FOURIER ORTHOGONAL SERIES ON A PARABOLOID

By

YUAN XU*

Abstract. We study the orthogonal structure and Fourier orthogonal series
on the surface of a paraboloid

V& = {0 |xl =V, xeRY, 0 <1 < 1)

The reproducing kernels of the orthogonal polynomials with respect to /(1 — r)?
on Vg” are related to the reproducing kernels of the Jacobi polynomials on the

parabolic domain {(x;,x;) : x% < x < 1} in R2. This connection serves as
an essential tool for our study of the Fourier orthogonal series on the surface
of the paraboloid, which allow us, in particular, to study the convergence of the
Cesaro means on the surface. Analogous results are also established for the solid
paraboloid bounded by Vg” and the hyperplane # = 1.

1 Introduction

The Laplace series, so named the generalized Fourier series in spherical harmonics
on the unit sphere, has been extensively studied. One essential ingredient for under-
standing these series is the addition formula for spherical harmonics, which states
that the reproducing kernel of the orthogonal projection operator from L*(S9~!)
onto the space of spherical harmonics of degree n can be written as Z,({(Z, 7)),
where Z, is a Gegenbauer polynomial of degree n in one variable and (&, 7) is
the Euclidean inner product of &, # € S~!. Because of this closed formula of the
reproducing kernels, much of the study of the Laplace series can be reduced to the
study of the Fourier—Gegenbauer series of one variable [1, 5, 14].

The above narrative turns out to be the prototype for Fourier orthogonal series
domains in higher dimensions. In the past two decades, starting from the addition
formula for classical orthogonal polynomials on the unit ball [21], closed form
formulas for reproducing kernels of orthogonal polynomials have been discovered
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for several regular domains, including the unit ball, regular simplex, cylinder, as
well as the unit sphere with inner product defined by weighted integrals, which
makes study of the Fourier orthogonal series on these domain feasible; see, for
example, [4, 3, 5, 6, 7, 10, 11, 13, 18, 19, 20, 21, 22] and their references. For
unbounded classical domains, we refer to [16] as well as to [2, 17] for references
on more recent works, which however require techniques beyond our narrative.
To step beyond the regular domains, we recently started to analyze orthogonal
structure on quadratic surfaces of revolutions other than the unit sphere as well as
on domains bounded by such quadratic surfaces. Let V4! be a quadratic surface
in R™!, parametrized in (x, 1), x € R? and ¢ € R, that is a surface of revolution
around the 7 axis. We consider orthogonal structure defined by the inner product

(8) = [ 10t (o, .

where @w(¢) is a weight function and do is the Lebesgue measure of Vg*l. Taking
the cue of spherical harmonics, we look for families of orthogonal polynomials
that share two characteristic properties of spherical harmonics, one is an addition
formula and the other is the existence of a second order partial differential operator
that has orthogonal polynomials as eigenfunctions with eigenvalues depending only
on the degree of the polynomials, which is an analogue of the Laplace—Beltrami
operator on the unit sphere.
In [23] we studied orthogonal polynomials on the surface of the cone

V& = {0 lIxll =1,0 < 1 < b,x € RY),

where b = 1 or b = co. Two families of orthogonal polynomials are identified
as eigenfunctions of a differential operator, the Laguerre polynomials on the cone
with b = +00 and the Jacobi polynomials on the cone with b = 1. The Jacobi
family is shown to possess an addition formula, which is utilized to carry out
a preliminary study of the Fourier orthogonal series on the surface of the cone.
Moreover, analogous results are also established on the domain bounded by the
surface of the cone, together with the hyperplane r = 1 when b = 1. In [24], we
considered the orthogonal structure on the surface of the hyperboloid

VE = {(x, 1) 1 IxI? = @ — 0P, x e RY, g < |t] < b},

where p > 0 and b = 1+ p or co, which degenerates to the double cone when p = 0.
In this case the weight function @ is an even function. We again identified two
families of orthogonal polynomials, the Hermite polynomials on the hyperboloid
with b = oo and the Gegenbauer polynomials on the hyperboloid with b = 1 + p.
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However, for these two families, only those polynomials that are even in ¢ are
eigenfunctions of a differential operator. Furthermore, the addition formula holds
for the Gegenbauer polynomials on the hyperboloid that are even in #. These
results are used to carry out a study of the Fourier orthogonal series for functions
that are even in ¢ over the hyperboloid in [24], and analogous results are also
established on the domain bounded by the surface of the hyperboloid, together
with the hyperplane 7 = 1 when b =1 + p.

In the present paper, we study the orthogonal structure on a paraboloid of
revolution, which turns out to be very different from those on the cone and on the
hyperboloid. We shall consider the surface of a paraboloid, defined by

Vo' = {0 llxll = v, x e RY, 0 < 1 < b},

as well as the solid paraboloid V¥*! bounded by Vf)’“ and the hyperplane ¢ = b.
For our study, we shall consider only b = 1, or the compact case, since there is not
as much that makes the case b = oo standing out for paraboloids.

On the surface of the paraboloid, we consider a family of orthogonal polyno-
mials with respect to the weight function w(f) = *(1 — £)?, which shall be called
the Jacobi polynomials on the paraboloid. These polynomials will be shown to
be eigenfunctions of a second order differential operator but with the eigenvalues
depending on two indices, the degree of the polynomials and another index that de-
pends on the particular orthogonal basis, in contrast to the cone and the hyperboloid
for which the corresponding eigenvalue property is independent of the choice of
orthogonal bases. The Jacobi polynomials on the paraboloid also do not possess
an explicit addition formula. What they do have is a connection to an orthogonal
structure on the parabolic domain U = {(x1, xp) : x} < xp < 1} in R?, bounded
by the parabola x, = x7 and the line x, = 1. A family of orthogonal polynomials
on U, called the Jacobi polynomials on the parabolic domain, was first considered
in [8] and shown to satisfy a product formula in [9]. The latter was used to study
the Fourier orthogonal series in [3], where the essential ingredient is an addition
formula that holds when one argument of the reproducing kernel is at the corner
(1, 1) of the domain. Our essential realization is that the reproducing kernels of
the orthogonal polynomials on the paraboloid can be expressed in terms of the
reproducing kernel on the parabola domain, which provides the tool for studying
the Fourier orthogonal series on the paraboloid. In particular, it allows us to study
the convergence of the Cesaro means of the series. We shall also show that the
connection to the structure on U also extends to the solid paraboloid, which allows
us to carry out our study of the Fourier orthogonal series on the solid paraboloid.
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The paper is organized as follows. In the next section, we review the orthogonal
structure on the parabolic domain, where enough details will be provided to prepare
for their usage in the latter sections. The orthogonal structure and the Fourier series
on the surface of the paraboloid will be discussed in Section 3, and analogous results
on the solid paraboloid will be discussed in Section 4.

2 Orthogonal polynomials on a parabolic domain
As mentioned in the introduction, our development on V¥*! depends heavily on
what is known on the parabolic domain
U:{xeRz:x%§x2 < 1},

bounded by the parabola x, = x7 and the line x, = 1, which we review in this

— %, we define the weight function

section. Fora > —1 and b >
Uap(x) = (1 — x2)(xy — 202

on U and consider orthogonal polynomials with respect to the inner product

2.1 f,8)u = dus /[U F8 U,

where the normalization constant d, j is chosen so that (1, 1),, = 1 and its value
can be verified by writing the integral over U as

1 1
2.2) /[U Pt x)dxidxs = /0 /_ /) aduds,

An orthogonal basis for this inner product was defined in [8] in terms of the Jacobi
polynomials. The Jacobi polynomials P*# are defined by

(a+ 1), (—n,n+a+ﬁ+1 1—;)
2F ; ,

PP = n! a+1 T2

for a, f > —1. They are also orthogonal with respect to the weight function
Wap(x) = (1 = 0)*(1 +x)F,

a,

1
&0y / PSP PSP (0w, p(0)dt = hEP5, 0,
—1

where ¢, ; =27%"""¢, g with

I'a+p+2)
I'a+DHI(B+1)

_(a+ DB+ Dp(a+B+n+1)

23) copi= d mrh = :
(2.3) cap and nlo+ B+ 2n(a+ f+2n+1)

In terms of ¢, g, the constant d,, ; in (2.1) is given by d; = Chp—1 p— 1 Choa-
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Let V,(U, Uyp), n = 0, 1, ..., be the space of orthogonal polynomials of de-
gree n with respect to the inner product (-, -)y on the parabolic domain. Then
dim V,(U, U, ) = n+ 1. The orthogonal basis for V,(U, U, ) given in [8] consists
of polynomials

k IR x
(2.4) PZ’f(Xl, xX2) = PE,b_Jr/’f’a)(l — 2x2)x3 P/(cb i 2)(\/1
: -

Their orthogonality can be verified by using (2.2) and so are their L?> norm. In

) 0<k<n.

particular, in terms of the quantities in (2.3),

C 11
25 ki =da / PE P Usp(dx= P O,
Q Chtk,a
The polynomials ng,’lﬁ ) satisfy a product formula due to Koornwinder and Schwartz

[9]. The formula is rather complicated and takes the following form:
Theorem 2.1. Leta > b > 0. Forx = (x1,x2),y=(1,y2) € [,
PER(x1, 2P (v1, v2)

=Pl 1) PEYECx, yi 1, w1), (X, yi 1 w))dma (1, ),
[0,1]x[0,7]3

(2.6)

where w = (w1, w2, y3) and dmg ,(r, y) is a probability measure given by

dma,b(ra l//)

2b—1
= Ca,b(l -

r2)a—b—1r2b+1 )2b—1

(sin y3 (sin w2)*~ ! (sin w1)*drdy, dy, dys.

The complication of the product formula lies in the functions & (x, y;r, w1)
and &(x, y; 1, w), which are explicitly given by fairly involved formulas, and they
satisfy & = (&1, &) € U. Since we do not need their explicit formulas, we will not
state them here but refer to [9].

For f € L*(U; U, p), its Fourier orthogonal series is defined by
— . : , n (f, PYPYy
f= Zprojn(Ua,b;f) with proj,(Ugp;f) = Z h;;' Pzrl:
n=0 k=0 ko

The operator proj,(U,,p) : L*(U; Uy p) — Vu(U, U,p) is the orthogonal projection
operator, which can be written as an integral

proj, (Uapif, %) = duy /[U FOVPuUny: X, Y)Uap)dly

in terms of the reproducing kernel P, (U, ;) of V,(U, U, ). The kernel is uniquely
determined and it satisfies, in terms of the orthogonal basis (2.4),
" P (OPE, ()
Pn(Ua,b;xa y) = Z fon ha’bk,n .
k=0 k.n



256 Y. XU

The product formula (2.6) leads to a convolution structure, which can be defined
as follows. Let &(x, y;r, 1) and &(x, y; 1, ) be given in (2.6). For g € C(U),
define

(T = /

[0,11%[0, 7

. g(&1(x, yi 1, w1), &o(x, yi 1 yw))dmg (1, ).

The operator T, is an analogue of the translation operator, since the product formula
can be written as

2.7) PLa@PE0) = PODTPENG),  1=(1, D).
This generalized translation operator is bounded in the space L”(U; U, ).

Lemma 2.2. Let g € LP(U;Uyp), 1 < p < 00, or g € C(U), p =o00. Then,
forx e,

(2.8) 1Tgllrwu,,) < 1glrwu,,), 1<p<oo,
where the norm is taken as the uniform norm on U when p = oo.

This is stated and used in [3]. Its proof follows from the product formula.
Indeed, for p = 1, we use |T,g(¥)| < T,(lg])(y) and expand |g| in its Fourier
orthogonal series over U, then we use the product formula on the Fourier series
of T.(]g|) and integrate it to obtain, by orthogonality, the identity

||7x|g|||L1(U;Ua,b) = ”g”Ll(U;U,l_b)-

Thus, (2.8) holds for p = 1. The inequality is also trivial for p = co. The case
1 < p < oo then follows from the Riesz—Thorin theorem.

The boundedness of T,g can be used to study the convergence of the Fourier
orthogonal expansion on U. For p # 2, we need to consider a summability method.
We choose the Cesaro (C, ) means, which can be given in terms of proj,(U, »;f)
or the partial sum operator S,(Up;f) = Y i_o Proji(Uap:f). For the reason that
will become clear later, we choose the latter one. The operator S,(U, 5;f) has the
kernel .

Ki(Uapix, 1) = Y PrlUapi X, y).
k=0
For 6 > 0, let Kﬁ(Ua’b) denote the kernel for the Cesaro (C, 6) means, which can
be written in terms of Px(U, ;) or K,,(U, ;). In particular,

n

s 1 n—m+o—1
(2.9) Ko (Uapi X, ) = s D K(Uap; X, Y).
( n ) m=0 n—m
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Then the (C, ) means S,";(Ua,b; f) of the Fourier orthogonal series satisfy
S Uatif) = o [ FOKN Uit o)y

Since this is a linear integration operator, a standard argument shows that S°f
converges to f in L' (U, U, ) norm or in the uniform norm if and only if

(2.10) max [[K) (U X, )l w:v,,) = Maxdy,p / KD (Ua,3 %, W)U p(y)dy < 00
xeU xeU U
uniformly in n. Now, by the definition of T, we have
K (Uap: %, y) = TK(Uapi 1, ),
so that it follows from the inequality (2.8) that

@.11) max | K (Uas ¥, v, < 1K WUans 1, ) -

In particular, this shows that the convergence of S,";(Ua,b; f) follows from the con-
vergence at the point x =1 = (1, 1).

More generally, we could define a convolution structure for f, g € L'(U; Uup)
by

Frugt) = /U FONT D)W Uas0)dy, xeU.

Since T,g(y) is symmetric in x and y by (2.7), it is not difficult to see that this
convolution is associative and commutative, as can be seen by first considering
polynomials. Furthermore, using (2.8), it follows readily that, for f € LP(U; U,)
and g € L'(U; Uy,

(2.12) Wf *v gllrw.u.,) < llvwuves Iglewo,,), 1<p<oo.

The projection operators proj, (U, »;f) and the Cesaro means can be written as
(2.13)  proj,(Uapif) =f #u PaUapi 1), S3WUapif) =f *u Kp(Uasi 1, ),

so that it again follows, by (2.12), that the convergence of Sﬁ(Ua,b; f) reduces to
the boundedness of |[KS(U,; 1, Mo w.u,,) of a single point.
It turns out that the kernel K,,(U,5; 1, -) satisfies a closed formula [3].

1

) and x € U,

Theorem 2.3. Fora > —1,b > —

P(a+b+1,b)(l) 1 bl
(2.14)  Ky(Uapi1,x) = Z(Hbﬂ’b) Ca+b+1,b/1P§,a+ DX, 1) Warpe1 ()AL,
n -

where |
20,0=1—1-7>1—-x)) — 2(1 — %1 — x2).



258 Y. XU

In particular, let us denote by kﬁ(wa’ 45> -) the kernels of the Cesaro means of
the Jacobi polynomials that are given by

1 Z (n —k+ 5) PP (PSP ()
n+o a, ’
) n—k ne

n k=0

kﬁ(wa,ﬁ; S, t) =

which are the kernels of the Cesaro (C, 6) means of the Fourier-Jacobi series. Then
(2.14) leads to

b} b
(2.15) Ko(Uup:1,x) = n+5ca+b+1,b/ Ko (Warpe1.p3 1, 206, D) Warpir p(1)dL.

The identity (2.15) allows us to bound the L' norm of Kf;(Ua’b; 1, x) and, as
a result, obtain the convergence of the (C, ) means S,‘);(Ua,b; f). The result is the
following theorem established in [3].

Theorem 2.4. Leta > b > 0. Then the Cesaro means of the Fourier orthog-
onal series with respect to U, p, satisfy:
(1) if 6 > a+2b+4, then Sﬁ(Ua,b;f) is nonnegative if f is nonnegative;
(2) if 6 > a+b+3, then SY(Uap:f) converge to f in LP(U; U,y), 1 < p < o0,
and in C(U).

Remark 2.1. The proof in [3] shows the boundedness of the L' norm
of Kf;(Uajb; 1,x)fora > —1 and b > —;, so that the convergence of Sﬁ(Ua,b;f)
at x = 1 holds for 6 > a+b + ; without the restriction a > b > 0. The latter
condition is imposed because of the product formula.

The method that we outlined above also applies to other summability methods
of the Fourier orthogonal series on U. In particular, it shows that the convergence
can often be reduced to that at the point x = 1.

3 Orthogonality and Fourier orthogonal series on the
surface of paraboloid

We consider orthogonal structure on the surface of the paraboloid of revolution
Vit = () xlP =7, 0 <7< 1, x e RY),

which is compact since its ¢ direction is bounded by 0 < ¢ < 1. For x = /1&,
& € S, we define the measure do(x, 7) on the surface Vé*! by

do(x, 1) = 2 dos(&)ds,
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where dog denotes the surface measure of the unit sphere S?-!. Ford > 2,
b > —d;l and y > —1, we define an inner product on the surface Vg“

(:8)2 =y | 5Dt s (0ot

where the weight function is defined by
wp, () =tP1—1), 0<r<l,

and bg , is the normalization constant given by

1 1 1

b,y = a- =
"o [ 1wy (ndt @a

Cﬁ+ d;l oy

where the constant ¢, is defined in (2.3) and o, = 278 / F(g) is the surface area
of S?=1. The value of bg,, can be verified by the decomposition of the integral on
the surface of the paraboloid

1 1
/ £, dox, 1) = / £, dox, 1) = / e [ FiE Ddas@
! 0 Jxie= 0 ga-1

3.1 Sphericalharmonics. Inorder tounderstand the orthogonal structure
on the surface of the paraboloid, we first review orthogonal polynomials on the
unit sphere, which are spherical harmonics. A harmonic polynomial of degree n
is a homogeneous polynomial of degree n that satisfies AY = 0, where A is the
Laplace operator. Its restriction on the unit sphere is called a spherical harmonic.
Let 3¢ denote the space of spherical harmonics of degree n in d variables. It is

dim F? = n+d-—1 _ n+d-—3
" n n—2 )

Spherical harmonics of different degrees are orthogonal on the sphere. Forn € Ny
let {Y;:1<¢ <dim J—Cﬂ } be an orthonormal basis of J—Cﬂ in this subsection; then

known that

1
Wq

~/Sdfl ?(5) Yg,/l(f)do-S(f) = 55,5’ 5m,n-

A fundamental property of the spherical harmonics is that they are eigenfunctions
of the Laplace—Beltrami operator Ay [5, (1.4.9)],

(3.1) AoY = —n(n+d—2)Y, YeH?

ns
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where Ay is the restriction of A on the unit sphere. Another important property
is that they satisfy an addition formula [5, (1.2.3) and (1.2.7)]: for & € S¢!
and 5 € S9!,

dim H¢

(3.2) S VOV =27 (&), Ziw="

=1

+A

c
i (0,

where C/ is the Gegenbauer polynomial of degree n that satisfies

1 | A
¢ / Cr(nCh (1 — 1) "2dr = Cr (1)
—1 n+ A

where Cf;(l) = (24),/n! and ¢, is the constant determined by

1 -1
1 Ir(A+1
(3.3) q:(/ (1—z2)i—zdz> = 1( )1 :
—1 F(z)r(l + 2)
The left-hand side of (3.2) is the reproducing kernel of H¢ and the kernel of the
projection operator proj, : L>(S?~1) — 3¢
| dim 3¢
proj, [ = /S fOPUE Do), P& m = D YOV,
=1
Thus, the product formula shows that proj,, f, hence the Fourier series on the sphere
defined by
PSThH=PHi: f=)_ proj,f,
n=0 n=0
has a one-dimensional structure that can be used to reduce a large portion of the
Fourier analysis on the sphere to that of the Fourier—Gegenbauer series (e.g., [5]).

3.2 Orthogonal structure on the surface of the paraboloid. The
space of polynomials on Vf)’“ is the restriction of polynomials in (x, ¢) variables
on the surface Vd*!, determined by replacing every presence of |x||*> with 7. In
particular, the space of polynomials of degree at most n on V&*! is the direct sum
of tfﬂ-(f for 0 < j+k < n, where H? is the space of solid spherical harmonics in x
variables.

Forn=0,1,2,..., let Vn(Vg”, wy,,) be the space of orthogonal polynomials
of degree n with respect to the inner product (-, -) 5., on the surface V*!. Since V&+!
is a quadratic surface, the dimension of V,(Vd*!, @y _,) is equal to that of HI*! as

established in [12, Cor. 4.2], that is,

d n+d-—2
dim V,(Vé*! = (") - .
im Va(Vo™, @) ( n n—2
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An orthogonal basis of V,, (Vg+1 , W) can be givenin terms of the Jacobi polynomi-
als and spherical harmonics [12]. We also need norms of the elements in this basis.

Proposition 3.1. Let f>—%" and y> —1. Let {Y}" : 1 <€ <dimH%} be an
orthonormal basis of J—Cf’n. For 0 < m < n, define

n _ (/ﬁ’+m+d;1,y) _ nom X
(3.4) Q00 = PE P =20t v \/t).

Then {Q} ,:0<m<n,1<{<dim J—ff’n} is an orthogonal basis oan(Vg”, wg,,).

m,l *
Moreover, the norm square of Q;, , is given by
Cp. ad-1 d—1
By n n _ B+ 2 Y (m+p+ zaw
(35) hmn - < m,l> m,€>ﬂ,y - h"_m .
Cm+ﬁ+‘l Ly

Proof. A simple combinatorial identity shows that the cardinality of
{(m,£):0<m<n,1<¢t<dimH}

is equal to dimV,(Vd*!, w4 ,), so we only need to verify the orthogonality.
Since Y} is homogeneous of degree m, the polynomial QJ , is of total degree n
in (x, t) variables. Leta = +4 2 . Setting & = x/+/t, we obtain

bs., /V Qe NQLy o (x, g, (Hdo(x, 1)
0

1 7
_ / YOV (O)dos(E)
Sd

Wq

m+m’

X Cqy / PN (1 — 20PN (1 — 20" (1 — 1) dt.

Since Y;" are orthonormal, the orthogonality of Q;, , follows from that of the Jacobi
polynomials in the identity, and so is the formula for h/,f;jl. (]

In an analog of spherical harmonics, we have shown in [23, 24] that on the
surface of the cone and the hyperboloid, orthogonal polynomials of degree n or
those that are even in the ¢ variable and of degree n are eigenfunctions of a second
order differential operator with eigenvalues depending only on n. This important
property, however, does not hold for the paraboloid. The best we can do is the
following proposition.

Proposition 3.2. Let f = —2 and y > —1. Then Q; , in (3.4) satisfies the
differential equation

[r(l — 0 + (621 - (V+62[+1)t)a,+ 1; tAéi)}y

(o) "4y

where Ag) is the Laplace—Beltrami operator acting on & = x//t € S~1.

(3.6)
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Proof. Letf, (1) = P{"e"(1 — 201> and a = B+ “5', so that

Qz,e(X, 1) =fn,m(t)YZn(f)o

where ¢ = x/+/t. Since the Jacobi polynomial P{*:?)(1 —2¢) satisfies the differential
equation

(3.7) (A=Y +(Q+a—(a+y+2))yY +n(n+a+y+1)y=0,
a straightforward computation shows that f;, ,, satisfies
1—1
(1 =0f,) @O+ A +a—Q2+a+0)f, (1) —m@m+2a) 4r Snm(0)

= —(n(n+ a+y+l)— ;m(Zn +20+ y))fn,m(z).

For § = —é,
Laplace—Beltrami operator Ag‘f) . Hence, multiplying the above identity by Y}*($)

we have 2a = d — 2, so that —m(m + 2a) is the eigenvalue of the

and replacing —m(m + 2a) Y} by A((f) Y;*, we have proved (3.6). g

Remark 3.1. The right-hand side of (3.6) depends on m so that Q, , is the
eigenfunction of the operator in the left-hand side of (3.6) where the eigenvalue
depends on both m and n. This is in sharp contrast with the orthogonal structure
on the cone and on the hyperboloid, for which the eigenvalue depends only on the
degree of the orthogonal polynomials.

The reproducing kernel of V,,(V&*', @y ,) is defined by

n dim{]—ffi n "
X, HQ ) S
Pn(wﬂ’y; (x, Z‘), (y, S)) = § E m,f( ; ym’g(y ),
m=0 ¢=1 hin

which is the kernel of the orthogonal projection operator proj,(wg,,) from the
space LZ(VSM; wg,,) onto Vn(Vg”; wp ). In contrast to the cone and to the hyper-
boloid, this kernel does not satisfy an addition formula that is of a closed formula
one-dimensional in essence. Instead, however, we can express this kernel in terms
of the reproducing kernel P,,(U,,p; -, -) on the parabola domain U.

Theorem 3.3. Letd > 2 and y > —1. Let (x,1) = (V& 1) € Vit
and (y, s) = (\/sn, s) € V& with & n € SL. Then for > —é,

Pn(wﬁ,y; (x, t): ()’, S))

= Cd;z’ﬁ_écﬁ_'_é

[ (e, (v e+ T ).)

x (1—z) (1 +2)73(1 — 2)dzidzs,

(3.8)
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and for f§ = —;,
(3.9) Pu(@_1 ;. 1), (v,8) = Pp(U,, a2 V1,0, (& y), )

Proof. First we note that the right-hand side of (3.8) is well defined. Indeed,
since [(&, )| < 1and —1 < z;,2> < 1, we see that |\/s(' 5% (& n) + "H 22)| < /s,
so both variables in Pn(Uy’ pris! ) are elements of U.

We first need to specify the reproducing kernel P, (U, ;) on U when one of
its variables is on the curved boundary of U. Using the well-known identity [15,
4.7.1)]

(

b—) b1 b—),b—)
J SR ED) o5 ‘(p) _ CLChp)

= =Z7"(p),
hgs_é’b_;) hlzn m(p)
it follows from (2.4) and (2.5) that
P, (Uapi(\/X2, X2), V1, ¥2))
" Py (X2, X2)PEE (01, ¥2)
(3.10) —~ hh
_ zn: Chrma PED(1 — 2x0) PEFa(1 — 2y5) '"y';zb ( Y1 )
“= Cba Al v/

In terms of the orthogonal basis (3.4) and using the addition formula (3.2) for the
spherical harmonics, we obtain, with o = § + d_l

Petmn(] — 2t)P(“+m D —=28) m m

Po(@i (50, 0N = 3 o 552, (&),

m=0
where & = jt e S !and 5 = \% e S!. For B = —;, the sum in the right-hand
side can be identified, using (3.5), with P,,(Uy’d;z) in (3.10) by setting x, =, y, = s
and y; = /s(&, ), which proves (3.9).
For f > — %, we need to increase the value of the index in the zonal harmonic

by using the following identity, proved recently in [22]:

—Zl 1+ 27
D) =Cjp1Co Z“” I+
G.11) Z,(1) = 101 / / 2 Zz)

x (1 —z)*(1+2)°"'(1 — )" 2 dz1dz
with 4 = dgz ando =+ ; This shows that

Pu(@p,y; (x, 1), (3, 5))
P(a+m y)(l 2I)P(a+m,y)(1 _ 25)
=Ca2 p 1Cp1 / / e
hﬂ,y
m,n
1+2z;

m m 1_ _
x 35375 2Z1<én>+ ’ o)1 =20 (1 + 2/ 731 = B)dzdz.



264 Y. XU

The sum in the right-hand side can be identified, using (3.5), with the reproducing
kernel Pn(Uy’ﬂ_'.d;l ) in (3.10), which gives (3.8). J

The identity (3.9) for f = —é can be regarded as the limit of (3.8) as f — —é
by using the limit relation (4.3).

The kernel P, (g, ,), however, does not satisfy a closed formula in general. In
the case that (x, 7) is on the boundary ¢ = 1 of the paraboloid Vg*l, however, we
could derive a closed form formula for the kernel of the partial sum operator

Ka(@py, (X, 1), (0, 9) = D Pu(@p i (x, 1), (3, 5))

m=0

on the paraboloid by using the closed formula of K,,(U, ;; 1, -) in Theorem 2.3. We
state the result for S = —; as an example.

Corollary 3.4. Letd > 2and y > —1. Then, for & € S},

Kn(@_y i(E 1), (7. 5)

d d-2
_ P

! +49.952)
2° 2
h(y+(21’d;2) Cy+‘21,d;2 / Pn (Z (é:a y: D))U)y_'_;l,dzz (D) dl),
n

-1
where, with y = /s,

1
&y v) =2 n),8),0)= 1= =01 = (& y) - L= 0)*(1 = ).

This is a corollary of (3.9) and (2.14). Similarly, using (3.8) and (2.14), we can
derive an explicit formula for f > — é, which is however more involved.

3.3 Summability of Fourier orthogonal series. Let proj, (wg,,) be the
orthogonal projection operator

proj,(ws.,) : (Vi wp,) = Vu(VEH, wy,).

In terms of the reproducing kernel P, (wy ;) of Vn(Vg”, wg,,), We have
Proj, (wy.,3f) = by, /V LGP 3 (1), (3, ), ()0, ).
0

Forf e Lz(Vg”; wp,y), the Fourier orthogonal series of f on Vg*l is defined by

f=2_ proj,(@g,:f).

n=0
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Below we study the summability of this Fourier orthogonal series. We start
with a definition. Recall that U denotes the domain bounded by the parabolic
x; = x} and x, = 1 in R%2. We further denote by Uy the curved portion of the
boundary of U,

Up = {(x1,x2) € U: xo =x7}.
Definition 3.5. Let f > —é and y > —1. Let g : Uy x U — R such
that, for each ¢ € [0, 1], the function x — g((v/t, 1);x) is in L'(U; U, ). For
(x,1) = (V& 1) € VT and (v, 5) = (v/s, 5) € V§*!, define for > —)

Tp,,8((x, 1), (¥, 5)
= Ca g 1Cpyl /_11 /_llg((\/fa D, (\/S(1 ;Zl (& )+ IJ;ZIZZ),s))

x (1—z2) 7 (1+ 272 (1 = )dz
and, furthermore, define for g = —
T_1,8((x, 0, (3, 9)) = g(V1, 1), (£, ¥), 9))
The definition of Ty, is motivated by the relation, by (3.8) and (3.9),
(3.12) Pu(wpy: (5, 1), (0, 8) = Tpy Pu(U,, g )(x, 1), (v, 5)).
For each fixed (x, 1) € Vg“, this is a bounded operator as seen below.
Proposition 3.6. Let f > —) andy > —1. Let g : Uy x U — R such that, for

each t € [0, 1], the function g((\/t, 1); ) is in L'(U; U,.q) withoa = f+ dgl. Then,
for(x, 1) € Vg*l,

(3.13) Aj ITp8(0, 0, 0 M )0y, 8) < € /{U 18((V1, 1), DUy, o(2)dz.

Proof. Let G(z) = g((t, V1), z) for z € U in this proof. We first consider the
case i = —é. Using the well-known integral relation

1 _ 1 2 d;}
(3.14) o, /S{Hf((f, n)do($) = Ca /_lf(u)(l —u”) 2 du
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we obtain, setting y = /s # with # € S¢~!, that
b_,, /V 1,80 0, 0usDl Ty (5)da(, 5)
1
“b_,, / 5 / IGWs (&) lw_y ,(s)do(@ds
0 Sd—-1

1 1
—b_, ycd;zwd/o /1 IG(su, )|(1 —u?) T dus> (1 — s)’ds

3
=d, . / IG@I(z2 =) (1 — 22)dz,
S
where we have used (2.2) in the last step, and the constant can be verified simply
by the fact that if g = 1, then Ty ,g = 1. In particular, this shows that the inequality

(3.13) is in fact an identity for f = — é
We now consider the case f§ > — é Using (3.14), we obtain

/V‘l+1 |Tﬂ’yg((x’ t): (y: S))lwﬂ,y(s)do-(y, S)
0
1,11 pl 1—z 142
SC/o /—1/—1/—1 ‘G(\/S( 2 4T Zz)’s)‘
x (1—2) " (L+20)f 2 (1 = )P — 1)) F 7% (1 — 5)dzduds,
where ¢ = WiCi=2Ca=2 p 1Cp 1. Making a change of variables z; — y with

1—2z; 1+z4
= u+

Y= o 2 2

and dividing the integral over dudz; on [—1, 1]? into two integrals over the triangles
{(u,z0) € [—1,117 : u > zp} and {(u, z2) € [—1, 1]* : u < 25}, respectively, we can
write the triple integral against dudz as a sum of two integrals:

d—1 1 Lz —2 1 1 -2 —u? 5
25 [ [ [T i6s e - = o=ty T2
—1Ju Ju (20 — M)'B+ 2
1 u u _2\B ) d-3
d—1 -2 1 (1 Z ) (1 u ) 2
T B B R T e O A
—1J-1Jz u—=2n

Changing the order of integrals in both terms, we see that this sum is equal to

d-3

d-1 ! Y 1 d-2 1 — 72 —u>)“
2ﬂ+z/1|G<\/sy,s)|[/ /<Z2—y>z(y—u>ﬂ—z“ QA=)
- y

_1 (20 — u)P+"'

1 y _ 1 — 2\f 1— 24473
+/ / @_22)"22(u_y)ﬁ—;( 24 del) ’ dzpdu|dy.
y /-1 (u— )"
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Making a change of variables (u, z;) — (v, v2) with v = (22 — y)/(1 — y)
and v, = (y—u)/(1+y) in the first double integral in the square bracket, and a change
of variables (u, z2) — (v1, v2) withov; = (y—2z)/(1+y)and v, = (u—y)/(1 —y) in
the second double integral in the square bracket, we see that the expression in the
above square bracket is equal to

Ll ey + (1 —yo)fA —y+ 1 +y)0)
(1 — s [(1—y)/
0 Jo (1 =y + (1 +y)o)P*
X l)ldgzl)zﬁ_é(l - D])ﬁ(l - 1)2)[[;3(11)1(11)2
1 rlep B _ 3
+(1+y)/ / L =y+ L))/ A+ y+ (L= )
o Jo ((1+y)o; + (1 — y)o)P*™

; p’_é 8 a-3
X0 7Dy (1 —0)"(1 —vy) 2 doido, dy

Since 0 < vy, v < land 1y > 0, it follows that (1 —y)o; < (1 —y)o;+ (1 +y)o,,

v(1+y+(1—y)vy) and o1 (1 —y+ (1 +yv)
((I=yor+ 1 +yw) ~ (A=yo1+A+yw) ~

which implies that the first term in the square bracket is bounded by

xT(B+ DI(TY
LB+ DT

Similarly, it is easy to see that the same bound holds for the second term in the

! ! -1 -1 d-3
/ / 0, 20y (1 — 0?1 —02)"2 doydo, =
o Jo

square bracket. Putting all these estimates together, we conclude that
[ T 0. 6 D (51t )
0

1,1
= c/ / IG5y, I =y 275 (1 = 57 dyds
0 J-1
= [ 16G1L 2V, puss 1. 220
U
where the last step follows from (2.2). This completes the proof. (|

Definition 3.7. Let # > —) and y > —1. Let g : Uy x U = R such
that, for each ¢ € [0, 1], the function x — g((v/2, £); x) is in L' (U; Uy”md;l ). For
fe L' (V& @y ) and (v, s) € VIt define

(4 009) =gy [ S DT ) 025w (. )
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The operator Ty, plays the role of a translation in the definition of the pseudo
convolution f*y, g. By (3.12), it follows that the project operator onto V,, (Vg*l, wg,y)
satisfies

projn(w/f,g;f) =f *V, Pn(Uy,/)q.d;l ).

Proposition 3.8. Let f>—) and y > —1. For fe ’(Vi;wy,), 1 <p <oo,
and f € C(VE) for p = oo,

IWf *y, g”U’(Vg“;EU/;_T) < C”f”U’(Vg“;EU/;_,,) tlg[l(z)i)l(] /U |g((\/l, 1), Z)lUy,/);_'_dEl (z)dz.
Proof. By the Minkowski inequality, we obtain

f v, 8l vty ) < |lf||U7(V;§+‘;w,,_,,)bﬁ,y /U |Tg,,8((x, 1), (¥, s))|wp,,(s)da(y, s).
Applying the inequality (3.13) on the integral on the right-hand side, the stated

inequality follows readily by taking the maximum over z. (|

The boundedness of the pseudo convolution can be used to study the conver-
gence of the Fourier orthogonal series on the surface of the paraboloid. As in
the case of the previous section, we consider the Cesaro means. For d > —1, let
Kﬁ(wﬂ,y; (x, 1), (¥, 5)) be the kernel of the Cesaro means Sﬁ(wﬂ,y; f), which can be
written in terms of the reproducing kernel P,(wg ,) analogously to (2.9), and it
satisfies, by (3.12), that

(3.15) Ko (@55 (x, 1), (0, 0) = T, KU, a0 (%, 1), (0, 5)).
In terms of the pseudo convolution, we can write
Sp(@p s (6, 0) = f v, KN(U, pa-)(x, 1),

Theorem 3.9. Let d > 2, f > —) and y > —1. Iff € C(V3), then
Sﬁ(wﬂ,y;f, (&, 1)) converges to f(&, 1) uniformly for & € S provided
d+2
o> f+y+ * .
Proof. The convergence of Sﬁ(wﬁ,y; £, (&, 1)) holds if and only if
sup [ 153 E 1, 0 9000, )
Fesd-1 JViH

is bounded uniformly in zn. By (3.15) and the inequality (3.13), this is bounded by
/U|Kﬁ(Uy’ﬁ+d;l;1,Z)|Uy’ﬁ+d;.(z)dz.

Foro> y+ p+ dgl + g, the last integral is bounded uniformly in n by Theorem
2.4 and by Remark 2.1. (]
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fmmmm&uxumezyzﬁwTaMﬁz—;uﬁeywﬁﬂwﬂ
for1 <p < oo andf e C(VI) for p = co. Then the Cesaro means Si(wyg,,;f)
satisfy:
(1) ifo=2B+y+d+3, then Sﬁ(w/;’g;f) is nonnegative if f is nonnegative;
() if § > B+y+ %2 then SY(wpef) converges to f in LP(VI wy,),
1 <p <oo, andin C(Vg*l).

Proof. The positivity of Sﬁ(wﬂ,y; f,) follows from the positivity of its
kernel. Hence, the first item is a consequence of (3.15) and the positivity
of T/;,yKﬁ(U},’md? ), where the latter follows from the positivity of Kﬁ(Uy’ﬁ+d;l ),
which in turn follows from the definition of Ty, and Theorem 2.4; the last the-
orem requires a > b > 0 in U, ;, which is satisfied in our case by the assump-
tiony > S+ dgl and S > —;.

For the second item, it suffices to show that . norm of Sﬁ(w/;’g; f) is uniformly
bounded. By Proposition 3.8, it is sufficient to show that

) .
max [ KU, g s (V00,91 gy )z

is bounded uniformly in n when 6 > y + f + d;l + ; This follows immediately
from (2.11) and Theorem 2.4. O

4 Orthogonality and Fourier orthogonal series on the
solid paraboloid

We consider orthogonal structure on the solid paraboloid of revolution
V= {0 x> <t 0<t< 1, xeRY,

which is bounded by the surface Vd*! and the hyperplane # = 1 of R¥*!. The
t-section of the domain, {x : ||x|| < +/#}, is the ball of radius v/ in RY. W review
the orthogonal structure on the unit ball first.

1

4.1 Classical orthogonal polynomials on the unit ball. For x > —,,

let @, be the weight function
1
@, () = (1= X"z, x| < L.
The classical orthogonal polynomials on the unit ball are orthogonal with respect
to the inner product
, T+
<f; g>,u = b,u / f(x)g(-x)w,u(-x)dx with b,u = 4 > N
B m2I(u+,)

where b, is the normalization constant of @, so that (1, 1) = 1.
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Let V,(BY, @, ) be the space of orthogonal polynomials of degree n with respect
to @,. Then dimV,(BY, w,) = (”“fl_l). An orthogonal basis of V,,(B¢, @) can be
given in terms of the Jacobi polynomials or spherical harmonics, see [6, Chapter 5],
which we shall call the basis with parity since its elements are polynomials that
are even in each of its variables if n is even and odd in each of its variables if n is
odd. The orthogonal polynomials of degree n are eigenfunctions of a second order
differential operator: foru € V,(B?, @),

4.1 (A= (x,V)? = Qu+d—1){x,V)u=—n(n+2u+d— Du.

Furthermore, these polynomials also satisfy an addition formula. Let P,(w;-, -)
be the reproducing kernel of the space V, (B¢, @,). In terms of an orthonormal
basis { Py : |k| = n} of v, (B4, @, ), the kernel can be written as
P, (w,:x,y) = Y PROPR(O).
k|=n

The addition formula on the unit ball states [21], for « > 0,

P . _ ! ! 2 2
way  P@EEI=C R AR CS R R REVE R B

x (1 — )" lds,

where the identity holds for ¢ = O under the limit

1
: 2vu—14, _ S +f(=1)
4.3) }g%c#_é /_lf(t)(l — ) dr = 5 .

d+1

4.2 Orthogonal structure of the solid paraboloid. For g > —“7°,

y>—land u > —}

5, we define a weight function Wp , , on V!,

Wy, 1) = PF(L =)' (t = x>, (x,0) € VO,

With respect to this weight function, we define an inner product

(. 8) s =D || PO D05 DOW 5, D

where by, , = by, a1, With b, the normalization constant of @, on the unit
ball and ¢, , is defined in (2.3). The weight function Wy, , can be written as

44) Wy, 0= 20— — W IP)*2,  withy = ;t e B

Hence, the value of the constant bg , , can be verified by using the identity

1 1 ]
[, 0 Ddxdr = /0 /”x”zg f(x, f)dxd = /O 12 /B f( /iy, dydr.
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Forn=0,1,2,..., let V,(V¥+!, Wp,,,.) denote the space of orthogonal poly-
nomials of degree n in (x, r) variables with respect to the inner product (-, -).,. .
on the paraboloid. Then dim V,,(V¥*!, Wy, ) = ("**). An orthogonal basis of this
space can be given in terms of the Jacobi polynomials and the classical orthogonal
polynomials on the unit ball [12]. We will also need the norms of these orthogonal
polynomials.

Proposition 4.1. Let f > —d’z'l and y > —1. Let {P} : |k| = m, k € Nd}
denote an orthonormal basis with parity of Ve (B, w,). For 0 < m < n, define

X
Vit
Then {Q), \: |k|=m,0<m<n,ke Ng} is an orthogonal basis of V,(V&*!, W5,y 1)
Moreover, the norm square of Q,, , is given by

(m+p+u+?

—1 m
45 Quuen=PI a2l p (7)), Kl=m 0<m<n.

C d—1 " d—1
(46) h/yf{’},};ﬂ — < nm,k, Qz’k>/)’,y,,u — Prut+S h;(‘[—-:f-'-ﬂ-'- 2 >V).
Cm+ﬁ+,u+‘1;' Ly
Proof. Using the parity of Py, it is not difficult to see that Q;, , is a polynomial
of degree n in (x, ) variables. Let o = f+ u + dgl. Setting y = x/+/t € BY, we
obtain

bﬁ,y,,u K/‘MQ;’]{(X’ I)Qnm/’,k’(x: I)Wﬁ,y,,u(xa t)d-’Cdt = b,u B ?(y) ﬁl//()’)wﬂ()’)dy

1 /
X Coy / P (1 — 20PN (1 — 20" (1 — 1) de.
0
Since Py are orthonormal, it follows that the second integral in the right-hand side is
non-zero only when m = m’, from which the orthogonality of Q;, , and the formula
for h/,f;ﬁ;“ follow from the corresponding properties of the Jacobi polynomials. [

We know that orthogonal polynomials on the solid cone and hyperboloid are
eigenfunctions of a second order linear differential operator with the eigenvalues
depending only on the degree of the polynomials [23, 24]. In particular, this means
that all polynomials of degree n are eigenfunctions independent of the choice of
bases. In contrast, the orthogonal polynomials on the solid paraboloid, as those on
the surface of the paraboloid, do not possess this property. For polynomials Qp, .,
we can find a differential operator for which the eigenvalues depend on » and m but
noton k, as seen in the following analog of Proposition 3.2, where we assume £ = 0.
The latter assumption is consistent with # = — in Proposition 3.2 because Wy, ,
contains the factor ##*#~> when writing in the form (4.4) and, for u = 0, @y is
the Chebyshev weight function on the unit ball, or the projection of the surface
measure of S onto B.
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Proposition4.2. Let =0,y > —land u > — é Then Qy, \ in (4.5) satisfies
the differential equation

[t(l — 087 + (1 —0){x, V)0, + i(l — DA,
d+1 1
4.7) +(u+ ; )(1—:)@—“2r (210, + (x, V. |
B d+1 y+d
——(n(n+y+y+ 5 )—m(n+y+ s ))u

Proof. Leta = f+u+97". Setg(r) = P{ " (1 =20 and H(x, 1) = 12 P (),
so that Q;,  (x, 1) = g())H(x, r). Since H(x, s%) is a homogeneous polynomial of

0

5 it follows by Euler’s formula for

degree m in (x, s) and, for ¢t = %, 2V/1§ =
homogenous polynomials that

(4.8) (2:2 +(x, Vx>)H = mH.

Furthermore, since /¢ gtH (x, 1) = gs H(x, s*) is a homogeneous polynomial of de-
gree m — 1 in (x, s%), applying (4.8) on /¢ gtH and simplifying gives

0*H

4. 2
@.9) ! or?

oH oH
V) =m=2)

Let u = Q) . Then u = g(t)H(x, 1). Taking the derivative by the chain rule, a
straightforward computation, using (4.8) once, shows that

(1 — )Ou+ (1 — 1){x, V) ou =(t(1 — 1)g" (1) + m(1 — g’ (1))H

&’H aH) .

+U =g, + (e V)

The Jacobi polynomial satisfies the differential equation (3.7), so that g satisfies
(3.7) with a replaced by a + m and n replaced by n — m, which leads to

t(1 — Dou+(1 — ) (x, Vy)ou+ (1 +a — (a+y +2)H)ou

oH
(4.10) =—m—m)(n+oa+y+Du—(y+ Dig() o
O*H oH oH
+(1 —g(r) [r o AV ) ]
The polynomial P} satisfies a second order differential equation (4.1) with n
replaced by m, from which it follows that H satisfies

(A — (x,V)> = Qu+d— 1){x, V)H = —m(m +2p +d — 1)H.
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Now, applying (4.8) and (4.9), the square bracket in the right-hand side of (4.10)
satisfies

[...]= 41t(<x, V) + 20 +m)(m — (x, V:)H

= it(—<x, Vx>2 —2a(x, Vi) + m(m+2a))H = —411 A H,

where in the last step we have used 2a = 2u + d — 1 for § = 0 and the differential
equation satisfied by H. Substituting this into (4.10) and using (4.8) one more
time, the resulted identity is simplified to give (4.7). ([

Next we consider the reproducing kernel of V,(V¥*!, Wy, ). In terms of the
basis (4.5), the kernel is given by

- k(6 DQG, 1 (3,
P (Wi (1), (s = 3 3 Bk D 9),

N
m=0 |k|=m b

With the help of the addition formula for the orthogonal polynomials on the unit
ball, we can express this kernel in terms of the reproducing kernel P,,(U, ; -, -) on
the parabola domain U.

Theorem 4.3. Letd > 2, u > 0andy > —1. Leta =+ u + dgl. Then, for
(x,1) e Vi (y,5) e V* and > 0,

Pn(Wﬁ,y,,u;(xa t)a (ya S))
@11 —c / P (Uy ot (V1. D), (VSEQ 1, y, 512, 1), )
[—1,1]3
x (1 =z (1 + 20711 = 2Y72(1 — u?)*~'dzdu,

where ¢ =c, i1 5 Cpcy and

1 1+
é:(xa taya $,2, I/l)= 2Z1§O(-x, taya S;l/l)+ 2ZIZ2,
with 50()C t,y,s, u): 1 (<x y>+u\/t ||x||2\/s— ||J’||2)
B \/St ’ )

furthermore, for =0,

P (Wo.y 5 (x, 1), (95 5))
(4.12) 1
= Cu /IPn(Uy,w;l;(\/t, 1), (Vséo(x, 1.y, s3u), $))(1 — u?)*~du.

In both cases, the identity holds for u = 0 under the limit (4.3).
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Proof. Since ||x|| < ¢ and |y|| < s, we see that |&(x, 2, ,y, s, u)| < 1 by the
Cauchy inequality. Consequently, [£(x, ¢, y, s;z, u)] < 1, so that both variables
in Pn(ijﬂ_‘_d;l ) are elements of U.

By (4.5) and the assumption that P}’ is orthonormal, it follows from the addition
formula (4.2) on the unit ball that, with o = f+ u + dgl,

Pn(Wﬂ,y,,u;(-x t) ()’, S))
/ T, P (] — 24Pt (] — 28)
= cﬂ
-1

m=0 hg’};’#
prist (X, ) [lx[1> Iyll* 2 -1
x Zlt (\/ﬂ +u\/1 N )(1 )" du.
If =0, then a = u + %', so that the sum under the integral sign can be

identified with P,(U, ,) by (3.10) with x, = ¢, y, = s and y; = &(x, t, y, s; u). This
proves (4.12). For > 0, we increase the value of the index of Z2 from u + 5!
toa=u+p+ d;l by 3.11) with A = u + d;l and o = f, so that the sum under the
integral sign becomes

P(‘”’” DA = 20)PED(1 — 258) w
d 1 C 1252
s )

o 1+z 14 d=1 _ 1
x 7% ( s e v, s ) + ! 1z2)(1—zl)’+12 (1+2)P7 11 = 2/ dz

1 1
=yt i | 1 / P (V1 0, (G 135321,
x (L=zy"*% (1+ 2711 = )z,

where the second step follows from (4.6) and (3.10). Putting the two displayed
identities together, we have proved (4.11). ([

If we allow d = 1, then V? with W0,y (x1, x2) should just be the domain U
with U, ,(x1, x2). We know that P,(U,_;) does not have a closed formula except in
the case that one of its variablesis 1 = (1, 1). Ford > 2, we can deduce accordingly
a closed formula for P,(Wpg , ,,) on the hyperplane r = 1 of (x, ?) € V41 We state
this formula for the kernel of the partial sum operator

KWy (6,0, (0 ) = D Pu(Wg, 0 (x, 1), (3, 5)

m=0

by using the closed formula of K,,(U,5;1, -) in Theorem 2.3. We again state the
result only for the case f = 0, for which the formula is relatively simple.
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Corollary 4.4. Letd > 2, y > —l and u > 0. Let t = u+ ;' Then,
forx e B9,

P’(1y+r+1,r)(1)
Kn(WO,V,,U ;(.X', 1)9 (yo S)) = h(y+r+1’r) Cys+r+1,7Cpu
n

X / PR (x, p, 5, 1, 0))Wyae1,(0)(1 — u?)* ' dudo,
[—1,1P
where Z'(x, y, s, u, v) = z2((v/séo(x, 1, y, s3u), 5), v) Or

1
Z@y s, u,0)=1—(1 =0 (A = Vséox, 1, y, s5u)) — L= 0)*(1 —s).
This is a corollary of (4.12) and (2.14). A more involved closed form formula
for f > O can be written down using (4.11) and (2.14).
4.3 Summability of Fourier orthogonal series. Denote by proj,(Wg, )
the orthogonal projection operator
proj,(Wg., ) : L2(V*S W, 0 = Va(VE Wp 0.

In terms of the reproducing kernel P,(Wy, ,) of V,,(V&*1, Wy, ), we can write
projn(Wﬂ,y,,u ,f) = bﬁ,y,,u /Vd+1f()’, S)Pn(Wﬁ,y,,u;(xa t): ()’, S))Wﬁ,y,,u(x: t)dyds
0

For f € L>(V¥*; Wy, ,), the Fourier orthogonal series of f on V¢! is defined by

£=>proj,(Wg, u:f).

n=0
Recall that Uy denotes the curved portion of the boundary of the parabola
domain U. Analogously to Definition 3.5, we give the following definition:

Definition 4.5. Letd > 2, 1 >0, 8> 0andy > —1. Seta = B+ u + ;"
Let g : Uy x U — R such that, for each ¢ € [0, 1], the function x — g((1/1, 1); x) is
in LI(U; U, ). For (x,1) € V! and (y, s) € V4!, define for f > 0

Ty u8((x,0), (v, 5)) := c/

[-1.1

sV, 0), (VsE(x, 1., 532, u), )
]3
x (1—z2)""% (L4 2711 = )72 (1 — 2y~ dad,
where ¢ = ¢, a1 5 jcpc,, and define for p=0,

1
To,, ug((x, 1), (v, ) = C. /_ B0, (Vi1 sia0 (1 =y

In both cases the definition holds under the limit (4.3) when x = 0.
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By (4.11) and (4.12), the definition Ty, , is motivated by

(4.13) Pu(Wgy.05 6 0), (0, 8)) = Ty Pu(U, gy (6 D), (9, 5)).
For each fixed (x, #) € V¥*!| this is a bounded operator as seen below.

Proposition 4.6. Let f > 0, u > 0andy > —1. Letg : Uy x U — R
such that, for each t € [0, 1], the function g((\/t,1);-) is in L'(U; U,..) with
o=f+u+ d;l. Then, for (x,1) € V41,

[ (G 0, 0 DIW 0. )y
(4.14) ver

<c /U 18((V1, 1), DU, a(2)dz.

Proof. We follow the approach for the proof of Proposition 3.6. Instead of
the integral relation (3.14), we use the following identity for & : [—1,1] — R
and v € B%:

1
b/‘/ / h(<1/l, [ >
B¢ J -1
(4.15) +/ 1= [ul2V1 = o 1290 = 1 dr(1 — [Ju]|H* 2 du
1
= Cppi! / h()(1 — )+ dr.
1

This identity is established in the proof of [21, Theorem 5.3] for a specific function &
but the proof clearly holds for all generic h. Let G(z) = g((t, V1), z) for z € U.
Then, in the case of § = 0, we obtain

b [ T8 0, )1 Wosy . )3
1
= Do /o /B ITo08(Ce, 1, (Vsy's DI = 1Y [P)72dy/s"* 2 (1 = 5)7ds
1 1
<bos [ [ e [ 16/t 1 s s
x (1= r)*~ldr(l — Iy 1)~ 2dy's"* "2 (1 — 5)7ds.

Since &y(x, 1, /sy, 5:2) = (X, ) +20/1 — |¥[|2y/1 — ||[Y'||? with X' = x/\/t € B¢
and y' € B?, we can apply (4.15) to bound the above inequality by

1 1
c / / IG(Vsu, $)|(1 — t®)"+ 2" dus*+ 2" (1 — 5)’ds
0 —1

=dy”u+d;1/UlG(Z)lUy”u_'_d;l(Z)dz,
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which follows from changing variables z; = /su and z; = s and the the last constant
is determined by setting G(z) = 1. Consequently, this establishes (4.14) for g = 0.

Let now f > 0. Following the proof in the case of f = 0 by using (4.15), we
obtain

b [ s, 0 NIW 0 5)ds

1 1 1 1
Sbﬁ,y,u/o /_1/_1/Bdc” /_1 IG(V/sEx, 8, /sy, 552, 1), )[(1— rP)*~tdr

x (1= Y197 2dy/ (1 — z)** 2 (1 + 20)P71(1 = 2)P~ 2 dzs? 2 (1 — 5)'ds

= C/ol /—11 /—11 /—11 ‘G(\/S(l _2Z1u M 1 -;lez)’ S) ‘(1 — 1) du

x (1= 2" (1 + 20711 = )72 P45 (1 = 5)7dzds.

Besides the difference in their parameters, the last integral is the same as the
quadruple integral in the proof of Proposition 3.6. Indeed, if we replace f by S+ ;
and u + dgl by dgz in the above integral, then the two quadruple integrals are the
same. Hence, we can estimate the above integral as in the proof of Proposition 3.6
to complete the proof of (4.14) for f > 0. This completes the proof. (]

As in the case on the surface V3*!, we define a pseudo-convolution on V¢*!,
Definition 4.7. Let f > 0, u > 0andy > —1. Let g : Uy x U — R such

that, for each ¢ € [0, 1], the function x — g((v/2, 1); x) is in L'(U; U

zl;l ) For
fe L'V, Wy, ) and (v, s) € V4L, define

V.. Bu+

(f #v )y, s) =bp ;4 /V,mf(x’ DTp,y,u8((x, D), (v, $)IWp,y,u(x, )dxdr.
By (4.13), it follows that the project operator onto V,(V*!, Wy, ) satisfies
projn(Wﬂ,y,,u ,f) :f *y Pn(Uy’ﬁ.g.Iu.g.dE' )

Proposition 4.8. Let f >0, u > 0andy > —1. Leta =L+ u+ d;l. For
felP(VHws, ), 1 <p < oo, andf € C(V¥*Y) for p = oo,

f *v gllrevatwy, ) < C|lf||1f(vd+1;wﬂ,v,ﬂ)tfel%g)lﬁ] /U |8((V1, 1), 2)| Uy o(2)dz.

Proof. Using (4.14), the proof follows exactly as that of Proposition 3.8. [J

We now use this boundedness of the pseudo-convolution to study the Cesaro
means of the Fourier orthogonal series on the solid paraboloid.
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For 6 > —1, let Kf;((x, 1), (v, 5)) be the kernel of the Cesaro (C, J) means
Sﬁ(Wﬁ,N, ;f). Analogously to (3.15), we derive from (4.13) that

(4.16) Ko (W5 06,0, (0,8)) = T KU, gy )06, 1), (3 9)).

Furthermore, in terms of the pseudo-convolution, we can write
So(Wpp ui3fo (6, 1)) = f 4y K (Uy,,ﬁ,”d; )(x, ).

Theorem 4.9. Letd > 2, >0, u > 0andy > —1. Iff € C(V™Y), then the
Cesaro means Sf;(WﬁjN, :fs (x, 1)) converge to f(x, 1) uniformly for x € B? provided
5> B+y+u+ 42

Proof. The convergence of Sf;(Wﬁ,y, «>f> (x, 1)) holds if and only if

sup [ KW 1, O35 Wp 0, )
XEBd Vzl+1

is bounded uniformly in n. By (4.16), the fact that r = 1 and the inequality (4.14)
show that this follows from the boundedness of the L' norm of Kﬁ(U y Pt st 1,2),

which holds ford > y + S+ u + d;l + g by Theorem 2.4 and by Remark 2.1. [

Theorem 4.10. Letd > 2, f > O0and u > 0, y > f+u + d;l. Let
felP(VHL Wy, ) for1l <p < ooandf € C(V™) for p = co. Then the Cesaro
means SS(Wpg., . f) satisfy:

(1) ifo =2+2u+y+d+3, then Sﬁ(WﬁjN, ;f) is nonnegative if f is nonnegative;
Q) ifo>P+u+y+ d"sz, then SY(Wg,, 43 f) converge to f in LP(V Wy, ),
1 < p < oo, and in C(V4),

Proof. Using the identity (4.16), the proof reduces to properties possessed by
the kernel K{(U, 4,
in the proof of Theorem 3.10 and we leave it to interested readers. g

4 ) on the parabola domain U. The detail follows exactly as
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