, y〉, s)).(3.9)

Proof. First we note that the right-hand side of (3.8) is well defined. Indeed,
since |〈ξ, η〉| ≤ 1 and −1 ≤ z1, z2 ≤ 1, we see that |√s( 1−z1

2 〈ξ, η〉 + 1+z1
2 z2)| ≤ √

s,
so both variables in Pn(Uγ,β+ d−1

2
) are elements of U.

We first need to specify the reproducing kernel Pn(Ua,b) on U when one of
its variables is on the curved boundary of U. Using the well-known identity [15,
(4.7.1)]

P
(b− 1

2 ,b− 1
2 )

m (1)P
(b− 1

2 ,b− 1
2 )

m (ρ)

h
(b− 1

2 ,b− 1
2 )

m

=
Cb

m(1)Cb
m(ρ)

hb
m

= Zb
m(ρ),

it follows from (2.4) and (2.5) that

(3.10)

Pn(Ua,b;(
√

x2, x2), (y1, y2))

=
n∑

m=0

Pa,b
m,n(

√
x2, x2)Pa,b

m,n(y1, y2)

ha,b
m,n

=
n∑

m=0

cb+m,a

cb,a

P(b+m,a)
n−m (1 − 2x2)P(b+m,a)

n−m (1 − 2y2)

h(b+m,a)
n−m

x
m
2
2 y

m
2
2 Zb

m

( y1√
y2

)
.

In terms of the orthogonal basis (3.4) and using the addition formula (3.2) for the
spherical harmonics, we obtain, with α = β + d−1

2 ,

Pn(�β,γ; (x, t), (y, s)) =
n∑

m=0

P(α+m,γ)
n−m (1 − 2t)P(α+m,γ)

n−m (1 − 2s)

hβ,γm,n

t
m
2 s

m
2 Z

d−2
2

m (〈ξ, η〉),

where ξ = x√
t
∈ S

d−1 and η = y√
s ∈ S

d−1. For β = −1
2 , the sum in the right-hand

side can be identified, using (3.5), with Pn(Uγ, d−2
2

) in (3.10) by setting x2 = t, y2 = s

and y1 =
√

s〈ξ, η〉, which proves (3.9).
For β > −1

2 , we need to increase the value of the index in the zonal harmonic
by using the following identity, proved recently in [22]:

(3.11)
Zλm(t) = cλ,σ−1cσ

∫ 1

−1

∫ 1

−1
Zλ+σm

(1 − z1

2
t +

1 + z1

2
z2

)
× (1 − z1)

λ(1 + z1)
σ−1(1 − z2

2)
σ− 1

2 dz1dz2

with λ = d−2
2 and σ = β + 1

2 . This shows that

Pn(�β,γ; (x, t), (y, s))

= c d−2
2 ,β− 1

2
cβ+ 1

2

∫ 1

−1

∫ 1

−1

n∑
m=0

P(α+m,γ)
n−m (1 − 2t)P(α+m,γ)

n−m (1 − 2s)

hβ,γm,n

× t
m
2 s

m
2 Zαm

(1 − z1

2
〈ξ, η〉 +

1 + z1

2
z2

)
(1 − z1)

d−2
2 (1 + z1)

β− 1
2 (1 − z2

2)
βdz1dz2.
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The sum in the right-hand side can be identified, using (3.5), with the reproducing
kernel Pn(Uγ,β+ d−1

2
) in (3.10), which gives (3.8). �

The identity (3.9) for β = − 1
2 can be regarded as the limit of (3.8) as β → −1

2

by using the limit relation (4.3).
The kernel Pn(�β,γ), however, does not satisfy a closed formula in general. In

the case that (x, t) is on the boundary t = 1 of the paraboloid V
d+1
0 , however, we

could derive a closed form formula for the kernel of the partial sum operator

Kn(�β,γ, (x, t), (y, s)) =
n∑

m=0

Pm(�β,γ; (x, t), (y, s))

on the paraboloid by using the closed formula of Kn(Ua,b; 1, ·) in Theorem 2.3. We
state the result for β = −1

2 as an example.

Corollary 3.4. Let d ≥ 2 and γ > −1. Then, for ξ ∈ S
d−1,

Kn(�− 1
2 ,γ

;(ξ, 1), (y, s))

=
P

(γ+ d
2 ,

d−2
2 )

n (1)

h
(γ+ d

2 ,
d−2

2 )
n

cγ+ d
2 ,

d−2
2

∫ 1

−1
P

(γ+ d
2 ,

d−2
2 )

n (z′(ξ, y, v))wγ+ d
2 ,

d−2
2

(v) dv,

where, with y =
√

sη,

z′(ξ, y, v) = z((〈ξ, η〉, s), v) = 1 − (1 − v 2)(1 − 〈ξ, y〉) − 1
2
(1 − v)2(1 − s).

This is a corollary of (3.9) and (2.14). Similarly, using (3.8) and (2.14), we can
derive an explicit formula for β > − 1

2 , which is however more involved.

3.3 Summability of Fourier orthogonal series. Let projn(�β,γ) be the
orthogonal projection operator

projn(�β,γ) : L2(Vd+1
0 ;�β,γ) �→ Vn(V

d+1
0 ,�β,γ).

In terms of the reproducing kernel Pn(�β,γ) of Vn(Vd+1
0 ,�β,γ), we have

projn(�β,γ; f ) = bβ,γ

∫
Vd+1

0

f (y, s)Pn(�β,γ; (x, t), (y, s))�β,γ(s)dσ(y, s).

For f ∈ L2(Vd+1
0 ;�β,γ), the Fourier orthogonal series of f on V

d+1
0 is defined by

f =
∞∑
n=0

projn(�β,γ; f ).
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Below we study the summability of this Fourier orthogonal series. We start
with a definition. Recall that U denotes the domain bounded by the parabolic
x2 = x2

1 and x2 = 1 in R
2. We further denote by U0 the curved portion of the

boundary of U,

U0 := {(x1, x2) ∈ U : x2 = x2
1}.

Definition 3.5. Let β ≥ −1
2 and γ > −1. Let g : U0 × U �→ R such

that, for each t ∈ [0, 1], the function x �→ g((
√

t, t); x) is in L1(U;Uγ,α). For
(x, t) = (

√
tξ, t) ∈ V

d+1
0 and (y, s) = (

√
sη, s) ∈ V

d+1
0 , define for β > − 1

2

Tβ,γg((x, t), (y, s))

:= c d−2
2 ,β− 1

2
cβ+ 1

2

∫ 1

−1

∫ 1

−1
g
(
(
√

t, t),
(√

s
(1 − z1

2
〈ξ, η〉 +

1 + z1

2
z2

)
, s
))

× (1 − z1)
d−2
2 (1 + z1)

β− 1
2 (1 − z2

2)
βdz

and, furthermore, define for β = − 1
2

T− 1
2 ,γ

g((x, t), (y, s)) := g((
√

t, t), (〈ξ, y〉, s)).

The definition of Tβ,γ is motivated by the relation, by (3.8) and (3.9),

(3.12) Pn(�β,γ; (x, t), (y, s)) = Tβ,γPn(Uγ,β+ d−1
2

)((x, t), (y, s)).

For each fixed (x, t) ∈ Vd+1
0 , this is a bounded operator as seen below.

Proposition 3.6. Let β ≥ − 1
2 and γ > −1. Let g : U0 ×U �→ R such that, for

each t ∈ [0, 1], the function g((
√

t, t); ·) is in L1(U;Uγ,α) with α = β + d−1
2 . Then,

for (x, t) ∈ V
d+1
0 ,

(3.13)
∫
Vd+1

0

|Tβ,γg((x, t), (y, s))|�β,γ(s)dσ(y, s) ≤ c
∫
U

|g((
√

t, t), z)|Uγ,α(z)dz.

Proof. Let G(z) = g((t,
√

t), z) for z ∈ U in this proof. We first consider the
case β = −1

2 . Using the well-known integral relation

(3.14)
1
ωd

∫
Sd−1

f (〈ξ, η〉)dσ(ξ) = c d−2
2

∫ 1

−1
f (u)(1 − u2)

d−3
2 du
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we obtain, setting y =
√

s η with η ∈ S
d−1, that

b− 1
2 ,γ

∫
Vd+1

|T− 1
2 ,γ

g((x, t), (y, s))|�− 1
2 ,γ

(s)dσ(y, s)

= b− 1
2 ,γ

∫ 1

0
s

d−1
2

∫
Sd−1

|G(
√

s 〈ξ, η〉, s)|�− 1
2 ,γ

(s)dσ(ξ)ds

= b− 1
2 ,γ

c d−2
2
ωd

∫ 1

0

∫ 1

−1
|G(

√
s u, s)|(1 − u2)

d−3
2 du s

d−2
2 (1 − s)γds

= dγ, d−2
2

∫
U

|G(z)|(z2 − z2
1)

d−3
2 (1 − z2)

γdz,

where we have used (2.2) in the last step, and the constant can be verified simply
by the fact that if g = 1, then Tβ,γg = 1. In particular, this shows that the inequality
(3.13) is in fact an identity for β = −1

2 .
We now consider the case β > −1

2 . Using (3.14), we obtain∫
Vd+1

0

|Tβ,γg((x, t), (y, s))|�β,γ(s)dσ(y, s)

≤ c
∫ 1

0

∫ 1

−1

∫ 1

−1

∫ 1

−1

∣∣∣G(√s
(1 − z1

2
u +

1 + z1

2
z2

)
, s
)∣∣∣

× (1 − z1)
d−2
2 (1 + z1)

β− 1
2 (1 − z2

2)
β(1 − u2)

d−3
2 sβ+

d−1
2 (1 − s)γdzduds,

where c = ωdc d−2
2

c d−2
2 ,β− 1

2
cβ+ 1

2
. Making a change of variables z1 �→ y with

y =
1 − z1

2
u +

1 + z1

2
z2

and dividing the integral over dudz2 on [−1, 1]2 into two integrals over the triangles
{(u, z2) ∈ [−1, 1]2 : u ≥ z2} and {(u, z2) ∈ [−1, 1]2 : u < z2}, respectively, we can
write the triple integral against dudz as a sum of two integrals:

2β+
d−1

2

∫ 1

−1

∫ 1

u

∫ z2

u
|G(

√
sy, s)|(z2 − y)

d−2
2 (y − u)β−

1
2 dy

(1 − z2
2)
β(1 − u2)

d−3
2

(z2 − u)β+
d−1
2

dz2du

+2β+
d−1

2

∫ 1

−1

∫ u

−1

∫ u

z2

|G(
√

sy, s)|(y − z2)
d−2

2 (u − y)β−
1
2 dy

(1 − z2
2)
β(1 − u2)

d−3
2

(u − z2)β+
d−1

2

dz2du.

Changing the order of integrals in both terms, we see that this sum is equal to

2β+
d−1

2

∫ 1

−1
|G(

√
sy, s)|

[ ∫ y

−1

∫ 1

y
(z2 − y)

d−2
2 (y − u)β−

1
2
(1 − z2

2)
β(1 − u2)

d−3
2

(z2 − u)β+
d−1

2

dz2du

+
∫ 1

y

∫ y

−1
(y − z2)

d−2
2 (u − y)β−

1
2
(1 − z2

2)
β(1 − u2)

d−3
2

(u − z2)β+
d−1

2

dz2du
]
dy.
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Making a change of variables (u, z2) �→ (v1, v2) with v1 = (z2 − y)/(1 − y)
and v2 = (y−u)/(1+y) in the first double integral in the square bracket, and a change
of variables (u, z2) �→ (v1, v2) with v1 = (y− z2)/(1 + y) and v2 = (u− y)/(1− y) in
the second double integral in the square bracket, we see that the expression in the
above square bracket is equal to

(1 − y2)β+
d−2

2

[
(1 − y)

∫ 1

0

∫ 1

0

(1 + y + (1 − y)v1)β(1 − y + (1 + y)v2)
d−3
2

((1 − y)v1 + (1 + y)v2)β+
d−1

2

× v
d−2

2
1 v

β− 1
2

2 (1 − v1)
β(1 − v2)

d−3
2 dv1dv2

+ (1 + y)
∫ 1

0

∫ 1

0

(1 − y + (1 + y)v1)β(1 + y + (1 − y)v2)
d−3
2

((1 + y)v1 + (1 − y)v2)β+
d−1

2

× v
d−2

2
1 v

β− 1
2

2 (1 − v1)
β(1 − v2)

d−3
2 dv1dv2

]
dy.

Since 0 ≤ v1, v2 ≤ 1 and 1± y ≥ 0, it follows that (1− y)v1 ≤ (1− y)v1 + (1+ y)v2,

v2(1 + y + (1 − y)v1)
((1 − y)v1 + (1 + y)v2)

≤ 1 and
v1(1 − y + (1 + y)v2)

((1 − y)v1 + (1 + y)v2)
≤ 1,

which implies that the first term in the square bracket is bounded by

∫ 1

0

∫ 1

0
v

− 1
2

1 v
− 1

2
2 (1 − v1)

β(1 − v2)
d−3
2 dv1dv2 =

π�(β + 1)�( d−1
2 )

�(β + 3
2)�( d

2 )
.

Similarly, it is easy to see that the same bound holds for the second term in the
square bracket. Putting all these estimates together, we conclude that∫

Vd+1
0

|Tβ,γg((x, t), (y, s))|�β,γ(s)dσ(y, s)

≤ c
∫ 1

0

∫ 1

−1
|G(

√
sy, s)|(1 − y2)β+

d−2
2 sβ+

d−1
2 (1 − s)γdyds

= c
∫
U

|G(z1, z2)|Uγ,β+ d−1
2

(z1, z2)dz,

where the last step follows from (2.2). This completes the proof. �

Definition 3.7. Let β ≥ −1
2 and γ > −1. Let g : U0 × U �→ R such

that, for each t ∈ [0, 1], the function x �→ g((
√

t, t); x) is in L1(U;Uγ,,β+ d−1
2

). For
f ∈ L1(Vd+1

0 ;�β,γ) and (y, s) ∈ V
d+1
0 , define

(f ∗V0 g)(y, s) = bβ,γ

∫
Vd+1

0

f (x, t)Tβ,γg((x, t), (y, s))�β,γ(t)dσ(x, t).
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The operator Tβ,γ plays the role of a translation in the definition of the pseudo
convolution f∗V0g. By (3.12), it follows that the project operator ontoVn(Vd+1

0 ,�β,γ)
satisfies

projn(�β,g; f ) = f ∗V0 Pn(Uγ,β+ d−1
2

).

Proposition 3.8. Let β≥− 1
2 and γ>−1. For f ∈Lp(Vd+1

0 ;�β,γ), 1≤p<∞,
and f ∈ C(Vd+1

0 ) for p = ∞,

‖f ∗V0 g‖Lp(Vd+1
0 ;�β,γ) ≤ c‖f‖Lp(Vd+1

0 ;�β,γ) max
t∈[0,1]

∫
U

|g((
√

t, t), z)|Uγ,β+ d−1
2

(z)dz.

Proof. By the Minkowski inequality, we obtain

‖f ∗V0 g‖Lp(Vd+1
0 ;�β,γ) ≤ ‖f‖Lp(Vd+1

0 ;�β,γ)bβ,γ

∫
U

|Tβ,γg((x, t), (y, s))|�β,γ(s)dσ(y, s).

Applying the inequality (3.13) on the integral on the right-hand side, the stated
inequality follows readily by taking the maximum over t. �

The boundedness of the pseudo convolution can be used to study the conver-
gence of the Fourier orthogonal series on the surface of the paraboloid. As in
the case of the previous section, we consider the Cesàro means. For δ > −1, let
Kδn(�β,γ; (x, t), (y, s)) be the kernel of the Cesàro means Sδn(�β,γ; f ), which can be
written in terms of the reproducing kernel Pn(�β,g) analogously to (2.9), and it
satisfies, by (3.12), that

(3.15) Kδn(�β,γ; (x, t), (y, s)) = Tβ,γKδ
n(Uγ,β+ d−1

2
)((x, t), (y, s)).

In terms of the pseudo convolution, we can write

Sδn(�β,γ; f, (x, t)) = f ∗V0 Kδ
n(Uγ,β+ d−1

2
)(x, t).

Theorem 3.9. Let d ≥ 2, β ≥ −1
2 and γ > −1. If f ∈ C(Vd+1

0 ), then
Sδn(�β,γ; f, (ξ, 1)) converges to f (ξ, 1) uniformly for ξ ∈ S

d−1 provided

δ > β + γ +
d + 2

2
.

Proof. The convergence of Sδn(�β,γ; f, (ξ, 1)) holds if and only if

sup
ξ∈Sd−1

∫
Vd+1

0

|Kδn(�β,γ; (ξ, 1), (y, s))|�β,γ(s)dσ(y, s)

is bounded uniformly in n. By (3.15) and the inequality (3.13), this is bounded by∫
U

|Kδ
n(Uγ,β+ d−1

2
; 1, z)|Uγ,β+ d−1

2
(z)dz.

For δ > γ + β + d−1
2 + 3

2 , the last integral is bounded uniformly in n by Theorem
2.4 and by Remark 2.1. �
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Theorem 3.10. Let d ≥ 2, γ ≥ β + d−1
2 and β ≥ − 1

2 . Let f ∈ Lp(Vd+1
0 ,�β,γ)

for 1 ≤ p < ∞ and f ∈ C(Vd+1
0 ) for p = ∞. Then the Cesàro means Sδn(�β,γ; f )

satisfy:

(1) if δ ≥ 2β + γ + d + 3, then Sδn(�β,g; f ) is nonnegative if f is nonnegative;
(2) if δ > β + γ + d+2

2 , then Sδn(�β,g; f ) converges to f in Lp(Vd+1
0 ;�β,γ),

1 ≤ p <∞, and in C(Vd+1
0 ).

Proof. The positivity of Sδn(�β,γ; f, ) follows from the positivity of its
kernel. Hence, the first item is a consequence of (3.15) and the positivity
of Tβ,γKδ

n(Uγ,β+ d−1
2

), where the latter follows from the positivity of Kδ
n(Uγ,β+ d−1

2
),

which in turn follows from the definition of Tβ,γ and Theorem 2.4; the last the-
orem requires a ≥ b ≥ 0 in Ua,b, which is satisfied in our case by the assump-
tion γ ≥ β + d−1

2 and β ≥ − 1
2 .

For the second item, it suffices to show that Lp norm of Sδn(�β,g; f ) is uniformly
bounded. By Proposition 3.8, it is sufficient to show that

max
t∈[0,1]

∫
U

|Kδ
n(Uγ,β+ d−1

2
; (
√

t, t), z)|Uγ,β+ d−1
2

(z)dz

is bounded uniformly in n when δ > γ + β + d−1
2 + 3

2 . This follows immediately
from (2.11) and Theorem 2.4. �

4 Orthogonality and Fourier orthogonal series on the
solid paraboloid

We consider orthogonal structure on the solid paraboloid of revolution

V
d+1 := {(x, t) : ‖x‖2 ≤ t, 0 ≤ t ≤ 1, x ∈ R

d},
which is bounded by the surface V

d+1
0 and the hyperplane t = 1 of R

d+1. The
t-section of the domain, {x : ‖x‖ ≤ √

t}, is the ball of radius
√

t in Rd. W review
the orthogonal structure on the unit ball first.

4.1 Classical orthogonal polynomials on the unit ball. For μ > − 1
2 ,

let�μ be the weight function

�μ(x) := (1 − ‖x‖2)μ− 1
2 , ‖x‖ < 1.

The classical orthogonal polynomials on the unit ball are orthogonal with respect
to the inner product

〈f, g〉μ = bμ

∫
Bd

f (x)g(x)�μ(x)dx with bμ =
�(μ + d+1

2 )

π
d
2�(μ + 1

2)
,

where bμ is the normalization constant of�μ so that 〈1, 1〉 = 1.
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Let Vn(Bd,�μ) be the space of orthogonal polynomials of degree n with respect
to �μ. Then dimVn(Bd,�μ) =

(n+d−1
n

)
. An orthogonal basis of Vn(Bd,�) can be

given in terms of the Jacobi polynomials or spherical harmonics, see [6, Chapter 5],
which we shall call the basis with parity since its elements are polynomials that
are even in each of its variables if n is even and odd in each of its variables if n is
odd. The orthogonal polynomials of degree n are eigenfunctions of a second order
differential operator: for u ∈ Vn(Bd,�μ),

(4.1) (�− 〈x,∇〉2 − (2μ + d − 1)〈x,∇〉)u = −n(n + 2μ + d − 1)u.

Furthermore, these polynomials also satisfy an addition formula. Let Pn(�μ; ·, ·)
be the reproducing kernel of the space Vn(Bd,�μ). In terms of an orthonormal
basis {Pn

k : |k| = n} of Vn(Bd,�μ), the kernel can be written as

Pn(�μ; x, y) =
∑
|k|=n

Pn
k(x)P

n
k(y).

The addition formula on the unit ball states [21], for μ ≥ 0,

(4.2)
Pn(�μ; x, y) = cμ− 1

2

∫ 1

−1
Z
μ+ d−1

2
n (〈x, y〉 + t

√
1 − ‖x‖2

√
1 − ‖y‖2)

× (1 − t2)μ−1dt,

where the identity holds for μ = 0 under the limit

(4.3) lim
μ→0

cμ− 1
2

∫ 1

−1
f (t)(1 − t2)μ−1dt =

f (1) + f (−1)
2

.

4.2 Orthogonal structure of the solid paraboloid. For β > −d+1
2 ,

γ > −1 and μ > −1
2 , we define a weight function Wβ,γ,μ on Vd+1,

Wβ,γ,μ(x, t) := tβ(1 − t)γ(t − ‖x‖2)μ− 1
2 , (x, t) ∈ V

d+1.

With respect to this weight function, we define an inner product

〈f, g〉β,γ,μ = bβ,γ,μ
∫
Vd+1

f (x, t)g(x, t)Wβ,γ,μ(x, t)dxdt,

where bβ,γ,μ = bμcβ+μ+ d−1
2 ,γ with bμ the normalization constant of �μ on the unit

ball and cα,γ is defined in (2.3). The weight function Wβ,γ,μ can be written as

(4.4) Wβ,γ,μ(x, t) = tβ+μ− 1
2 (1 − t)γ(1 − ‖x′‖2)μ− 1

2 , with x′ =
x√
t

∈ B
d.

Hence, the value of the constant bβ,γ,μ can be verified by using the identity∫
Vd+1

f (x, t)dxdt =
∫ 1

0

∫
‖x‖2≤t

f (x, t)dxdt =
∫ 1

0
t

d
2

∫
Bd

f (
√

ty, t)dydt.
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For n = 0, 1, 2, . . . , let Vn(Vd+1,Wβ,γ,μ) denote the space of orthogonal poly-
nomials of degree n in (x, t) variables with respect to the inner product 〈·, ·〉β,γ,μ
on the paraboloid. Then dimVn(Vd+1,Wβ,γ,μ) =

(n+d
n

)
. An orthogonal basis of this

space can be given in terms of the Jacobi polynomials and the classical orthogonal
polynomials on the unit ball [12]. We will also need the norms of these orthogonal
polynomials.

Proposition 4.1. Let β > −d+1
2 and γ > −1. Let {Pm

k : |k| = m, k ∈ N
d
0}

denote an orthonormal basis with parity of Vd
m(Bd,�μ). For 0 ≤ m ≤ n, define

(4.5) Qn
m,k(x, t) = P

(m+β+μ+ d−1
2 ,γ)

n−m (1 − 2t)t
m
2 Pm

k

( x√
t

)
, |k| = m, 0 ≤ m ≤ n.

Then {Qn
m,k : |k|=m, 0≤m≤n, k∈Nd

0} is an orthogonal basis of Vn(Vd+1,Wβ,γ,μ).
Moreover, the norm square of Qn

m,� is given by

(4.6) hβ,γ,μm,n = 〈Qn
m,k,Qn

m,k〉β,γ,μ =
cβ+μ+ d−1

2 ,γ

cm+β+μ+ d−1
2 ,γ

h
(m+β+μ+ d−1

2 ,γ)
n−m .

Proof. Using the parity of Pm
k , it is not difficult to see that Qn

m,k is a polynomial
of degree n in (x, t) variables. Let α = β + μ + d−1

2 . Setting y = x/
√

t ∈ B
d, we

obtain

bβ,γ,μ
∫
Vd+1

Qn
m,k(x, t)Q

n′
m′,k′(x, t)Wβ,γ,μ(x, t)dxdt = bμ

∫
Bd

Pm
k (y)Pm′

k′ (y)�μ(y)dy

× cα,γ

∫ 1

0
P(m+α,γ)

n−m (1 − 2t)P(m′+α,γ)
n′−m′ (1 − 2t)t

m+m′
2 +α(1 − t)γdt.

SincePm
k are orthonormal, it follows that the second integral in the right-hand side is

non-zero only when m = m′, from which the orthogonality of Qn
m,k and the formula

for hβ,γ,μm,n follow from the corresponding properties of the Jacobi polynomials. �
We know that orthogonal polynomials on the solid cone and hyperboloid are

eigenfunctions of a second order linear differential operator with the eigenvalues
depending only on the degree of the polynomials [23, 24]. In particular, this means
that all polynomials of degree n are eigenfunctions independent of the choice of
bases. In contrast, the orthogonal polynomials on the solid paraboloid, as those on
the surface of the paraboloid, do not possess this property. For polynomials Qn

m,k,
we can find a differential operator for which the eigenvalues depend on n and m but
not on k, as seen in the following analog of Proposition 3.2, wherewe assumeβ = 0.
The latter assumption is consistent with β = − 1

2 in Proposition 3.2 because Wβ,γ,μ

contains the factor tβ+μ− 1
2 when writing in the form (4.4) and, for μ = 0, �0 is

the Chebyshev weight function on the unit ball, or the projection of the surface
measure of Sd onto Bd.
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Proposition 4.2. Let β = 0, γ > −1 andμ > − 1
2 . Then Qn

m,k in (4.5) satisfies

the differential equation

(4.7)

[
t(1 − t)∂2

t + (1 − t)〈x,∇x〉∂t +
1
4
(1 − t)�x

+
(
μ +

d + 1
2

)
(1 − t)∂t − γ + 1

2
(2t∂t + 〈x,∇x〉)

]
u

= −
(
n(n + μ + γ +

d + 1
2

) − m
(
n + μ +

γ + d
2

))
u.

Proof. Let α = β+μ+ d−1
2 . Set g(t) = P(m+α,γ)

n−m (1−2t) and H(x, t) = t
m
2 Pm

k ( x√
t
),

so that Qn
m,k(x, t) = g(t)H(x, t). Since H(x, s2) is a homogeneous polynomial of

degree m in (x, s) and, for t = s2, 2
√

t ∂
∂t = ∂

∂s , it follows by Euler’s formula for
homogenous polynomials that

(4.8)
(
2t
∂

∂t
+ 〈x,∇x〉

)
H = mH.

Furthermore, since
√

t ∂
∂tH(x, t) = ∂

∂sH(x, s2) is a homogeneous polynomial of de-
gree m − 1 in (x, s2), applying (4.8) on

√
t ∂
∂tH and simplifying gives

(4.9) 2t
∂2H
∂t2

+ 〈x,∇x〉∂H
∂t

= (m − 2)
∂H
∂t
.

Let u = Qn
m,k. Then u = g(t)H(x, t). Taking the derivative by the chain rule, a

straightforward computation, using (4.8) once, shows that

t(1 − t)∂ttu + (1 − t)〈x,∇x〉∂tu =(t(1 − t)g′′(t) + m(1 − t)g′(t))H

+ (1 − t)g(t)
(
t
∂2H
∂t2

+ 〈x,∇x〉∂H
∂t

)
.

The Jacobi polynomial satisfies the differential equation (3.7), so that g satisfies
(3.7) with α replaced by α + m and n replaced by n − m, which leads to

(4.10)

t(1 − t)∂ttu+ (1 − t)〈x,∇x〉∂tu + (1 + α− (α + γ + 2)t)∂tu

= − (n − m)(n + α + γ + 1)u − (γ + 1)tg(t)
∂H
∂t

+ (1 − t)g(t)
[
t
∂2H
∂t2

+ 〈x,∇x〉∂H
∂t

+ (1 + α)
∂H
∂t

]
.

The polynomial Pm
k satisfies a second order differential equation (4.1) with n

replaced by m, from which it follows that H satisfies

(t�x − 〈x,∇x〉2 − (2μ + d − 1)〈x,∇x〉)H = −m(m + 2μ + d − 1)H.
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Now, applying (4.8) and (4.9), the square bracket in the right-hand side of (4.10)
satisfies

[. . .] =
1
4t

(〈x,∇〉 + 2α + m)(m − 〈x,∇x〉)H

=
1
4t

(−〈x,∇x〉2 − 2α〈x,∇x〉 + m(m + 2α))H = −1
4
�xH,

where in the last step we have used 2α = 2μ + d − 1 for β = 0 and the differential
equation satisfied by H. Substituting this into (4.10) and using (4.8) one more
time, the resulted identity is simplified to give (4.7). �

Next we consider the reproducing kernel of Vn(Vd+1,Wβ,γ,μ). In terms of the
basis (4.5), the kernel is given by

Pn(Wβ,γ,μ; (x, t), (y, s)) =
n∑

m=0

∑
|k|=m

Qn
m,k(x, t)Qn

m,k(y, s)

hβ,γ,μm,n

.

With the help of the addition formula for the orthogonal polynomials on the unit
ball, we can express this kernel in terms of the reproducing kernel Pn(Ua,b; ·, ·) on
the parabola domain U.

Theorem 4.3. Let d ≥ 2, μ ≥ 0 and γ > −1. Let α = β + μ + d−1
2 . Then, for

(x, t) ∈ Vd+1, (y, s) ∈ Vd+1 and β > 0,

(4.11)

Pn(Wβ,γ,μ; (x, t), (y, s))

= c
∫

[−1,1]3
Pn(Uγ,α; (

√
t, t), (

√
sξ(x, t, y, s; z, u), s))

× (1 − z1)
μ+ d−1

2 (1 + z1)
β−1(1 − z2

2)
β− 1

2 (1 − u2)μ−1dzdu,

where c = cμ+ d−1
2 ,β−1cβcμ and

ξ(x, t, y, s; z, u) =
1 − z1

2
ξ0(x, t, y, s; u) +

1 + z1

2
z2,

with ξ0(x, t, y, s; u) =
1√
st

(〈x, y〉 + u
√

t − ‖x‖2
√

s − ‖y‖2);

furthermore, for β = 0,

(4.12)
Pn(W0,γ,μ; (x, t), (y, s))

= cμ

∫ 1

−1
Pn(Uγ,μ+ d−1

2
; (
√

t, t), (
√

sξ0(x, t, y, s; u), s))(1 − u2)μ−1du.

In both cases, the identity holds for μ = 0 under the limit (4.3).
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Proof. Since ‖x‖ ≤ t and ‖y‖ ≤ s, we see that |ξ0(x, t, , y, s, u)| ≤ 1 by the
Cauchy inequality. Consequently, |ξ(x, t, y, s; z, u)| ≤ 1, so that both variables
in Pn(Uγ,β+ d−1

2
) are elements of U.

By (4.5) and the assumption that Pm
k is orthonormal, it follows from the addition

formula (4.2) on the unit ball that, with α = β + μ + d−1
2 ,

Pn(Wβ,γ,μ; (x, t), (y, s))

= cμ

∫ 1

−1

n∑
m=0

P(α+m,γ)
n−m (1 − 2t)P(α+m,γ)

n−m (1 − 2s)

hβ,γ,μm,n

t
m
2 s

m
2

× Z
μ+ d−1

2
m

(〈x, y〉√
st

+ u

√
1 − ‖x‖2

t

√
1 − ‖y‖2

s

)
(1 − u2)μ−1du.

If β = 0, then α = μ + d−1
2 , so that the sum under the integral sign can be

identified with Pn(Uγ,α) by (3.10) with x2 = t, y2 = s and y1 = ξ0(x, t, y, s; u). This
proves (4.12). For β > 0, we increase the value of the index of Zb

m from μ + d−1
2

to α = μ + β + d−1
2 by (3.11) with λ = μ + d−1

2 and σ = β, so that the sum under the
integral sign becomes

cμ+ d−1
2 ,β−1cβ

∫ 1

−1

∫ 1

−1

n∑
m=0

P(α+m,γ)
n−m (1 − 2t)P(α+m,γ)

n−m (1 − 2s)

hβ,γ,μm,n

t
m
2 s

m
2

× Zαm
(1 − z1

2
√

s
ξ0(x, t, y, s; u) +

1 + z1

2
z2

)
(1 − z1)

μ+ d−1
2 (1 + z1)

β−1(1 − z2
2)
β− 1

2 dz

= cμ+ d−1
2 ,β−1cβ

∫ 1

−1

∫ 1

−1
Pn(Uγ,α; (

√
t, t), (ξ(x, t, y, s; z, u), s))

× (1 − z1)
μ+ d−1

2 (1 + z1)
β−1(1 − z2

2)
β− 1

2 dz,

where the second step follows from (4.6) and (3.10). Putting the two displayed
identities together, we have proved (4.11). �

If we allow d = 1, then V2 with W0,γ,μ(x1, x2) should just be the domain U

with Uγ,μ(x1, x2). We know that Pn(Uα,b) does not have a closed formula except in
the case that one of its variables is 1 = (1, 1). For d ≥ 2, we can deduce accordingly
a closed formula for Pn(Wβ,γ,μ) on the hyperplane t = 1 of (x, t) ∈ V

d+1. We state
this formula for the kernel of the partial sum operator

Kn(Wβ,γ,μ, (x, t), (y, s)) =
n∑

m=0

Pm(Wβ,γ,μ; (x, t), (y, s))

by using the closed formula of Kn(Ua,b; 1, ·) in Theorem 2.3. We again state the
result only for the case β = 0, for which the formula is relatively simple.



FOURIER ORTHOGONAL SERIES ON A PARABOLOID 275

Corollary 4.4. Let d ≥ 2, γ > −1 and μ ≥ 0. Let τ = μ + d−1
2 . Then,

for x ∈ B
d,

Kn(W0,γ,μ;(x, 1), (y, s)) =
P(γ+τ+1,τ)

n (1)

h(γ+τ+1,τ)
n

cγ+τ+1,τcμ

×
∫

[−1,1]2
P(γ+τ+1,τ)

n (z′(x, y, s, u, v))wγ+τ1,τ(v)(1 − u2)μ−1dudv,

where z′(x, y, s, u, v) = z((
√

sξ0(x, 1, y, s; u), s), v) or

z′(x, y, s, u, v) = 1 − (1 − v 2)(1 − √
sξ0(x, 1, y, s; u)) − 1

2
(1 − v)2(1 − s).

This is a corollary of (4.12) and (2.14). A more involved closed form formula
for β > 0 can be written down using (4.11) and (2.14).

4.3 Summability of Fourier orthogonal series. Denote by projn(Wβ,γ,μ)
the orthogonal projection operator

projn(Wβ,γ,μ) : L2(Vd+1;Wβ,γ,μ) �→ Vn(V
d+1,Wβ,γ,μ).

In terms of the reproducing kernel Pn(Wβ,γ,μ) of Vn(Vd+1,Wβ,γ,μ), we can write

projn(Wβ,γ,μ; f ) = bβ,γ,μ

∫
Vd+1

0

f (y, s)Pn(Wβ,γ,μ; (x, t), (y, s))Wβ,γ,μ(x, t)dyds.

For f ∈ L2(Vd+1;Wβ,γ,μ), the Fourier orthogonal series of f on V
d+1 is defined by

f =
∞∑
n=0

projn(Wβ,γ,μ; f ).

Recall that U0 denotes the curved portion of the boundary of the parabola
domain U. Analogously to Definition 3.5, we give the following definition:

Definition 4.5. Let d ≥ 2, μ ≥ 0, β ≥ 0 and γ > −1. Set α = β + μ + d−1
2 .

Let g : U0 ×U �→ R such that, for each t ∈ [0, 1], the function x �→ g((
√

t, t); x) is
in L1(U;Uγ,α). For (x, t) ∈ V

d+1 and (y, s) ∈ V
d+1, define for β > 0

Tβ,γ,μg((x, t), (y, s)) := c
∫

[−1,1]3
g((

√
t, t), (

√
sξ(x, t, y, s; z, u), s))

× (1 − z1)
μ+ d−1

2 (1 + z1)
β−1(1 − z2

2)
β− 1

2 (1 − u2)μ−1dzdu,

where c = cμ+ d−1
2 ,β−1cβcμ, and define for β = 0,

T0,γ,μg((x, t), (y, s)) := cμ

∫ 1

−1
g((

√
t, t), (

√
sξ0(x, t, y, s; u), s))(1 − u2)μ−1du.

In both cases the definition holds under the limit (4.3) when μ = 0.
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By (4.11) and (4.12), the definition Tβ,γ,μ is motivated by

(4.13) Pn(Wβ,γ,μ; (x, t), (y, s)) = Tβ,γ,μPn(Uγ,β+μ+ d−1
2

)((x, t), (y, s)).

For each fixed (x, t) ∈ V
d+1, this is a bounded operator as seen below.

Proposition 4.6. Let β ≥ 0, μ ≥ 0 and γ > −1. Let g : U0 × U �→ R

such that, for each t ∈ [0, 1], the function g((
√

t, t); ·) is in L1(U;Uγ,α) with

α = β + μ + d−1
2 . Then, for (x, t) ∈ V

d+1,

(4.14)

∫
Vd+1

|Tβ,γ,μg((x, t), (y, s))|Wβ,γ,μ(y, s)dyds

≤ c
∫
U

|g((
√

t, t), z)|Uγ,α(z)dz.

Proof. We follow the approach for the proof of Proposition 3.6. Instead of
the integral relation (3.14), we use the following identity for h : [−1, 1] �→ R

and v ∈ B
d:

(4.15)

bμ

∫
Bd

∫ 1

−1
h(〈u, v 〉

+
√

1 − ‖u‖2
√

1 − ‖v ‖2 r)(1 − r2)μ−1dr(1 − ‖u‖2)μ− 1
2 du

= cμ+ d−1
2

∫ 1

1
h(t)(1 − t2)μ+ d−2

2 dt.

This identity is established in the proof of [21, Theorem5.3] for a specific function h

but the proof clearly holds for all generic h. Let G(z) = g((t,
√

t), z) for z ∈ U.
Then, in the case of β = 0, we obtain

b0,γ,μ

∫
Vd+1

|T0,γ,μg((x, t), (y, s))|W0,γ,μ(y, s)dyds

= b0,γ,μ

∫ 1

0

∫
Bd

|T0,γ,μg((x, t), (
√

sy′, s))|(1 − ‖y′‖2)μ− 1
2 dy′sμ+ d−1

2 (1 − s)γds

≤ b0,γ,μ

∫ 1

0

∫
Bd

cμ

∫ 1

−1
|G(

√
sξ0(x, t,

√
sy′, s; r), s)|

× (1 − r2)μ−1dr(1 − ‖y′‖2)μ− 1
2 dy′sμ+ d−1

2 (1 − s)γds.

Since ξ0(x, t,
√

sy′, s; z) = 〈x′, y′〉 + z
√

1 − ‖x′‖2
√

1 − ‖y′‖2 with x′ = x/
√

t ∈ Bd

and y′ ∈ B
d, we can apply (4.15) to bound the above inequality by

c
∫ 1

0

∫ 1

−1
|G(

√
su, s)|(1 − u2)μ+ d−2

2 dusμ+ d−1
2 (1 − s)γds

= dγ,μ+ d−1
2

∫
U

|G(z)|Uγ,μ+ d−1
2

(z)dz,
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which follows from changing variables z1 =
√

su and z2 = s and the the last constant
is determined by setting G(z) = 1. Consequently, this establishes (4.14) for β = 0.

Let now β > 0. Following the proof in the case of β = 0 by using (4.15), we
obtain

bβ,γ,μ
∫
Vd+1

|T0,γ,μg((x, t), (y, s))|Wβ,γ,μ(y, s)dyds

≤ bβ,γ,μ
∫ 1

0

∫ 1

−1

∫ 1

−1

∫
Bd

cμ

∫ 1

−1
|G(

√
sξ(x, t,

√
sy′, s; z, r), s)|(1 − r2)μ−1dr

× (1 − ‖y′‖2)μ− 1
2 dy′(1 − z1)

μ+ d−1
2 (1 + z1)

β−1(1 − z2)
β− 1

2 dzsβ+μ+ d−1
2 (1 − s)γds

≤ c
∫ 1

0

∫ 1

−1

∫ 1

−1

∫ 1

−1

∣∣∣G(√s
(1 − z1

2
u +

1 + z1

2
z2

)
, s
)∣∣∣(1 − u2)μ+ d−2

2 du

× (1 − z1)
μ+ d−1

2 (1 + z1)
β−1(1 − z2)

β− 1
2 sβ+μ+ d−1

2 (1 − s)γdzds.

Besides the difference in their parameters, the last integral is the same as the
quadruple integral in the proof of Proposition 3.6. Indeed, if we replace β by β+ 1

2

and μ + d−1
2 by d−2

2 in the above integral, then the two quadruple integrals are the
same. Hence, we can estimate the above integral as in the proof of Proposition 3.6
to complete the proof of (4.14) for β > 0. This completes the proof. �

As in the case on the surface V
d+1
0 , we define a pseudo-convolution on V

d+1.

Definition 4.7. Let β ≥ 0, μ ≥ 0 and γ > −1. Let g : U0 × U �→ R such
that, for each t ∈ [0, 1], the function x �→ g((

√
t, t); x) is in L1(U;Uγ,,β+μ+ d−1

2
). For

f ∈ L1(Vd+1;Wβ,γ,μ) and (y, s) ∈ Vd+1, define

(f ∗V g)(y, s) = bβ,γ,μ
∫
Vd+1

f (x, t)Tβ,γ,μg((x, t), (y, s))Wβ,γ,μ(x, t)dxdt.

By (4.13), it follows that the project operator onto Vn(Vd+1,Wβ,γ,μ) satisfies

projn(Wβ,γ,μ; f ) = f ∗V Pn(Uγ,β+μ+ d−1
2

).

Proposition 4.8. Let β ≥ 0, μ ≥ 0 and γ > −1. Let α = β + μ + d−1
2 . For

f ∈ Lp(Vd+1;Wβ,γ,μ), 1 ≤ p <∞, and f ∈ C(Vd+1) for p = ∞,

‖f ∗V g‖Lp(Vd+1;Wβ,γ,μ) ≤ c‖f‖Lp(Vd+1;Wβ,γ,μ) max
t∈[0,1]

∫
U

|g((
√

t, t), z)|Uγ,α(z)dz.

Proof. Using (4.14), the proof follows exactly as that of Proposition 3.8. �
We now use this boundedness of the pseudo-convolution to study the Cesàro

means of the Fourier orthogonal series on the solid paraboloid.
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For δ > −1, let Kδ
n((x, t), (y, s)) be the kernel of the Cesàro (C, δ) means

Sδn(Wβ,γ,μ; f ). Analogously to (3.15), we derive from (4.13) that

(4.16) Kδ
n(Wβ,γ,μ; (x, t), (y, s)) = Tβ,γ,μKδ

n(Uγ,β+μ+ d−1
2

)((x, t), (y, s)).

Furthermore, in terms of the pseudo-convolution, we can write

Sδn(Wβ,γ,μ; f, (x, t)) = f ∗V Kδ
n

(
Uγ,β+μ+ d−1

2

)
(x, t).

Theorem 4.9. Let d ≥ 2, β ≥ 0, μ ≥ 0 and γ > −1. If f ∈ C(Vd+1), then the

Cesàro means Sδn(Wβ,γ,μ; f, (x, 1)) converge to f (x, 1) uniformly for x ∈ B
d provided

δ > β + γ + μ + d+2
2 .

Proof. The convergence of Sδn(Wβ,γ,μ; f, (x, 1)) holds if and only if

sup
x∈Bd

∫
Vd+1

|Kδ
n(Wβ,γ,μ; (x, 1), (y, s))|Wβ,γ,μ(y, s)dyds

is bounded uniformly in n. By (4.16), the fact that t = 1 and the inequality (4.14)
show that this follows from the boundedness of the L1 norm of Kδ

n(Uγ,β+μ+ d−1
2

; 1, z),
which holds for δ > γ + β + μ + d−1

2 + 3
2 by Theorem 2.4 and by Remark 2.1. �

Theorem 4.10. Let d ≥ 2, β ≥ 0 and μ ≥ 0, γ ≥ β + μ + d−1
2 . Let

f ∈ Lp(Vd+1,Wβ,γ,μ) for 1 ≤ p <∞ and f ∈ C(Vd+1) for p = ∞. Then the Cesàro
means Sδn(Wβ,γ,μ; f ) satisfy:

(1) if δ ≥ 2β+2μ+γ+d+3, then Sδn(Wβ,γ,μ; f ) is nonnegative if f is nonnegative;

(2) if δ > β + μ + γ + d+2
2 , then Sδn(Wβ,γ,μ; f ) converge to f in Lp(Vd+1;Wβ,γ,μ),

1 ≤ p <∞, and in C(Vd+1).

Proof. Using the identity (4.16), the proof reduces to properties possessed by
the kernel Kδ

n(Uγ,β+μ+ d−1
2

) on the parabola domain U. The detail follows exactly as
in the proof of Theorem 3.10 and we leave it to interested readers. �
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[18] J. Wade, Cesàro summability of Fourier orthogonal expansions on the cylinder, J. Math. Anal.
Appl. 402 (2013), 446–452.

[19] H. Wang, Probabilistic and average linear widths of weighted Sobolev spaces on the ball equipped
with a Gaussian measure, J. Approx. Theory 241 (2019), 11–32.

[20] H. Wang and X. Zhai, Best approximation of functions on the ball on the weighted Sobolev space
equipped with a Gaussian measure. J. Approx. Theory 162 (2010), 1160–1177.

[21] Y. Xu, Summability of Fourier orthogonal series for Jacobi weight on a ball in R
d, Trans. Amer.

Math. Soc. 351 (1999), 2439–2458.
[22] Y. Xu, An integral identity with applications in orthogonal polynomials, Proc. Amer. Math. Soc.

143 (2015), 5253–5263.

[23] Y. Xu, Orthogonal polynomials and Fourier orthogonal series on a cone, J. Fourier Anal. Appl.
26 (2020), Article no. 36.

[24] Y. Xu, Orthogonal structure and orthogonal series in and on a double cone or a hyperboloid,
Trans. Amer. Math. Soc. 374 (2021), 3603–3657.

Yuan Xu
DEPARTMENT OF MATHEMATICS

UNIVERSITY OF OREGON
EUGENE, OREGON 97403-1222, USA

email: yuan@uoregon.edu

(Received October 28, 2020 and in revised form September 30, 2021)




