THE CAUCHY PROBLEM FOR OPERATORS WITH
TRIPLE EFFECTIVELY HYPERBOLIC CHARACTERISTICS:
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By

TATSUO NISHITANI

Abstract. Ivrii’s conjecture asserts that the Cauchy problem is C* well-
posed for any lower order term if every singular point of the characteristic variety
is effectively hyperbolic. An effectively hyperbolic singular point is at most a
triple characteristic. If every characteristic is at most double, this conjecture has
been proved in the 1980’s. In this paper we prove the conjecture for the remaining
cases, that is for operators with triple effectively hyperbolic characteristics.

1 Introduction
This paper is devoted to the Cauchy problem

0 Pu=D"u+ Y00 S apaiem @a(t, X)DEDju = 0,
‘ Diu(oa-x):uj(x)a j:03---9m_19

where > 0, x € R? and the coefficients a;,(t, x) are C* functions in a neigh-
borhood of the origin of R and D, = (Dy,,...,Dy,) = D, D, = (1/i)(8/0x;)
and D, = (1/i)(d/0t). The Cauchy problem (1.1) is C* well-posed at the origin
for t > 0 if one can find a § > 0 and a neighborhood U of the origin of R¢ such
that (1.1) has a unique solution u € C*°([0, ) x U) for any u;(x) € C>®(R?%). We
assume that the principal symbol of P

m—1
p(ta X, T, é:) =7"+ Z Z aj,a(ta x)farj
J=0 |a|+j=m

is hyperbolic for ¢+ > 0, that is there exist &' > 0 and a neighborhood U’ of the
origin such that

(1.2) p =0 has only real roots in 7 for (z, x) € [0, 5) x U’ and & € R?
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which is indeed necessary in order that the Cauchy problem (1.1) is C* well-posed
near the origin for # > 0 ([19], [22]).

In [12], Ivrii and Petkov proved that if the Cauchy problem (1.1) is C* well-
posed for any lower order term near the origin for # > 0 (such an operator P is
called strongly hyperbolic), then the Hamilton map F), has a pair of non-zero real
eigenvalues at every singular point of p = 0 located in [0, ") x U” x (R¥1\0) ([12,
Theorem 3]) with some ¢” > 0 and a neighborhood U” of x = 0. With X = (¢, x),
Z = (1, {) the Hamilton map F), is defined by

&p &#p
- OX0E P
F,X,2)=| °
»(X, E) & @p
aXoxX =X

A singular point of p = 0 where the Hamilton map F), has a pair of non-zero real
eigenvalues is called effectively hyperbolic ([6], [11]). Ivrii has conjectured that
the converse would be also true, that is if every singular point of p = 0 is effectively
hyperbolic then the Cauchy problem is C* well-posed for any lower order term.
If a singular point (¢, x, 7, £) is effectively hyperbolic, then 7 is a characteristic root
of multiplicity at most 2 if # > 0 and at most 3 if # = 0 ([12, Lemma 8.1]). When
every multiple characteristic root is at most double, the conjecture has been proved
for some special class in [9], [21] and for the general case in [13, 14, 15], [23, 26].

For the case when we have a triple effectively hyperbolic characteristic, Ivrii has
also proved in [9] that the conjecture is true if p admits a factorization p = ¢g,¢, near
singular points with real smooth symbols g;, transforming the original P, by means
of operator powers of evolution generators, to an operator for which a parametrix
can be constructed. In this case a singular point is effectively hyperbolic if and
only if the Poisson bracket { g, ¢g»} does not vanish there. If m = 3 it is clear that,
for such a factorization to exist, it is necessary that the equation p = 0 has a C* real
root 7 = 7(¢, x, &) near a conic neighborhood of singular points. A typical example
is

P=qiqz, =7 -1, =1

where ¢ is the Tricomi operator (symbol). Note that p has a complex characteristic
root if + < 0. This is a common feature. In fact if p(0,0,7,¢) = O has a
triple characteristic root and F,(0, 0, 7,{) # O, then p has necessarily non-real
characteristic roots in the ¢t < 0 side near (0, 0, &) ([12, Lemma 8.1]).

When m = 3, without restrictions we can assume that p has the form

p=17 —al(t,x,OIEPt+b(t, x, OIEN,

hence the condition (1.2) is reduced to A = 4a>—27b* > Ofor (¢, x) € [0, ) ><_U’,
|£] = 1. Also note that (0, 0,0, ¢) is a triple characteristic, then (0,0, 0, &) is
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effectively hyperbolic if and only if 6,a(0, O, é‘_) # 0, hence a(t, x, £) > 0 microlo-
cally for small ¢ > 0. In [2], Bernardi, Bove and Petkov investigated the case that p
has a triple effectively hyperbolic characteristic but p may not be factorized. They
studied P with the principal symbol

p =17 — (tas(t, x, &) + alx, E)|EPT + £2bs(t, x, &)|E

where ax(t,x,&) > ¢ > 0, a(x,&) > 0 and proved the conjecture for such P,
deriving weighted energy estimates by a separating (multiplier) operator method.
Note that A > ca® holds with some ¢ > 0 for this p. They also proved that if
b3(0, 0, g;) # 0, then a smooth factorization p = g;¢; is possible only if a(x, g;) =0
for all x near x = 0. This result was extended in [30, 31] such that the conjecture
is true if A > cta® or if A > ¢ r?a with some additional conditions, where after
reducing the original equation to a first order 3 x 3 system, a symmetrizer S is
constructed and used to get weighted energy estimates. These results are concerned
with the case that p is strictly hyperbolic in # > 0, while in a general case, double
effectively hyperbolic characteristics in # > 0 (where A = 0) approaching a triple
effectively hyperbolic characteristic on # = 0 might exist and we must handle them.
Moreover, the following example ([30])

(1.3) p(t,x,7,8) =70 — (t+a())ET+(")2 — D)V ax)E, x,EeR,

where a(x) > 0 and v/a(x) is smooth, suggests that it is not enough just to study
the zeros themselves of A. Indeed since

A =(t =204t +a) + 277" a(1 — "1 /4)
so that A > O for small # > 0, while
A=27. 2m+1am+2(l _ 2m_3(lm_l)

if t+ = 2a, hence one has no estimate such as A > c#(z + a)? with ¢ > 0 for
smalla > 0ifm > k+qg— 2.

In [29] we employed a new idea which is to diagonalize the symmetrizer S
mentioned above so that the system is transformed to a system with a diagonal sym-
metrizer. We see that three diagonal entries (the eigenvalues of S) are bounded from
below by A /a, a, 1 respectively and we recognize here a close relation between the
diagonal symmetrizer and two discriminants A of p =0 and A’(=a) of 0,p = 0. In
example (1.3) we see A /a > (t — 2a)? which looks like 7> — (A /a)|&]? has double
effectively hyperbolic characteristics on ¢t = 2a though A # 0 there (see [26, 27]).
When the coefficients of p depend only on ¢, the behavior of A(z,&)/a(t, &) can
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be analyzed relatively easily. Writing A(z, &) = e [[( — v;(£)) and dividing [0, T
into subintervals with the end points Re v;({) we can obtain suitable estimates of
A /a from below in each subinterval. In particular, in this way, we have proved
the conjecture for the ¢ dependent case [29, Theorem 4.1]. In this paper we extend
this idea and apply it to the general case of which an outline is given in the next
section.

For this class of operators we have always a loss of regularity, so the way to
obtain microlocal energy estimates for operators of order m from that of order 2 or 3
and the way to prove local C* well-posed results from such obtained microlocal
energy estimates with loss of regularity is not so straightforward.

Finally we note that if there is a triple characteristic which is not effectively
hyperbolic, the Cauchy problem is not well-posed in any Gevrey class of order s > 2
in general, even though the subprincipal symbol vanishes identically ([3]).

In this paper we prove

Theorem 1.1. Assume (1.2). If every singular point (0,0, 7, ), |(z, £)|F#0
of p=0 is effectively hyperbolic, then for any a;,(t, x) with j+ |a| <m — 1, which
are C*® inaneighborhood of (0, 0), there exist 0 > 0, aneighborhood U of the origin
andn> 0, £ > 0 such that for any s € R and any f with t="*'/2(D)*f € L*((0, ) x RY)
there exists u with t~"=Y/2(D)=++m=iply e [2((0, ) xR?), j = 0,1,...,m — 1,
satisfying Pu = f in (0, 0) x U.

Here (D) stands for+/1 + |D|? and n, £ are given by

|Psub(05 09 To f)l _*
=k 2
0,0,5,0 T¢ (n+2),

n=12v2 sup
where Py, denotes the subprincipal symbol and e(0, 0, 7, &) is the positive real
eigenvalue of F,(0,0, 7, £), and the supremum is taken over all singular points
0,0, 7,¢&) with (7, &) =1 of p = 0 and C* is a constant depending only on the
principal symbol p. Here k is the maximal number of singular points (0, 0, z, £)
of p = 0 with |[(z,£)| = 1, hence k < [m/2]. For a more detailed estimate of C*
see (3.14) and (10.2) below. The constant 12v/2 may not be the best.

Theorem 1.2. Under the same assumption as in Theorem 1.1, for any a; ,(t, x)
with j + |a|] < m — 1, which are C* in a neighborhood of (0, 0), there ex-
ist 0 > 0 and a neighborhood U of the origin such that for any u;(x) € CS(RY),
j=0,1,...,m—1, thereexists u(t, x) € C*>°([0, 0) x U) satisfying (1.1)in [0, ) x U.
If u(t, x) € C*([0, 0) x U) with 8{14(0, x)=0,7=0,1,...,m— 1, satisfies Pu=0
in [0, 0) x U, then u =0 in a neighborhood of (0, 0).
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Proof. Compute

(%) = Dju(0, x)
forj=m,m+1,... fromujx),j=0,1,...,m— 1 and the equation Pu =0. By a
Borel’s lemma there is w(, x) € C°(R'*9) such that
Djw(0, x) = uj(x) forallje N.
Since
(D,Pw)(0,x)=0 foralljeN
it is clear that t*/2(D)*Pw e L*((0, §) x R?) for any s. Thanks to Theorem 1.1

there exists v with t_"_1/2<D>_‘)”+m_jD§'v € L*((0,0) x R, j=0,1,...,m—1
satisfying Pv = —Pw in (0, ) x U. Since va e L*((0, ) x RY) for any k, hence

dv(O, x)=0,j=0,1,...,m— 1, we conclude that u = v + w is a desired solution.
Local uniqueness follows from Theorem 13.4 below because &u(0,x) = 0 for
any k € N by Pu =0. (|

2 Outline of the proof of Theorem 1.1

As noted in the Introduction, if a singular point (z, x, 7, ) of p = 0 is effectively
hyperbolic, then 7 is a characteristic root of multiplicity at most 3. This implies
that it is essential to study the third order operator P:

3
(2.1) P=D;+> at,x, D)(DYD;™
j=1

which is a differential operator in # with coefficients a; € S°, classical pseudodif-
ferential operators of order 0, where (D) = op((1 + |¢]?)!/?). One can reduce P to
the case with a;(z, x, D) = 0 and hence the principal symbol is

(22) plt,x,7.&) =T — alt, x, ) (&)t — blt, x, ) (&),
All characteristic roots being real for ¢ > 0 implies that
(23) A=dalt,x, & —27b(t,x, 5> >0, (t,x,&) e€[0,T)x U xR

Assume that p(0, 0, z, E) = O_has a triple characteristic root 7 = 7, necessarily 7 = 0.
The singular point (0, 0, 7, &) is effectively hyperbolic if and only if

(2.4) 8,a(0,0, &) #0,

hence one can write a = e(t+a(x, £)) wheree > Oand o > 0. From conditions (2.3)
and (2.4) the discriminant A is essentially a third order polynomial in ¢. In Section 3,
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for regularized a, = e(t+a+¢€2) and the corresponding discriminant A, we construct
a smooth y, such that

2.5) Ae = cmin {2, (1 =y} (t+p), 120

where p. = a + €. In Section 4, introducing a large parameter M, we localize
the coefficients near reference Eoint (0,_5_) replilcing (x, &) by localized coordi-
nates y(M2x)x, x(M*(&/(&) — ONE — (&) + (&) and taking € = M'/2(¢)™!/2
where y € C§° is 1 near 0. At this point related symbols are localized near (0, &)
(defined in R? x R?) and (2.5) yields

(2.6) AJa > cmin (£, (t — w)* + Mp(&)™'), t>0.

We also estimate such localized symbols in terms of the localized p. In particular,
we show that

8Ly (x, O 3 plx, &)1 (&)W

where, from now on, A = B means that A is bounded by a constant, independent
of parameters, times B.

One of the main arguments in the paper is to reduce the original equation to a first
order 3 x 3 system with diagonal symmetrizer. With U = '(D?u, (D)D,u, (D)?u)
the equation Pu = f is reduced to D,U = A(t, x, D)(D)U + B(t, x, D)U + F where
A,Be S’ F=1(f0,0) and

A(t, x, Q) =

S = O

a b
0 0
1 0

Let S be the Bézout matrix of p and dp/dr, that is

3 0 —a
St,x,&)=10 2a 3b]|;
—a 3b d?

then § is positive semidefinite and symmetrizes A, that is SA is symmetric. We
now diagonalize S by an orthogonal matrix T so that T-'ST = A. Then with
V = op(T~ 1)U the system is reduced to, roughly,

2.7) D,V = A"(t,x, D)(D)V + B(t, x, D)V

where A is diagonal and symmetrizes A’ (z,x,&) = T~'AT. This reduction is
carried out in Section 9 after examining 7'(¢, x, &) carefully in Section 5.
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Note that 4 = diag (4, 42, 43) where 0 < 1; < A, < A3 are the eigenvalues
of §. As mentioned in the Introduction, a significant feature of 4; is the following:

'<a2, A~a, A3y=~1, t>0.

~

(2.8) Ala 32
Section 5 is devoted mainly to estimate derivatives of 1; and we prove
030l 0)| 3 Pl 2(ETPL 1> 0, j=1,2,3

which also gives detailed information on the derivatives of 7. Since (2.7) is a
system with diagonal symmetrizer 4, a natural energy would be

3
(op(MV, V)= (0p()V;, V)
j=1
and (2.6) and (2.8) suggest that a weighted energy with a scalar pseudodifferential
weight op(t™"¢™"),

p=o+t—y, o= \/(t— w2+ Mp(S)~t,

would work, where op(¢~") is chosen after the weight employed for studying
double effectively hyperbolic characteristics in [26] (see also [27]), and satisfies

o(tp) =x(tp), rk=1/t+1/w.

In Section 6, to treat these weight functions, we introduce a o temperate (uniformly
in M) metric
g =M""()ldx” + (&) |ax]?)

and prove that o° € S(&’, g), ¢* € S(¢*, g) with s € R, uniformly in ¢t > 0,
estimating derivatives of w, ¢. In Section 7 we prove that w, ¢ and /; are o, g
temperate uniformly in ¢ € [0, M~*] (in this paper such functions are called ad-
missible weights for g, while ¢ is reserved for denoting a certain function). This
fact enables us to apply the Weyl calculus of pseudodifferential operators (see
[7, Chapter 18]) to op(¢®), op(®w®) and op(ij-) with s € R, for example we have
op(d*)op(¢?) = op(¢*'#¢°2) where ¢*'#¢2 € S(¢*1*2, g). In Section 8 we prove
some basic facts on inverses and L? bounds of pseudodifferential operators associ-
ated to the metric g which enables us, for example, to write

op(¢*)op(¢™) = op(1 + r)op(¢*™2)  with r € S(M™!, g).

We also give lower bounds of op(4;) here.
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In Section 10, applying the Weyl calculus of pseudodifferential operators we
estimate the weighted energy

Re e~ (op(A)op(t™"¢™")V, op(t"¢™)V)

and derive energy estimates for any lower order term (including the term M (D)D;
because we have added this to the original operator at the beginning) (Proposition
10.1). In Section 11, using energy estimates for the system coming from the
adjoint operator of P, which is obtained repeating exactly the same arguments, we
prove an existence result of the Cauchy problem for Pz which is the localized
operator near (0, ) of the original P (Theorem11.1). In Section 12, in order to sum
up such obtained solutions (which might be considered as a microlocal solution
to the Cauchy problem near (O, 5)), we prove that the wave front sets of such
solutions propagate with finite speed (Proposition 12.4). A more precise picture of
the propagation of a wave front set of solutions is also proved applying the same
arguments (Theorem 12.1). Finally, in Section 13, using the propagation results in
Section 12 we complete the proof of Theorem 1.1.

3 Construction of y(x, ¢)

We study third order operators P of the form (2.1) with a;(¢, x, D) = 0, hence the
principal symbol has the form (2.2) where a(¢, x, &) and b(t, x, &) are homogeneous
of degree 0 in ¢ and assumed to satisfy (2.3) with some 7" > 0 and some neigh-
borhood U of the origin of RY. Assume that p(t, x, 7, &) has a triple characteristic
root 7 = 0 at (0, O, é‘_), |¢‘_| =1 and (0,0, O, f_) is effectively hyperbolic. It is clear
that a(0,0,&) = 0 and b(0,0,¢) = 0. Since &fa(0,0,&) = 0 for |a + f] = 1
and 6?8?19(0, 0, é_) =0 for |a + 8| < 2, by (2.3) (see Lemma 4.2 below) it is easy to
see that

3.1) det(2 — F,(0,0,0, ) = 22(4% — {8,a(0, 0, H)}?),

hence (0, 0, O, 5_) is effectively_hyperbolic if and only if 6,a(0, O, g;) # 0. Then there
is a neighborhood U of (0, 0, &) in which one can write

a(t, x, §) = e(t, x, (1 + a(x, $))

where ¢ > 0 in U. Note that a(x, &) > 0 near é‘_ because a(t,x,&) > 0 in
[0,7T) x U x R<.
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3.1 A perturbed discriminant. Introducing a small parameter € we con-
sider

T —e(t, x, )t + alx, ) + NEPPT — b1, x, &) ¢
=7 —a(t,x, & Ol — b(t, x,O)IEP.
From now on we write b(X) or a(X, €) and so on to make clearer that these symbols

are defined in some conic (in &) neighborhood of X = 0, é‘) or (X 0). Consider the
discriminant of (3.2); A(t, X, €) = 4a°(t, X, €) — 27 b*(t, X).

3.2)

Lemma 3.1. One can write
A =ét X, o)’ +a1(X, ) + ar(X, €)t + az(X, €))
in a neighborhood of (0, X, 0) where aj(X,0) =0, j=1,2,3 and & > 0.

Proof. It is clear that 5fa>(0, X, 0) = 0 for k = 0, 1,2 and 3}a*(0, X, 0) # 0.
We show that 6,b(0, X, 0) = 0. Suppose the contrary and hence

b(t, X, 0) = #(by + thy(¢)) with by #O0.

Since a(z, X 0) = ct with ¢ > 0, then A(z, X 0)=4c3 -27b(t, }E 0)? > 0 leads
to a contradiction. Thus &*A(0,X,0) = 0 for k = 0, 1,2 and &> A(0, X, 0) # 0.
Then from the Malgrange preparation theorem (e.g., [8, Theorem 7.5.5]) one can
conclude the assertion. [

Introducing
(3.3) p(X, €) = a(X) + €
one can also write
A =43t + p)} —270% = 43 {(t + p)® — 27b%/(4eD)} = 43 {(t + p)® — b?}
with b = 3v/3b/2¢%2. Denoting
2 .
b(t,X) = b;(X)¢ + bs(t, X)P,
j=0
where ISO(JZ) = lA)l(}Z) = 0 which is clear from the proof of Lemma 3.1, one can
write
A=A =1 +ai(X, OF + ar(X, Ot + az(X, €)
(3.4) o N
=FE {(t +p) — (Z bi(X)Y + bs(t, X)t3> }
j=0

with E(t, X, €) = 4¢3 /&. Here note that E(0, X, 0) = 1.
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Lemma 3.2. There is a neighborhood V of X such that |b(X)| < 4 a'/2(X)
forX eV.

Proof. It is clear that |by(X)| < a%(X). If a(X) = O then the assertion is
obvious. Assume a(X) # 0. Since

2 2
(3.5) (1+a(X)* > (Z@(X)rf +bs(1, X>r3) , 0<i<T
j=0

choosing t = 3a(X) < T and writing o = a(X) it follows from (3.5) that
80> > |bo(X) + 3b1(X)a| — Ca?, > 3|by(X)|a — Ca® — >/,

hence the assertion is clear because oc()?) =0. ]

Lemma 3.3. In a neighborhood of (X, 0) we have aj(X, €) = O(p(X, €Y) for
j=1,2,3. More precisely,

ai(X, €) = E(0, X, e)(3p(X, €) — b3(X)) + O(p*/?),
ar(X, €) = E0, X, €)(3p*(X, €) — 2bo(X)b1 (X)) + O(p*'?),
a3(X, €) = E(0, X, €)(p*(X, €) — b3(X)).

Proof. Since A (0, X, €) > 0 it follows from (3.4) that
ax(X, ) = E0, X, )(p(X, &)’ — by(X)*) = 0
hence by = O(p>/?) and consequently az(X, €) = O(p?). From (3.4)
ax(X, €) = 0,E(0, X, €)az(X, €) + E(0, X, €)(3p*(X, €) — 2bo(X)b1(X)).

Since BO(X)BI(X) = O(p?) by Lemma 3.2 hence the above equality shows the
assertion for a,(X, €). Finally from (3.4) again

2a,(X, €) = G7E(0, X, €)az(X, €) + 20,E(0, X, €)(3p*(X, €) — 2bo(X)b, (X))
+2E(0, X, €)(3p(X, €) — b1 (X)* — 2bo(X)b»(X))

and from Lemma 3.2 one concludes the assertion for a(X, €). O

3.2 Lower bound of a perturbed discriminant. Denote

(3.6) v(X, €) = inf{z | A(t, X, €) > 0}
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and hence Z(v, X, ¢) = 0. First check that v(X,e) < 0. _Suppose the con-

trary v(X, €)=v> 0. Since A(z, X, €) > 0 for >0 one can writ_e A= —v)*(t—7)
with a real ¥ where ¥ v and ¥ < 0. Therefore we have A(f) > 0in ¥ <t < v
which is incompatible with the definition of v. Write

A1, X, € = (1 — v(X, )P+ A1(X, ) + Ar(X, ©))
where A; = v + a;. Here we prepare following lemma.

Lemma 3.4. One can find a neighborhood U of (}Z, 0) such that for any
(X, €) € Uthereis j € {1, 2,3} such that |vi(X, €)| > p(X, €)/9 where

3
A, X, €) = [ [t — vi(X, €)).
Jj=1
Proof. First show that thereis 1/3 < J < 1/2 such that
3.7 max {|p* — B3|', |p> = 2bob1 /31", |p — b7/31} = &%p.

In fact denoting f(0) = 2(1 — 6)V/2(1 — 5)Y/2/4/3 — 1 — &* it is easy to check
that f(1/3) > 0 and f(1/2) < 0. Take 1/3 < 6 < 1/2 such that f(6) = 0. If
|p? = B3|'3 < %p and |p — b3 /3| < & p, then

lbol = (1 —3%'2p** and |bi| = V3(1 = 6%)'?p'/2,
hence
|p* — 2boby /3| > 2|bob11/3 — p* = (F(0) + 5)p* = 5" p*.

Thus (3.7) is proved. Thanks to Lemma 3.3, tak_ing E(0, )?, O)=1land 1/3 <o
into account, one can find a neighborhood U of (X, 0) such that

max {3lai(X, ), 3*lax(X, oD%, B%las(X, OD'P) = p, (X, €) € U
Then the assertion follows from the relations between {v;} and { «;}. [

Lemma 3.5. Denote v defined in (3.6) by vy and by v;, j = 2, 3 the other roots
of A = 0. Then one can find a neighborhood U of (X 0) and c; > 0 such that

(3.8) if vitay <2cip, X,e)elU then |vi—vj|>cap, j=2,3.

In particular, vi(X, €) is smoothin U N {v) +a; < 2cp}.
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Proof. Write

_ 3
(3.9) A =[] —vp =t —vi)(@ +A1/2) = D)

J=1
so that Rev; = —A/2, j = 2,3 where A; = v +a;. Take ¢; = 1/27 and
assume A; < 2c;p. First note that if Rev; > cyp, j = 2,3, it is clear that
[vi —vj| > |[vi — Rev;| > Rev; > c1p because v; < 0, so we may assume

(3.10) —cip <Revj=—-A1/2 <cip, j=2,3.

If D > 0 then one has —A;/2 + /D < 0. Otherwise K(t) would be negative for
some ¢ > O near —A/2 + /D which is a contradiction. Thus /D < A2 <cip
which shows that v, ], [v3] < |A1]/2+VD < 2c1p < p/9,hence |v| > p/9 =3cip
by Lemma 3.4. Therefore |v; — vj| > |vi| — |vj| = c1p. Turn to the case D < 0
such that vy, v3 = —A;/2 #+ iy/|D|. Thanks to Lemma 3.4 again either |v{| > 3cip
or |va| = |v3| = 3cyp. If |vi| = 3cyp then it follows from (3.10) that

[vi —vi| = [vi+A1/2] > |vi| = |A1l/2 = 2c1p.
If |vz] = |vs3| = 3cip sothat [A(|/2 + \/|D| > 3cyp, then
VIDI > 3cip —|A11/2 > 2¢ip

which proves |v; — v;| > v/|D| > 2¢; p, hence the assertion. ]

Now define w(X, €) which plays a crucial role in our arguments deriving
weighted energy estimates. Choose y(s) € C*°(R) such that 0 < y(s) < 1 with
x(s)=1if s < 0and y(s) =0 for s > 1. Define

v1+a1)v1+a1

w0 =—x( 2 eso.

2c1p
Proposition 3.1. One can find a neighborhood U of ()? , 0) such that

(3.11) A(t, X, €) > cmin {2, (t — w(X, €))%} (t + p(X, €))

holds for (X, €) e U, e #0 and t € [0, T] where ¢ = 1/32.
Proof. Setd = 1/9 in this proof. First check that one can find ¢ > ¢ such that

(3.12) A X, €) > c(t+p) ifA =vi+a; >0.

Let D > 01in (3.9). It was seen in the proof of Lemma 3.5 that —A; /2 + /D < 0
so that vy, v3 = —A /2 ++/D < 0. If [v;| > Jp then

t—v1=t+|v1|2t+5p,
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hence 6~ '(t —vy) > t+pandt —v; = t + |v;] > ¢, so (3.12) holds with ¢ = 6.
Consider the case D < 0 so that vo,v3 = —A/2 £ iy/|D|. If |[v;|] > Jp then
6=t —v)) > t+p as above and |t — v;| > |t+ A;/2| > t, thus (3.12) holds
with ¢ = 8. If |v,| = |v3| > Jp then A /2 ++/|D| > dp. Since

(t —v)(t —v3) > (t+A1/2+\/ID)?/2 > (t+p)*/2 > St + p)/2

then (3.12) holds with ¢ = §/2.
Turn to the case A} < 0. Since ¥ = —(v; +a;)/2 > 0, one can write

A@t) = (t —vi)((t — p)* — D).

Note that D < 0, otherwise y + v/D > 0 would be a positive simple root of A Q)
and a contradiction. Then (t — w)?> — D = (t — w)?> + |D| > (t — y)?. Consider the
case |v;| = dp. Recalling t —v; =1+ |v|| > d(t + p) we get

(3.13) A, X, €) > c(t — p)*(t + p)
with ¢ = 5. When |v,| = |v3]| = |y +i/|D|| = \/l//2+ |D]| > dp one has
(t—v2)(t —v3)=(t— w)* +|D| > (It — w| + V/IDI)?/2.

Assume y > /|D| so that v/2y > dp. For0 <t < y/2 we have t < |t — | and
w/2 < |t — y|; one has

(L=l —wl+ylt—wl > (L= pt+yp/2 > 52V2+5) 1+ p)

with y = 2¢/2/(2v/2+0). Since |t—w|++/|D| > |t—y| > tand |t—v,| = t+|v,| > ¢
it is clear that (3.12) holds with ¢ = 6/(2v/2 + ). For w/2 < tsuch that |t — y| < ¢
one sees that

t—vi>t=(1—Pt+yr>1—pt+yy/2 >02V2+9)7 (1 +p)

and hence
(t —v)((t — w)* +D|) > c(t+ p)t — y)

which is (3.13) with ¢=6/(2v/2 + J). Next assume /|D| > y so that v/2+/|D| > dp.
For 0 <t< /2 one has |t — y| >t and hence

It — wl+ /D] > t+p/V2 > (5/V2)(t + p).

Noting that |t — v;| = ¢+ |vi| > ¢, it is clear that (3.12) holds with ¢ = 5/2+/2. For
w/2 <t we see that

It —wl+/ID| >t —|yl+/ID| >t, |t—yl+ID| > ID| = p/V2
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which shows that |t — w|++/|D| > 8(v/2+8)~ (t+p). Recalling |[t—v;| = t+|v,| > 1,
again one has (3.12) with ¢ = §/2(v/2 + 6). Thus by choosing

c=1/32 < 1/(18V2+2)=6/2(vV/2 + )
the proof is complete. O

Lemma 3.6. One can find a neighborhood U of ()? , 0) and C* > 0 such that

|atA(t’X9 E)l « 1 1
A(t, X, €) SC( + )a X,eelu, €>0

3.14
( ) t |t — |+ Jae
holds fort € (0, T].

Proof. It will suffice to show (3.14) for A(t, X, v/2¢) which we denote
by A(t, X, €). It is clear that
A=A+43B+p)E +30+p)et+e&) = A+ A,
Writing A= é(g + &,) with A, = é&, it suffices to show the assertion for A + K,
instead of A. Note that
(3.15) 108/ A, < CA+1/(t+p)) < C' /1

always holds. Write A = H;zl(t — v;) and note that 6,&/& = Z;zl(t — vj)_l.

When A; > 0 we see from the proof of Proposition 3.1 that | — v;| > ¢ hence
|6;A/A| < 3/t. Therefore one has
16,Al/A < |8 AI/(A+ A +10A/(A+ A
< |6 Al/A+10: A/ A,
which proves the assertion. Let A; < 0. Then A = (t —v)((t — w)> — D) where
w > 0 and D < 0 as seen in the proof of Proposition 3.1. If |D| > ae?,
|t — yl(It — wl + Vae) < V2((t — w)* + D))
which shows the assertion since |t — v| = ¢+ |vy| > ¢. Similarly if |t — w| > /ae,
one has
It — wl(t =yl + Vae) < 2( — y)* < 2(( — w)* + D)),
hence the assertion. If |D| < ae® and |t — y| < y/a€ it follows that
18,A] < (t — )2 +|D| + 2|t — ||t — w| < 2a€* + Ca*e

because |t — v{| < Ca. In view of CA, > a2€? one concludes that

10, A1/(A + A)) < 18,Al/A, < CQRae* + Ca*e) /(de?)

11 1 1
SC(a+\/ae) SC(t+|z‘—1//|+\/ae)

which together with (3.15) proves the assertion. ([
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4 Localized symbols

In the preceding Sections 3.1 and 3.2 all symbols we have studied are defined in
some conic (in &) neighborhood of (X, €) = ()? ,0)or X = X. TIn this section we
define symbols on R? x R¢ which localizes such symbols around (X, €) = ()? ,0)or
X=X witha parameter M.

4.1_ Localization via localized coordinates functions. Let X = O, é_)
with |&] = 1. Let y(s) € C*°(R) be equal to 1 in |s| < 1, and vanishes in |s| > 2
such that 0 < y(s) < 1. Define y(x) and n(<) by

Vi) = M), (&) = xMAEE)T — ENG — E(E),) +E(E),

forj =1,2,...,d with (&), = (y* + |£]*)!/?, where M and y are large positive
parameters constrained by

4.1) y > M.
It is easy to see that (1 — CM™%)(¢&), < |n| < (1 + CM™?)(¢), and

(4.2) vl < CM™2,  |n/lnl — ¢l < CM™2

with some C > 0 so that (y, #) is contained in a conic neighborhood of (O, E)
shrinking with M. Note that (y, #) = (x, &) on the conic neighborhood of (0, &),

(4.3) Wy ={C,O | Il < M2, 15/1E — &l < M72/2,  |E] = yM},

since

16/(S)y — &1 < |E/(E)y — SN +|&/1El = & < M2
if (x,&) € Wy where 9 is the Krongcker’i delta. Let f(X, €), h(X) be smooth
functions in a conic neighborhood of (X, 0), X respectively which are homogeneous

of degree O in £. Then we define localized symbols of f(x, &), h(x, &) of f(X, €),
h(X) by

f(x, ) =fr(x), (), €(&)),  h(x, <) = h(y(x), n(S)

with €(&) = M'2(&);? or e(&) = V2M'2(&);'2. In view of (4.2) such extended
symbols are defined on R? x RY, taking M large if necessary. Let

G = M*(|dx|* + (&) 1dE).
Then it is easy to see that

44)  y, eSM2,G), n—&E), e SMT2E),, G), &) eSM2,G)
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forj=1,...,d. To avoid confusion we denote |#($)| by [£], hence
4.5) [ € S((&),. G, [€1(&);" — 1 € SM2, 6.

Lemmad.1. Letf(X, €) be a smooth function in a conic neighborhood of ()? ,0)
which is homogeneous of degree 0 in C. Ifagaga’gf()?, 0)=0for0 < |la+pl+k <r,
then f(x, &) = f((x), 7(&), (&) € SIM™?", G). Let h(X) be a smooth function in a
conic neighborhood of X which is homogeneous of degree 0 in &. Then

h(x, &) — h(0, &) € S(M™2, G).

Proof. We prove the first assertion. By the Taylor formula one can write

foome= Y = Q) e ardlalf0,£(¢),, 0)
|a+ﬁl+k:ra.ﬁ.k.
1 —
+r+D) Y [a!ﬁ!k!ya(ﬂ—f@)y)ﬁfk

|a+pB|+k=r+1
! — —
X /O 1- 9)’6?6?612]0(6)1, O(n — f(f%,) + f<f>y’ 96)619} )
It is clear that
Y — f_<§>y)ﬁeka;a§a’;f(0, 3 0)(&); ¥ e SM™, G)

for |a + | + k = r in view of (4.4). Since

(€)y/C <1001 = &(&)y) + (&) <€)y

the integral belongs to S((é‘}y_lﬁ l, G), hence the second term on the right-hand side

is in S(M~%~2, G), thus the assertion. O

4.2 [Estimate of localized symbols. From now on it is assumed that all
constants are independent of M and y. As explained before we write A X Bif A is
bounded by a constant, independent of parameters M and y, times B. Let p(x, &)
be the localized symbol of p(X, €) with € = M/? <é‘>;1/ % 5o that

px, &) = alx, O+ M(E); .
From Lemma 4.1 we see that p € S(M~*, G), hence
lo2elpl 3 (&) for a+ | =2.
Since p > 0 it follows from the Glaeser’s inequality that

(4.6) 10¢Epl 3 V/p (&M, o+ Bl=1.
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Lemma 4.2. Assume that f(X, €) is smooth and homogeneous of degree 0 in &
in a conic neighborhood of (X, 0) and satisfies |f(X, €)] < Cp(X, €)" with some
n > 0 there. For the localized symbol f(x, &) there is C,p > 0 such that

(4.7) |0¢3Ef (x, E) < Cupplx, &)1 (&) 1A
Proof. From the assumption it follows that
o k = _
01lokf(0,£,00=0 for |o+ Bl +k < 2n,

hence Lemma 4.1 shows that f(x, &) € S(M~*", G). Therefore for |a + 3| > 2n one
sees that
(&b, O < CMPA=H < C(Cop™ V2

because M* < Cyp~!. Hence (4.7) holds for |a+ | > 2n. Assume |a+f| < 2n—1.
Write X = (x, ), Y = (v, n(¢),) and apply the Taylor formula to obtain

2n—1 J S i
If(X +sY)| = z_; .d’f(X Y)+ n )'d2f(X+s6’Y Y)'
(4.8) = et )
. S n
< C( Z j!d/p(X; Y)+ on )'d2 pX +s0Y; Y))
Jj=0
where

dfX:Y) =Y (1/a!padLatx, Oy nf ()P,

la+Bl=j
and0 < 0,6 < 1.1If p(x, &) = 0, then 8§8§p(x, &) =0for |a+ | =1because p > 0
and then it follows from (4.8) that ¢ 6§f(x, &) =0for |a+f| < 2n—1, hence (4.7).
We fix a small s > 0. If p(x, &) > s0, then one has

10202f (e, ENEW| < Cup < Copsy 142 prlahl2
for |a + | < 2n — 1 which proves (4.7). Assume 0 < p(x, &) < s9. Note that
| (X +s0Y:Y)| < C,  d*p(X +s0Y;Y) < Cp(X)' ™"

for any |(y, #7)| < 1/2. Indeed the first relation is clear from f(x, &) € S(M~*, G).
To check the second one it is enough to note that p(x, &) € S(M~*, G) and

4.9) MM <(CopTVPT, j=2, V2AE+0(E)m), = (£),/2
for |n| < 1/2 and || < 1. Take s = p(X)'/? in (4.8) to get

2n—1

1
> .a”f(X Y)p(Xy"?

Jj=0

2n—1

<C ( Z 1d’p(x Y)p(xy/z) + Cp(X)"
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where the right-hand side is bounded by Cp(X)" for |dp(X; Y)| < C’'p(X)"/? in view
of (4.6) and (4.9) for j > 3. Replacing (v, #) by s(y, ), |7, )| = 1/2,0 < |s] < 1
one obtains

2n—1 ' X /2
3 arn” ™ <.
= I pX)"
Since two norms sup;-; |p(s)| and max {|c;|} on the vector space consisting of all

polynomials p(s) = ijz"o_ ! ¢;s’ are equivalent, one obtains

|df(X; V)| < B p(X)" 2.
Since |(y, #)| = 1/2 is arbitrary one obtains (4.7). ]
Lemma 4.3. Let s € R. Then |6¢0Lp°| 3 pr~1oA2(&); V.
Proof. When s = 1 the assertion follows from Lemma 4.2. Since
0l =" Chopop' @ p/py-- @ p/p)
the proof for the case s € R is clear. ([l
Lemma 4.4. Let aj(x, &) be the localized symbol of a;j(X, €). Then
¢ dlay(x, &) 3 plx, EYTIAE TV j=1,2, 3,
Proof. The assertion follows from Lemmas 3.3 and 4.2. g
For the localized symbol y(x, &) of w(X, €) with € = M'/? <§>y_l/ % we have
Lemma 4.5. One has |02 y(x, )| 3 p(x, &)1 -letA2(z) W,

Proof. Since Lemma 4.2 is not available for w(X, €) because it is not defined
for € = 0, we show the assertion directly. Le_t vilx, &), a1(x, &) and AL, x, &) be
localized symbols of vi(X, €), ai(X, €) and A(z, X, €) with € = M2 (é);l/z and
hence A(vi(x, &), x, &) = 0. Note that |8, A(vy, x, )| > 4¢3 p*(x, &) if

U](x, é:) + Cl](x, 6) < chp(xa 6)

thanks to Lemma 3.5. Starting with
at&(vlaxa 5)6?8?\)1 +6§6§&(v1,x, é:):(): |a+ﬂ| =1

a repetition of the same argument in Lemma 5.3 below together with Lemma 4.4
shows that

(4.10) |02lvy| 3 p! Tl (G T vy v ay < 2e1p.

Here we have used |v| = p which also follows from Lemma 4.4. Using (4.10)
and Lemmas 4.3 and 4.4 the assertion follows easily. ([
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4.3 Estimate of a discriminant. Leta(x, &), a(t, x, &), b(t, x, &), e(t, x, &)
be localized symbols of a(X), a(t, X), b(t, X), e(t, X) so that

T — e(t, x, E)(t + a(x, O))EP T + b(t, x, EEP

is now defined on R? x R? and coincides with the original p in a conic neighbor-
hood Wy, of (0, &). We add a term 2Me(t, x, 5)(5);1 [£]? to this:

(4.11) p=7 —e(t+a+2M(&);HEP— b
where we denote

(4.12) ap(t, x, &) = e(t, x, )t + ax, &) + 2M(£)7 1)

which is the localized symbol of a(z, X, €) = a(z, X) + €2 with € = /2M/2(&); /2.
Consider the discriminant
Ay, x, ) =4t +a+2M (&)Y —270°

4.13
@.13) 4Pt METY =275 + A0

where, recalling a(x, &) + M(&);! = p(x, &), we have

A, =48G+p)’M(E); " + 3+ pM* ()7 + M (E)))
= 12¢%(c1(x, OF + ca(x, Ot + c3(x, &) = 126’ M (1 + p)*(&); .
It is clear that c;(x, &) verifies |8§6§cj|_j pf_|“+ﬁ|/2<§>y_|ﬁ|. Let A(t, x, &), K(t, x, &)

be localized symbols of A(z, X, €), A(z, X, €) with € = M'/2(&);'?. Thanks to
Proposition 3.1 one has

A(t,x,&) = ¢ min {72, (1 — )}t + p).
Noting that A(¢, x, &) =& A we see that

Alt,x,&) =& A > écmin {2, (t — w)*}(t + p)

4.14
19 > (2/e)e min (2, (t — y)Je(t + p).

Therefore choosing a constant v > 0 such that 12> > (é/e)cv one obtains from
(4.13), (4.14) that
Ay > (¢/e)c min {7, (t — p)’}e(t + p) + 12t + p)’M (&)}
(4.15) > (é/e)c(min{£, (t — w)*} + V(1 + P)M<f>;l)€(f+ P)
> (&/e)c min {7, (t — y)* +VMp(E); Ye(t+ p), 1> 0.
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Proposition 4.1. One can write
Ay = et +ar(x, OF + ax(x, Ot + as(x, &)

where 0 < e € S(1, G) uniformly in t and |6§8§aj| = p7_|“+ﬁ|/2<§>y_|ﬁ|. Moreover,
there exist v > 0 and ¢ > 0 such that

A : _ _ A
(4.16) Mo ¢ Tmin (2, (1 — p?+oMpE)TYy, M
ay 2e 4 ay

for O <t < T where y and p satisfy
byl 1agdtpl 3 p! T,
Proof. Choosing € = 2M"/ 2(5);1/ % and applying Lemma 3.1 one can
write Ay as a third order polynomial in ¢, up to a non-zero factor, and can es-
timate the coefficients thanks to Lemmas 3.3 and 4.2 in terms of a + 2M <§>y_l.

Noting that
px, &) < alx, ) +2M(&);' < 2p(x, &)

we have the desired estimates for a;. The assertion (4.16) follows from (4.15) for

—-1/2

ay =e(t+p+M(S),

) < 2e(t + p).
The estimates for y and p are nothing but Lemmas 4.3 and 4.5 with e=M'/2(&); /%0
Remark 4.1. Denoting e = ¢(0, 0, f_) = ¢;a(0, 0, 5 it is clear from (3.1) that
e is the non-zero positive real eigenvalue of F »(0,0,0, é‘_)
and the coefficient of the right-hand side of (4.16) is
éc/(2e) = 2e’c(1 + O(M™2)).

On _the other hand, denoting the subprincipal symbol of P by Py, and b3(0, 0, é_)
by b3, it is easy to see that

4.17) Pain(0, 0,0, &) = ¢/(2i) + bs.
Lemma 4.6. With ¢ = ¢(0, 0, &) we have
b < (1+CM~3)(2v/2/3)eJay, 0<t< M2

Proof. Write b = Bo(x, &) +1f1(x, &) +12B3(t, x, &). Setting ¢ = 0in 27b% < 4a’
it is clear that | 8| < (2/3V/3)e*?(1 + CM~2)a3/2. We first check that

(4.18) 1B1] < (1+ CM™2)(2/V/3)e*/a.
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If a(x, &) = 0 then B(x, &) = 0, hence (4.18) is clear. If a(x, &) > 0, taking ¢ = 3a
and noting that e(3a, x, &) < (1 + CM~2)e + Ca it follows that

3alfil < 2(432(1+ CM~2)&2/3v/3)a®? + | Bo| + Ca?
< (6/V3)(1+CM™2)&?a?? + Ca® < (6/V3)(1 + CM™ )& ?a>?

because & < CM~* which proves (4.18). Since |8,b] < |Bi| + Ct we see that
16,b] < (1 +CM™2)(2/V/3)e*?\/a + CM~2\/t, thus the proof is immediate. O
5 The Bézout matrix and diagonal symmetrizer

Add —2Mop(e(t, x, é)(f);l)[D]zD, to the principal part and subtract the same from
the lower order part so that the operator is left invariant;

P =D} — ay(t, x, D)[D)*D; — b(t, x, D) [D]® + b (t, x, D)D?
+ (ba(t, x, D) + dy(t, x, D))[D]D, + bs(t, x, D)[D)?

where b;(t, x, &) € S(1, G) and dy (2, x, &) = 2M(e<§>;l)#[§] e S(M, G). It follows
from Lemma 4.1 and (4.5)

(5.1) dy(t,x, &) —2Me € S(M™', ).
With U = (D?u, [D]1D,u, [D]*u) the equation Pu = f is transformed to
(5.2) DU = A(t, x, D)[D]U + B(t, x, D)U + F

where F =(f, 0, 0) and

0 ay b bl b2+dM b3
At x,H)=|1 0 0|, B@#x =0 0 0
0O 1 O 0 0 0

Let S be the Bézout matrix of p and p/dr, that is

3 0 —ay
St x, &)= 0  2ay 3b
—ay 3b aiy

Then S is positive semidefinite and symmetrizes S, namely, SA is symmetric
and is easily examined directly, though this is a special case of a general fact
(see [16], [28]).
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5.1 Eigenvalues of Bézout matrix. To simplify notation denote

o(t,x, &) = t+a(x, &) +2M (&), =1+ p(x, ) + M(&); ",

hence ay(t, x, &) = e(t, x, &)o(t, x, &) and (1 — CM)eo < ay < (1 + CM ?eo.
In what follows we assume that ¢ varies in the interval

0<t<M™.
Since p € S(M~*, G) it is clear that a(t, x, &) € S(M~*, G).

Lemma 5.1. We have |6§‘6§0| =< o B2 AT g particular o € S(o, g).

Proof. It is clear from (4.6) that |8§‘6§0| =< o (&) for la+ Bl = 1. For
|a + p| = 2 we have

|5§5§0| < M2Ia+ﬁ|—4<é:>;ll>’l N 0.1—|a+/>’|/2<§>y_|ﬁ|

from p € S(M~*, G) since Co™!' > M*.
The second assertion is clear from o~! < M~1(¢),. O

Corollary 5.1. Let s € R. Then |8¢3.0°| 3 o~ V2(&) V. In particular
o’ € S(a’, g).

Definition 5.1. To simplify notation we denote by C(c*) the set of symbols
r(t, x, &) satisfying |6;‘6§r| 3 gtlerhl2 <é‘>;wl.

It is clear that C(¢*) C S(¢°, g) because o~ 1**#1/2 < pp—la+hl/2 <é‘>|ya+ﬁ|/2. It is
also clear that if p € C(¢*) with s > O then (1 +p)~! — 1 € C(¢®).

Lemma 5.2. One has a}, € C(c®) for s € R, b € C(c*?), day € C(1)
and 6,b € C(\/o).

Proof. The first assertion is clear from Corollary 5.1 because ay = eo
andee S(1,G),1/C < e < C. To show the second assertion, recalling that b(¢, x, &)
is the localized symbol of b(z, X), write

b(ta X, 5) = b(oa y(-x)a 7/(5)) + atb(oa J’(x), ﬂ(‘f))f

(5.3) |
v [ (1= 00220061, 300, a0 - .

0
Since 8¢82b(0,0,&) = 0 for |a + A < 2 and 3,b(0,0,¢) = 0, then thanks to
Lemma 4.1 one has b(0, y(x), #(&)) € S(M~°, G) and 6,b(0, y(x), n(&)) € SM~2, G).
Since 0 < ¢+ < M~* we conclude that b(z, x, &) € S(IM~°, G). Since |b| < Co’/?
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and o € S(M~*, G), a repetition of the same arguments in proving Lemma 4.2
shows the second assertion. The third assertion is clear because o,ay = e + (0,¢)0.
As for the last assertion, recall Lemma 4.6 that |6,b] < Ca[l\,;2 < C'c'/?2. Noting
that 8,0 € S(M~2, G) which results from (5.3), one sees that

|<f>|yﬁ|6§6§8,b| j M2lo+Bl=2 j ol/2—la+pl/2
for |a + | > 1, hence the assertion. O
Recall [29, Proposition 2.1]

Proposition 5.1. Let 0 < A1(t, x, &) < Aa(t,x, &) < 153(t, x, &) be the eigen-
values of S(t, x, £). There exist My and K > 0 such that one has for M > M,

A/ (6ay + 2ar, +2ay,) <A1 < (2/3 + Kay) ay,
(2 — Kay) ay <Az < (2+ Kay) apy,

3 <3 < 3+Kdi.

Proof. Since ay = ecand o € S(M~*, G), then for any € > 0 there is M such
that e My 4 < &. Then the assertion follows from [29, Proposition 2.1]. ]

Corollary 5.2. The eigenvalues 1,(t, x, &) are smooth in (0, M~*] x R? x R

5.2 Estimates of eigenvalues. First we prove
Lemma 5.3. One has A; € C(c>7) forj=1,2,3.
Denote g(A) = det (Al — S) so that
(5.4) q(A) = 23 — B+ 2ay + a3))? + (bay + 2a3, + 2a3, — Ob*) ) — Ay

Note that 0;q(1)8%0L 4; + 8¢dlq(2;) = 0 for |a + | = 1. Let us write 873/ = &'t
for simplicity. We show by induction on |a + S| that

0,90 LA = Y Cryn 0,00 5q(A)
(55) 2l u+v|+s>2

) (1) (5) 5
x (@7 A @0 M)

where 1 +>. 79 = a, v+>.6Y = fand |y +6Y| > 1. The assertion |a + | = 1 is
clear. Suppose that (5.5) holds for |a + | = m. With |e +f| = 1 after operating 8?’;
on (5.5) the resulting left-hand side is

M 5 ©)_56)
O e T S ST TN C o) 0) | AP ) ERRY by

2| p+v|+s>2
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while the resulting right-hand side is
Z C a,u+e u+fa q(il)(ay’(g,(smli) . (aj;(";,a(x)ii)
1) 51 )
+>CALEN qUNELIN@L S Ay (@

(Occ

N
(1 50 ) 5(7) (s) (S)
+2_ D C.AEEaUN@ ) @ A @ )

y(:) s 56

Ai)

which can be written as

()() (s) (\)
S Crnyo,00,, 800N A - @L )

2l u+v|+s>2

where 1+ > 7D =a+e, v+ 69 = B+f and |y + 69| > 1. Therefore we
conclude (5.5). In order to estimate 6 @p l one needs to estimate 6” ”as 5 q(4;).

Lemma 5.4. Forany s € N and a, f we have that

|a‘l By S 2o 4—j—(GB—j)s— |a+ﬂl/2<ér>y—|ﬁ|’ j=1,2,
o Eaq(il 3 o2,

Proof. From Proposition 5.1 and (5.4) one sees that

lg(Dl 3 12417 + lam 1 2] + lau |,

10%Lq(An1 2 (108 Lay + 162207 DIAi +180Lay,| + 180102, o+ Bl = 1
/2

because |Ay| =X aj; and |b| 2 ai,, Therefore, thanks to Proposition 5.1 and

Lemma 5.2 one obtains the assertions for the case s = 0. Since

10:g0D] 2 1Al + laml, 18591 21, §> 2,
10%£8,q(20)| Z 185 Layl| 24l + 18- Lay + 102 ﬂb2|, lo+ Bl > 1,
0eL 33900 3 105 aul, “/fa $q(A;) = s>3, la+pl>1

the assertions for the case s > 1 are clear by Proposition 5.1 and Lemma 5.2. [

Proof of Lemma 5.3. Since 0,q(1;) = Hk#i(/li — Ap) it follows from
Proposition 5.1 that

(5.6)  6ay(l — Cay) < 10,9(A)| < 6ay(1+ Cap), i=1,2, 0,q(A3) = 1.
Then for |a + | = 1 one has

1000051 3105290 /0,901 3 PT12ETA, j=1,2,3,
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by Lemma 5.4 with s = 0. Assume that |01 ;] 3 o> leA2(a) W j=1,2,3,
holds for |a + | < m. Lemma 5.4 and (5.5) show that
@By < 3=2s5—|u+vl/2 2—yD+6D|/2 2 [y9+691/2 1 2\~ ||
10:9C)ELEM 3D 0 o o (€);

33 P2y o2 el o122 I

~ ¥

= oo la+Bl/2 <€r>;|ﬂ|‘
This together with (5.6) proves the estimate for 1;. The same arguments show the
assertion for A,. The estimate for 13 is clear from (5.5) because of (5.6). Thus

we have the assertion for |a + S| = m + 1 and the proof is completed by induction
on |a + f. O

Lemma 5.5. One has 6,4, € C(0), 6;A> € C(1) and 6,45 € C(1).
Proof. First examine that aiq(/li)aj;f 0;A; can be written as

Y Lot g aan@ T 2y - @A)
(5.7) lo/+B | <la+B| ) )
(D4 5 ()4 505)
+3 €A aqUN@L ) (@1 A

where &/ + p + 3. y? =a, f+v+ 369 = pand |y? + 6P| > 1. Indeed (5.7) is
clear when |a + S| = 0 from 6,q(1;)0;1; + 6;q(4;) = 0. Differentiating this by af;fg
and repeating the same arguments proving (5.5) one obtains (5.7) by induction. To
prove Lemma 5.5 first check that

(58) |5Z,’faiazqu])| j 0_3—j_(3—j)5—|a+ﬁ|/2 <é:>;|/”|, .] = 1’ 2’ 3
In fact from
(5.9) 1q(2) = —6,2ap + ay)A? + 8,(6ay + 2as, + 2ay; — Ib*) L — 8, Ay

it follows that |3,g(2)| 3 4 + o and |80La,q(A)l 3 (A + 0P 1w+P/2(&)
for |a + f| > 1 in view of Lemma 5.2 and hence the assertion for s = 0.
Since |6;’f6j6tq(/li)| < ol TP for s > 1 the assertion can be proved.
We now show Lemma 5.5 for 4; by induction on |a + f|. Assume

(5.10) |a;’é/fat,11| = Jl—la+ﬂl/2<5>y—|ﬂ|_

It is clear from (5.6) and (5.8) that (5.10) holds for |a + | = 0. Assume that (5.10)
holds for |a + | < m. For |a + | = m + 1, thanks to the inductive assumption,
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Lemma 5.4 and Lemma 5.3 it follows that

R (1), a() ) 4.56)
ST 1@ g aan@L T A - @ )
|/ +f | <lo+pl
= Z 32D lvl/2 pl=la 48172 L2~y D401 /2 | 2=y 9 +60)/2 @y—wl

which is bounded by g2~ 1*+/1/2(£)71On the other hand one sees
N 103 0qAD@L " 2 - @ A
< Z 0-2—25—|/1+U|/2O-2—|7(1>+(5(1>|/2 L PRl V) (&)
j g2 lethl/2 <éf>;|/>’|

in view of (5.8) and Lemma 5.3. This proves that (5.10) holds for |a + S| = m + 1
and hence for all a, . As for 4,, 13 the proof is similar. O

5.3 Eigenvectors of the Bézout matrix. We sometimes denote by C(c*)
a function belonging to C(¢*). If we write n;; for the (i, j)-cofactor of A/ — S
then (nj1, nj, nj3) is, if non-trivial, an eigenvector of S corresponding to 4. We
take k = 1, j = 3 and hence

[ ap(2ay — A1) [fn
3b(l] - 3) = 521
{(/11 = 3)(4 — 2aM)J L’mJ

is an eigenvector of S corresponding to 4; and therefore

i i
1
ti= || = d |, di= \/5%1 +€%1 +€§1
1
131 {31

is a unit eigenvector of S corresponding to 4;. Thanks to Proposition 5.1 and re-
calling b € C(c/?)itis clear that d; = \/36 ai; + C(c3) = 6ay(1 + C(c)). Therefore
since €11 = C(6?), €21 = C(¢3/?) and €31 = 6 a + C(c?) we have

1481 [ aM/3+G(O'2)
t; = |ta| = | —3b/2aum) + C(o)
131 | L 1+ C(o)

Similarly, choosing k=2,j=2and k=3, =1,
—3(1Mb _512- (l’; — 2aM)(l3 - (112‘,[) - 9b2 513
(l2 =)Ao —aly) —ay | = |€2] ., —3aub = | €23
3b(42 —3) 132 —ay(4s — 2ay) {33
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are eigenvectors of S corresponding to 4, and 13 respectively and

ti; ly;

v 1 v 2 2 2
t= |10 ) oy s dj=\/€1j+€2j+€3j

13 / f3j

is a unit eigenvector of S corresponding to 4;, j = 2, 3. Thanks to Proposition 5.1
it is easy to see that d, = 31,(1 + C(0)) and d3 = l%(l + C(0)). Then repeating the
same arguments one concludes that

112 6(0'3/2) 113 l+€(a)
hn| = —1+C0) |, |n3|= C(c”'?)
132 —3b/iz + G(O') 133 —aM//13 + 6(0'2)

Now T = (t, tp, t3) = (#;) is an orthogonal matrix which diagonalizes S;

21 0 0
A=T7'ST="TST=[0 1, O
0 0 A3

Note that 4A” is symmetric. We summarize what we have proved in

Lemma 5.6. Let T be defined as above. Then there is M such that T has the

form
am/3 + C(a?) C(c%/?) 1+ C(o)
T = |-3b/QRay) + C(o) —1+C(o) C(a°/?)
1+ C(o) —3b/dy+C(6) —ap/23 + C(c?)

[ Co) C(¥?) 1+C(o)
=|Cw'? —1+4+C) CW*»|, M=>M,.
|1+ C(o) C(a'?) C(o)

In particular T, T~' € (1, g).

Lemma 5.7. We have

o(am/3) + C(0) C(e'?) C(1)
oT = | —a,(3b/2ap) + €(1) e(l) C(a*?)
e(1) —8i(3b/22)+ C(1)  —di(am/43) + C(o)

C(1) C/?  CO)
=|Ce™ 1?2 1) CW|, M=>M,.
e Cw™ ' e
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Proof. Note that every entry of T is a function of ay, b and ;. Then the
assertion is clear from Lemmas 5.2 and 5.5. ([l

From Lemma 5.6 it follows that
CWo) Clo) C(/o)
G110  (@Padr=| eq) CWo) C@?)
CHo) C) C(/o)

, Jla+pl=1.

Lemma 5.8. There is My such that AT = T~'AT has the form

(Vo) —1+C) C(/o)
AT =106 CGH/o) —1+C(o)
21CGo) ) Ce?)

, M > M,.

Proof. Writing A” = (dj) it is clear that
dij =hiam b +1; bl‘3j + hilyj + 3ily)
from which the assertion for d;;, j > i follows easily. Therefore one sees that

21C(/o) Ai(=1+C(0)) 21C(y/0)
AAT = | Jyaa A2dinn A2(—=1+C(0))
A3d3y A3dsn A3ds3

Since AAT is symmetric it follows immediately that
a1 = C(V0) /23, Gz = Aa(=1+C(0))/ 13, G2 = Ai(=1+C(0))/ 22
which proves the assertion because 1/13 € G(1) and 1/, € C(c™ ). ]
Corollary 5.3. There is My such that AT = T~'AT has the form

[e(m —1+€(0) C(/o)
AT = | €(o) C/o) —1+C(o)|, M > M,.
{6(05/2) C(o) C(c>/?) J

Corollary 5.4. We have

C(l)  C(yo) C(l)
OWgAT = |e(yo) e C(/o)|, la+pl=1.
C(o?) C(v/0) C(o?)

Proof. The proof is clear since <§>|yﬁ| 6;’;6?(—1 + C(0)) = C(/0). O
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Finally consider 77'(5,7). Note that (5,t;, t;) + (t;, 6,t;) = 0 so that (5,7")T is
antisymmetric. From Lemmas 5.6 and 5.7 one has

0 —3(3b/2ay) +€C(1)  C(1)
(5.12) T=Y&.T) = | 8,(3b/2ay) + C(1) 0 C(v/o)
o(am/3) + C(o) C(y/o) 0

For later use we estimate the (2, 1)-th and (3, 1)-th entries of 77'(,T). Recalling
ay =e(t+a+ 2M<é‘>;1) and 0 < t < M~* it is clear that 6,apy — e € S(M ™2, g).
Taking |b*/a3,| < 4/27 into account, thanks to Lemma 4.6 it follows that

IVamd,.(3b/2am)| < 3(18:b//am| + |b/ay, |6am!) /2

5.13
.13 < (1+CM™)((1+3v2)/V3)e.

6 Metric g and estimates of w and ¢

Introduce the metric

8= 8wo = M) lax) + (£); 114

which is a basic metric with which we work in this paper. Note that
S(M?*, G) C S(M?, g) because

MBI < g pg=lotBl/2 (2 al=16D/2
Y - Y

in view of (¢), > y > M°. The metric g is temperate (see [7, Chapter 18])
uniformly in y > M3 > 1 and will be checked in Section 7.

Lemma 6.1. One has

a;zagw c S(M—(|a+/>’l—1)/2pl/2<§>;1/2<§>§Ial—lﬁl)/2’ g, la+pl>1.

Proof. Itis enough to remark that
|6§6§l//| =2 p1/2p—(la+ﬁl—l)/2<é:>;lﬂl =3 p1/2(M—1<€t>y)(la+ﬂ|—1)/2<€t>;lﬂl

for |a + f] > 1. O

6.1 Estimate » by metric g. Taking Proposition 4.1 into account we
introduce a preliminary weight

olt,x,8) = /(1 = p(x, )2 + Mp(&); .
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Since the exact value of v > 0 is irrelevant in the following arguments, we assume

= 1 from now on. In what follows we work with symbols depending on ¢
where ¢ varies in some fixed interval [0, T], and it is assumed that all constants are
independent of € [0, T] and y, M unless otherwise stated. Now A = B implies
that A is bounded by a constant, independent of ¢, M and y, times B.

Lemma 6.2. One has
a;!a?ws c S(M—(Ia"'ﬁl—l)/za)S 1p1/2<éf>;1/2+(|a|—|/>’|)/2’ g), la+p|>1.
Proof. Recall that o = (1 — w)* + Mp(&); . Note that for |a + ] > 2
20t — y)?| 3 wlatdlyl + > 167 wilo” oLy

4
ja)z{a} 1p1/2p—(|a+ﬁ| b2 zpp (la+p1— 2)/2}<§> 1Bl

R 61)2(60 p1/2<§>y 1/2)M—(|a+ﬁ| 1)/2<5>§/|a| 18D/2
since p > M(¢); " and @ > VMp'2(E)7 2. When |a + ] = 1 it is clear that
10504t — )1 3 " HET = e plHE) T2 () eI,
Next, it is easy to see that for |a + S| > 1

sl Mp(&); D1 3 Mp(&); pl V28
< w 2(Maw™ 2p1/2<§>;1)(M_1<§>y)(|“+ﬁ|_1)/2<§>y_lﬁl
,<a) (0™ 1 1/2<é:>;I/Z)M—(Ia+ﬁ|—1)/2<§>(yla|—lﬁl)/2

because w > VMp'/2(&);'? > M (€);!. Therefore one concludes that
|6k’ 3 (@ pV (&) )M e A= () el 18D/
which proves the assertion for s = 2. For general s, noting that

@3 Y 1@ o) (@ o)

la'+p7|=1
the proof is immediate, since w™'p'/2(&);/* < M1/ < 1. O

Corollary 6.1. We have o® € S(o’, g) for s € R.

6.2 Estimate ¢ by metric g. Introduce a weight function which plays a
crucial role in deriving energy estimates

¢(ta X, 5) = Cl)(t, X, é) +1— l//(xa é)
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Ift — y(x,&) > 0theng > v =0’/ > Mp(é‘);l/a), and if 7 — w(x, &) < 0 we see
that ¢ = MP<§>;1/(CO+ It —wl) = PM<§>;1/(260)’ hence

(6.1) P(t, x, &) = Mp(&);' /2 ).
Lemma 6.3. There is C > 0 such that $(1, x,&) > M();'/C.

Proof. When 7 — y/(x & = 0then ¢ > w > MV2p2(E);"? > M(&);! is
obvious for p > M<§> . Assume t — y(x, &) < 0;then0 < 1 < w(x, &) < dp(x, &)
with some 6 > 0 by Lemma 4.5. Noticing that |t — y(x, )| = w(x, &) —1 < dp(x, &)
we have w’(t, x, &) < 6 p* + Mp(E);' < 6%p* + p* = (6 + 1)p*. Now the proof is
immediate from (6.1). g

Lemma 6.4. We have ¢ € S(¢, g).

Proof. Let|a+ f] =1 and write

— ool vl
(62) 6§6§¢: );)gl//¢ (26/())< > )

From Corollary 6.1 and Lemma 4.3 it follows that

= ¢aﬂ¢ + Yop.

|aﬂa‘£(lﬂa/ﬁ)| < w—lMp<§>—1M—la+ﬁ+#+vl/2 <€t>(|a+/t|—|ﬂ+v|)/2
x ¢ ~ V4 V4
—lo+f+u+v]/2 1 2\ (lotu| =1 f+v])/2
< M2 gl

in view of (6.1). On the other hand, thanks to Lemma 6.1 and Corollary 6.1
it follows that 0¥ 8leap| 3 M~Iw+Frusvl/2 (&)JermI=IFDI2 - Hence using (6.2) the
assertion is proved by induction on |a + f]. (|

We refine this lemma.
Lemma 6.5. One has

6§6§¢ c S(¢M_(|“+ﬁ'_1)/2a)_1p1/2<§>y_1/2<é‘>§,|“'_'ﬁ')/2, 2, la+p]>1.
Proof. From Lemma 6.1 one has 6)‘?8?(;/ € S(pl/2(é);l/z<5>(yla|_|ﬁl)/2, g) for

@ + Bl = 1 hence gup € S p" ()52, ¢) for Ja + Bl = 1 by
Lemma 6.2. From Lemma 6.2 it follows that

|a§av(l//aﬁ)| < w” 1,01/2M<f> =18l 0= |/1+U|/2<5>§/|/t|—|v|)/2

for |a+ | =1because 8“6ﬁ(Mp< &)y 1)eS(Mp1/2<é‘>;l_wl, g). Thanks to Lemma 6.3
one sees that M <5>y I < Ce(t, x, &) and hence

Vap € S(e™ p!2E) TR, 0, o+ =1

Since ¢ € S(¢, g) by Lemma 6.4 we conclude the assertion from (6.2). (]
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7 ¢ and J; are admissible weights for g
Write z = (x, £) and w = (y, ). Itis clear that
87 = M((&), ldx]” + (£);'|d&1?) = MPg.

where gZ(t1, t;) = sup [(t2, 51) — (t1, 52) 12/g.(s1, 52) (see [7, Chapter 18]). Note that
I&— 75| < (&), with 0 < ¢ < 1 implies

(1= 0)€),/V2 < (n)y < V2(1 +0)(&),.
If g.(w) < cthen |E—n|* < cM(&), = cM<§>y_1<§>2 <c <§>§, SO

2:(X)/C < g,(X) < Cg(X), XeR!'xR?

with C independent of y > M°> > 1, namely g, is slowly varying uniformly in
y = M® > 1.Similarly, noting that | —y| > (y+£])/2 > (£),/2if (1), < (),/2V2
and |& — 7| = (7 +11D)/2 = (n),/2if (n), = 2v/2(&),, itis clear that

€y, ) - -
(7.1) <n>i + @j < CU+(n);'1E—nP) < €U +gh(z— w)),

hence g,,(X) < Cg.(X)(1 + g%, (z — w)), namely g is a temperate metric uniformly
iny > 0and M > 1 (see [7, Chapter 18]). It is clear from (7.1) that

(7.2) g2(z—w) < C(1 +g%(z — w))*.

7.1 pand o are admissible weights for g. We adopt the same convention
as in Sections 6 and 5 even pertaining to weights for g, so that we omit to say
uniformly in 7 € [0, M~4].

Lemma 7.1. p is an admissible weight for g.

1/2

Proof. Firststudy p'/<. Assume

g:(w) = M~HE), (Iy1* + (5% nl?) < ¢ (< 1/2)
so that M~ (&)1 |7]> < ¢, hence |7] < c(&), for M(&); ! < 1s0
(7.3) (E+sm)y/C < (&)y < C(EHsm),y,
where C is independent of |s| < 1. Lemma 4.3 shows that

1p'2(z+w) — p' (@) < Clyl + (& +sm); ) < CM'2(&); gl (w).
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Since p(z) > M <§>y_1 this yields

(7.4) 1p'2(z+ w) = p' @) < Cp'*(2)g: A (w).

Choosing ¢ such that Cc < 1/2 one has |p(z+ w)/p(z) — 1| < 1/2, which implies
PP+ w)/2 < p'P(2) < 3p 22+ w)/2,

namely p'/? is g continuous, hence so is p. Note that M (&), < p(z) < CM™* < C.

If || > ¢ (&),/2, then gZ(w) > Mc?(&), /4 and g2(w) > Mc|n|/2 therefore
piz+w) < C < C(E),pk) < Cp)(1+g2(w)).
If |5] < ¢(£), then (7.4) gives
(7.5 pP+w) < Cp' @1+ g(w)'? < Cp' ()1 +gZ(w))'"2,
so in view of (7.2), p is an admissible weight. (]
Lemma 7.2. o is an admissible weight for g and o € S(o, ).

Proof. Since p(z) + M <§>;1 is admissible for g by Lemma 7.1, it is clear
that sois 0 = 1 + p(z) + M(f);l for t+ > 0. The second assertion is clear from
|a;§a§a| j 01—|a+ﬁ|/2<§>;lﬂl j O.(M—1<é:>y)|a+ﬁ|/2<é:>;|ﬁ| for o > M<€z>;1. 0

7.2 o and ¢ are admissible weights for g. We start by showing

Lemma 7.3. w and ¢ are g continuous.

Proof. Denote f =7 — y and h = M'/2p'/2(&);1/2 so that @® = f2 + h2. Note
that

lo(z + w) — ©(2)] = |0*(z + w) — V*@)|/|o(z + ) + O(2)|
< 2|f(z+ w) — f(2)] + 2|h(z + w) — h(2)]

(7.6)

because |[f(z+w)+f(2)|/|w(z+w)+w(2)| < 2, |h(z+w)+h(2)|/|w(z+w)+w(z)] < 2.
Assume g, (w) < c¢ (< 1/2), hence (7.3). It is assumed that constants C may
change from line to line but are independent of y > M> > 1. Noting that
[f(z+w) — f(@)| = |lw(z+ w) — w(z)] it follows from Lemma 6.1 that

[z + w) — fR)| < Cp' >z + sw)(Iyl + (& +sn); 1)
(7.7) < Cp' (2 +sw)(Iyl + (), D)
< CM'?p'2(2)(&); gl *(w)
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1/2
/2 we have

since p is g continuous. Noting that w(z) > M'/2pl/2(2)(¢);
(7.8) [f(z+ w) — f(@)] < Cax2)gl*(w).
A similar argument shows that

|h(z + w) — h(z)| < CM1/2<§> 1g12(w).

Since w(z) > M(&);! we have |h(z + w) — h(z)] < CM~?w(z)gl/*(w). Therefore
from (7.6) one has |w(z + w) — w(z)] < Cw(z)g}/*(w). Choosing ¢ such that
Cc < 1/2 we conclude that w is g continuous.

Next consider ¢ = w + f. Write

(f(z+ w) — F@NP(z + ) + P(2)) + h*(z + w) — hz(z)‘

w(z+ w) + w(z)

(7.9 Pz+w) —@2) =

Since w(z+w)/C < w(z) < C w(z+ w), and decreasing ¢ > 0 if necessary, together
with (7.8) this gives |[f(z + w) — f(2)|/(w(z + w) + w(z)) < Cgl/*(w). Recalling
W (z)=M p(z)(f);l and repeating similar arguments one sees that

(7.10) | (z+ w) — W(2)| < CM"?p(2)(&); " g/ *(w)
for p'/2(z) > M/2(£);'/*. Taking (6.1) into account it follows from (7.10) that
Ih(z+ w) — B2 /(0(z+ w) + 0(2)) < CP(2)g)*(w).
Combining these estimates we obtain from (7.9) that
|z + w)/$(2) — 1] < Clpz+ w)/P(2) + 118} *(w) + Cgl/*(w),

which gives ¢(2)/C < ¢p(z+ w) < C ¢(z) choosing ¢ > 0 small, showing that ¢ is g
continuous. O

Lemma7.4. wand ¢ are admissible weights for gand w € S(w, g), € S(¢, g).
Proof. Note that
@7 < MET < VM)V <o <Mt < C
Assume || > ¢ (&), hence gZ2(w) > Mc*(&), > c*(E),. Therefore
(7.11) o(z+w) < C < C(&),0(z) < Co@)(1 + g7 (w)).

Assume || < ¢ (£), and note that (7.5). Then checking the proof of Lemma 7.3
we see that

[f(z+ w) = f(2)] < Ca2)(1 + g7(w))
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and

|h(z+ w) — h(z)| < Ca(z)(1 + g2 (w))"/2.

Then (7.11) follows from (7.6) which proves that w is admissible for g. Turn to ¢.
From Lemma 6.3 it follows that

(©);1/C <M(&);'/C <) =w(R@) +f(z) < CM™ < C.
If || > (¢),/2 then gZ(w) > M(&),/4 > (£),/4, hence
Pz +w) < C < C*(&),9(2) < CH2)(1 + gZ(w)).
Assume || < (£),/2 so that (7.3) holds. From (7.5) and (7.7) we have that
[f(z+w) = f(2)] < Cp'2(@)(&); /21 + gZ(w)).

Recalling (7.5) and M?g.(w) = g7 (w), the same arguments used to obtain (7.10)
show that |h?(z + w) — h*(2)| < Cpl/2(2)<f>y_3/2(1 + g7(w)). Taking these into
account (7.9) yields

[Pz + w) — H(2)|

(7.12) pl/z(z)@y—l/z p1/2(1)<5>y—3/2
= C(a)(z +w) + o(z) (et w)+P2)+ o(z + w) + o(z)

)+ gZ(w)).
Applying Lemma 6.3 to (7.12) we obtain

p2(2)(&);
o(z+ w) +w(z)

|P(z+ w) — P(2)| < ClP(z+ w) + 2¢(2)) (1 + g7 (w)).

If p'2(2)(€); 2 (1 + g7(w)) [((z + w) + w(2)) < 1/4, then it follows that
p(z+ w)/B(2) — 1] < (Pz+ w)/P(2) +2)/4
from which we have ¢(z + w) < 2¢(2) < 5¢(z + w). If
P2, (1 + gl(w)) [(w(z + w) + w(2) > 1/4,
we have
32(1 + g7(w))* = 4(&),ym(z + w)a(2) [ p(z) > Pz + w) /P(z)

by (6.1) and an obvious inequality ¢(z+ w) < 2 w(z+ w). Thus we conclude that ¢
is admissible for g. (]
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7.3 J; are admissible weights for g.

Lemma 7.5. Assume that 4 € C(¢%) and ) > cMo (&), with some ¢ > 0.

Then A is an admissible weight for g.

Proof. Consider vA. Assume g,(w) < c and hence (& +s7), &~ (£),. Since
V2 € C(o) it follows that

(7.13) V2t w) = VAR < CVa+swM' (&)l (w)

with |s| < 1 which is bounded by C'v/a(2)M"/2(£);"?g!/2(w) since o is g contin-
uous. By assumption A(z) > cMa(z)(é‘)y_l, one has

[VA(z+ w) — VA@)| < C'VA(z) g (w).

Choosing ¢ > 0 such that C"\/c < 1 shows that \/A(z) is g continuous and so
is 1(z). From cM2<§>y_2 < cMa(f);l < 1 < C'o? < C’'M~ one sees that

M@ < M2 A2 < i) < C,
If 7] = (£),/2, hence g7(w) = M(E), /4, then
Vaz+w) < € < CleM)™ ), V@) < C'Va@) g2 (w).
If || < (£),/2, noting that o(z+w) < C o(2)(1 +gZ(w)), it follows from (7.13) that
VA +w) = V@) < CVAR(1 + g2(w))
which proves that v/2 is an admissible weight for g and hence so is /. (|

Lemma 7.6. Assume that /. € C(o) and 1 > cM(é‘);] with some ¢ > 0.
Then A is an admissible weight for g. If 1 € C(1) and A > ¢ with some ¢ > O then A
is an admissible weight for g.

Proof. Itis enough to repeat the proof of Lemma 7.5. O
Lemma 7.7. Assume . € C(¢%) and ). > cMo(&), ! with some ¢ > 0. Then

01la e SWoV (M, g),  la+pl=1.

In particular 1 € S(4, g).
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Proof. From A e C(c?) we have |<§>|yﬁ|6§6§/1| < Cofor|a+p] =2. Since A >0,
thanks to Glaeser’s inequality one has |8§§6§l| < C' oV <é‘>;w' for |a + B| = 1.
For |’ + f'| > 1 note that

|a§/a§, (a?ag;{)l r-j Jl—(la/+ﬂ’|—l)/2<5>;|ﬁ| <§>;|ﬂ'|
j oM~17 P |/2M1/2<5>;1/2<§>(y|a =18 I)/2<§>y—lﬁ|
< \/O.M—Ia’+ﬁ’l/2\/l <é:>§’|a’l—|ﬁ’l)/2 <f>;|ﬁ|

because A > cMa(f);l and ¢ > M(&);! which proves the first assertion. Noting
that \/a@‘);w' < CM~Y2\/} <é:>§)|a|—lﬂl)/2 it is clear that A € S(4, g). O

Lemma 7.8. Assume that A € C(o) and A > cM(é);l with some ¢ > 0. Then
AeSA,g). If A € C(1)and 1 > ¢ with some ¢ > 0, then A € S(4, ).

Proof. It suffices to repeat the proof of Lemma 7.7. (]

Corollary 7.1. Fors € R we have 4} € S(/lj, 2,j=1,2,3.

Define
1 1 t+w
K= + = , t> 0.
t 0] tw

Lemma 7.9. x is an admissible weight for g and k* € S(x’, g) for s € R.

Proof. Since w~! is admissible for g it is clear that so is x = ! + ™~ !. Noting
that ! € S(w™', g) and ™! < Kk it is also clear that

a _1aeAB,,—1 —la+p|/2 (lal=18D/2
|0dlk| = |0l | 3 M1 25 (&)
for |a + | > 1, which proves k € S(xk, g). O
Lemma 7.10. One has

6?6?165 c S(M—(|a+/>’l—1)/2ksw—1p1/2<§>;1/2+(Ia|—ﬁ|)/2’ g, la+pl>1.

Proof. Since agﬁa?zcs = Ks_laj’j&?zc it is enough to show the case s = 1. The
proof for the case s = 1 follows easily from Lemma 6.2. ([l

Lemma 7.11. Denote ¢ = \/3/ec'/? = 4\/6/e. There is C > 0 such that

1
<&(1+CM Y, | <k
KA O°K
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Proof. In view of Propositions 4.1 and 5.1 one sees that
A1 > (1/eH)(1 — CM~* min {7, ?}.

Denote ¢ = ¢2(1 — CM~*)~!'. If ®®> > ¢* and hence 1 > */c, then 1/, < c¢/??,
which shows that
1 c ctw cw c(t+ w)
< = = < = CK
kA T k2 (tt+o)? (t+o)t T o
If 2 > @? and hence 1 > a)z/c, then 1/4; < c/a)2 and hence

1 c cto ct ct+w)

< = = CK,
KA T kw? (t+o)e? (tto)o T to

thus the first assertion. To show the second assertion it suffices to note that o > ¢
and then o2(7 + w)*> > 2(t + w)* > . O

8 Lower bounds of op(4))

8.1 Some preliminary lemmas. Introduce a metric

g = (&), ldxl + (&) 1deP?
independent of M so that g = M~! g. We start with

Lemma 8.1. Let m be an admissible weight for g and p € S(m, g) sat-

1

isfy p > cm with some constant ¢ > 0. Then p~ € S(m_l, g) and there ex-

istk,k € S(M~", g) such that

Il
—
M

pip 1+ =1, (+hk#p#p~ =1, p #1+k#p
plpH(l+k) =1, (+b#p~Hp=1, p#d+k#p!

Il
—_

Proof. In this proof every constant is independent of y > 1 and M. It is clear
that p~! € S(m™', g). Write p#p~! =1 — r where r € S(M™', g). Since

Mhp= sup @Y Raratn < oM,

loa+B<L,(x,&)eR¥
from the L?>-boundedness theorem (see [7, Theorem 18.6.3]), we have
llop(r)|l < CM~".

Therefore for large M there exists the inverse (1 — op(r))~! which is given by

1+ M esd,g)
=1
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(see [1], [20]). Denote k = Y2, ™ e 51, g) and prove k € S(M~', g). It can be
seen from the proof (e.g., [20]) that for any / € N one can find C; > 0, independent
of y, such that

KI5 5 < Cis

because |k|(51()1,§) depends only on I, |r|(Sl&§) with some !/ = I'(l) and structure
constants of g which is independent of y. Note that k satisfies (1 — r)#(1 +k) =1,
that is

(8.1) k=r+rik.

Since r € S(M~!, g) it follows from (8.1) that |k|(sl()1’g—) < C;M~'. Assume that

(8.2) sup |[(&)IA1D2 0000 k| < CopuM ™72, o+ Bl =1
forO < <v. Let |a + | > v+ 1 and note that
bk =ardlr+Y (@) 3 el n

where
a+a"=a and B +p =p.
From the assumption (8.2) we have 8§/8§/k € S(MITIE/2 <§>§’|a’|—|ﬁ/|)/2’ 2)
if Jo' + f| < vand &Lk e SMI=AENNTVVR gy i ol + pI = v+ L
Since r € S(M~', g) one has
(a?//ag// r)#(a?/ﬁgk) c S(M—l—(u+2)/2 <§>§’|a|—|ﬂ|)/2, g)’
which implies that (8.2) holds for 0 < [ < v + 1 and hence for all v by induction
on v. This proves that k€ S(M~', g). The proof of the assertions for & is similar. (]
Here recall [27, Lemmas 3.1.6, 3.1.7].

Lemma 8.2. Let g € S(1, g) satisfy q > ¢ with a constant ¢ independent of M.
Then there is C > 0 such that

(op(q)u, u) > (c — CM™"/?)||ul|>.

Proof. One can assume that ¢ = 0. We see that g(x, &) + M~/? is an ad-

missible weight for g and (g + M~'/2)1/2 e S((qg + M~'/?)1/2 g). Moreover,
a;:ag(q +MUH12 ¢ S(M_1/2<§>§,|a|_wl)/2, g) for |a + B| = 1. Therefore

g+ M V2= (q+ MV PG+ M 24y resSMMT g)

which proves the assertion. (|
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Lemma 8.3. Let g € S(1, g). Then there is C > 0 such that
llop(q)ull < (sup |g| + CM~"/?)|[ul|.

Lemma 8.4. Let m > 0 be an admissible weight for g and m € S(m, g). Then
there is C > 0 such that

(op(myu, u) = (1 — CM %) jop(v/m)ul|*.
If g € S(m, g) then there is C > 0 such that

|(op(q)u, w)| < (sup (Ig|/m) + CM~"/?)|lop(v/m ul|*.

+1/2

Proof. First note that m are admissible weights and m*!/? € S(m*!/2, g).

Write
G =1+ ky#m™#gtm™ 2 #(1 + k) € S(1, 9),

where m!'/2#(1 + k)#m~"/2 = 1 and m~V2#(1 + k)#m'/? = 1 such that
m'*#qm'? = q.

Since k, k € S(M~!, g) one sees that § = gm™"' + r with r € S(M~', g). Thanks to
Lemma 8.3 we have

llop(gm™" Y|l < (sup(Igl/m) + CM~"?)|jv||
hence |(op(g)u, u)| is bounded by
|(op(gm™")op(m'*)u, op(m'/*)u)| + CM ™" [|op(m'/)ul|>

which proves the second assertion. The first assertion follows from the second
since m = m'/?#m'/? + r with r € S(M~%m, g). O

Lemma 8.5. Let m; > 0 be two admissible weights for g and assume that
m; € S(m;, g) and my < Cmy with C > 0. Then there is C' > 0 such that

llop(ma)ull < C'llop(my)ul|.

Proof. Write /i, = mz#ml_l#(l + k) € S(1, g) such that my, = rAp#m; with
ke SM™!,g). Then

llop(mz)ull = [lop(z)op(mp)ull < C'llop(mi)ull

proves the assertion. (|
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8.2 Lower bounds of op(4)).

Lemma 8.6. There exist C > 0 and My such that
Re (op(Z#)u, 1) = (1 = CM)[lop(!22; Hull®, M = M.
Proof. Since
j.j#K = Kﬂj + i1 + T

where rj; is pure imaginary and rj € S(M _zidj, g), the assertion follows from
Lemma 8.4. (]

Lemma 8.7. There exist ¢ > 0 and My such that
(op(ZDu, u) = ¢ lop(Ay Hyull® + eMP|(D); ull®, M > M.

Proof. From Propositions 4.1 and 5.1 it follows that 1; > ¢ Mo(&), ' with

some ¢’ > 0. Write
M —eMo(&); = 21/2+(A1/2 — cMa(&); 1),

where ¢ > 0 is chosen so that 1, = 1;/2 — cMa<§>y_l > clMa@‘);] with ¢; > 0.

Note that 1; € C(a?) since Ma(é‘}y_l € C(o?). Thanks to Lemmas 7.5 and 7.7 it

follows that 1; € S(1;, g) and 1, is an admissible weight for g. Thus we have
(op(IDu, u) = (1 — CM~2)|jop(A;*)ul|®> = 0 if M > \/C by Lemma 8.4. Since
M?*(&);? < Mo (&) it follows from Lemma 8.5 that

M|(D);'ull* < Cllop(a'/*(£); " *ul|>.

Therefore the proof follows from Lemma 8.4. (]

Similar arguments prove the following lemma.
Lemma 8.8. There exist ¢ > 0 and My such that

(op(A2)u, 1) > ¢ lop(Zy HYull® + e MI(D);ull®, M > Mo,

(op(A3)u, u) > cllull®>, M > M.
We now summarize what we have proved in
Proposition 8.1. There exist ¢ > 0, C > 0 and My such that

Re (op(A#)W, W) = (1 — CM~?)|lop(x'/> A W2,
Re (op()W, W) > ¢ ([lop(42)W |1 + [lop(DIW %),

for M > My where D = diag(M(f);l, MY2(ETV2 ),
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9 System with diagonal symmetrizer

Diagonalizing the Bézout matrix introduced in Section 5 we reduce the system (5.2)
to a system with a diagonal symmetrizer.

Lemma 9.1. Let p € C(c%). Then 8:p e S(a*~1+A/2(&); V1 o).

Proof. The proof is clear from

|6 (@2l p)| 3 A B2 o)1+
< RN () 1Bl a4 12 2~ 412 2y G = )2

forazpzM(f);l. g
Lemma 9.2. Letp € C(c¥) and q € C(c’). Then
pp —p* € S@*72(8);%,8), pHq—pg e ST 9.

Proof. The assertions follows from Lemma 9.1 and the Weyl calculus of
pseudodifferential operators. (]

In what follows, in order to simplify notation we sometimes abbreviate S(m, g)
to S(m) where m is admissible for g. Since a € C(o), b € C(¢/?) one sees
that A#[&] = A, x, &)[E] + R, with R whose first row is (0, S(¢'/?), S(¢)) for
8?[5] € S(1, g), by (4.5). Moving R to B we denote L = D, — op(AN) — op(B) where

0 a b by by+dy +S(c'?) bz +S(o)
9.1) A=1|1 0 0|[&], B=|0 0 0
010 0 0 0

and transform L to another system using 7 introduced in Section 5.3. Note that
T~'#T =1 — Rwith R € S(M~!, g). Thanks to Lemma 8.1 there is K € S(M~!, g)
such that (I — R)#(I + K) =1 = (I + K)#(I — R) and hence

T %WT#(I+K)=1, (U+K#T#T =1, T#I+K#I '=1
Therefore one can write
(9.2) Lop(T) =op(T)L
where L = D, — op((I + K)#T~'#(A + B#T) + op((I + K)#T~'#(D,T)).

Lemma 9.3. Notations being as above. Then K € S(M™! <f>y_1, 2).
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Proof. Write 7 = (r;;). Then T~'#T = (Y;_, ti#1;). Denote

3
Z tki#tkj = 5,'j + 1ij.
k=1
Taking Lemma 5.6 into account, we see that r; € S(o™'(&);%, @) CSM (&), &)
and rj; € S(Ul/z@‘);l, g C S(M_2<§>y_1, g) for i # j thanks to Lemma 9.2 hence
ReSM~E) !, g). Since K € S(M™', g) satisfies K = R + R#K we conclude the
assertion. m

Therefore K#T~'#(A + By#T € S(M~", g) is clear. Hence
L =D, —op(T~"#(A + B#T — T~'#(D,T)) + op(S(M~', g)).
In view of Lemmas 5.6 and 5.7 it follows from Lemma 9.2 that
S &) SO SU;h

9.3) T'#@T) =T"'aT+ |S(a (&)  S@™H&)7H S 2E7hH
SUATH SO SUETH

hence T~'#(6,T) = T~'6,T + S(M~", g) because o > M (&),
We now study T '#A#T. Noting that 6§6§a e S©@'2(&);"M, g and
a:3lb € S(a(&); ", g) for la + 1 = 1 and &[¢] € S(1, g), |A] = 1 we have

[ S()  S(M?) S(M—f’)]
T-A=T"'A+R, R=|S(MM™?) S(1) SM3)]|.
{S(M‘S) S(M—2) S(M‘G)J

Therefore T~ '#A#T = (T~ 'A)#T + R, with

SM— SM~?) S
R =R#T = |S(M~2) S(1) SM™?)
S(M=) S(M~?) S(M~®)

Note that
C('/? 1+C(0) C(a5/2)]
T7'A= |—1+Co) C@6'? C@3) | [£]
{ C(c'?) C(o) C(G”)J
and hence

Sy S SM®)
@EWaedl(r='Ay=| s S(1y  SM0|, Ja+pl=1.
SM~%) S(M~)  S(M~)
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Then thanks to (5.11) one sees that

Sy  SM™? S(M?)
(TT'AMT =T 'AT+R,, Ro=| S(1) SM™2) SM™2)
S(M™%) SM~) S(M~%)

Thus we obtain T~ #A#T = T~1AT + R, + R, where

Sy  SM™? S(M?)
Ri+Ry=1| S(1) SM™?) SM™?)
S(M™%) SM™) S(M~%)

Recall B given by (9.1). Since dy; € S(M, g) one sees by Lemma 5.6 that

S(o) S(Mo) S(o)
T~'#B = | S(6°/?) S(Ma3'?) S(a3%)
b1 +S(0) by+dy+Sc'"? bsy+S(0)

because ¢ < CM~*. Thus we conclude that T~ '#B#T is written as

S(o) S(Mo) S(o)
(9.4) S(3/?) S(Ma3'?) S(a3'%)
by +S(Mc''?) —by —dy + S(6?) by + S(0)

Noting that bs(¢, x, &) — 1;3 € S(M~2, g) we can summarize what we have proved
in

Proposition 9.1. One can write L - op(T) = op(T) - L where
L=D,—opA+B), A=(T"'AT)[¢], B=B,—T'D,T

S(1) S(1) S(1)
By =T #B#T = |  S(1) S(1) S(1)
by +S(M~") —2Me+SM~") S(1)

10 Weighted energy estimates

10.1 Energy form. Letw =1d(t, x, ) and consider the energy with scalar
weight op(w™):

E(V) = e~ "(op(Dop(w™)V, op(w™)V),
where 6 > 0 is a large positive parameter and # is fixed such that

(10.1) n> (@V2)|3bs+iel/e+C*+2+8(1+3V2)
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where C* is given by (3.14). It is clear from (4.17) that (10.1) follows from

Po(0,0.0,5) = =
| sub( a_: »é:)l_'_c*

(10.2) n> 122 , C*'=C"+10+32V2.
e
Note that 6,¢p = @~ '¢ and hence
—n 1 1 —n _ —n
O ——n(t+w)w =—nKw .
Recall that V satisfies
(10.3) o,V=0pliA+iB)W+F, B=B, —-T 'DT

Noting that A is real and diagonal hence op(4)* = op(A1) one has

d
dt
(10.4) — 2nRe e~ (op(A)op(xw ™)V, op(w™")V)
+ e~ (op(& A)op(w ™)V, op(w™)V)
+2Re e~ (op(A)op(w~")(op(iA + iB)V + F), op(w™")V).

&= —0e~"(op(A)op(w™)V, op(w™")V)

211

Consider op(¢p~")op(A)op(kdp™") = op(¢p~"# A#(kp™")). Since x and ¢~" are ad-

missible weights for g one has x#¢p™" = kp™" — r with r € SM~'kp™", g).

Let

P =r#¢"#(1 + k) € S(M~ 'k, g) such that r = #¢~" and hence k™" = (k + P)#p™".

Thus we have

Re (op()op(xkw™")V, op(w™")V) = Re (op(A#x)op(w ™)V, op(w™)V)
— |[(op(A#7)op(w ™)V, op(w™")V)|.

Since A#7 € S(M~'x1;, g) thanks to Lemma 8.4 the second term on the right-hand

side is bounded by CM~!||op(x!/2 A'/?)op(w™)V||. Applying Proposition 8.1,

denoting W; = op(w™")V}, one can conclude that

Re (op(A)op(xw ™)V, op(w™")V) > (1 — CM~)|lop(x' > A )W ||?,
Re (op(A)op(w ™)V, op(w™™)V) > c(|lop(AYHW | + [lop(D)W|?),

for M > M,.
Definition 10.1. To simplify notation we denote

E1(V) = llop(x'? A Hop(w™)V||* = " |lop(x'/> A *)op(p™)V||%,
E2(V) = Jlop(AHop(w ™V |I* = " lop(A"/*)op(p™") V||

Now we summarize:

and
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Lemma 10.1. One can find C > 0, ¢ > 0 and My such that

nRe (op(A)op(kw™")V,op(w™")V) + ORe (op(A)op(w™")V, op(w™")V)
>n(l = CM™HEN(V) +cOE(V), M > M,.

10.2 The term (op(A)op(w=")op(B)V, op(w™")V). Recallthati;eS(1;, g)
and 1; < Col, < Co? 23 with some C > 0. We show
Lemma 10.2. Let W = op(¢")V. Then we have
|(op(A:)op(B)W;, W))| < CM™>E((V) + CM*E(V), be S, g, j>1,
|(0p(23)0p(B)Wa, W3)| < CM™2E((V) + CM** E5(V), be S(M', g),
|(0p(43)op(BYW1, W3)| < (V3 ellop(®)|| + CM~%)E(V), be S(1, ),
|(op(42)op(B)W1, Wa)| < (gllop(Ayb) || + CM~YH)E(V), be S(a™"/%, g).

Proof. Letb € S(67'/2, g). Noting thatxlil/z/lj 172 ¢ §(6U=1/2, g) one can write
r= 1+ #x 20T PO bR 1+ E) € STV ), >
for ox > 1, such that (x'/21/*)#r#A,;/> = A#b. Then we have
|(op(A:)op(B)W;, W))| < M~>|lop(x'/> A 2)W 1> + CM?|lop(A W)
forj > i. Let b € S(M', g) and denote
r= (1 + #2052 b)#AT (1 + )

such that ('/2A)*)#r#2Y*> = As#b. Since r € S(x='/22Y215'%, ¢) € S(1,¢) in
view of Lemma 7.11 then |(op(43)op(b)W,, W3)]| is bounded by

CM 2 |lop(x'/* AV )W |I> + CM* op(AHW |12

We check (op(43)op(b)W,, W3) for b € S(1, g). Noting that k=1 A7"/* € S(1, g), by
Lemma 7.11, write

r= 1+ #2072 b)e 225 1 + k) € S(1, 9)

such that (lcl/zl}/z)#r#(xlﬂl;/z) = Js#b. Since k, k € S(M~!, g) it is easy to
see that r = (A*A7"?k~")#b + F with 7 € S(M~'/2, g). By Proposition 5.1 and
Lemma 7.11 one sees that |1y/*A7"%x~!| < v/3&+ CM~*, hence
(op(Z3)op(b)W1, W3)| = |(op(r)op(x'/? 1}/ * )Wy, op(k' /1Y > W3)|
< (V3e&llop(b)|| + CM~'?)[lop(x' > AW
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Next consider (op(42)op(b)W;, Wy) for b € S(a™'/2, g) = S(A5'/?, g). Denote
r= 1+ k#0205 PO PV #1 + k) € S(1, 9)

such that (c'/22)/ 2 )#tr#(1,?Kk"/%) = Jo#b. Write r = (k' A7/ *)#(1)%b) + F with
7 e S(M~!, g). Thus repeating the same arguments as above one concludes the last
assertion. (]

In particular, this lemma implies
Corollary 10.1. Let B = (b;) € S(1, g). Then with W = op(w™")V
|(op(A)op(BYW, W)| < (V3 &llop(ba))|| + CM ™), (V) + CEL(V).

From Proposition 9.1 there results ¢ "#B; — B #p~" € S(M~'¢p™", g), so one
concludes by Corollary 10.1 that

(10.5) |(op()[op(w™), op(BIV, W)| < CM ™' &1(V) + CE&(V)

where W = op(w™)V again. Write T7'6,T = (f;) and recall (5.12) and note
that 71, = —f; € C(6~"/?) and 73, € S(1, g). Then thanks to Lemma 6.5 one sees
that A #(p™"#1; — Bj1#e")#¢" is in

S(a' 7™ pVHET, 8) € SMT K wcﬂj, 2, Jj=2.3,

because CA; > Mp(&);', Cly > M(&);! and @' < k. Therefore repeating

similar arguments one concludes that
(10.6) |(op()[op(w™), op(T~ 8, TV, W)| < CM™'€1(V).
Recalling B = B; — T~!D,T it follows from (10.5) and (10.6) that
(10.7) [(op(A)[op(w™"), op(B)IV, W)| < CM~'&,(V) + CE&(V).
With B = (g;;) we see that g;; € S(6~'/2, g) forj > i and
G21 = i0(3b/2a) + S(1), g1 =bs+ie/3+SM™"), g2 = —2Me+SM™")

by Proposition 9.1. Applying Lemma 10.2, we have from (5.13), recalling Propo-
sition 5.1 and & = v/3/ec'/?, that

[(op(A)op(B)op(w ™)V, op(w™")V)|
(10-8) N =, =1/2 ~1/2 -1/2 4
< (|I3b3 +ie]/ec'? + (6 + V2) /' /> + CM™V?)E (V) + CM*Ex(V).
Combining the estimates (10.8) and (10.7) we obtain

Lemma 10.3. The term |(op(A)op(w™")op(B)V, op(w=")V)| is bounded by
the right-hand side of (10.8).
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10.3 The term (op(A)op(w=")op(iA)V, op(w~"")V). Note that
¢~ H((Cr) — (™ € S(¢™"a" ™ P! p! 2, ) forr € C(0”)
by Lemma 6.5. Recalling Corollary 5.3 and A = AT[¢], then denoting
P THA — A#PT" = (1),

we see that r;; € S(p™"w™ ' p'/%, g) € S(M2k¢p™", g) for j > i because ™' < «.
Writing A#r;; = A#F;#p™" with 7; € S(M~*«, g) one obtains

|(op(L:)op(rip)Vj, Wi)| < CM™2|lop(x"/? AV*)W|*  forj > i

since A#7; € S(M~%k);, g). From Lemma 5.8 one has d»; = A; C(¢™!), hence
thanks to Lemmas 6.5 and 7.7

PTH@[E]) — pT"an[E] € S(a7 20 P p! P, g) € S(A) P, &)
for ™! < x again. Thus we have
[(0p(A2)op(r21) Vi, Wa)| < CM~2|lop(x'/? AW |

since l;/z < CM~2. Similarly from a3 = A, C(¢'/?), d3p = A» €(1) and Lemma 7.7
it follows that r3; € S(6* 72, 2w™' p!2¢™", g) C S(M21;*k¢p™", g) for j = 1, 2.
Here we have used 6)?8?/12 € S(i;ﬂ(f)y_'ﬁ',g) for |a + ] = 1 which follows
from A, € C(o) easily. Then one obtains

[(op(213)op(r3))Vj, W3)| < CM~?|lop(x' 2 AW %, j=1,2.

Therefore (op(A)op(w=")op(A)V, op(w™™)V) — (op(A)op(A)W, W) is bounded by
a constant times M~2&,(V).
Next we study A#A — AA = (g;;). From Corollary 5.3 and Lemma 7.7 we have

M#@yIE)) — Maylél € S(0'221/%, 8), Aat(anlEl) — adn(E] € S(Ay°, 8)
forj > 1 andj > 2 respectively. Then noting that C4 i/ k> 1and Clyk > 1
|(op(gi)Wj, W))| < CM~2|op(x' > AW ||> + CM?|lop(AHW 12, j > i.

Repeating similar arguments one has A1;#(d;[¢]) — 4:a;(<] € S(M_zzc/lil/zi;/z, g)
and hence
|(op(gi) Wi, W)| < CM~||op(A' 22 )W > for i > j.
Thus we conclude that
(10.9) [(op()op(w™")op(A)V, op(w™")V)—(op(AA)W, W)
' < CM72E,(V) + CM?E5(V).

Since AA = A* A we have
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Lemma 10.4. One can find C > 0 such that

IRe (op(A)op(w™™op(iA)V, op(w ") V)| < CM2E (V) + CM?Ex(V).

10.4 The term (op(6; A)op(w™)V, op(w™)V). We start with
Lemma 10.5. We have 0,;4; € S(kA;, g),j=1,2.
Proof. Note that Lemma 3.6 with € = v2M(&);! implies
[0, A < C*(A/t+ 1/w) Ay = C*kAyy.
Recalling 6,41 = —6,q9(41)/0,q(A1) it follows from (5.6) and (5.9) that
|0:41] < (1+ CM™)(0,ap /| A1 + 10, Al /6ar).

Since (1+CM~2)); > Ay /6ay by Proposition 5.1 and 1/ay < x/eby Lemma7.11
one concludes that

(10.10) 16,411 < (1 + CM™3H)(C* + DrAy.
Note that
|6§6§6ﬂ11| < Cal_l‘“ﬁ'/z(f)y_'ﬁ' < Ca”z(é);l/z(é)y“'_w”/z for 6,4, € C(o).
From Lemma 7.11 and CA; > Ma(é‘}y_l it follows that
KA, > K\/11M1/201/2<§>y—1/2/c > M1/2Jl/2<5>y—1/2/cf,

which proves that |87 870,411 < CM ™"k, (&){* " for |a+p| = 1. For [a+p| > 2
it follows that

100080, ) 3 oD/ (&)1 < )~y /2 () Qe =102
< 0~ Mo (&) M2 (@A < O e gy =162

because ko > 1. Thus 6,41 € S(x1,g). On the other hand, o,4; € S(x4;, ),
J = 2,3 is clear since 6;4; € C(1) C S(1,8) C S(xl,, g) for Cirx > 1. This
completes the proof. O

Note that from (5.6), (5.9) and |6,A | = a3, we see that
(10.11) 16,42 < (1 + CM™)|6,am|A2/am + Cay < (1 + CM™)kch,

for CxA, > 1. Since |(op(8,43)W3, W3)| < C|lop(A3)Ws]|? is evident, by applying
Lemma 8.4 one obtains from (10.10) and (10.11)

Lemma 10.6. We have

|(op(&; Mop(w ™)V, op(w™V)| < (C* +2+ CM™/2)&,(V) + CE(V).
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10.5 Conclusion. In what follows we denote |lull; = [[(D)u]|, and by
H* = H*(R?) the set of tempered distributions # on R? such that |ju||; < +o0.

Definition 10.2. Denote by J{_, (0, J) the set of f such that
(D), ) € L*((0, 8) x RY).

Consider the term Re (op(A)op(w™™)F, op(w~")V) where F = '(F, F,, F3).
Write 4 = ("2 AV2)#R#(x~'/> A41/?) with R € S(1, g). Because of the choice
of n it follows from (10.4) and Lemmas 10.1, 10.3, 10.4 and 10.6 that one can
find ¢; > 0 and My, 7o, 6y such that

ZE(V) < —c1e7 (V) = cr0e™ 5 (V)
(10.12) + |Re (op(A)op(w™™)F, op(w ™) V)|
forM > My, y > yoand 0 > 0.

Thanks to Lemma 6.3 one has K—1/2¢—n/1j1/2 € S(M™"\/1 (&)1, 8), so we see easily
that

IRe (op(A)op(w™)F, op(w™ V)| < CM™' & (V) + CM ™" 121 F |12,

Since M(&)71/C < ¢ < CM~ and =12 < /2 < 1240712 < 120 M-1(E),
and <§>;3/2+]/2 < Cijl/z for 1 <j < 3, then

MPHVIZ/C < 278(V) < CMT2 G VI + 1V ),

(10.13) ~
M |V|2,/C < *"€x(V) < CM™>"|| V2.

Assume dV € H_n—1/2452,n41—(0, M=), j = 0,1. From this one sees that
lim,_, ¢ || V(#)]|,, exists and is 0. Using this, we see that lim,_, .o t™"||V(?)||,, = O.
Noting that (V) < CM "t~ V(t)||,21 and integrating (10.12) over ¢ we obtain

Proposition 10.1. There exist ¢; > 0, C > 0 and My, yo, 6y such that for
any V with D,V € H_,_124j2.041-7(0, M=), j = 0, 1, one has

t t
ar e V@12, + e / e P57 NV(s) )12 ds + 30 / e~ PsT V()12 1 ds
0 0
t
< CMl—lOl‘l/ e—@ss—2n+1 ||iv(s)”3lds
0

for0 <t <M M > Mo, y >y 0> 6.
Corollary 10.2. For any V with D}V € H_,_1 j24j/2.01-(0, M=), j = 0, 1

t t
/ V()2 ds < € / s LV(s) |2ds, 0 <1< M,
0 0
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Consider the adjoint operator P* of P. Noting that ay, € C(o), b € C(¢°/?)
and (4.5), (5.1), we see that

P* =D} — au(t, x, D)ID)’D; — b(t, x, D) [DF’
+ b D? + (by + dy)[D]D; + b3[D]? + &, D; + &[D]
with b; € S(1, g) and & e S(M?, g), hence &[D]™' € S(M~3, g) where it is not
difficult to check that bs — (b3 + ie) € S(M 3, 2). Denote by L* the corresponding
first order system (which is not the adjoint of L). Since the power n of the weight ¢ "

depends only on a, b and b3 (see (10.1)), then we can choose the same n for P* as
for P. Now employing the weighted energy

E*(V) = " (op(A)op(r"¢")V, op(r"¢")V)
and repeating the same arguments for £(V) and carrying out the integration
°d
—/ &*dr, O0<r<do=M*,
we have
Proposition 10.2. There exist ¢; > 0, C > 0 and My, yo, 6y such that for

any 'V with l);V € J{n_1/2+j/251ﬁ,(0, M_4)).j =0, 1, one has

)
cltznem“V(l‘)”z_n—l + 6‘2/ e ||V(T)||2_n_1d7

t

5
+C39/ e_afrz”llV(r)IIz_n_]dr
t

N 6 ~
S CM—10n52ne(Jé”V(5)”2+CM1—10n/ e@‘rz_2n+1”L*V(T>”2dT’ 0 S t S 5,

t

forM > My, y > yo, 8 = 6y where
L*V = op(T)'(P*u,0,0) and op(T)V ="(D*u, [D1Du, [D]*u).

Remark 10.1. Itis clear from the proof that for any n’ > n, Propositions 10.1
and 10.2 hold.

11 Preliminary existence result

Let s € R and we estimate (D)'V. In what follows we fix M and y (actually
it is enough to choose y = M, see (4.1)) such that Propositions 10.1 and 10.2
hold, therefore from now on we can assume (D), = (D) = [D] without restrictions
while 6 remains free. From (10.3) one has

8, ((D)*V) = (op(iA + iB) + i[(D)*, op(A + B)(D)*)(D)*V + (D)*F.
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Lemma 11.1. For any s € R there is C > 0 such that

I([(D)*, op(A)]V, 0p(A)(D)* V)| < CE((D)*V).
Proof. Denoting T7'AT = (é;) thanks to Lemmas 5.8 and 7.7 we see that

L (@IEDH(E) — (O #@yEDHE) ™ € @\ 20, j=1,2,
(@1 [EDHE) — (E)#@n[EHE) ™ € S(e™ 2V 11, 8)

where S(c™"/2\/A1, ) = S(A;"*\/A1,¢). From Corollary 5.3 it is easy to see
that ((@;[ED#(E)* — (&) #(ay[EN)#(E)~ e S(1,g) for j > i. Then together
with (11.1) the proof follows from a repetition of similar arguments. (|

Lemma 11.2. For any s € R and any € > 0 there is C > 0 such that
I([{D)*, op(B)IV, op(A)(D)’ V)| < € E1((D)*V) + CE((D)*V).

Proof. Write By =(b;). Since bjj € S(1, g) then A#((&) #b; — by# (&) #(E) ™
is in S((¢)~1/24;, g). Noting that CA; > ¢(&)~! and Cl, > ¢ > (&)l it is easy to
see that S((&)~1/21;, g) € S(4,/2A}%, g) except for (i, j) = (3, 1). For (i, j) = (3, 1)
recalling b3; = b3 + S(¢'/?) by (9.4) one sees that

A5#((E) #ba1 — by #(&)WHE) ™ € S92, ) € S(4,2 25, 0)
(recall that M is fixed). Therefore one obtains
(11.2) I([{D)*, op(B)1V, op(A)(D)*V)| < CE({D)*V).

Next consider 77'6,T = (). Recalling &1 € C(o™!/?), 731 € (1) and 7, € C(c'/?)
and noting that CxA, > <§>_1 and Ci, > o > <é‘>_1, one has

A#((E) Wy — TE WO ™ € SG KAV g), i
Therefore we have
I([(D)*, op(T TV, op(AND) V)| < Cy/E1((D) V) /Ex((D)sV)
< €€1((D)*V) + C?e ' &,((D)* V),

which together with (11.2) proves the assertion. ([

Choosing € > 0 smaller than ¢; in Proposition 10.1 and & large, we conclude
the following
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Proposition 11.1. For any s € R there exists C > 0 such that for any V
with DV € H_,_124j/2.n45+1-j(0, 0), j = 0, 1, one has

t t
V@I + /0 TPV de < € /0 LV, dr

for0Q <t <o.
Since L = op(I + K)op(T~") - L - op(T) with T, T~! € §(1, g), then

ILVIls < GAIL-op(T)VIly and  [lop(T)VIls < CilI VI

with some Cy > 0. Thanks to Lemma 5.7 one has |lop(,T)V ||, < Cst~'/2|| V]|, so

replacing op(T)V by U one sees that for any U with DiU € Hou—1/24j/2,n+5+1-(0, ),
j=0,1, we have

U@, + /O

t t
NI < € [ TILUOIE, dx
Since U = (D?u, [D]Du, [D]?u) and LU = '(Pu, 0, 0) we have

Proposition 11.2. For any s € R there is C > 0 such that for any u with
Diu € H_y_1/2,p4543-j(0,0), 0 < j < 3, one has

2 ) 2 t .
S DO+ Y [ T I e
(11.3) j=0 =0

t
<C / o2 Pu()|2, dr, 0 <1<
0

Repeating the same arguments we conclude the following

Proposition 11.3. For any s € R there is C > 0 such that for any u with
Diu € Hy_124j/2,543—(0, 6), 0 < j < 3, we have

2 ) 2 S5 )
£ DO+ > / " MDu()13,,_dr
o o /1t
(11.4) 70 70

2 ) S R
< c(z I1Dju(8) 7450 + / rz"“uP*u(r)uﬁﬂdr), 0<r<d
J=0 !

Since (11.4) holds with n > n + 3 as noted in Remark 10.1, then, in the
resulting (11.4), replacing s by —3n — s — 1, we have

S )
2n—1 2 2n+1 ) P 2
/ 20|yt < € / 2P u() | g dt
0 0
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for any u € C§°((0, 9) x R%). This implies that

o g 2n+1 2 1/2 g 2n—1 2 172
[ o] < ( [ ufna,;ﬂdr) ( | ||U||—3r7—sdf>
0 2n+1 2 172 0 2n+l 11 D 2 1/2
sc( [ |vu3n+sdr) ( e uP*vu_z,l_s_ldr)

for any v € C5°((0, J) x RY) and f e H_j41/2,37+5(0, 6). Using the Hahn-Banach
theorem to extend the anti-linear form in P*v:

o
(11.5) Pv — / (f, v)dt,
0

we conclude that there is some u € H_;_1 /2 27715+1(0, J) such that

o o R
/(f,v)dtz/ (u, P*o)dt, v e C((0, ) x RY).
0 0

This implies that Pu = f. Since u € Ho 275+1(0, 6) and f € Ho 3745(0, ), it follows
from [7, Theorem B.2.9] that Dﬂu € Ho,oimrs+1-j(0, 0) forj=0, 1,2, .. .. Thus with
w = (D)™ u one has Djw € L2((0, 6) x R?) forj =0, . . ., n+ 1 hence Djw(0) exists
in L>(R%) whichis O forj=0,...,nforw e H_741/2,0(0, 6). Thus one can write

w(r) = / t(z — 0" w(r)dr/nl.
0

From this, one concludes that D§u € H_jzj—1,2,7s(0, 0), hence we have that
du € H_p—1/2,n4543—j(0, ) for 0 < j < 3 because n > n + 3, thus (11.3) holds
for this u. Now let f € H_,41/2,045(0,6). Take a rapidly decreasing func-
tion p(¢) with p(0) = 1: then fe = ¢~ p(eD)f € Hoiier/22msse1(0,0) and fe = f
in H_,41/2,n+5(0, 6). As just proved above there is u, satisfying Pu, = f. and (11.3).
Therefore choosing a weakly convergent subsequence {u¢} one can conclude the
following

Theorem 11.1. There exists 6 > 0 such that for any s in R and any f
in H_ys1/2,n45(0, 6) there exists a unique u with Du € H_,_1/214+5—(0, 9),
j=0,1,2, satisfying Pu =f and (11.3).

Instead of (11.5), by considering the anti-linear form in Po:
J 1 )
Po / (f, )t + Y (ws—j, Do (3, ) + (wo, (D? — [DIa(é, x, D)v(3, )
0 .
Jj=0

for v € C§°((0, 00) X R?) and repeating similar arguments adopting (11.3), we
conclude the following
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Theorem 11.2. There exists 6 > 0 such that for any s € R and
any f € Hpus1/2,045(0, 0) and w; € H™4*27 j = 0,1,2, there is a unique u with
Diu € H,—1/2.145-;(0, 6) satisfying P*u = f, Dju(d, ) = w;, j=0, 1,2, and (11.4),

Indeed we first see that there is u € J{,_1/2,145(0, d) satisfying Pru = f
and Dﬁu(é) = wj, j = 0,1,2 (e.g., [7, Chapter 23]). Since f € Ho (e, 0)
and u € Hy 144(e, 0) it follows from [7, Theorem B.2.9] that Dﬁu € Ho,145—(&, 0),
0 <j < 2, for any ¢ > 0. Applying (11.4) with t+ = & we conclude that
Diu € Hu—1/2,145-(0,9),j = 1, 2, since & > 0 is arbitrary.

12 Propagation of the wave front set

In Section 11 we have proved an existence result of the Cauchy problem for P,
which coincides with the original P only in W),. Following [23], [10] (also [27]) we
show that the wave front set of u(z, -), obtained by Theorem 11.1, propagates with
finite speed. This fact enables us to solve the Cauchy problem for the original P.

12.1 Estimate of the wave front set. Let y(x) € Cg"(]Rd) be equal to 1
near x = 0 and vanish in |x| > 1. Set

12.1) de(x, &y, m) = { (e = e =P +1EQE) ™ = n(m) ™' P+ )2,
‘fé(taxa f,ya ﬂ):f—T'f‘Ude()C, f,ya 7])’ T > 03

where (v, ) € R? x (R?\ {0}) and v is a positive small parameter. Note that

(12.2) ocdld] < (&M, o+ pl=1,

where C is independent of € > 0. Define @, by

(12.3) D1, x, &) = {pr(l/fe(f, x,¢8) iffe <0

otherwise

and note that ®, € S(1, go) for any fixed € > 0 where gy = |dx|>+ (&) 7%|d&|%. From
now on, to simplify notation, we denote

E1UDY V) + E((DYV) = 2" Ny(V),  No(V) = N(V).
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Lemma 12.1. There exists vog > 0 such that for any 0 < v < vy and
any € > 0 there is C > 0 such that for any V with fo(s I_Z"N_1/4(V)dt < 400 and
LV e H_ps1/2,1(0, 8) with some [ we have

t
E1(0p(@V) + | T N(op(@0)V)de
0
t t
<C / 2" op(® )LV 2dr + C / TN_y4(Vydr, 0 <t<6.
0 0
Proof. Denote -
V# = (uD)™"V

with small x4 > 0 where we choose n = 2n + max{ —[, 0} + 3. Assume LV =F so
that LV# = F* + R*V* = G* where

R = [(uD)™", op(A + B)|(uD)" and F" = (uD)™"F.

Note that @, = £~ ®, € S(1, go) for any fixed € > 0 and ®, — f,#D.; € S((E) L, go).
Since 6,®, = — D /f, one can write

8,(0p(PIV*) = — op(fy D)V + (0p(iA + iB))op(P )V

(12.4)
+ [op(®D,), op(iA + iB)]V# + op(D)G*.

Since ®#B; — B #D, € S((&)~1/2, g) by Proposition 9.1 it is not difficult to see
from the proof of Corollary 10.1 that

|(op(A)op(¢~")op(Pe), op(BIVH, op(¢™)op(P)VH)| < c(€)N_1/4(VF).

Denote ®H#(T16,T) — (T7'6,T)#®, = (¢;), hence ¢z € S(c71(&)!, g) and
@31 € S(e™12(&)71, g) from (5.12). Thus A#p; € S(&)~V2 /KA1 \/K4;, g) for
j = 2,3 because CA; > o(&)~!, CAy > o and ko > 1. A repetition of similar
arguments proving (10.6) shows that

|(op(A)op(¢p~™)[op(De), op(T~'6,T)1V*, op(¢p~op(D)V*)| < c(€)N—1/a(VH).

Note that ® #A — A#D, can be written

(— 1)
> iertigp Gl OLLA — LG @OLLA) + Re = He+ Re
la+p|=1 e

where it follows from Corollary 5.3 that R, € S({(&)~'/2, g) for o > (&)=L, Itis not
difficult to see from the proof of Corollary 10.1 that

[(op()op(¢~")op(ROV*, op(¢p™)op(P)VF)| < c(€)N_1/4(V¥).
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Note that H, € S(1, g) because 8;?6?%[ e S(E)1A ¢) for |a + B = 1. Write
(O =fe#q)el + e with re € S(<5>_la g0)~

Noting that ¢~"#f, — filip™ € S(w™'p"/2(E) ¢, g) C S(¢~()~V/2, g) and
fi#td; — Af. € S(A;(E)712, g) we see that
|(op(A)op(¢~")op(iH )V, op(¢p~")op(D)V*)
— (op(A)op(¢™")op(fo)op(iH )V, op(¢~)op(De1) V)|

is bounded by c(e)N((D)~/4V#). Here we examine at iH, more carefully:

1 1
in:( > ardlaglen@lans,) cDIG) = (hf) . D
loc+f1=1 fe fe

Taking hfj e S(1,g) and f;lCDd, O, € S(1, gp) into account one can write
JH(iH) = (B#D, + R with R, € S((&)7'/2, g), so denoting H, = (hf)),
[(op()op(¢p™"op(f)op(iH) V¥, op(¢~")op(Pe1) V)
— (op(A)op(p~")op(H)op(P1)VH, op(¢~"op(P) V)|
is bounded by c(e)N_;,4(V*). From Corollary 5.3 we see that hfj e C(1) forj > i,
RS, hS, € C(c'/?) and h§; € C(o), so in view of Lemma 6.5 one has
A#(PTHNG — W) € S(ehi(E) T ¢, g) forj> i
and
. —n _ —n A l/2/—1/2 4—n : :
AT NG — hifte™") € S(kAid;" (&) /"¢, g)  fori > j.

From this we see that

|(op()op(¢~)op(H)op(Pc) V¥, op(¢p~)op(Per) V)
— (op(A)op(He)op(¢p™)op(@e) V', op(¢p~)op(Pe) V)|
is bounded by c(e)N_;,4(V*).
Lemma 12.2. One can write
hG= Y Ky phliap+ 15,
la+fl=1

where k¢

iiap € S(1, o) such that

|k sl < Cv

ijo
with some C > 0 independent of v and € for any 1 < i,j < 3. As for ljj,p and r{; one
has lLjop € S(1, g) and r§; € S(o="2(&)™!, g) forj = i and L,y € S(6"/2\/2;, g),
1§ e S =2\ JA(E)7V2, @) fori > j.
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Proof. Setkt ,= <5>I“|a§agﬁ and lijop = (é)"“'@?&?(d,j[é‘]); then the assertion

ijofp —
for ki‘ja ) is clear from (12.2). The assertions for /;j, 4 follow from Corollary 5.3 and

Lemmas 5.8, 7.7. Note that o4 0:lijap € S(e=V2(&) M, @),
lu+v|=1 forj=>1i,

and 0y 0:h1ap, 04 O:l2ap € S(<§>_|”|,g) and 040:14p € S(01/2<§>_|”|,g) for
| +v] = 1, which follows from d,;, d, € C(o) and @ € C(6°?). Then
since o > (é);l and C4y > a(é);l the assertions for r§; are checked immediately. [J

With R¢ = (rl-‘j) and W = op(¢")op(®1)V#, recalling 1; < Coly < C'0*23, it
is easy to see that
|(p(ROW, op(HW)| < c(€)[lop(4"/*) (D)~ /* W,
Consider |(op(hfj)Wj, op(1;))W;)|. Thanks to Lemma 12.2 this is bounded by

Cllop(2;"*)W; | lop(k§, )op(Z; Y Wil

with C independent of € because /lil / 2#lija B € S(ijl/ 2, g) in view of Lemma 12.2. On
the other hand, taking Lemma 12.2 into account, it follows from the sharp Garding
inequality (e.g., [7, Theorem 18.1.14]) that

llop(k§ap)op(Z; Wil < Cvllop(A;YWill + C(v, ©)llop(Z;/ (D)~ *W; .

Therefore applying the above-obtained estimates one can find C > 0 independent
of € and v such that

|Re(op(A)op(H)op(p ™ )op(Dc1)VH, op(p)op(De1)VH)|
< Cvllop(4*)op(¢™)op(De)VH (1> + C'(v, €)llop(A'/*)op(d~ (D) /4 V.
It follows from the same reasoning that
|(op(A)op(d~op(f, @)V, op(¢p™")op(P) V)
— (op(A)op(¢™)op(®@ VX, 0p(¢op(Pe)V)| < c(€)N_1/4(VH).

We conclude finally that —Im(op(A)op(¢~")L(op(®)VH), op(¢p~)op(P)VH) is
bounded by

—(1 = Cv)[lop(A"*)op(¢p™op(D)V*|I* + c(v, ON_ /4(V*)
+ Re(op(A)op(¢dp™)op(DP)G*, op(¢p~")op(D)VH).

We fix vg such that 1 — Cvg > 0. Since [6%(u&) ™" < Co(ué) (&)1 with C,
independent of x4 > 0 we see that

[(op(A)op(¢™")op(P IR V¥, op(¢™")op(P)VH)| < CE1(op(PHVH).

(12.5)
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Therefore |(op(A)op(w™)op(®@)G*, op(w~")op(D.)V*#)]| is bounded by
€1€1(0p(PIVH) + Ce, 17" op(P)FH ||, + CE1(op(D)VH)

for any €; > 0. Note that Dﬁ'V/‘ € Ho,2n+7/4-j(0,0), j = 0,1, ..., hence DiV(O)

exists in H"3/4 which is 0 for j = 0, 1, ..., n, thus lim,_, .o || V*(®)||,, = O for
i > 0. Applying (10.12) to op(®.)V# instead of V, choosing €; < c¢; and then
letting 4 — 0 one concludes the proof. O

Applying (D)* to (12.4) and repeating similar arguments one obtains

Proposition 12.1. Forany s € R, any 0 < v < vy and any € > 0 one can
find C > 0 such that for any V with f(ft_Z"NS_IM(V)dt <+ooandLVe H_ps1/2,(0, 9)
with some [ we have

E(D)'op@V) + [ TN op(@)V)dr
0

t t
< c( / 2" op(D)LV |2, dT + / 2N,y /4(V)dr), 0<t<éd.
0 0

12.2 The wave front set propagates with finite speed.

Lemma 12.3. Assume thatV € j{_n_l/zjll.‘.](o, 0) and LV e J-(_n+1/2,;2(0, 0),
and that op(d)ﬂ))I:V € H_ps1/2,n45,(0, 8) with some 11, 1>, so € R, €9 > 0. Then for
every € > €9 we have op(®)V € H_,_1,24(0, ) for all s < so — 5/4. Moreover,

t t
/0 2 op(@)V(2)|2dz < C /0 V@R, + 2 LV ()| 2)d
t
+C / T op(@, ) LV(D)Ipys,dr, 0 <1 < 6.
0

Proof. We may assume /; < so otherwise there is nothing to be proved. Let J
be the largest integer such that /; +J/4 < so. Take ¢; > 0 such that

€ <€ <---<€y=€.

We write @, = ®; and f; = f; in this proof. Inductively we show that
t
| 7N atop@pvidr
t
(12.6) ¢ [ V@R e
0

t
+C /O 2 HILV@E + 10p(POLV (D17 4,11/ T
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Choose y;(x, &) € S(1, go) so that

suppy; C {f; <0} and {f1 <0} C{y;=1}.

Noting that

op(®@js1)Lop(y) = op(Pj1#y)L + op(®;1)IL, op(y;)]

we apply Proposition 12.1 with s = [; + (j+ 1)/4, ® = @ and V = op(y;)V.
Since @y, 1#y; — @iy € S, then [lop(@p)Lop(W)VII7 41y/4sn i bounded
by cllop(@iDLVII7 4 41y/45n + CODIVII7 4, and hence by

(12.7) COHLNOPPOLV 12 4oy an + LILVIE + VIR 1)

because ®@;,| — k#Dy € ST with some k; € S(1, go). Since y; — /~<j#®j e §™>
with some I~<j € S(1, go) it follows that

Ni4j/4(0p(@j1)op(y;)V) < CNy,j/a(op(P)V) + C||V||121+1-

Consider N (j+1)/4(0p(®@j+1)op(y;)V). Noting that @, 1 #y; — ®jy € ST the
same reasoning shows that

(12.8) Ni+(1y/40p(@j11) V) < CNypi(j+1)/4(0p(PRj)op(y) V) + C||V||121+1-

Multiply (12.8) and (12.7) by r=2" and t~2"*! respectively and integrate from O to .
We conclude from Proposition 12.1 that (12.6) holds for j + 1 and hence for j = J.
Since [y +J/4 < s, [ +J/4 > so — 1/4 and ||V||,—1/C < Ny(V) the assertion
follows. O

Let I'; (i = 1, 2, 3) be open conic sets in R? x (R \ { 0}) with relatively compact
basis such that I'y € T', € I'3. Take h;(x, &) € S(1, go) with supph; C I'; and
supphy C I's \ I',. Consider a solution V with V e H_,_ 5 ;(0, J) to the equation

LV =op(h)F, F € H_;412,5(0, ).

Proposition 12.2. The notation is as above. There exists &' = d'(I';) > 0 such
that for any r € R there is C > 0 such that

t
/0 2" op(hn) V(D) 2dx
(12.9) ,
<C /0 (T2 NF@IE+ 7 IV(@)lIfide, 0<t<d.
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Proof. Letf, =t — vo7 + vode(x, &y, n) with a small 7 > 0. It is clear that
there is € > O such that {# > 0} N {f2 < 0} N (R x supph;) = () for any (v, ) ¢ T».
Take é < € < 7. Itis also clear that one can find a finite number of (y;, ;) € '3\,
i=1,..., M, such that with ¢’ = vo(% — &)/2

M
I3\T € (U{fe(é’,x, &y i) < 0}),

i=1
{t = 0} N {f‘g(taxa f;yia ’]l) < 0} N (R X Supph’l) = @

Now @, is defined by (12.3) with f.(¢,x,&;yi, #;). Then since Y ®;; > 0
on [0, 0'] x supp h, there is k € S(1, go) such that
hy—kY ®pieS™.

Noting that op(®;e)op(h)F € H_,41/2,-(0, 6) for any r € R we apply Lemma 12.3
with @, = @, O, = Oj¢ and sp = r + 5/4 to obtain

t
/0 21 op(D) V(2)| 2d
t
<c / 2 V(o) |Pde
0
t
" /0 T2 (lop(@:2)0p(i)F (D) 3yures o + I )d

for |LV(2)|l; < C||F(7)||s. Since ®;:#h; € S~ on summing up the above estimates

overi=1, ..., M one concludes the desired assertion. O
Lemma 12.4. The same assertion as Proposition 12.2 holds for L.

Proof. Assume that U € H_,_1,2,,(0, ) satisfies LU = op(h{)F where
F € H_p41/25(0,5). Choose I'; such that Ty € Ty e I, e I, € I'; € T3
and h; € S(1, go) such that supp711 c I, suppfzz cI; \ T, and h; = 1 on the
support of #;. Recall that Lop(T) = op(T) L, hence

LV = (I + op(K))op(T~"Yop(h1)F

with U = op(T)V. Since thereis T € S(1, g) such that ([+K)#T~"#h; — T € S,
it follows from Proposition 12.2 (or rather its proof) that (12.9) holds with & in
place of h;. Similarly, since there is T e s, g) such that h#T — T e S~
repeating the same arguments we conclude the assertion. (|

Returning to P we have
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Proposition 12.3. The notation is as above. Then there exists & = & (I';) > 0
such that for any s, r € R there is C such that for any uwith Diue H_,_ 1/2,142—;(0, &),
j=0,1,2, with some [ satisfying Pu = op(hy)f where f € H_,41/2,5(0, d"), one has

2 '
> [ e opti Dluo) s e
=0 70

t 2 t )
< c( / @) 2de+ Y / 1—2"—1||1xu(r)||%+2_jdr), 0<r<d.
0 — Jo
Jj=0
Thanks to Theorem 11.1, for any f € H_,,+1/2,,+5(0, ) there is a unique solution
ue H_,_12,4+1(0,0) to Pu = f satisfying (11.3). Denote this map by

A

G: g'f—n+l/2,n+s(0: d)a3f—ue g{—l‘l—l/2,s+l(0a o).
From Proposition 12.3 and Theorem 11.1 we conclude

Proposition 12.4. With the notation as above, let T'; (i = 1,2, 3) be open
conic sets in R? x (R4 \ {0}) with relatively compact basis such that T| € T'» € T'3
and hi(x, &) € S(1, go) with supphy C 'y and supp hy C I'3\ I'o. Then there exists
0 =0 (I';) > 0 such that for any r, s one can find C > 0 such that

2 ¢ . t
> /0 2" op(h)DiG op(h)f (D)|I7_dz < C /O (D) de
j=0

for0 <t < & and for any f € H_,11,2,5(0, &).

Denote by 3(;; (0, d] the set of all f with #"(D)*f(z, ) € L?((0, 00) x RY) such
that f = O for 7 > 6. Thanks to Theorem 11.2, for any f € 3., , (0, ] there

is a unique solution u € H,_1/2,41(0, J) to P*u =f with Du(§) =0,j=0,1,2,
satisfying (11.4), hence u € J—(;_]/z’sﬂ (0, 6]. Denote this map by

G*: :+1/2,n+s(03 dlafue J'f:—l/z,sn(oa J].
Repeating similar arguments to those proving Proposition 12.4, one obtains

Proposition 12.5. The notation is as in Proposition 12.4. There exists
0 =d(T}) > 0 such that for any r, s one can find C > 0 such that

2 & . &
> [ @ optn)DIG optin () < € [ 2o
t

=0t
for0 <t < andf € 3, (0,5]
Remark 12.1. As already remarked in Remark 10.1, it is clear from the proof

that Theorems 11.1 and 11.2 and Propositions 12.4 and 12.5 hold for any n’ greater
than n.
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12.3 Remarks on propagation of singularities. In this section we
give a more precise picture of the propagation of wave front set WF(u) of u ap-
plying the same arguments as in Sections 12.1 and 12.2. Denote X = [0, ) x U
and )O( = (0,0) x U and by Z, X, the set of characteristics and simple character-
istics of p respectively. As explained in the Introduction every characteristic in
T*)O( \ 0 is at most double and a double characteristic is effectively hyperbolic. Let
U be an open conical set in C T*)D( \ 0. According to [21] we say that a continuous
curve y(¢) : (0, a] — UN X, parametrized by ¢, is a generalized bicharacteristic if
y~I(Z\ ) = {1} is discrete in (0, a] and y is a parametrized smooth bicharacter-
istic of p on (#;, t;4+1). In the present case a generalized bicharacteristic is described
rather easily. Let p € U be a double characteristic. Then from [27] one can find a
conical open set V 5 p and a smooth function y(x, &), homogeneous of degree O
in &, such that the double characteristics of p in V are contained in {# = y} and
there are exactly two smooth bicharacteristics enter p transversally to # =  in the
direction of decreasing ¢ (also exactly two in the direction of increasing ) (see,
e.g.,[18]). Therefore y consists of segments of a smooth bicharacteristic of p, the
only end points of these segments lying in X, and a transition to one of two segments
takes place there. Let y;, i = 1, 2 be two bicharacteristic segments entering p in the
direction of decreasing ¢ (or two segments in the direction of increasing 7). Then
from [24, Theorem 2.1], [21, Theorem 1.7] we have p & WF(u) if y; & WF(u),
i=1,2,and p & WF(Pu).

Lemma 12.5. [f y(¢) is a generalized bicharacteristic, then

lim y(¢)
t—+0

exists.

Proof. Write p =[], (r — 7j(t, x, £)). Then thanks to [4] forany 0 < J; < J
and U’ €@ U there is L > 0 such that

|vx7,'j(f, X, f)l/lfla |V§Tj(ta X, é:)l < L,
t,x,5)el0,0]1xU xR, 1 <j<m.

In each (#;, t;41) it is clear that y(¢) = (¢, x(¢), 7(¢), £(¢)) is a bicharacteristic of
some 7 — 7;(t, x, <) and hence dx/dt = —V¢ti(t, x, &) and d&/dt = V,7i(t, x, £).
This shows that x(¢) and £(¢) are uniformly Lipschitz continuous in (0, a] with the
Lipschitz constant L, though z(¢) is not Lipschitz continuous in (0, a] in general.
Then lim,_, ;o x(¢) and lim,_, . &(¢) exist. Since 7(¢) = 71 (¢, x(1), £(¢)) for some k and
(1, x, &) are continuous in X x R?, then lim,_, .o 7(¢) also exists. ]
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Denote

K~ (p=Jr®
Y

where y varies over all generalized bicharacteristics such that y(a) = p, extended
to t = 0 according to Lemma 12.5. Note that for any ¢ > O the set K= (p) N {r = ¢}
consists of a finite number of characteristic points. Thanks to the propagation
results near double effectively hyperbolic characteristics mentioned above, if

(12.10) WFEW)NK Y (p)yn{r=¢}=0
with some ¢ > 0 then we have p & WF(u).

Theorem 12.1. With the notation as above, let Ko(p) = m(K~(p) N {t = 0})
where & : (t,x, 7, &) = (x, &) is the projection. Let Pue C*(X) and du(O, =u;.
If Ko(p) N (Ul WF()) = 0 then p & WF(u).

We give a sketch of the proof. Since characteristics are at most triple we may
assume that m = 3. It suffices to show that (12.10) holds with some & > 0. In (12.1)
we take 7' = 2v. Since Ky(p) is compact one can find 0 < v < vy and finitely many

i, i), i=1, ..., ksuch that

k
Ko(p) € [ JUo(0, x, & yir mi) < 0}

=1
and

2
{fO(Oa-xa 63 Vi, 7]!) < 0} N (UWF(MJ)> = (Z)

j=0
Let @; . be the symbol defined by (12.3) with f.(¢, x, £, y;, #;). Then we have

(12.11) op(D; (O)uj e H', 0<j<2, 1<i<k VseR

for small enough € > 0. Using the same reduction as in the proof of Theo-
rem 1.2 it suffices to study Pu = f where Dju € H_n-1/2,1,-j(0,9),0 < j < 2 and
f e H_—1,2,,(0, 6) with some /; € R such that

Op(q)i,e)f € }C—n—l/2,s(oa 5); 1 < i < k; Vs e R

for small enough € > 0 which follows from (12.11). Repeating the same arguments
as in Sections 12.1 and 12.2 we conclude that op((Di,o)Dﬁu e L*((0, &), H*) for any
1 <i<k 0<j<2andanys e R with some ¢’ > 0. Finally, using the equation
we have

op(®;0)Dju € L*((0,8),H®), 1<i<k, VseR, VjeN.

Since ®; o(t, yi, ;) < 0 for ¢ < v this proves (12.10) with some ¢ > 0. ]
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13 Proof of Theorem 1.1

Applying Proposition 12.4 we prove Theorem 1.1 following [23], [27].

13.1 Solution operator with finite speed of propagation. Consider

m
(13.1) P=D"+ at,x, D)(DYD;"”
j=1

which is a differential operator in ¢ with coefficients a; € SY. We say that G is a
solution operator for P with finite propagation speed of the wave front set (which
we abbreviate to “solution operator with finite speed of propagation” from now
on) with loss of (n, [) derivatives if G satisfies the following conditions:

(i) There exists 0 > 0 such that for any s € R there is C > 0 such that for

f € H_y11/2,5(0, 6) we have PGf = f and

m—1

t . t
3 /0 DG (D2 jygam-ydT < C /0 ().

j=0

(i1) For any h;(x, &) € S(1, go),j =1, 2 with supph, & (R? x R?) \ supp h; there
exists & > 0 such that for any r, s € R there is C > 0 such that

m—1 . ) t
> [ e opthDiGoptn (I e < € [ e ol
=0

forf € H_,41/25(0,0)and 0 <t < &',
Let P, and P, be two operators of the form (13.1). We say that

Pi=P, at® %)

if there exist & > 0 and a conic neighborhood W of (%, f) such that

(13.2) Py — Py = Ri(t,x, D)(DYD;"”
Jj=1

with R; € S% which are in ST°(W) uniformly in 0 < ¢ < ¢'.

Theorem 13.1. Assume that for any (X, n), |n| = 1 one can find P, of the
form (13.1) for which there is a solution operator with finite speed of propagation
with loss of (n, €(n)) derivatives such that P = P, at (%, n). Then there exist 6 > 0,
t = sup £(n) and a neighborhood U of X such that for every f € H_,+1/2,5+¢(0, J)
there exists u with Dﬁu € H_psm—j(0,0), 0 < j < m — 1, satisfying Pu = f
in (0,90) x U.
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Proof. By assumption, P, has a solution operator G, with finite speed of
propagation with loss of (n, £(#)) derivatives. There are finite open conic neigh-
borhoods W; of (%, #;) such that | J; W; D Q x (R?\ {0}), where Qis a neighborhood
of %, and P = P,, at (%, 1) with W = W; in (13.2). Now take another open conic
covering {V;} of Q x (R?\ {0}) with V; € W;, and a partition of unity {a;(x, &)}
subordinate to {V;} so that >, a;(x, ¢) = a(x) where a(x) = 1 in a neighborhood

of X. Define
G=> Gya.
Then denoting P — P,, = R; we have
PGf =Y PGyaf =Y P,Gaf+Y RGof =af —Rf
where R =}, R;G,,a;. Then

; t
[ e k@ dr < € [ IR, e

for 0 < r < ¢” with some 6" > 0 by the condition (ii) where ¢ = max; £(#;).
Choosing 0 < J; < ¢” such that 5fC < 1/2 one has

ro 1,
| RO e < [ O dn 0 <1<

forf € H_,41/2,5+¢(0, ). With § = o R* one has Sf € H_ps1/2,5+¢(0, 61) and

; t
/0 ‘1,'_2"+1 ||Sf(7)”§+€d7: < 2/0 T—2n+1 “f(r)”?*'fdr'

Let y(x) Cgo(Rd) be equal to 1 near X such that suppy € {a = 1}. Since
y(a — R)S = y(I — R)S = y it follows that y(x)PGSf = y(x)f, that is

P(GSf)=f on {y(x) =1}.
With u = GSf one has
m—1 t , !
3 / " D)3, dT < C/ T NSF(ONI, dT
j=0 70 ’

which proves the assertion. (|

We define a solution operator with finite speed of propagation for P* with
obvious modifications.
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Theorem 13.2. Assume that for every (X, n), |n| = 1, one can find P, of the
form (13.1) such that P* = P, at (%, n) for which a solution operator with finite
speed of propagation with loss of (n, €(n)) derivatives exists. Then there existd > 0,
¢ = sup £(n) and a neighborhood U of X such that for every f € I, 5 (0, ]
there exists u with Dju € 30;_, » . (0,01, 0 < j < m — 1, satisfying P*u = f
in (0,0) x U.

13.2 Local existence and uniqueness. First consider a third order oper-
ator P of the form (2.1). To reduce P to the case a,(z, x, D) = 0 we apply a Fourier
integral operator, which is actually the solution operator S(#, ) of the Cauchy
problem

Du+a (t,x, D)u=0, u,x)=¢dx)

such that S(¢, 1)¢ = u(¢). Then it is clear that S(z, 0)(D, + a1)S(0, t) = D;. Now
P = S(t,0)PS(0, ) has the form (2.1) with a; = O (see, e.g., [5], [33]). Assume
that P has a solution operator with finite speed of propagation G with loss of (n, £)
derivatives. Then one can show that G = S(0, £)GS(t, 0) is a solution operator for P
with finite speed of propagation with loss of (n, £) derivatives.

Let |5 = 1 be given. Assume that p has a triple characteristic root 7 at (0, 0, #)
and (0, 0, 7, n) is effectively hyperbolic. Theorem 11.1 and Proposition 12.4 imply
that P, which coincides with the original P in W, given by (4.3), has a solution
operator with finite speed of propagation with loss of (n, n + 2) derivatives.

Next assume that p has a double characteristic root 7 at (0, 0, 7) such that
(0, 0, 7, ) is effectively hyperbolic characteristic if it is a singular point. Note that
one can write

p(t, x, 7, &) = (T + b(t, x, O)NT + ai(t, x, E)T + ax(t, x, &) = pip2

in a conic neighborhood of (0, 0, #) where p(0,0,7,7) # 0. There exist P;
such that P = P; - P, at (0, ) where the principal symbol of P; coincides
with p; in a conic neighborhood of (0, 0, 7). If P; has a solution operator with
finite speed of propagation G; with loss of (n, £;) derivatives, then one can see
that GG, is a solution operator with finite speed of propagation for P, - P, with
loss of (n, {1 + €») derivatives. Consider the case that (0,0, 7, #) is a singular
point. Then F,(0, 0, 7, ) = ¢ F,,(0, 0, 7, #) with some ¢ # 0 and (0, 0, 7, ) is an
effectively hyperbolic characteristic of p,. Write p, as

(13.3) pa(t, x, 7, &) = 7 — a(t, x, O)|E)

such that 7 = 0 is a double characteristic and (0, 0,0, #) is a singular point.
To apply earlier results [26, 27] on operators with double effectively hyperbolic
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characteristics, we need some modifications because a(z, x, &) is assumed to be
non-negative only in the ¢t > O side in the present case. One can improve [27,
Lemma 1.2.2] to

Proposition 13.1. Assume that a(t, x, &) is smooth in some conic neighbor-
hood of (0,0, n), homogeneous of degree 0O in &, and non-negative in t > 0,
and (0, 0,0, ) is an effectively hyperbolic singular point of po = 0. Then there
exist a smooth function y(x, &) in a conic neighborhood V of (0, n) and constants
0 <k <1, c> 0suchthat

(13.4) {y,a)* <4dka, a(t,x,&) >cmin{f, (t — y(x, &)}
for (x, &) € V, t > 0 where w(x, &) satisfies |6§§8§t//| (&AL

Indeed that the same time function given in [25] under the assumption
a(t, x, &) > 01in a full neighborhood in ¢, denoted by Y (z, x, &) there, satisfies (13.4)
can be proved by applying [25, Theorem 1.1]. Then repeating similar arguments
as in [26, 27] we conclude that there is a solution operator with finite speed of
propagation for P,. Since P is a first order operator with real principal symbol p;,
it is easy to see that P; has a solution operator with finite speed of propagation.
Therefore P has a solution operator with finite speed of propagation. Consider
now the case that (0, 0, 0, #) is not a singular point. It is easy to see that (0, 0, 0, #)
is not a singular point implies 6,a(0, 0, #) > 0, which is the case that P, is a
hyperbolic operator of principal type, and some detailed discussion is found in [7,
Chapter 23.4]. It is easily proved that P, has a solution operator with finite speed
of propagation, because it suffices to employ the weight =" (¢~" is now absent) in
order to obtain weighted energy estimates.

Turn to the general case. Let || = 1 be arbitrarily fixed. Write

p0,0, 7, =]z — 7)™
j=1
where ) m; = m and z; are real and distinct from each other, with m; < 3 which
follows from the assumption. There exist 7 > 0 and a conic neighborhood U
of (0, ) such that one can write

p(t,x, 7,9 =[PV x, 7,9,
j=1
p(])(ta X, T, 6) =7+ aj,l(ta X, f)rmj_l R aj,m_,-(ta X, é:)a

for (t,x,&) € (—=T,T) x U where a;(t, x,¢) are real valued, homogeneous of
degree k in & and pY(0,0, 7, ) = (z — ;)™ and pY(z, x, 7, &) = O has only real
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roots in 7 for (¢,x,&) € [0,T) x U. If (0,0, z;, ) is a singular point of p, and
necessarily m; > 2, then (0, 0, 7;, #) is a singular point of p¥ and it is easy to see
that F,(0, 0, 7;, ) = ¢;F,0 (0, 0, 7, n) with some ¢; # 0, and hence F,(0, 0, 7;, n)
has non-zero real eigenvalues if F,(0, 0, z;, #7) does, and vice versa. It is well
known that one can find P such that

P=PYPP...PO at(0, n)

where PV are operators of the form (13.1) with m = m; whose principal sym-
bol coincides with p? in some conic neighborhood of (0, 0, 7). Since each P?
has a solution operator with finite speed of propagation with loss of (n;, n; + 2)
derivatives, thanks to Theorem 11.1 and Proposition 12.4, hence so does P with
loss of (n, r(n+2)) derivatives with n = max; n; noting Remark 12.1. Therefore
Theorem 1.1 results from Theorem 13.1.

Repeating parallel arguments to the existence proof for P above, we obtain

Theorem 13.3. Under the same assumption as in Theorem 1.1 there ex-
ist 0 > 0, a neighborhood U of the origin and n > 0, € > 0 such that for
anys € Randanyf € J—C;,{l/zjs(o, O] there exists u with Diu € J{;_l/z’_“m_j(o, J],
0 <j<m-—1, satisfying P'u=fin(0,0) x U.

Now we prove a local uniqueness result for the Cauchy problem for P applying
Theorem 13.3. From the assumption one can find a neighborhood W of the origin
of R? and T > 0 such that every multiple characteristic of pon (¢, x, &) € (0, T) x W
is at most double, and a double characteristic is effectively hyperbolic. Thanks
to [17, Main Theorem] there exists ¢ > 0 such that for any solution v to P*v = f
vanishing in ¢ > ¢’ with f € C;°((0, 0") x {|x| < €}) (¢ < T) one has

supp,o(f, ) C {|x| <e+éd}, 0<r<d.

Now assume that u satisfies Pu = 0 in (0, d) x U and afu(O, x) = 0 for all k. Choose
¢>0andd > Osuchthat {|x|] < e+¢éd'} C U,d < . Then we see that

5 5 5
0= / (Pu, v)dt = / (u, P*v)dt = / (u, f)dr.
0 0 0
Since f € C§°((0, 0") x {|x| < ¢&}) is arbitrary, we conclude that
u(t,x)=0, (t,x) € (0,0 x {|x] < ¢&}.

Theorem 13.4. Assume (1.2) and that every singular point (0,0, 7, &),
(7, &) #0 of p = 0 is effectively hyperbolic. If u(t,x) € C*([0, o) x U) satis-
fies Pu=0in[0,0) x U and 6fu(0, x) =0 for all k, then u = 0 in a neighborhood
of (0, 0).
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