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Abstract. Ivrii’s conjecture asserts that the Cauchy problem is C∞ well-
posed for any lower order term if every singular point of the characteristic variety
is effectively hyperbolic. An effectively hyperbolic singular point is at most a
triple characteristic. If every characteristic is at most double, this conjecture has
been proved in the 1980’s. In this paper we prove the conjecture for the remaining
cases, that is for operators with triple effectively hyperbolic characteristics.

1 Introduction

This paper is devoted to the Cauchy problem

(1.1)

⎧⎨
⎩

Pu = Dm
t u +

∑m−1
j=0

∑
|α|+j≤m aj,α(t, x)DαxD

j
tu = 0,

Dj
tu(0, x) = uj(x), j = 0, . . . ,m − 1,

where t ≥ 0, x ∈ R
d and the coefficients aj,α(t, x) are C∞ functions in a neigh-

borhood of the origin of R
1+d and Dx = (Dx1, . . . ,Dxd) = D, Dxj = (1/i)(∂/∂xj)

and Dt = (1/i)(∂/∂t). The Cauchy problem (1.1) is C∞ well-posed at the origin
for t ≥ 0 if one can find a δ > 0 and a neighborhood U of the origin of Rd such
that (1.1) has a unique solution u ∈ C∞([0, δ) × U) for any uj(x) ∈ C∞(Rd). We
assume that the principal symbol of P

p(t, x, τ, ξ) = τm +
m−1∑
j=0

∑
|α|+j=m

aj,α(t, x)ξ
ατj

is hyperbolic for t ≥ 0, that is there exist δ′ > 0 and a neighborhood U′ of the
origin such that

(1.2) p = 0 has only real roots in τ for (t, x) ∈ [0, δ′) × U′ and ξ ∈ R
d
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which is indeed necessary in order that the Cauchy problem (1.1) is C∞ well-posed
near the origin for t ≥ 0 ([19], [22]).

In [12], Ivrii and Petkov proved that if the Cauchy problem (1.1) is C∞ well-
posed for any lower order term near the origin for t ≥ 0 (such an operator P is
called strongly hyperbolic), then the Hamilton map Fp has a pair of non-zero real
eigenvalues at every singular point of p = 0 located in [0, δ′′)×U′′× (Rd+1\0) ([12,
Theorem 3]) with some δ′′ > 0 and a neighborhood U′′ of x = 0. With X = (t, x),
� = (τ, ξ) the Hamilton map Fp is defined by

Fp(X,�) =

⎡
⎣ ∂2p
∂X∂�

∂2p
∂�∂�

− ∂2p
∂X∂X − ∂2p

∂�∂X

⎤
⎦ .

A singular point of p = 0 where the Hamilton map Fp has a pair of non-zero real
eigenvalues is called effectively hyperbolic ([6], [11]). Ivrii has conjectured that
the converse would be also true, that is if every singular point of p = 0 is effectively
hyperbolic then the Cauchy problem is C∞ well-posed for any lower order term.
If a singular point (t, x, τ, ξ) is effectively hyperbolic, then τ is a characteristic root
of multiplicity at most 2 if t > 0 and at most 3 if t = 0 ([12, Lemma 8.1]). When
every multiple characteristic root is at most double, the conjecture has been proved
for some special class in [9], [21] and for the general case in [13, 14, 15], [23, 26].

For the casewhen we have a triple effectively hyperbolic characteristic, Ivrii has
also proved in [9] that the conjecture is true if p admits a factorization p = q1q2 near
singular points with real smooth symbols qi, transforming the original P, by means
of operator powers of evolution generators, to an operator for which a parametrix
can be constructed. In this case a singular point is effectively hyperbolic if and
only if the Poisson bracket {q1, q2} does not vanish there. If m = 3 it is clear that,
for such a factorization to exist, it is necessary that the equation p = 0 has a C∞ real
root τ = τ(t, x, ξ) near a conic neighborhood of singular points. A typical example
is

p = q1q2, q1 = τ2 − t|ξ|2, q2 = τ

where q1 is the Tricomi operator (symbol). Note that p has a complex characteristic
root if t < 0. This is a common feature. In fact if p(0, 0, τ, ξ) = 0 has a
triple characteristic root and Fp(0, 0, τ, ξ) �= O, then p has necessarily non-real
characteristic roots in the t < 0 side near (0, 0, ξ) ([12, Lemma 8.1]).

When m = 3, without restrictions we can assume that p has the form

p = τ3 − a(t, x, ξ)|ξ|2τ + b(t, x, ξ)|ξ|3,
hence the condition (1.2) is reduced to� = 4 a3−27 b3 ≥ 0 for (t, x) ∈ [0, δ′) × U′,
|ξ| = 1. Also note that (0, 0, 0, ξ̄) is a triple characteristic, then (0, 0, 0, ξ̄) is



CAUCHY PROBLEM FOR OPERATORS 169

effectively hyperbolic if and only if ∂ta(0, 0, ξ̄) �= 0, hence a(t, x, ξ) > 0 microlo-
cally for small t > 0. In [2], Bernardi, Bove and Petkov investigated the case that p
has a triple effectively hyperbolic characteristic but p may not be factorized. They
studied P with the principal symbol

p = τ3 − (ta2(t, x, ξ) + α(x, ξ))|ξ|2τ + t2b3(t, x, ξ)|ξ|3

where a2(t, x, ξ) ≥ c′ > 0, α(x, ξ) ≥ 0 and proved the conjecture for such P,
deriving weighted energy estimates by a separating (multiplier) operator method.
Note that � ≥ c a3 holds with some c > 0 for this p. They also proved that if
b3(0, 0, ξ̄) �= 0, then a smooth factorization p = q1q2 is possible only if α(x, ξ̄) = 0
for all x near x = 0. This result was extended in [30, 31] such that the conjecture
is true if � ≥ c ta2 or if � ≥ c t2a with some additional conditions, where after
reducing the original equation to a first order 3 × 3 system, a symmetrizer S is
constructed and used to get weighted energy estimates. These results are concerned
with the case that p is strictly hyperbolic in t > 0, while in a general case, double
effectively hyperbolic characteristics in t > 0 (where � = 0) approaching a triple
effectively hyperbolic characteristic on t = 0 might exist and we must handle them.
Moreover, the following example ([30])

(1.3) p(t, x, τ, ξ) = τ3 − (t + α(x))ξ2τ + (tm/2 − t)
√
α(x)ξ3, x, ξ ∈ R,

where α(x) ≥ 0 and
√
α(x) is smooth, suggests that it is not enough just to study

the zeros themselves of �. Indeed since

� = (t − 2α)2(4t + α) + 27tm+1α(1 − tm−1/4)

so that � > 0 for small t > 0, while

� = 27 · 2m+1αm+2(1 − 2m−3αm−1)

if t = 2α, hence one has no estimate such as � ≥ c tk(t + α)q with c > 0 for
small α > 0 if m > k + q − 2.

In [29] we employed a new idea which is to diagonalize the symmetrizer S
mentioned above so that the system is transformed to a systemwith a diagonal sym-
metrizer. We see that three diagonal entries (the eigenvalues of S) are bounded from
below by�/a, a, 1 respectively and we recognize here a close relation between the
diagonal symmetrizer and two discriminants� of p = 0 and�′(= a) of ∂τp = 0. In
example (1.3) we see�/a ≥ (t − 2α)2 which looks like τ2 − (�/a)|ξ|2 has double
effectively hyperbolic characteristics on t = 2α though � �= 0 there (see [26, 27]).
When the coefficients of p depend only on t, the behavior of �(t, ξ)/a(t, ξ) can
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be analyzed relatively easily. Writing �(t, ξ) = e
∏

(t − νj(ξ)) and dividing [0,T]
into subintervals with the end points Re νj(ξ) we can obtain suitable estimates of
�/a from below in each subinterval. In particular, in this way, we have proved
the conjecture for the t dependent case [29, Theorem 4.1]. In this paper we extend
this idea and apply it to the general case of which an outline is given in the next
section.

For this class of operators we have always a loss of regularity, so the way to
obtain microlocal energy estimates for operators of order m from that of order 2 or 3
and the way to prove local C∞ well-posed results from such obtained microlocal
energy estimates with loss of regularity is not so straightforward.

Finally we note that if there is a triple characteristic which is not effectively
hyperbolic, theCauchy problem is notwell-posed in anyGevrey class of order s> 2
in general, even though the subprincipal symbol vanishes identically ([3]).

In this paper we prove

Theorem 1.1. Assume (1.2). If every singular point (0, 0, τ, ξ), |(τ, ξ)| �=0
of p=0 is effectively hyperbolic, then for any aj,α(t, x) with j + |α|≤m − 1, which
areC∞ in a neighborhoodof (0, 0), there exist δ>0, a neighborhoodU of the origin

and n>0, 
>0 such that for any s∈R and any f with t−n+1/2〈D〉sf ∈L2((0, δ)×R
d)

there exists u with t−n−1/2〈D〉−
+s+m−jDj
tu∈L2((0, δ)×R

d), j = 0, 1, . . . ,m − 1,

satisfying Pu = f in (0, δ) × U.

Here 〈D〉 stands for
√

1 + |D|2 and n, 
 are given by

n = 12
√

2 sup
|Psub(0, 0, τ, ξ)|

e(0, 0, τ, ξ)
+ C̄∗, 
 = k (n + 2),

where Psub denotes the subprincipal symbol and e(0, 0, τ, ξ) is the positive real
eigenvalue of Fp(0, 0, τ, ξ), and the supremum is taken over all singular points
(0, 0, τ, ξ) with |(τ, ξ)| = 1 of p = 0 and C̄∗ is a constant depending only on the
principal symbol p. Here k is the maximal number of singular points (0, 0, τ, ξ)
of p = 0 with |(τ, ξ)| = 1, hence k ≤ [m/2]. For a more detailed estimate of C̄∗

see (3.14) and (10.2) below. The constant 12
√

2 may not be the best.

Theorem 1.2. Under the same assumption as in Theorem1.1, for any aj,α(t, x)
with j + |α| ≤ m − 1, which are C∞ in a neighborhood of (0, 0), there ex-

ist δ > 0 and a neighborhood U of the origin such that for any uj(x) ∈ C∞
0 (Rd),

j = 0, 1, . . . ,m−1, there exists u(t, x) ∈ C∞([0, δ)×U) satisfying (1.1) in [0, δ)×U.

If u(t, x) ∈ C∞([0, δ) × U) with ∂jtu(0, x) = 0, j = 0, 1, . . . ,m − 1, satisfies Pu = 0
in [0, δ) × U, then u = 0 in a neighborhood of (0, 0).
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Proof. Compute
uj(x) = Dj

tu(0, x)

for j = m,m + 1, . . . from uj(x), j = 0, 1, . . . ,m − 1 and the equation Pu = 0. By a
Borel’s lemma there is w(t, x) ∈ C∞

0 (R1+d) such that

Dj
tw(0, x) = uj(x) for all j ∈ N.

Since
(Dj

tPw)(0, x) = 0 for all j ∈ N

it is clear that t−n+1/2〈D〉sPw ∈ L2((0, δ) × R
d) for any s. Thanks to Theorem 1.1

there exists v with t−n−1/2〈D〉−
+s+m−jDj
tv ∈ L2((0, δ) × R

d), j = 0, 1, . . . ,m − 1
satisfying Pv = −Pw in (0, δ) × U. Since Dk

t v ∈ L2((0, δ) × R
d) for any k, hence

Dj
tv(0, x) = 0, j = 0, 1, . . . ,m− 1, we conclude that u = v +w is a desired solution.

Local uniqueness follows from Theorem 13.4 below because ∂kt u(0, x) = 0 for
any k ∈ N by Pu = 0. �

2 Outline of the proof of Theorem 1.1

As noted in the Introduction, if a singular point (t, x, τ, ξ) of p = 0 is effectively
hyperbolic, then τ is a characteristic root of multiplicity at most 3. This implies
that it is essential to study the third order operator P:

(2.1) P = D3
t +

3∑
j=1

aj(t, x,D)〈D〉jD3−j
t

which is a differential operator in t with coefficients aj ∈ S0, classical pseudodif-
ferential operators of order 0, where 〈D〉 = op((1 + |ξ|2)1/2). One can reduce P to
the case with a1(t, x,D) = 0 and hence the principal symbol is

(2.2) p(t, x, τ, ξ) = τ3 − a(t, x, ξ)〈ξ〉2τ− b(t, x, ξ)〈ξ〉3.
All characteristic roots being real for t ≥ 0 implies that

(2.3) � = 4 a(t, x, ξ)3 − 27 b(t, x, ξ)2 ≥ 0, (t, x, ξ) ∈ [0,T) × U × R
d.

Assume that p(0, 0, τ, ξ̄) = 0 has a triple characteristic root τ = τ̄, necessarily τ̄ = 0.
The singular point (0, 0, τ̄, ξ̄) is effectively hyperbolic if and only if

(2.4) ∂ta(0, 0, ξ̄) �= 0,

hence one can write a = e(t+α(x, ξ)) where e > 0 andα ≥ 0. From conditions (2.3)
and (2.4) the discriminant� is essentially a third order polynomial in t. In Section 3,
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for regularized aε = e(t+α+ε2) and the correspondingdiscriminant�εwe construct
a smooth ψε such that

(2.5) �ε ≥ c min {t2, (t − ψε)2} (t + ρε), t ≥ 0

where ρε = α + ε2. In Section 4, introducing a large parameter M, we localize
the coefficients near reference point (0, ξ̄) replacing (x, ξ) by localized coordi-
nates χ(M2x)x, χ(M2(ξ/〈ξ〉 − ξ̄))(ξ − ξ̄〈ξ〉) + ξ̄〈ξ〉 and taking ε = M1/2〈ξ〉−1/2

where χ ∈ C∞
0 is 1 near 0. At this point related symbols are localized near (0, ξ̄)

(defined in R
d × R

d) and (2.5) yields

(2.6) �/a ≥ c min {t2, (t − ψ)2 + Mρ〈ξ〉−1}, t ≥ 0.

We also estimate such localized symbols in terms of the localized ρ. In particular,
we show that

|∂αx ∂βξψ(x, ξ)| � ρ(x, ξ)1−|α+β|/2〈ξ〉−|β|

where, from now on, A � B means that A is bounded by a constant, independent
of parameters, times B.

One of the main arguments in the paper is to reduce the original equation to afirst
order 3 × 3 system with diagonal symmetrizer. With U = t(D2

t u, 〈D〉Dtu, 〈D〉2u)
the equation Pu = f is reduced to DtU = A(t, x,D)〈D〉U + B(t, x,D)U + F where
A,B ∈ S0, F = t(f, 0, 0) and

A(t, x, ξ) =

⎡
⎢⎣
0 a b

1 0 0
0 1 0

⎤
⎥⎦ .

Let S be the Bézout matrix of p and ∂p/∂τ, that is

S(t, x, ξ) =

⎡
⎢⎣

3 0 −a

0 2a 3b
−a 3b a2

⎤
⎥⎦ ;

then S is positive semidefinite and symmetrizes A, that is SA is symmetric. We
now diagonalize S by an orthogonal matrix T so that T−1ST = Λ. Then with
V = op(T−1)U the system is reduced to, roughly,

(2.7) DtV = AT (t, x,D)〈D〉V + B̃(t, x,D)V

where Λ is diagonal and symmetrizes AT (t, x, ξ) = T−1AT . This reduction is
carried out in Section 9 after examining T(t, x, ξ) carefully in Section 5.
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Note that Λ = diag (λ1, λ2, λ3) where 0 < λ1 < λ2 < λ3 are the eigenvalues
of S. As mentioned in the Introduction, a significant feature of λj is the following:

(2.8) �/a � λ1 � a2, λ2 	 a, λ3 	 1, t ≥ 0.

Section 5 is devoted mainly to estimate derivatives of λj and we prove

|∂αx ∂βξ λj| � a3−j−|α+β|/2〈ξ〉−|β|, t ≥ 0, j = 1, 2, 3

which also gives detailed information on the derivatives of T . Since (2.7) is a
system with diagonal symmetrizerΛ, a natural energy would be

(op(Λ)V,V) =
3∑

j=1

(op(λj)Vj,Vj)

and (2.6) and (2.8) suggest that a weighted energy with a scalar pseudodifferential
weight op(t−nφ−n),

φ = ω + t − ψ, ω =
√

(t − ψ)2 + Mρ〈ξ〉−1,

would work, where op(φ−n) is chosen after the weight employed for studying
double effectively hyperbolic characteristics in [26] (see also [27]), and satisfies

∂t(tφ) = κ(tφ), κ = 1/t + 1/ω.

In Section 6, to treat these weight functions, we introduce a σ temperate (uniformly
in M) metric

g = M−1(〈ξ〉|dx|2 + 〈ξ〉−1|dx|2)
and prove that ωs ∈ S(ωs, g), φs ∈ S(φs, g) with s ∈ R, uniformly in t ≥ 0,
estimating derivatives of ω, φ. In Section 7 we prove that ω, φ and λj are σ, g
temperate uniformly in t ∈ [0,M−4] (in this paper such functions are called ad-
missible weights for g, while σ is reserved for denoting a certain function). This
fact enables us to apply the Weyl calculus of pseudodifferential operators (see
[7, Chapter 18]) to op(φs), op(ωs) and op(λs

j ) with s ∈ R, for example we have
op(φs1 )op(φs2) = op(φs1#φs2) where φs1#φs2 ∈ S(φs1+s2, g). In Section 8 we prove
some basic facts on inverses and L2 bounds of pseudodifferential operators associ-
ated to the metric g which enables us, for example, to write

op(φs1 )op(φs2) = op(1 + r)op(φs1+s2 ) with r ∈ S(M−1, g).

We also give lower bounds of op(λj) here.
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In Section 10, applying the Weyl calculus of pseudodifferential operators we
estimate the weighted energy

Re e−θt(op(Λ)op(t−nφ−n)V, op(t−nφ−n)V)

and derive energy estimates for any lower order term (including the term M〈D〉Dt

because we have added this to the original operator at the beginning) (Proposition
10.1). In Section 11, using energy estimates for the system coming from the
adjoint operator of P, which is obtained repeating exactly the same arguments, we
prove an existence result of the Cauchy problem for Pξ̄ , which is the localized
operator near (0, ξ̄) of the original P (Theorem11.1). In Section 12, in order to sum
up such obtained solutions (which might be considered as a microlocal solution
to the Cauchy problem near (0, ξ̄)), we prove that the wave front sets of such
solutions propagate with finite speed (Proposition 12.4). A more precise picture of
the propagation of a wave front set of solutions is also proved applying the same
arguments (Theorem 12.1). Finally, in Section 13, using the propagation results in
Section 12 we complete the proof of Theorem 1.1.

3 Construction of ψ(x, ξ)

We study third order operators P of the form (2.1) with a1(t, x,D) = 0, hence the
principal symbol has the form (2.2) where a(t, x, ξ) and b(t, x, ξ) are homogeneous
of degree 0 in ξ and assumed to satisfy (2.3) with some T > 0 and some neigh-
borhood U of the origin of Rd. Assume that p(t, x, τ, ξ) has a triple characteristic
root τ = 0 at (0, 0, ξ̄), |ξ̄| = 1 and (0, 0, 0, ξ̄) is effectively hyperbolic. It is clear
that a(0, 0, ξ̄) = 0 and b(0, 0, ξ̄) = 0. Since ∂αx ∂

β
ξ a(0, 0, ξ̄) = 0 for |α + β| = 1

and ∂αx ∂
β
ξ b(0, 0, ξ̄) = 0 for |α+β| ≤ 2, by (2.3) (see Lemma 4.2 below) it is easy to

see that

(3.1) det(λ− Fp(0, 0, 0, ξ̄)) = λ2d(λ2 − {∂ta(0, 0, ξ̄)}2),

hence (0, 0, 0, ξ̄) is effectively hyperbolic if and only if ∂ta(0, 0, ξ̄) �= 0. Then there
is a neighborhood U of (0, 0, ξ̄) in which one can write

a(t, x, ξ) = e(t, x, ξ)(t + α(x, ξ))

where e > 0 in U. Note that α(x, ξ) ≥ 0 near ξ̄ because a(t, x, ξ) ≥ 0 in
[0,T) × U × R

d.
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3.1 A perturbed discriminant. Introducing a small parameter εwe con-
sider

(3.2)
τ3 − e(t, x, ξ)(t + α(x, ξ) + ε2)|ξ|2τ− b(t, x, ξ) |ξ|3

= τ3 − a(t, x, ξ, ε)|ξ|2 − b(t, x, ξ)|ξ|3.
From now on we write b(X) or a(X, ε) and so on to make clearer that these symbols
are defined in some conic (in ξ) neighborhood of X̄ = (0, ξ̄) or (X̄, 0). Consider the
discriminant of (3.2); �(t,X, ε) = 4 a3(t,X, ε) − 27 b2(t,X).

Lemma 3.1. One can write

� = ẽ(t,X, ε)(t3 + a1(X, ε)t
2 + a2(X, ε)t + a3(X, ε))

in a neighborhood of (0, X̄, 0) where aj(X̄, 0) = 0, j = 1, 2, 3 and ẽ > 0.

Proof. It is clear that ∂kt a
3(0, X̄, 0) = 0 for k = 0, 1, 2 and ∂3t a

3(0, X̄, 0) �= 0.
We show that ∂tb(0, X̄, 0) = 0. Suppose the contrary and hence

b(t, X̄, 0) = t(b1 + tb2(t)) with b1 �= 0.

Since a(t, X̄, 0) = c t with c > 0, then�(t, X̄, 0) = 4 c3 t3 − 27 b(t, X̄, 0)2 ≥ 0 leads
to a contradiction. Thus ∂kt�(0, X̄, 0) = 0 for k = 0, 1, 2 and ∂3t�(0, X̄, 0) �= 0.
Then from the Malgrange preparation theorem (e.g., [8, Theorem 7.5.5]) one can
conclude the assertion. �

Introducing

(3.3) ρ(X, ε) = α(X) + ε2

one can also write

� = 4e3(t + ρ)3 − 27b2 = 4e3{(t + ρ)3 − 27b2/(4e3)} = 4e3{(t + ρ)3 − b̂2}
with b̂ = 3

√
3 b/2e3/2. Denoting

b̂(t,X) =
2∑

j=0

b̂j(X)tj + b̂3(t,X)t3,

where b̂0(X̄) = b̂1(X̄) = 0 which is clear from the proof of Lemma 3.1, one can
write

(3.4)

�/ẽ = �̄ = t3 + a1(X, ε)t
2 + a2(X, ε)t + a3(X, ε)

= E
{

(t + ρ)3 −
( 2∑

j=0

b̂j(X)tj + b̂3(t,X)t3
)2}

with E(t,X, ε) = 4e3/ẽ. Here note that E(0, X̄, 0) = 1.
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Lemma 3.2. There is a neighborhood V of X̄ such that |b̂1(X)| ≤ 4α1/2(X)
for X ∈ V.

Proof. It is clear that |b̂0(X)| ≤ α3/2(X). If α(X) = 0 then the assertion is
obvious. Assume α(X) �= 0. Since

(3.5) (t + α(X))3 ≥
( 2∑

j=0

b̂j(X)tj + b̂3(t,X)t3
)2

, 0 ≤ t ≤ T,

choosing t = 3α(X) ≤ T and writing α = α(X) it follows from (3.5) that

8α3/2 ≥ |b̂0(X) + 3b̂1(X)α| − Cα2,≥ 3|b̂1(X)|α− Cα2 − α3/2,

hence the assertion is clear because α(X̄) = 0. �

Lemma 3.3. In a neighborhood of (X̄, 0) we have aj(X, ε) = O(ρ(X, ε)j) for

j = 1, 2, 3. More precisely,

a1(X, ε) = E(0,X, ε)(3ρ(X, ε) − b̂2
1(X)) + O(ρ3/2),

a2(X, ε) = E(0,X, ε)(3ρ2(X, ε) − 2b̂0(X)b̂1(X)) + O(ρ3/2),

a3(X, ε) = E(0,X, ε)(ρ3(X, ε) − b̂2
0(X)).

Proof. Since �̄(0,X, ε) ≥ 0 it follows from (3.4) that

a3(X, ε) = E(0,X, ε)(ρ(X, ε)3 − b̂0(X)2) ≥ 0

hence b̂0 = O(ρ3/2) and consequently a3(X, ε) = O(ρ3). From (3.4)

a2(X, ε) = ∂tE(0,X, ε)a3(X, ε) + E(0,X, ε)(3ρ2(X, ε) − 2b̂0(X)b̂1(X)).

Since b̂0(X)b̂1(X) = O(ρ2) by Lemma 3.2 hence the above equality shows the
assertion for a2(X, ε). Finally from (3.4) again

2a1(X, ε) = ∂2t E(0,X, ε)a3(X, ε) + 2∂tE(0,X, ε)(3ρ2(X, ε) − 2b̂0(X)b̂1(X))

+ 2E(0,X, ε)(3ρ(X, ε) − b̂1(X)2 − 2b̂0(X)b̂2(X))

and from Lemma 3.2 one concludes the assertion for a1(X, ε). �

3.2 Lower bound of a perturbed discriminant. Denote

(3.6) ν(X, ε) = inf{t | �̄(t,X, ε) > 0}
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and hence �̄(ν,X, ε) = 0. First check that ν(X, ε) ≤ 0. Suppose the con-
trary ν(X, ε)=ν>0. Since �̄(t,X, ε)≥0 for t≥0 one can write �̄(t)=(t − ν)2(t − ν̃)
with a real ν̃ where ν̃ �= ν and ν̃ ≤ 0. Therefore we have �̄(t) > 0 in ν̃ < t < ν

which is incompatible with the definition of ν. Write

�̄(t,X, ε) = (t − ν(X, ε))(t2 + A1(X, ε)t + A2(X, ε))

where A1 = ν + a1. Here we prepare following lemma.

Lemma 3.4. One can find a neighborhood U of (X̄, 0) such that for any

(X, ε) ∈ U there is j ∈ {1, 2, 3} such that |νj(X, ε)| ≥ ρ(X, ε)/9 where

�̄(t,X, ε) =
3∏

j=1

(t − νj(X, ε)).

Proof. First show that there is 1/3 < δ < 1/2 such that

(3.7) max {|ρ3 − b̂2
0|1/3, |ρ2 − 2b̂0b̂1/3|1/2, |ρ− b̂2

1/3|} ≥ δ2ρ.

In fact denoting f (δ) = 2(1 − δ6)1/2(1 − δ2)1/2/√3 − 1 − δ4 it is easy to check
that f (1/3) > 0 and f (1/2) < 0. Take 1/3 < δ < 1/2 such that f (δ) = 0. If
|ρ3 − b̂2

0|1/3 < δ2ρ and |ρ− b̂2
1/3| < δ2ρ, then

|b̂0| ≥ (1 − δ6)1/2ρ3/2 and |b̂1| ≥ √
3(1 − δ2)1/2ρ1/2,

hence

|ρ2 − 2b̂0b̂1/3| ≥ 2|b̂0b̂1|/3 − ρ2 ≥ (f (δ) + δ4)ρ2 = δ4ρ2.

Thus (3.7) is proved. Thanks to Lemma 3.3, taking E(0, X̄, 0) = 1 and 1/3 < δ
into account, one can find a neighborhood U of (X̄, 0) such that

max {3|a1(X, ε)|, (33|a2(X, ε)|)1/2, (36|a3(X, ε)|)1/3} ≥ ρ, (X, ε) ∈ U.

Then the assertion follows from the relations between {νi} and {ai}. �

Lemma 3.5. Denote ν defined in (3.6) by ν1 and by νj, j = 2, 3 the other roots
of �̄ = 0. Then one can find a neighborhood U of (X̄, 0) and ci > 0 such that

(3.8) if ν1 + a1 < 2 c1 ρ, (X, ε) ∈ U then |ν1 − νj| ≥ c2 ρ, j = 2, 3.

In particular, ν1(X, ε) is smooth in U ∩ {ν1 + a1 < 2 c1ρ}.
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Proof. Write

(3.9) �̄(t) =
3∏

j=1

(t − νj) = (t − ν1)((t + A1/2)2 − D)

so that Re νj = −A1/2, j = 2, 3 where A1 = ν1 + a1. Take c1 = 1/27 and
assume A1 < 2c1ρ. First note that if Re νj ≥ c1ρ, j = 2, 3, it is clear that
|ν1 − νj| ≥ |ν1 − Re νj| ≥ Re νj ≥ c1ρ because ν1 ≤ 0, so we may assume

(3.10) −c1ρ < Re νj = −A1/2 < c1ρ, j = 2, 3.

If D > 0 then one has −A1/2 +
√

D ≤ 0. Otherwise �̄(t) would be negative for
some t > 0 near −A1/2 +

√
D which is a contradiction. Thus

√
D ≤ A1/2 ≤ c1 ρ

which shows that |ν2|, |ν3| ≤ |A1|/2+
√

D ≤ 2c1 ρ < ρ/9, hence |ν1| ≥ ρ/9 = 3c1ρ

by Lemma 3.4. Therefore |ν1 − νj| ≥ |ν1| − |νj| ≥ c1ρ. Turn to the case D ≤ 0
such that ν2, ν3 = −A1/2 ± i

√|D|. Thanks to Lemma 3.4 again either |ν1| ≥ 3c1ρ

or |ν2| = |ν3| ≥ 3c1ρ. If |ν1| ≥ 3c1ρ then it follows from (3.10) that

|ν1 − νj| ≥ |ν1 + A1/2| ≥ |ν1| − |A1|/2 ≥ 2c1ρ.

If |ν2| = |ν3| ≥ 3c1ρ so that |A1|/2 +
√|D| ≥ 3c1ρ, then

√|D| ≥ 3c1ρ− |A1|/2 ≥ 2c1ρ

which proves |ν1 − νj| ≥ √|D| ≥ 2c1ρ, hence the assertion. �
Now define ψ(X, ε) which plays a crucial role in our arguments deriving

weighted energy estimates. Choose χ(s) ∈ C∞(R) such that 0 ≤ χ(s) ≤ 1 with
χ(s) = 1 if s ≤ 0 and χ(s) = 0 for s ≥ 1. Define

ψ(X, ε) = −χ
(ν1 + a1

2c1ρ

)ν1 + a1

2
, ε �= 0.

Proposition 3.1. One can find a neighborhood U of (X̄, 0) such that

(3.11) �̄(t,X, ε) ≥ c̄min {t2, (t − ψ(X, ε))2} (t + ρ(X, ε))

holds for (X, ε) ∈ U, ε �= 0 and t ∈ [0,T] where c̄ = 1/32.

Proof. Set δ = 1/9 in this proof. First check that one can find c ≥ c̄ such that

(3.12) �̄(t,X, ε) ≥ c t2(t + ρ) if A1 = ν1 + a1 ≥ 0.

Let D > 0 in (3.9). It was seen in the proof of Lemma 3.5 that −A1/2 +
√

D ≤ 0
so that ν2, ν3 = −A1/2 ± √

D ≤ 0. If |ν1| ≥ δρ then

t − ν1 = t + |ν1| ≥ t + δρ,
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hence δ−1(t − ν1) ≥ t + ρ and t − νi = t + |νi| ≥ t, so (3.12) holds with c = δ.
Consider the case D ≤ 0 so that ν2, ν3 = −A1/2 ± i

√|D|. If |ν1| ≥ δρ then
δ−1(t − ν1) ≥ t + ρ as above and |t − νi| ≥ |t + A1/2| ≥ t, thus (3.12) holds
with c = δ. If |ν2| = |ν3| ≥ δρ then A1/2 +

√|D| ≥ δρ. Since

(t − ν2)(t − ν3) ≥ (t + A1/2 +
√|D|)2/2 ≥ (t + δρ)2/2 ≥ δt(t + ρ)/2

then (3.12) holds with c = δ/2.
Turn to the case A1 < 0. Since ψ = −(ν1 + a1)/2 > 0, one can write

�̄(t) = (t − ν1)((t − ψ)2 − D).

Note that D ≤ 0, otherwise ψ +
√

D > 0 would be a positive simple root of �̄(t)
and a contradiction. Then (t − ψ)2 − D = (t − ψ)2 + |D| ≥ (t − ψ)2. Consider the
case |ν1| ≥ δρ. Recalling t − ν1 = t + |ν1| ≥ δ(t + ρ) we get

(3.13) �̄(t,X, ε) ≥ c (t − ψ)2(t + ρ)

with c = δ. When |ν2| = |ν3| = |ψ± i
√|D|| =

√
ψ2 + |D| ≥ δρ one has

(t − ν2)(t − ν3) = (t − ψ)2 + |D| ≥ (|t − ψ| +
√|D|)2/2.

Assume ψ ≥ √|D| so that
√

2ψ ≥ δρ. For 0 ≤ t ≤ ψ/2 we have t ≤ |t − ψ| and
ψ/2 ≤ |t − ψ|; one has

(1 − γ)|t −ψ| + γ|t −ψ| ≥ (1 − γ)t + γψ/2 ≥ δ(2√2 + δ)−1(t + ρ)

with γ = 2
√

2/(2
√

2+δ). Since |t−ψ|+√|D| ≥ |t−ψ| ≥ t and |t−ν1| = t+|ν1| ≥ t
it is clear that (3.12) holds with c = δ/(2

√
2 + δ). For ψ/2 ≤ t such that |t −ψ| ≤ t

one sees that

t − ν1 ≥ t = (1 − γ)t + γt ≥ (1 − γ)t + γψ/2 ≥ δ(2√2 + δ)−1(t + ρ)

and hence
(t − ν1)((t −ψ)2 + |D|) ≥ c (t + ρ)(t − ψ)2

which is (3.13) with c=δ/(2
√

2 + δ). Next assume
√|D|≥ψ so that

√
2
√|D|≥δρ.

For 0≤ t≤ψ/2 one has |t − ψ|≥ t and hence

|t − ψ| +
√|D| ≥ t + δρ/

√
2 ≥ (δ/

√
2)(t + ρ).

Noting that |t − ν1| = t + |ν1| ≥ t, it is clear that (3.12) holds with c = δ/2
√

2. For
ψ/2 ≤ t we see that

|t − ψ| +
√|D| ≥ t − |ψ| +

√|D| ≥ t, |t − ψ| +
√|D| ≥ √|D| ≥ δρ/√2
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which shows that |t−ψ|+√|D| ≥ δ(√2+δ)−1(t+ρ). Recalling |t−ν1| = t+|ν1| ≥ t,
again one has (3.12) with c = δ/2(

√
2 + δ). Thus by choosing

c̄ = 1/32 < 1/(18
√

2 + 2) = δ/2(
√

2 + δ)

the proof is complete. �

Lemma 3.6. One can find a neighborhood U of (X̄, 0) and C∗ > 0 such that

(3.14)
|∂t�(t,X, ε)|
�(t,X, ε)

≤ C∗
(1

t
+

1
|t − ψ| +

√
aε

)
, (X, ε) ∈ U, ε > 0

holds for t ∈ (0,T].

Proof. It will suffice to show (3.14) for �(t,X,
√

2ε) which we denote
by �̃(t,X, ε). It is clear that

�̃ = � + 4e3(3(t + ρ)2ε2 + 3(t + ρ)ε4 + ε6) = � +�r.

Writing �̃ = ẽ(�̄ + �̄r) with �r = ẽ�̄r it suffices to show the assertion for �̄ + �̄r

instead of �̃. Note that

(3.15) |∂t�̄r|/�̄r ≤ C(1 + 1/(t + ρ)) ≤ C′/t

always holds. Write �̄ =
∏3

j=1(t − νj) and note that ∂t�̄/�̄ =
∑3

j=1(t − νj)−1.
When A1 ≥ 0 we see from the proof of Proposition 3.1 that |t − νj| ≥ t hence
|∂t�̄/�̄| ≤ 3/t. Therefore one has

|∂t�̃|/�̃ ≤ |∂t�̄|/(�̄ + �̄r) + |∂t�̄r|/(�̄ + �̄r)

≤ |∂t�̄|/�̄ + |∂t�̄r|/�̄r

which proves the assertion. Let A1 < 0. Then �̄ = (t − ν1)((t − ψ)2 − D) where
ψ > 0 and D ≤ 0 as seen in the proof of Proposition 3.1. If |D| ≥ aε2,

|t − ψ|(|t − ψ| +
√

aε) ≤ √
2((t − ψ)2 + |D|)

which shows the assertion since |t − ν1| = t + |ν1| ≥ t. Similarly if |t −ψ| ≥ √
aε,

one has
|t −ψ|(|t −ψ| +

√
aε) ≤ 2(t − ψ)2 ≤ 2((t − ψ)2 + |D|),

hence the assertion. If |D| < aε2 and |t − ψ| < √
a ε it follows that

|∂t�̄| ≤ (t − ψ)2 + |D| + 2|t − ν1||t − ψ| ≤ 2aε2 + Ca3/2ε

because |t − ν1| ≤ Ca. In view of C�̄r ≥ a2ε2 one concludes that

|∂t�̄|/(�̄ + �̄r) ≤ |∂t�̄|/�̄r ≤ C(2aε2 + Ca3/2ε)/(a2ε2)

≤ C
(1

a
+

1√
a ε

)
≤ C′

(1
t

+
1

|t −ψ| +
√

a ε

)

which together with (3.15) proves the assertion. �
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4 Localized symbols

In the preceding Sections 3.1 and 3.2 all symbols we have studied are defined in
some conic (in ξ) neighborhood of (X, ε) = (X̄, 0) or X = X̄. In this section we
define symbols on R

d ×R
d which localizes such symbols around (X, ε) = (X̄, 0) or

X = X̄ with a parameter M.

4.1 Localization via localized coordinates functions. Let X̄ = (0, ξ̄)
with |ξ̄| = 1. Let χ(s) ∈ C∞(R) be equal to 1 in |s| ≤ 1, and vanishes in |s| ≥ 2
such that 0 ≤ χ(s) ≤ 1. Define y(x) and η(ξ) by

yj(x) = χ(M2xj)xj, ηj(ξ) = χ(M2(ξj〈ξ〉−1
γ − ξ̄j))(ξj − ξ̄j〈ξ〉γ) + ξ̄j〈ξ〉γ

for j = 1, 2, . . . , d with 〈ξ〉γ = (γ2 + |ξ|2)1/2, where M and γ are large positive
parameters constrained by

(4.1) γ ≥ M5.

It is easy to see that (1 − CM−2)〈ξ〉γ ≤ |η| ≤ (1 + CM−2)〈ξ〉γ and

(4.2) |y| ≤ CM−2, |η/|η| − ξ̄| ≤ CM−2

with some C > 0 so that (y, η) is contained in a conic neighborhood of (0, ξ̄),
shrinking with M. Note that (y, η) = (x, ξ) on the conic neighborhood of (0, ξ̄),

(4.3) WM = {(x, ξ) | |x| ≤ M−2, |ξj/|ξ| − ξ̄j| ≤ M−2/2, |ξ| ≥ γM},
since

|ξj/〈ξ〉γ − ξ̄j| ≤ ∣∣ξj/〈ξ〉γ − ξj/|ξ|
∣∣ +

∣∣ξj/|ξ| − ξ̄j
∣∣ ≤ M−2

if (x, ξ) ∈ WM where δij is the Kronecker’s delta. Let f (X, ε), h(X) be smooth
functions in a conic neighborhoodof (X̄, 0), X̄ respectivelywhich are homogeneous
of degree 0 in ξ. Then we define localized symbols of f (x, ξ), h(x, ξ) of f (X, ε),
h(X) by

f (x, ξ) = f (y(x), η(ξ), ε(ξ)), h(x, ξ) = h(y(x), η(ξ))

with ε(ξ) = M1/2〈ξ〉−1/2
γ or ε(ξ) =

√
2M1/2〈ξ〉−1/2

γ . In view of (4.2) such extended
symbols are defined on R

d × R
d, taking M large if necessary. Let

G = M4(|dx|2 + 〈ξ〉−2
γ |dξ|2).

Then it is easy to see that

(4.4) yj ∈ S(M−2,G), ηj − ξ̄j〈ξ〉γ ∈ S(M−2〈ξ〉γ,G), ε(ξ) ∈ S(M−2,G)
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for j = 1, . . . , d. To avoid confusion we denote |η(ξ)| by [ξ], hence

(4.5) [ξ] ∈ S(〈ξ〉γ,G), [ξ]〈ξ〉−1
γ − 1 ∈ S(M−2,G).

Lemma4.1. Let f (X, ε) be a smooth function in a conic neighborhoodof (X̄, 0)
which is homogeneous of degree 0 in ξ. If ∂αx ∂

β
ξ ∂

k
εf (X̄, 0) = 0 for 0 ≤ |α+β|+k < r,

then f (x, ξ) = f (y(x), η(ξ), ε(ξ)) ∈ S(M−2r,G). Let h(X) be a smooth function in a
conic neighborhood of X̄ which is homogeneous of degree 0 in ξ. Then

h(x, ξ) − h(0, ξ̄) ∈ S(M−2,G).

Proof. We prove the first assertion. By the Taylor formula one can write

f (y, η, ε) =
∑

|α+β|+k=r

1
α!β!k!

yα(η− ξ̄〈ξ〉γ)βεk∂αx ∂βξ ∂kεf (0, ξ̄〈ξ〉γ, 0)

+ (r + 1)
∑

|α+β|+k=r+1

[ 1
α!β!k!

yα(η− ξ̄〈ξ〉γ)βεk

×
∫ 1

0
(1 − θ)r∂αx ∂βξ ∂kεf (θy, θ(η− ξ̄〈ξ〉γ) + ξ̄〈ξ〉γ, θε)dθ

]
.

It is clear that

yα(η− ξ̄〈ξ〉γ)βεk∂αx ∂βξ ∂kεf (0, ξ̄, 0)〈ξ〉−|β|
γ ∈ S(M−2r,G)

for |α + β| + k = r in view of (4.4). Since

〈ξ〉γ/C ≤ |θ(η− ξ̄〈ξ〉γ) + ξ̄〈ξ〉γ| ≤ C〈ξ〉γ
the integral belongs to S(〈ξ〉−|β|

γ ,G), hence the second term on the right-hand side
is in S(M−2r−2,G), thus the assertion. �

4.2 Estimate of localized symbols. From now on it is assumed that all
constants are independent of M and γ. As explained before we write A � B if A is
bounded by a constant, independent of parameters M and γ, times B. Let ρ(x, ξ)
be the localized symbol of ρ(X, ε) with ε = M1/2〈ξ〉−1/2

γ so that

ρ(x, ξ) = α(x, ξ) + M〈ξ〉−1
γ .

From Lemma 4.1 we see that ρ ∈ S(M−4,G), hence

|∂αx ∂βξ ρ| � 〈ξ〉−|β|
γ for |α + β| = 2.

Since ρ ≥ 0 it follows from the Glaeser’s inequality that

(4.6) |∂αx ∂βξ ρ| �
√
ρ 〈ξ〉−|β|

γ , |α + β| = 1.
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Lemma 4.2. Assume that f (X, ε) is smooth and homogeneous of degree 0 in ξ

in a conic neighborhood of (X̄, 0) and satisfies |f (X, ε)| ≤ Cρ(X, ε)n with some
n > 0 there. For the localized symbol f (x, ξ) there is Cαβ > 0 such that

(4.7) |∂αx ∂βξ f (x, ξ)| ≤ Cαβρ(x, ξ)
n−|α+β|/2〈ξ〉−|β|

γ .

Proof. From the assumption it follows that

∂αx ∂
β
ξ ∂

k
εf (0, ξ̄, 0) = 0 for |α + β| + k < 2n,

hence Lemma 4.1 shows that f (x, ξ) ∈ S(M−4n,G). Therefore for |α+β| ≥ 2n one
sees that

|〈ξ〉|β|γ ∂αx ∂βξ f (x, ξ)| ≤ CM2|α+β|−4n ≤ C(C0ρ
−1)|α+β|/2−n

becauseM4 ≤ C0ρ
−1. Hence (4.7) holds for |α+β| ≥ 2n. Assume |α+β| ≤ 2n−1.

Write X = (x, ξ), Y = (y, η〈ξ〉γ) and apply the Taylor formula to obtain

|f (X + sY)| =
∣∣∣∣

2n−1∑
j=0

sj

j!
djf (X;Y) +

s2n

(2n)!
d2nf (X + sθY;Y)

∣∣∣∣

≤ C
( 2n−1∑

j=0

sj

j!
djρ(X;Y) +

s2n

(2n)!
d2nρ(X + sθ′Y;Y)

)n
(4.8)

where
djf (X;Y) =

∑
|α+β|=j

(j!/α!β!)∂αx∂
β
ξ a(x, ξ)yαηβ〈ξ〉|β|γ ,

and 0 < θ, θ′ < 1. If ρ(x, ξ) = 0, then ∂αx ∂
β
ξ ρ(x, ξ) = 0 for |α+β| = 1 because ρ ≥ 0

and then it follows from (4.8) that ∂αx ∂
β
ξ f (x, ξ) = 0 for |α+β| ≤ 2n−1, hence (4.7).

We fix a small s0 > 0. If ρ(x, ξ) ≥ s0, then one has

|∂αx ∂βξ f (x, ξ)〈ξ〉|β|γ | ≤ Cαβ ≤ Cαβs
−n+|α+β|/2
0 ρn−|α+β|/2

for |α + β| ≤ 2n − 1 which proves (4.7). Assume 0 < ρ(x, ξ) < s0. Note that

|d2nf (X + sθY;Y)| ≤ C, d2nρ(X + sθ′Y;Y) ≤ Cρ(X)1−n

for any |(y, η)| ≤ 1/2. Indeed the first relation is clear from f (x, ξ) ∈ S(M−4n,G).
To check the second one it is enough to note that ρ(x, ξ) ∈ S(M−4,G) and

(4.9) M−4+2j ≤ (C0ρ
−1)j/2−1, j ≥ 2,

√
2〈ξ + θ〈ξ〉γη〉γ ≥ 〈ξ〉γ/2

for |η| ≤ 1/2 and |θ| < 1. Take s = ρ(X)1/2 in (4.8) to get
∣∣∣∣

2n−1∑
j=0

1
j!

djf (X;Y)ρ(X)j/2
∣∣∣∣ ≤ C

( 2n−1∑
j=0

1
j!

djρ(X;Y)ρ(X)j/2
)n

+ Cρ(X)n
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where the right-hand side is bounded by Cρ(X)n for |dρ(X;Y)| ≤ C′ρ(X)1/2 in view
of (4.6) and (4.9) for j ≥ 3. Replacing (y, η) by s(y, η), |(y, η)| = 1/2, 0 < |s| < 1
one obtains ∣∣∣∣

2n−1∑
j=1

sj

j!
djf (X;Y)

ρ(X)j/2

ρ(X)n

∣∣∣∣ ≤ C1.

Since two norms sup|s|≤1 |p(s)| and max {|cj|} on the vector space consisting of all
polynomials p(s) =

∑2n−1
j=0 cjsj are equivalent, one obtains

|djf (X;Y)| ≤ B′ρ(X)n−j/2.

Since |(y, η)| = 1/2 is arbitrary one obtains (4.7). �

Lemma 4.3. Let s ∈ R. Then |∂αx ∂βξ ρs| � ρs−|α+β|/2〈ξ〉−|β|
γ .

Proof. When s = 1 the assertion follows from Lemma 4.2. Since

∂αx ∂
β
ξ ρ

s =
∑

Cα(j)β(j)ρs(∂α
(1)

x ∂
β(1)

ξ ρ/ρ) · · · (∂α(k)

x ∂
β(k)

ξ ρ/ρ)

the proof for the case s ∈ R is clear. �

Lemma 4.4. Let aj(x, ξ) be the localized symbol of aj(X, ε). Then

|∂αx ∂βξ aj(x, ξ)| � ρ(x, ξ)j−|α+β|/2〈ξ〉−|β|
γ , j = 1, 2, 3.

Proof. The assertion follows from Lemmas 3.3 and 4.2. �
For the localized symbol ψ(x, ξ) of ψ(X, ε) with ε = M1/2〈ξ〉−1/2

γ we have

Lemma 4.5. One has |∂αx ∂βξψ(x, ξ)| � ρ(x, ξ)1−|α+β|/2〈ξ〉−|β|
γ .

Proof. Since Lemma 4.2 is not available for ψ(X, ε) because it is not defined
for ε = 0, we show the assertion directly. Let ν1(x, ξ), a1(x, ξ) and �̄(t, x, ξ) be
localized symbols of ν1(X, ε), a1(X, ε) and �̄(t,X, ε) with ε = M1/2〈ξ〉−1/2

γ and
hence �̄(ν1(x, ξ), x, ξ) = 0. Note that |∂t�̄(ν1, x, ξ)| ≥ 4 c2

2 ρ
2(x, ξ) if

ν1(x, ξ) + a1(x, ξ) < 2c1ρ(x, ξ)

thanks to Lemma 3.5. Starting with

∂t�̄(ν1, x, ξ)∂
α
x ∂
β
ξ ν1 + ∂αx ∂

β
ξ �̄(ν1, x, ξ) = 0, |α + β| = 1

a repetition of the same argument in Lemma 5.3 below together with Lemma 4.4
shows that

(4.10) |∂αx ∂βξ ν1| � ρ1−|α+β|/2〈ξ〉−|β|
γ , ν1 + a1 < 2c1ρ.

Here we have used |ν1| � ρ which also follows from Lemma 4.4. Using (4.10)
and Lemmas 4.3 and 4.4 the assertion follows easily. �
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4.3 Estimate of a discriminant. Let α(x, ξ), a(t, x, ξ), b(t, x, ξ), e(t, x, ξ)
be localized symbols of α(X), a(t,X), b(t,X), e(t,X) so that

τ3 − e(t, x, ξ)(t + α(x, ξ))[ξ]2τ + b(t, x, ξ)[ξ]3

is now defined on R
d × R

d and coincides with the original p in a conic neighbor-
hood WM of (0, ξ̄). We add a term 2Me(t, x, ξ)〈ξ〉−1

γ [ξ]2 to this:

(4.11) p̂ = τ3 − e(t + α + 2M〈ξ〉−1
γ )[ξ]2τ− b [ξ]3

where we denote

(4.12) aM(t, x, ξ) = e(t, x, ξ)(t + α(x, ξ) + 2M〈ξ〉−1
γ )

which is the localized symbol of a(t,X, ε) = a(t,X) + ε2 with ε =
√

2M1/2〈ξ〉−1/2
γ .

Consider the discriminant

(4.13)
�M(t, x, ξ) = 4 e3(t + α + 2M〈ξ〉−1

γ )3 − 27 b2

= 4 e3(t + α + M〈ξ〉−1
γ )3 − 27 b2 +�r(t, x, ξ)

where, recalling α(x, ξ) + M〈ξ〉−1
γ = ρ(x, ξ), we have

�r = 4e3(3(t + ρ)2M〈ξ〉−1
γ + 3(t + ρ)M2〈ξ〉−2

γ + M3〈ξ〉−3
γ )

= 12e3(c1(x, ξ)t
2 + c2(x, ξ)t + c3(x, ξ)) ≥ 12e3M(t + ρ)2〈ξ〉−1

γ .

It is clear that cj(x, ξ) verifies |∂αx ∂βξ cj| � ρj−|α+β|/2〈ξ〉−|β|
γ . Let �(t, x, ξ), �̄(t, x, ξ)

be localized symbols of �(t,X, ε), �̄(t,X, ε) with ε = M1/2〈ξ〉−1/2
γ . Thanks to

Proposition 3.1 one has

�̄(t, x, ξ) ≥ c̄ min {t2, (t − ψ)2}(t + ρ).

Noting that �(t, x, ξ) = ẽ �̄ we see that

�(t, x, ξ) = ẽ �̄ ≥ ẽ c̄ min {t2, (t −ψ)2}(t + ρ)

≥ (ẽ/e)c̄ min {t2, (t − ψ)2}e(t + ρ).
(4.14)

Therefore choosing a constant ν̄ > 0 such that 12 e2 ≥ (ẽ/e)c̄ ν̄ one obtains from
(4.13), (4.14) that

�M ≥ (ẽ/e)c̄ min {t2, (t − ψ)2}e(t + ρ) + 12 e3(t + ρ)2M〈ξ〉−1
γ

≥ (ẽ/e)c̄ (min {t2, (t − ψ)2} + ν̄(t + ρ)M〈ξ〉−1
γ )e(t + ρ)

≥ (ẽ/e)c̄ min {t2, (t − ψ)2 + ν̄Mρ〈ξ〉−1
γ }e(t + ρ), t ≥ 0.

(4.15)
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Proposition 4.1. One can write

�M = e(t3 + a1(x, ξ)t
2 + a2(x, ξ)t + a3(x, ξ))

where 0 < e ∈ S(1,G) uniformly in t and |∂αx ∂βξ aj| � ρj−|α+β|/2〈ξ〉−|β|
γ . Moreover,

there exist ν̄ > 0 and c > 0 such that

(4.16)
�M

aM
≥ ẽ

2e
c̄ min {t2, (t −ψ)2 + ν̄Mρ〈ξ〉−1

γ }, �M

aM
≥ c M〈ξ〉−1

γ aM

for 0 ≤ t ≤ T where ψ and ρ satisfy

|∂αx ∂βξψ|, |∂αx ∂βξ ρ| � ρ1−|α+β|/2〈ξ〉−|β|
γ .

Proof. Choosing ε =
√

2M1/2〈ξ〉−1/2
γ and applying Lemma 3.1 one can

write �M as a third order polynomial in t, up to a non-zero factor, and can es-
timate the coefficients thanks to Lemmas 3.3 and 4.2 in terms of α + 2M〈ξ〉−1

γ .
Noting that

ρ(x, ξ) ≤ α(x, ξ) + 2M〈ξ〉−1
γ ≤ 2ρ(x, ξ)

we have the desired estimates for aj. The assertion (4.16) follows from (4.15) for

aM = e(t + ρ + M〈ξ〉−1/2
γ ) ≤ 2 e(t + ρ).

The estimates forψ andρ are nothing butLemmas4.3 and4.5with ε=M1/2〈ξ〉−1/2
γ .�

Remark 4.1. Denoting ē = e(0, 0, ξ̄) = ∂ta(0, 0, ξ̄) it is clear from (3.1) that

ē is the non-zero positive real eigenvalue of Fp(0, 0, 0, ξ̄)

and the coefficient of the right-hand side of (4.16) is

ẽc̄/(2e) = 2ē2c̄(1 + O(M−2)).

On the other hand, denoting the subprincipal symbol of P by Psub and b3(0, 0, ξ̄)
by b̄3, it is easy to see that

(4.17) Psub(0, 0, 0, ξ̄) = ē/(2i) + b̄3.

Lemma 4.6. With ē = e(0, 0, ξ̄) we have

|∂tb| ≤ (1 + CM−2)(2
√

2/3)ē
√

aM, 0 ≤ t ≤ M−2.

Proof. Write b = β0(x, ξ)+ tβ1(x, ξ)+ t2β3(t, x, ξ). Setting t = 0 in 27b2 ≤ 4a3

it is clear that |β0| ≤ (2/3
√

3)ē3/2(1 + CM−2)α3/2. We first check that

(4.18) |β1| ≤ (1 + CM−2)(2/
√

3)ē3/2√α.
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If α(x, ξ) = 0 then β1(x, ξ) = 0, hence (4.18) is clear. If α(x, ξ) > 0, taking t = 3α
and noting that e(3α, x, ξ) ≤ (1 + CM−2)ē + Cα it follows that

3α|β1| ≤ 2(43/2(1 + CM−2)ē3/2/3
√

3)α3/2 + |β0| + Cα2

≤ (6/
√

3)(1 + CM−2)ē3/2α3/2 + Cα2 ≤ (6/
√

3)(1 + CM−2)ē3/2α3/2

because α ≤ CM−4 which proves (4.18). Since |∂tb| ≤ |β1| + Ct we see that
|∂tb| ≤ (1 + CM−2)(2/

√
3)ē3/2√α + CM−2

√
t, thus the proof is immediate. �

5 The Bézout matrix and diagonal symmetrizer

Add −2Mop(e(t, x, ξ)〈ξ〉−1
γ )[D]2Dt to the principal part and subtract the same from

the lower order part so that the operator is left invariant;

P̂ = D3
t − aM(t, x,D)[D]2Dt − b(t, x,D) [D]3 + b1(t, x,D)D2

t

+ (b2(t, x,D) + dM(t, x,D))[D]Dt + b3(t, x,D)[D]2

where bj(t, x, ξ) ∈ S(1,G) and dM(t, x, ξ) = 2M(e〈ξ〉−1
γ )#[ξ] ∈ S(M,G). It follows

from Lemma 4.1 and (4.5)

(5.1) dM(t, x, ξ) − 2Mē ∈ S(M−1, g).

With U = t(D2
t u, [D]Dtu, [D]2u) the equation P̂u = f is transformed to

(5.2) DtU = A(t, x,D)[D]U + B(t, x,D)U + F

where F = t(f, 0, 0) and

A(t, x, ξ) =

⎡
⎢⎣
0 aM b

1 0 0
0 1 0

⎤
⎥⎦ , B(t, x, ξ) =

⎡
⎢⎣
b1 b2 + dM b3

0 0 0
0 0 0

⎤
⎥⎦ .

Let S be the Bézout matrix of p̂ and ∂p̂/∂τ, that is

S(t, x, ξ) =

⎡
⎢⎣

3 0 −aM

0 2aM 3b

−aM 3b a2
M

⎤
⎥⎦ .

Then S is positive semidefinite and symmetrizes S, namely, SA is symmetric
and is easily examined directly, though this is a special case of a general fact
(see [16], [28]).
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5.1 Eigenvalues of Bézout matrix. To simplify notation denote

σ(t, x, ξ) = t + α(x, ξ) + 2M〈ξ〉−1
γ = t + ρ(x, ξ) + M〈ξ〉−1

γ ,

hence aM(t, x, ξ) = e(t, x, ξ)σ(t, x, ξ) and (1 − CM−2)ēσ ≤ aM ≤ (1 + CM−2)ēσ.
In what follows we assume that t varies in the interval

0 ≤ t ≤ M−4.

Since ρ ∈ S(M−4,G) it is clear that σ(t, x, ξ) ∈ S(M−4,G).

Lemma 5.1. We have |∂αx ∂βξ σ| � σ1−|α+β|/2〈ξ〉−|β|
γ . In particular σ ∈ S(σ, g).

Proof. It is clear from (4.6) that |∂αx ∂βξ σ| �
√
σ 〈ξ〉−|β|

γ for |α + β| = 1. For
|α + β| ≥ 2 we have

|∂αx ∂βξ σ| � M2|α+β|−4〈ξ〉−|β|
γ � σ1−|α+β|/2〈ξ〉−|β|

γ

from ρ ∈ S(M−4,G) since Cσ−1 ≥ M4.
The second assertion is clear from σ−1 ≤ M−1〈ξ〉γ. �

Corollary 5.1. Let s ∈ R. Then |∂αx ∂βξ σs| � σs−|α+β|/2〈ξ〉−|β|
γ . In particular

σs ∈ S(σs, g).

Definition 5.1. To simplify notation we denote by C(σs) the set of symbols
r(t, x, ξ) satisfying |∂αx ∂βξ r| � σs−|α+β|/2〈ξ〉−|β|

γ .

It is clear that C(σs) ⊂ S(σs, g) because σ−|α+β|/2 ≤ M−|α+β|/2〈ξ〉|α+β|/2γ . It is
also clear that if p ∈ C(σs) with s > 0 then (1 + p)−1 − 1 ∈ C(σs).

Lemma 5.2. One has as
M ∈ C(σs) for s ∈ R, b ∈ C(σ3/2), ∂taM ∈ C(1)

and ∂tb ∈ C(
√
σ).

Proof. The first assertion is clear from Corollary 5.1 because aM = eσ

and e∈S(1,G), 1/C ≤ e ≤ C. To show the second assertion, recalling that b(t, x, ξ)
is the localized symbol of b(t,X), write

b(t, x, ξ) = b(0, y(x), η(ξ)) + ∂tb(0, y(x), η(ξ))t

+
∫ 1

0
(1 − θ)∂2t b(θt, y(x), η(ξ))dθ · t2.

(5.3)

Since ∂αx ∂
β
ξ b(0, 0, ξ̄) = 0 for |α + β| ≤ 2 and ∂tb(0, 0, ξ̄) = 0, then thanks to

Lemma 4.1 one has b(0, y(x), η(ξ)) ∈ S(M−6,G) and ∂tb(0, y(x), η(ξ))∈S(M−2,G).
Since 0 ≤ t ≤ M−4 we conclude that b(t, x, ξ) ∈ S(M−6,G). Since |b| ≤ Cσ3/2
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and σ ∈ S(M−4,G), a repetition of the same arguments in proving Lemma 4.2
shows the second assertion. The third assertion is clear because ∂taM = e + (∂te)σ.
As for the last assertion, recall Lemma 4.6 that |∂tb| ≤ Ca1/2

M ≤ C′σ1/2. Noting
that ∂tb ∈ S(M−2,G) which results from (5.3), one sees that

|〈ξ〉|β|γ ∂αx ∂βξ ∂tb| � M2|α+β|−2 � σ1/2−|α+β|/2

for |α + β| ≥ 1, hence the assertion. �
Recall [29, Proposition 2.1]

Proposition 5.1. Let 0 ≤ λ1(t, x, ξ) ≤ λ2(t, x, ξ) ≤ λ3(t, x, ξ) be the eigen-

values of S(t, x, ξ). There exist M0 and K > 0 such that one has for M ≥ M0

�M/(6aM + 2a2
M + 2a3

M) ≤λ1 ≤ (2/3 + KaM) a2
M,

(2 − KaM) aM ≤λ2 ≤ (2 + KaM) aM,

3 ≤λ3 ≤ 3 + Ka2
M.

Proof. Since aM = e σ and σ ∈ S(M−4,G), then for any ε̄ > 0 there is M0 such
that e M−4

0 ≤ ε̄. Then the assertion follows from [29, Proposition 2.1]. �

Corollary 5.2. The eigenvalues λi(t, x, ξ) are smooth in (0,M−4] ×R
d ×R

d.

5.2 Estimates of eigenvalues. First we prove

Lemma 5.3. One has λj ∈ C(σ3−j) for j = 1, 2, 3.

Denote q(λ) = det (λI − S) so that

(5.4) q(λ) = λ3 − (3 + 2aM + a2
M)λ2 + (6aM + 2a2

M + 2a3
M − 9b2)λ−�M.

Note that ∂λq(λi)∂αx ∂
β
ξ λi + ∂αx ∂

β
ξ q(λi) = 0 for |α + β| = 1. Let us write ∂αx ∂

β
ξ = ∂α,βx,ξ

for simplicity. We show by induction on |α + β| that

∂λq(λi)∂
α,β
x,ξ λi =

∑
2|μ+ν|+s≥2

Cμ,ν,γ(j),δ(j),s∂
μ,ν
x,ξ ∂

s
λq(λi)

× (∂γ
(1),δ(1)

x,ξ λi) · · · (∂γ(s),δ(s)

x,ξ λi)

(5.5)

where μ+
∑
γ(i) = α, ν+

∑
δ(j) = β and |γ(i) + δ(j)| ≥ 1. The assertion |α+β| = 1 is

clear. Suppose that (5.5) holds for |α + β| = m. With |e + f | = 1 after operating ∂e,fx,ξ

on (5.5) the resulting left-hand side is

∂λq(λi)∂
α+e,β+f
x,ξ λi −

∑
2|μ+ν|+s≥2

Cμ,ν,γ(j),δ(j),s∂
μ,ν
x,ξ ∂

s
λq(λi)(∂

γ(1),δ(1)

x,ξ λi) · · · (∂γ(s),δ(s)

x,ξ λi)
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while the resulting right-hand side is
∑

C...∂
μ+e,ν+f
x,ξ ∂sλq(λi)(∂

γ(1),δ(1)

x,ξ λi) · · · (∂γ(s),δ(s)

x,ξ λi)

+
∑

C...∂
μ,ν
x,ξ ∂

s+1
λ q(λi)(∂

e,f
x,ξλi)(∂

γ(1),δ(1)

x,ξ λi) · · · (∂γ(s),δ(s)

x,ξ λi)

+
s∑

j=1

∑
C...∂

μ,ν
x,ξ ∂

s
λq(λi)(∂

γ(1),δ(1)

x,ξ λi) · · · (∂γ(j)+e,δ(j)+f
x,ξ λi) · · · (∂γ(s),δ(s)

x,ξ λi)

which can be written as
∑

2|μ+ν|+s≥2

Cμ,ν,γ(j),δ(j),s∂
μ,ν
x,ξ ∂

s
λq(λi)(∂

γ(1),δ(1)

x,ξ λi) · · · (∂γ(s),δ(s)

x,ξ λi)

where μ +
∑
γ(i) = α + e, ν +

∑
δ(i) = β + f and |γ(j) + δ(j)| ≥ 1. Therefore we

conclude (5.5). In order to estimate ∂α,βx,ξ λi one needs to estimate ∂μ,νx,ξ ∂
s
λq(λi).

Lemma 5.4. For any s ∈ N and α, β we have that

|∂α,βx,ξ ∂
s
λq(λj)| � σ4−j−(3−j)s−|α+β|/2〈ξ〉−|β|

γ , j = 1, 2,

|∂α,βx,ξ ∂
s
λq(λ3)| � σ−|α+β|/2〈ξ〉−|β|

γ .

Proof. From Proposition 5.1 and (5.4) one sees that

|q(λi)| � |λi|2 + |aM||λi| + |aM|3,
|∂α,βx,ξ q(λi)| � (|∂α,βx,ξ aM| + |∂α,βx,ξ b2|)|λi| + |∂α,βx,ξ a3

M| + |∂α,βx,ξ b2|, |α + β| ≥ 1

because |�M| � a3
M and |b| � a3/2

M . Therefore, thanks to Proposition 5.1 and
Lemma 5.2 one obtains the assertions for the case s = 0. Since

|∂λq(λi)| � |λi| + |aM|, |∂sλq(λi)| � 1, s ≥ 2,

|∂α,βx,ξ ∂λq(λi)| � |∂α,βx,ξ aM||λi| + |∂α,βx,ξ aM| + |∂α,βx,ξ b2|, |α + β| ≥ 1,

|∂α,βx,ξ ∂
2
λq(λi)| � |∂α,βx,ξ aM|, ∂

α,β
x,ξ ∂

s
λq(λi) = 0, s ≥ 3, |α + β| ≥ 1

the assertions for the case s ≥ 1 are clear by Proposition 5.1 and Lemma 5.2. �

Proof of Lemma 5.3. Since ∂λq(λi) =
∏

k �=i(λi − λk) it follows from
Proposition 5.1 that

(5.6) 6aM(1 − CaM) ≤ |∂λq(λi)| ≤ 6aM(1 + CaM), i = 1, 2, ∂λq(λ3) 	 1.

Then for |α + β| = 1 one has

|∂α,βx,ξ λj| � |∂α,βx,ξ q(λj)/∂λq(λj)| � σ3−j−1/2〈ξ〉−|β|
γ , j = 1, 2, 3,
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by Lemma 5.4 with s = 0. Assume that |∂α,βx,ξ λj| � σ3−j−|α+β|/2〈ξ〉−|β|
γ , j = 1, 2, 3,

holds for |α + β| ≤ m. Lemma 5.4 and (5.5) show that

|∂λq(λ1)∂
α,β
x,ξ λ1| �

∑
σ3−2s−|μ+ν|/2σ2−|γ(1)+δ(1)|/2 · · ·σ2−|γ(s)+δ(s)|/2〈ξ〉−|β|

γ

�
∑
σ3−|μ+ν|/2σ−|γ(1)+δ(1)|/2 · · ·σ−|γ(s)+δ(s)|/2〈ξ〉−|β|

γ

� σ3−|α+β|/2〈ξ〉−|β|
γ .

This together with (5.6) proves the estimate for λ1. The same arguments show the
assertion for λ2. The estimate for λ3 is clear from (5.5) because of (5.6). Thus
we have the assertion for |α + β| = m + 1 and the proof is completed by induction
on |α + β|. �

Lemma 5.5. One has ∂tλ1 ∈ C(σ), ∂tλ2 ∈ C(1) and ∂tλ3 ∈ C(1).

Proof. First examine that ∂λq(λi)∂
α,β
x,ξ ∂tλi can be written as

∑
|α′+β′ |<|α+β|

C...∂
μ,ν
x,ξ ∂

s+1
λ q(λi)(∂

α′,β′
x,ξ ∂tλi)(∂

γ(1)+δ(1)

x,ξ λi) · · · (∂γ(s)+δ(s)

x,ξ λi)

+
∑

C...∂
μ,ν
x,ξ ∂

s
λ∂tq(λi)(∂

γ(1)+δ(1)

x,ξ λi) · · · (∂γ(s)+δ(s)

x,ξ λi)

(5.7)

where α′ + μ +
∑
γ(i) = α, β′ + ν +

∑
δ(i) = β and |γ(i) + δ(i)| ≥ 1. Indeed (5.7) is

clear when |α + β| = 0 from ∂λq(λi)∂tλi + ∂tq(λi) = 0. Differentiating this by ∂e,fx,ξ

and repeating the same arguments proving (5.5) one obtains (5.7) by induction. To
prove Lemma 5.5 first check that

(5.8) |∂α,βx,ξ ∂
s
λ∂tq(λj)| � σ3−j−(3−j)s−|α+β|/2〈ξ〉−|β|

γ , j = 1, 2, 3.

In fact from

(5.9) ∂tq(λ) = −∂t(2aM + a2
M)λ2 + ∂t(6aM + 2a2

M + 2a3
M − 9b2)λ− ∂t�M

it follows that |∂tq(λi)| � λi + σ2 and |∂α,βx,ξ ∂tq(λi)| � (λi + σ2)σ−|α+β|/2〈ξ〉−|β|
γ

for |α + β| ≥ 1 in view of Lemma 5.2 and hence the assertion for s = 0.
Since |∂α,βx,ξ ∂

s
λ∂tq(λi)| � σ−|α+β|/2〈ξ〉−|β|

γ for s ≥ 1 the assertion can be proved.
We now show Lemma 5.5 for λ1 by induction on |α + β|. Assume

(5.10) |∂α,βx,ξ ∂tλ1| � σ1−|α+β|/2〈ξ〉−|β|
γ .

It is clear from (5.6) and (5.8) that (5.10) holds for |α +β| = 0. Assume that (5.10)
holds for |α + β| ≤ m. For |α + β| = m + 1, thanks to the inductive assumption,
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Lemma 5.4 and Lemma 5.3 it follows that
∑

|α′+β′ |<|α+β|
|∂μ,νx,ξ ∂

s+1
λ q(λ1)(∂

α′,β′
x,ξ ∂tλ1)(∂

γ(1)+δ(1)

x,ξ λ1) · · · (∂γ(s)+δ(s)

x,ξ λ1)|

�
∑
σ3−2(s+1)−|μ+ν|/2σ1−|α′+β′ |/2σ2−|γ(1)+δ(1)|/2 · · ·σ2−|γ(s)+δ(s)|/2〈ξ〉−|β|

γ

which is bounded by σ2−|α+β|/2〈ξ〉−|β|
γ . On the other hand one sees

∑ |∂μ,νx,ξ ∂
s
λ∂tq(λ1)(∂

γ(1)+δ(1)

x,ξ λ1) · · · (∂γ(s)+δ(s)

x,ξ λ1)|
� ∑

σ2−2s−|μ+ν|/2σ2−|γ(1)+δ(1)|/2 · · ·σ2−|γ(s)+δ(s)|/2〈ξ〉−|β|
γ

� σ2−|α+β|/2〈ξ〉−|β|
γ

in view of (5.8) and Lemma 5.3. This proves that (5.10) holds for |α + β| = m + 1
and hence for all α, β. As for λ2, λ3 the proof is similar. �

5.3 Eigenvectors of the Bézout matrix. We sometimes denote by C(σs)
a function belonging to C(σs). If we write nij for the (i, j)-cofactor of λkI − S
then t(nj1, nj2, nj3) is, if non-trivial, an eigenvector of S corresponding to λk. We
take k = 1, j = 3 and hence⎡

⎢⎣
aM(2 aM − λ1)

3 b(λ1 − 3)
(λ1 − 3)(λ1 − 2 aM)

⎤
⎥⎦ =

⎡
⎢⎣

11


21


31

⎤
⎥⎦

is an eigenvector of S corresponding to λ1 and therefore

t1 =

⎡
⎢⎣
t11

t21

t31

⎤
⎥⎦ =

1
d1

⎡
⎢⎣

11


21


31

⎤
⎥⎦ , d1 =

√

211 + 
221 + 
231

is a unit eigenvector of S corresponding to λ1. Thanks to Proposition 5.1 and re-

calling b ∈ C(σ3/2) it is clear that d1 =
√

36 a2
M + C(σ3) = 6aM(1+C(σ)). Therefore

since 
11 = C(σ2), 
21 = C(σ3/2) and 
31 = 6 a + C(σ2) we have

t1 =

⎡
⎢⎣
t11

t21

t31

⎤
⎥⎦ =

⎡
⎢⎣

aM/3 + C(σ2)
−3b/(2aM) + C(σ)

1 + C(σ)

⎤
⎥⎦ .

Similarly, choosing k = 2, j = 2 and k = 3, j = 1,
⎡
⎢⎣

−3aMb
(λ2 − 3)(λ2 − a2

M) − a2
M

3b(λ2 − 3)

⎤
⎥⎦ =

⎡
⎢⎣

12


22


32

⎤
⎥⎦ ,

⎡
⎢⎣
(λ3 − 2aM)(λ3 − a2

M) − 9b2

−3aMb

−aM(λ3 − 2aM)

⎤
⎥⎦ =

⎡
⎢⎣

13


23


33

⎤
⎥⎦
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are eigenvectors of S corresponding to λ2 and λ3 respectively and

tj =

⎡
⎢⎣
t1j

t2j

t3j

⎤
⎥⎦ =

1
dj

⎡
⎢⎣

1j


2j


3j

⎤
⎥⎦ , dj =

√

21j + 


2
2j + 


2
3j

is a unit eigenvector of S corresponding to λj, j = 2, 3. Thanks to Proposition 5.1
it is easy to see that d2 = 3λ2(1 + C(σ)) and d3 = λ2

3(1 + C(σ)). Then repeating the
same arguments one concludes that

⎡
⎢⎣
t12

t22

t32

⎤
⎥⎦ =

⎡
⎢⎣

C(σ3/2)
−1 + C(σ)

−3b/λ2 + C(σ)

⎤
⎥⎦ ,

⎡
⎢⎣
t13

t23

t33

⎤
⎥⎦ =

⎡
⎢⎣

1 + C(σ)
C(σ5/2)

−aM/λ3 + C(σ2)

⎤
⎥⎦ .

Now T = (t1, t2, t3) = (tij) is an orthogonal matrix which diagonalizes S;

Λ = T−1ST = tTST =

⎡
⎢⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎥⎦ .

Note that ΛAT is symmetric. We summarize what we have proved in

Lemma 5.6. Let T be defined as above. Then there is M0 such that T has the
form

T =

⎡
⎢⎣

aM/3 + C(σ2) C(σ3/2) 1 + C(σ)
−3b/(2aM) + C(σ) −1 + C(σ) C(σ5/2)

1 + C(σ) −3b/λ2 + C(σ) −aM/λ3 + C(σ2)

⎤
⎥⎦

=

⎡
⎢⎣

C(σ) C(σ3/2) 1 + C(σ)
C(σ1/2) −1 + C(σ) C(σ5/2)
1 + C(σ) C(σ1/2) C(σ)

⎤
⎥⎦ , M ≥ M0.

In particular T, T−1 ∈ S(1, g).

Lemma 5.7. We have

∂tT =

⎡
⎢⎣
∂t(aM/3) + C(σ) C(σ1/2) C(1)

−∂t(3b/2aM) + C(1) C(1) C(σ3/2)
C(1) −∂t(3b/λ2) + C(1) −∂t(aM/λ3) + C(σ)

⎤
⎥⎦

=

⎡
⎢⎣

C(1) C(σ1/2) C(1)
C(σ−1/2) C(1) C(σ3/2)
C(1) C(σ−1/2) C(1)

⎤
⎥⎦ , M ≥ M0.
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Proof. Note that every entry of T is a function of aM, b and λj. Then the
assertion is clear from Lemmas 5.2 and 5.5. �

From Lemma 5.6 it follows that

(5.11) 〈ξ〉|β|γ ∂αx ∂βξT =

⎡
⎢⎣
C(
√
σ) C(σ) C(

√
σ)

C(1) C(
√
σ) C(σ2)

C(
√
σ) C(1) C(

√
σ)

⎤
⎥⎦ , |α + β| = 1.

Lemma 5.8. There is M0 such that AT = T−1AT has the form

AT =

⎡
⎢⎣

C(
√
σ) −1 + C(σ) C(

√
σ)

λ1 C(σ−1) C(
√
σ) −1 + C(σ)

λ1 C(
√
σ) λ2 C(1) C(σ5/2)

⎤
⎥⎦ , M ≥ M0.

Proof. Writing AT = (ãij) it is clear that

ãij = t1i aM t2j + t1i b t3j + t2it1j + t3it2j

from which the assertion for ãij, j ≥ i follows easily. Therefore one sees that

ΛAT =

⎡
⎢⎣
λ1C(

√
σ) λ1(−1 + C(σ)) λ1C(

√
σ)

λ2ã21 λ2ã22 λ2(−1 + C(σ))
λ3ã31 λ3ã32 λ3ã33

⎤
⎥⎦ .

Since ΛAT is symmetric it follows immediately that

ã31 = λ1C(
√
σ)/λ3, ã32 = λ2(−1 + C(σ))/λ3, ã21 = λ1(−1 + C(

√
σ))/λ2

which proves the assertion because 1/λ3 ∈ C(1) and 1/λ2 ∈ C(σ−1). �

Corollary 5.3. There is M0 such that AT = T−1AT has the form

AT =

⎡
⎢⎣
C(
√
σ) −1 + C(σ) C(

√
σ)

C(σ) C(
√
σ) −1 + C(σ)

C(σ5/2) C(σ) C(σ5/2)

⎤
⎥⎦ , M ≥ M0.

Corollary 5.4. We have

〈ξ〉|β|γ ∂αx ∂βξAT =

⎡
⎢⎣

C(1) C(
√
σ) C(1)

C(
√
σ) C(1) C(

√
σ)

C(σ2) C(
√
σ) C(σ2)

⎤
⎥⎦ , |α + β| = 1.

Proof. The proof is clear since 〈ξ〉|β|γ ∂αx ∂βξ (−1 + C(σ)) = C(
√
σ). �
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Finally consider T−1(∂tT). Note that 〈∂tti, tj〉 + 〈ti, ∂ttj〉 = 0 so that (∂tT−1)T is
antisymmetric. From Lemmas 5.6 and 5.7 one has

(5.12) T−1(∂tT) =

⎡
⎢⎣

0 −∂t(3b/2aM) + C(1) C(1)
∂t(3b/2aM) + C(1) 0 C(

√
σ)

∂t(aM/3) + C(σ) C(
√
σ) 0

⎤
⎥⎦ .

For later use we estimate the (2, 1)-th and (3, 1)-th entries of T−1(∂tT). Recalling
aM = e(t + α + 2M〈ξ〉−1

γ ) and 0 ≤ t ≤ M−4 it is clear that ∂taM − ē ∈ S(M−2, g).
Taking |b2/a3

M| ≤ 4/27 into account, thanks to Lemma 4.6 it follows that

|√aM∂t(3b/2aM)| ≤ 3(|∂tb/√aM| + |b/a3/2
M ||∂taM|)/2

≤ (1 + CM−2)((1 + 3
√

2)/
√

3) ē.
(5.13)

6 Metric g and estimates of ω and φ

Introduce the metric

g = g(x,ξ) = M−1(〈ξ〉γ|dx|2 + 〈ξ〉−1
γ |dξ|2)

which is a basic metric with which we work in this paper. Note that
S(Ms,G) ⊂ S(Ms, g) because

Ms+2|α+β|〈ξ〉−|β|
γ ≤ MsM−|α+β|/2〈ξ〉(|α|−|β|)/2

γ

in view of 〈ξ〉γ ≥ γ ≥ M5. The metric g is temperate (see [7, Chapter 18])
uniformly in γ ≥ M5 ≥ 1 and will be checked in Section 7.

Lemma 6.1. One has

∂αx ∂
β
ξψ ∈ S(M−(|α+β|−1)/2ρ1/2〈ξ〉−1/2

γ 〈ξ〉(|α|−|β|)/2
γ , g), |α + β| ≥ 1.

Proof. It is enough to remark that

|∂αx ∂βξ ψ| � ρ1/2ρ−(|α+β|−1)/2〈ξ〉−|β|
γ � ρ1/2(M−1〈ξ〉γ)(|α+β|−1)/2〈ξ〉−|β|

γ

for |α + β| ≥ 1. �

6.1 Estimate ω by metric g. Taking Proposition 4.1 into account we
introduce a preliminary weight

ω(t, x, ξ) =
√

(t −ψ(x, ξ))2 + ν̄Mρ〈ξ〉−1
γ .
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Since the exact value of ν̄ > 0 is irrelevant in the following arguments, we assume
ν̄ = 1 from now on. In what follows we work with symbols depending on t
where t varies in some fixed interval [0,T], and it is assumed that all constants are
independent of t ∈ [0,T] and γ, M unless otherwise stated. Now A � B implies
that A is bounded by a constant, independent of t, M and γ, times B.

Lemma 6.2. One has

∂αx ∂
β
ξω

s ∈ S(M−(|α+β|−1)/2ωsω−1ρ1/2〈ξ〉−1/2+(|α|−|β|)/2
γ , g), |α + β| ≥ 1.

Proof. Recall that ω2 = (t −ψ)2 + Mρ〈ξ〉−1
γ . Note that for |α + β| ≥ 2

|∂αx ∂βξ (t − ψ)2| � ω|∂αx ∂βξ ψ| +
∑ |∂α′

x ∂
β′
ξ ψ||∂α′′

∂
β′′
ξ ψ|

� ω2{ω−1ρ1/2ρ−(|α+β|−1)/2 + ω−2ρρ−(|α+β|−2)/2}〈ξ〉−|β|
γ

� ω2(ω−1ρ1/2〈ξ〉−1/2
γ )M−(|α+β|−1)/2〈ξ〉(|α|−|β|)/2

γ

since ρ ≥ M〈ξ〉−1
γ and ω ≥ √

Mρ1/2〈ξ〉−1/2
γ . When |α + β| = 1 it is clear that

|∂αx ∂βξ (t −ψ)2| � ωρ1/2〈ξ〉−|β|
γ = ω2(ω−1ρ1/2〈ξ〉−1/2

γ )〈ξ〉(|α|−|β|)/2
γ .

Next, it is easy to see that for |α + β| ≥ 1

|∂αx ∂βξ (Mρ〈ξ〉−1
γ )| � Mρ〈ξ〉−1

γ ρ
−|α+β|/2〈ξ〉−|β|

γ

� ω2(Mω−2ρ1/2〈ξ〉−1
γ )(M−1〈ξ〉γ)(|α+β|−1)/2〈ξ〉−|β|

γ

� ω2(ω−1ρ1/2〈ξ〉−1/2
γ )M−(|α+β|−1)/2〈ξ〉(|α|−|β|)/2

γ

because ω ≥ √
Mρ1/2〈ξ〉−1/2

γ ≥ M〈ξ〉−1
γ . Therefore one concludes that

|∂αx ∂βξω2| � ω2(ω−1ρ1/2〈ξ〉−1/2
γ )M−(|α+β|−1)/2〈ξ〉(|α|−|β|)/2

γ

which proves the assertion for s = 2. For general s, noting that

|∂αx ∂βξ (ω2)s/2| � ∑
|αi+βi|≥1

|(ω2)s/2(∂α
1

x ∂
β1

ξ ω
2/ω2) · · · (∂αl

x ∂
βl

ξ ω
2/ω2)|

the proof is immediate, since ω−1ρ1/2〈ξ〉−1/2
γ ≤ M−1/2 ≤ 1. �

Corollary 6.1. We have ωs ∈ S(ωs, g) for s ∈ R.

6.2 Estimate φ by metric g. Introduce a weight function which plays a
crucial role in deriving energy estimates

φ(t, x, ξ) = ω(t, x, ξ) + t − ψ(x, ξ).
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If t −ψ(x, ξ) ≥ 0 then φ ≥ ω = ω2/ω ≥ Mρ〈ξ〉−1
γ /ω, and if t −ψ(x, ξ) ≤ 0 we see

that φ = Mρ〈ξ〉−1
γ /(ω + |t −ψ|) ≥ ρM〈ξ〉−1

γ /(2ω), hence

(6.1) φ(t, x, ξ) ≥ Mρ〈ξ〉−1
γ /(2ω).

Lemma 6.3. There is C > 0 such that φ(t, x, ξ) ≥ M〈ξ〉−1
γ /C.

Proof. When t − ψ(x, ξ) ≥ 0 then φ ≥ ω ≥ M1/2ρ1/2〈ξ〉−1/2
γ ≥ M〈ξ〉−1

γ is
obvious for ρ ≥ M〈ξ〉−1

γ . Assume t −ψ(x, ξ) < 0; then 0 ≤ t < ψ(x, ξ) ≤ δρ(x, ξ)
with some δ > 0 by Lemma 4.5. Noticing that |t−ψ(x, ξ)| = ψ(x, ξ)− t ≤ δρ(x, ξ)
we have ω2(t, x, ξ) ≤ δ2ρ2 + Mρ〈ξ〉−1

γ ≤ δ2ρ2 + ρ2 = (δ2 + 1)ρ2. Now the proof is
immediate from (6.1). �

Lemma 6.4. We have φ ∈ S(φ, g).

Proof. Let |α + β| = 1 and write

(6.2) ∂αx ∂
β
ξ φ =

−∂αx ∂βξ ψ
ω

φ +
∂αx ∂

β
ξ (Mρ〈ξ〉−1

γ )

2ω
= φαβφ + ψαβ.

From Corollary 6.1 and Lemma 4.3 it follows that

|∂μx ∂νξ(ψαβ)| � ω−1Mρ〈ξ〉−1
γ M−|α+β+μ+ν|/2〈ξ〉(|α+μ|−|β+ν|)/2

γ

� φM−|α+β+μ+ν|/2〈ξ〉(|α+μ|−|β+ν|)/2
γ

in view of (6.1). On the other hand, thanks to Lemma 6.1 and Corollary 6.1
it follows that |∂μx ∂νξφαβ| � M−|α+β+μ+ν|/2〈ξ〉(|α+μ|−|β+ν|)/2

γ . Hence using (6.2) the
assertion is proved by induction on |α + β|. �

We refine this lemma.

Lemma 6.5. One has

∂αx ∂
β
ξ φ ∈ S(φM−(|α+β|−1)/2ω−1ρ1/2〈ξ〉−1/2

γ 〈ξ〉(|α|−|β|)/2
γ , g), |α + β| ≥ 1.

Proof. From Lemma 6.1 one has ∂αx ∂
β
ξ ψ ∈ S(ρ1/2〈ξ〉−1/2

γ 〈ξ〉(|α|−|β|)/2
γ , g) for

|α + β| = 1 hence φαβ ∈ S(ω−1ρ1/2〈ξ〉−1/2
γ 〈ξ〉(|α|−|β|)/2

γ , g) for |α + β| = 1 by
Lemma 6.2. From Lemma 6.2 it follows that

|∂μx ∂νξ(ψαβ)| � ω−1ρ1/2M〈ξ〉−1−|β|
γ M−|μ+ν|/2〈ξ〉(|μ|−|ν|)/2

γ

for |α+β|=1because ∂αx ∂
β
ξ (Mρ〈ξ〉−1

γ )∈S(Mρ1/2〈ξ〉−1−|β|
γ , g). Thanks to Lemma 6.3

one sees that M〈ξ〉−1
γ ≤ Cφ(t, x, ξ) and hence

ψαβ ∈ S(ω−1ρ1/2〈ξ〉−1/2
γ 〈ξ〉(|α|−|β|)/2

γ φ, g), |α + β| = 1.

Since φ ∈ S(φ, g) by Lemma 6.4 we conclude the assertion from (6.2). �
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7 φ and λj are admissible weights for g

Write z = (x, ξ) and w = (y, η). It is clear that

gσz = M(〈ξ〉γ|dx|2 + 〈ξ〉−1
γ |dξ|2) = M2gz

where gσz (t1, t2) = sup |〈t2, s1〉−〈t1, s2〉|2/gz(s1, s2) (see [7, Chapter 18]). Note that
|ξ − η| ≤ c 〈ξ〉γ with 0 < c < 1 implies

(1 − c)〈ξ〉γ/
√

2 ≤ 〈η〉γ ≤ √
2 (1 + c)〈ξ〉γ.

If gz(w) < c then |ξ − η|2 < c M〈ξ〉γ = c M〈ξ〉−1
γ 〈ξ〉2γ ≤ c 〈ξ〉2γ, so

gz(X)/C ≤ gw(X) ≤ Cgz(X), X ∈ R
d × R

d

with C independent of γ ≥ M5 ≥ 1, namely gz is slowly varying uniformly in
γ ≥ M5 ≥ 1. Similarly, noting that |ξ−η| ≥ (γ+|ξ|)/2 ≥ 〈ξ〉γ/2 if 〈η〉γ ≤ 〈ξ〉γ/2

√
2

and |ξ − η| ≥ (γ + |η|)/2 ≥ 〈η〉γ/2 if 〈η〉γ ≥ 2
√

2〈ξ〉γ, it is clear that

(7.1)
〈ξ〉γ
〈η〉γ +

〈η〉γ
〈ξ〉γ ≤ C(1 + 〈η〉−1

γ |ξ − η|2) ≤ C(1 + gσw(z −w)),

hence gw(X) ≤ Cgz(X)(1 + gσw(z − w)), namely g is a temperate metric uniformly
in γ ≥ 0 and M ≥ 1 (see [7, Chapter 18]). It is clear from (7.1) that

(7.2) gσz (z −w) ≤ C(1 + gσw(z −w))2.

7.1 ρ and σ are admissibleweights for g. We adopt the same convention
as in Sections 6 and 5 even pertaining to weights for g, so that we omit to say
uniformly in t ∈ [0,M−4].

Lemma 7.1. ρ is an admissible weight for g.

Proof. First study ρ1/2. Assume

gz(w) = M−1〈ξ〉γ(|y|2 + 〈ξ〉−2
γ |η|2) < c (< 1/2)

so that M−1〈ξ〉−1
γ |η|2 < c, hence |η| < c〈ξ〉γ for M〈ξ〉−1

γ ≤ 1 so

(7.3) 〈ξ + sη〉γ/C ≤ 〈ξ〉γ ≤ C〈ξ + sη〉γ,

where C is independent of |s| ≤ 1. Lemma 4.3 shows that

|ρ1/2(z +w) − ρ1/2(z)| ≤ C(|y| + 〈ξ + sη〉−1
γ |η|) ≤ CM1/2〈ξ〉−1/2

γ g1/2
z (w).
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Since ρ(z) ≥ M〈ξ〉−1
γ this yields

(7.4) |ρ1/2(z +w) − ρ1/2(z)| ≤ Cρ1/2(z)g1/2
z (w).

Choosing c such that C c < 1/2 one has |ρ(z +w)/ρ(z) − 1| < 1/2, which implies

ρ1/2(z +w)/2 ≤ ρ1/2(z) ≤ 3 ρ1/2(z +w)/2,

namely ρ1/2 is g continuous, hence so is ρ. Note that M〈ξ〉−1
γ ≤ ρ(z) ≤ CM−4 ≤ C.

If |η| ≥ c 〈ξ〉γ/2, then gσz (w) ≥ Mc2〈ξ〉γ/4 and gσz (w) ≥ Mc|η|/2 therefore

ρ(z +w) ≤ C ≤ C〈ξ〉γρ(z) ≤ C′ρ(z)(1 + gσz (w)).

If |η| ≤ c〈ξ〉γ then (7.4) gives

(7.5) ρ1/2(z +w) ≤ Cρ1/2(z)(1 + gz(w))1/2 ≤ Cρ1/2(z)(1 + gσz (w))1/2,

so in view of (7.2), ρ is an admissible weight. �

Lemma 7.2. σ is an admissible weight for g and σ ∈ S(σ, g).

Proof. Since ρ(z) + M〈ξ〉−1
γ is admissible for g by Lemma 7.1, it is clear

that so is σ = t + ρ(z) + M〈ξ〉−1
γ for t ≥ 0. The second assertion is clear from

|∂αx ∂βξ σ| � σ1−|α+β|/2〈ξ〉−|β|
γ � σ(M−1〈ξ〉γ)|α+β|/2〈ξ〉−|β|

γ for σ ≥ M〈ξ〉−1
γ . �

7.2 ω and φ are admissible weights for g. We start by showing

Lemma 7.3. ω and φ are g continuous.

Proof. Denote f = t − ψ and h = M1/2ρ1/2〈ξ〉−1/2
γ so that ω2 = f 2 + h2. Note

that

|ω(z +w) − ω(z)| = |ω2(z +w) − ω2(z)|/|ω(z +w) + ω(z)|
≤ 2|f (z +w) − f (z)| + 2|h(z +w) − h(z)|(7.6)

because |f (z+w)+ f (z)|/|ω(z+w)+ω(z)| ≤ 2, |h(z+w)+h(z)|/|ω(z+w)+ω(z)| ≤ 2.
Assume gz(w) < c (≤ 1/2), hence (7.3). It is assumed that constants C may
change from line to line but are independent of γ ≥ M5 ≥ 1. Noting that
|f (z +w) − f (z)| = |ψ(z +w) − ψ(z)| it follows from Lemma 6.1 that

|f (z +w) − f (z)| ≤ Cρ1/2(z + sw)(|y| + 〈ξ + sη〉−1
γ |η|)

≤ Cρ1/2(z + sw)(|y| + 〈ξ〉−1
γ |η|)

≤ CM1/2ρ1/2(z)〈ξ〉−1/2
γ g1/2

z (w)

(7.7)
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since ρ is g continuous. Noting that ω(z) ≥ M1/2ρ1/2(z)〈ξ〉−1/2
γ we have

(7.8) |f (z +w) − f (z)| ≤ Cω(z)g1/2
z (w).

A similar argument shows that

|h(z +w) − h(z)| ≤ CM1/2〈ξ〉−1
γ g1/2

z (w).

Since ω(z) ≥ M〈ξ〉−1
γ we have |h(z + w) − h(z)| ≤ CM−1/2ω(z)g1/2

z (w). Therefore
from (7.6) one has |ω(z + w) − ω(z)| ≤ Cω(z)g1/2

z (w). Choosing c such that
C c < 1/2 we conclude that ω is g continuous.

Next consider φ = ω + f . Write

φ(z +w) − φ(z) =
(f (z +w) − f (z))(φ(z +w) + φ(z)) + h2(z +w) − h2(z)

ω(z +w) + ω(z)
.(7.9)

Since ω(z+w)/C ≤ ω(z) ≤ Cω(z+w), and decreasing c > 0 if necessary, together
with (7.8) this gives |f (z + w) − f (z)|/(ω(z + w) + ω(z)) ≤ Cg1/2

z (w). Recalling
h2(z) = Mρ(z)〈ξ〉−1

γ and repeating similar arguments one sees that

|h2(z +w) − h2(z)| ≤ CM1/2ρ(z)〈ξ〉−1
γ g1/2

z (w)(7.10)

for ρ1/2(z) ≥ M1/2〈ξ〉−1/2
γ . Taking (6.1) into account it follows from (7.10) that

|h2(z +w) − h2(z)|/(ω(z +w) + ω(z)) ≤ Cφ(z)g1/2
z (w).

Combining these estimates we obtain from (7.9) that

|φ(z +w)/φ(z) − 1| ≤ C|φ(z +w)/φ(z) + 1|g1/2
z (w) + Cg1/2

z (w),

which gives φ(z)/C ≤ φ(z+w) ≤ C φ(z) choosing c > 0 small, showing that φ is g
continuous. �

Lemma7.4. ω andφ are admissibleweights for g andω ∈ S(ω, g),φ∈S(φ, g).

Proof. Note that

〈ξ〉−1
γ ≤ M〈ξ〉−1

γ ≤ √
M
√
ρ〈ξ〉−1/2

γ ≤ ω ≤ CM−4 ≤ C.

Assume |η| ≥ c 〈ξ〉γ hence gσz (w) ≥ Mc2〈ξ〉γ ≥ c2〈ξ〉γ. Therefore

(7.11) ω(z +w) ≤ C ≤ C〈ξ〉γω(z) ≤ C′ω(z)(1 + gσz (w)).

Assume |η| ≤ c 〈ξ〉γ and note that (7.5). Then checking the proof of Lemma 7.3
we see that

|f (z +w) − f (z)| ≤ Cω(z)(1 + gσz (w))
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and

|h(z +w) − h(z)| ≤ Cω(z)(1 + gσz (w))1/2.

Then (7.11) follows from (7.6) which proves that ω is admissible for g. Turn to φ.
From Lemma 6.3 it follows that

〈ξ〉−1
γ /C ≤ M〈ξ〉−1

γ /C ≤ φ(z) = ω(z) + f (z) ≤ CM−4 ≤ C.

If |η| ≥ 〈ξ〉γ/2 then gσz (w) ≥ M〈ξ〉γ/4 ≥ 〈ξ〉γ/4, hence

φ(z +w) ≤ C ≤ C2〈ξ〉γφ(z) ≤ Cφ(z)(1 + gσz (w)).

Assume |η| ≤ 〈ξ〉γ/2 so that (7.3) holds. From (7.5) and (7.7) we have that

|f (z +w) − f (z)| ≤ Cρ1/2(z)〈ξ〉−1/2
γ (1 + gσz (w)).

Recalling (7.5) and M2gz(w) = gσz (w), the same arguments used to obtain (7.10)
show that |h2(z + w) − h2(z)| ≤ Cρ1/2(z)〈ξ〉−3/2

γ (1 + gσz (w)). Taking these into
account (7.9) yields

|φ(z +w) − φ(z)|

≤ C
( ρ1/2(z)〈ξ〉−1/2

γ

ω(z +w) + ω(z)
(φ(z +w) + φ(z)) +

ρ1/2(z)〈ξ〉−3/2
γ

ω(z +w) + ω(z)

)
(1 + gσz (w)).

(7.12)

Applying Lemma 6.3 to (7.12) we obtain

|φ(z +w) − φ(z)| ≤ C(φ(z +w) + 2φ(z))
ρ1/2(z)〈ξ〉−1/2

γ

ω(z +w) + ω(z)
(1 + gσz (w)).

If ρ1/2(z)〈ξ〉−1/2
γ (1 + gσz (w))

/
(ω(z +w) + ω(z)) < 1/4, then it follows that

|φ(z +w)/φ(z) − 1| ≤ (φ(z +w)/φ(z) + 2)/4

from which we have φ(z +w) ≤ 2φ(z) ≤ 5φ(z +w). If

ρ1/2(z)〈ξ〉−1/2
γ (1 + gσz (w))

/
(ω(z +w) + ω(z)) ≥ 1/4,

we have

32(1 + gσz (w))2 ≥ 4〈ξ〉γω(z +w)ω(z)
/
ρ(z) ≥ φ(z +w)

/
φ(z)

by (6.1) and an obvious inequality φ(z+w) ≤ 2ω(z+w). Thus we conclude that φ
is admissible for g. �
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7.3 λj are admissible weights for g.

Lemma 7.5. Assume that λ ∈ C(σ2) and λ ≥ cMσ〈ξ〉−1
γ with some c > 0.

Then λ is an admissible weight for g.

Proof. Consider
√
λ. Assume gz(w) < c and hence 〈ξ + sη〉γ ≈ 〈ξ〉γ. Since√

λ ∈ C(σ) it follows that

|√λ(z +w) − √
λ(z)| ≤ C

√
σ(z + sw)M1/2〈ξ〉−1/2

γ g1/2
z (w)(7.13)

with |s| < 1 which is bounded by C′√σ(z)M1/2〈ξ〉−1/2
γ g1/2

z (w) since σ is g contin-
uous. By assumption λ(z) ≥ cMσ(z)〈ξ〉−1

γ , one has

|√λ(z +w) − √
λ(z)| ≤ C′′√λ(z)g1/2

z (w).

Choosing c > 0 such that C′′√c < 1 shows that
√
λ(z) is g continuous and so

is λ(z). From cM2〈ξ〉−2
γ ≤ cMσ〈ξ〉−1

γ ≤ λ ≤ C′σ2 ≤ C′M−4 one sees that

c1M〈ξ〉−1
γ ≤ c1M

1/2σ1/2〈ξ〉−1/2
γ ≤ √

λ(z) ≤ C.

If |η| ≥ 〈ξ〉γ/2, hence gσz (w) ≥ M〈ξ〉γ/4, then

√
λ(z +w) ≤ C ≤ C(c1M)−1〈ξ〉γ

√
λ(z) ≤ C′√λ(z)gσz (w).

If |η| ≤ 〈ξ〉γ/2, noting that σ(z+w) ≤ C σ(z)(1+gσz(w)), it follows from (7.13) that

|√λ(z +w) − √
λ(z)| ≤ C

√
λ(z)(1 + gσz (w))

which proves that
√
λ is an admissible weight for g and hence so is λ. �

Lemma 7.6. Assume that λ ∈ C(σ) and λ ≥ cM〈ξ〉−1
γ with some c > 0.

Then λ is an admissible weight for g. If λ ∈ C(1) and λ ≥ c with some c > 0 then λ
is an admissible weight for g.

Proof. It is enough to repeat the proof of Lemma 7.5. �

Lemma 7.7. Assume λ ∈ C(σ2) and λ ≥ cMσ〈ξ〉−1
γ with some c > 0. Then

∂αx ∂
β
ξ λ ∈ S(

√
σ
√
λ〈ξ〉−|β|

γ , g), |α + β| = 1.

In particular λ ∈ S(λ, g).
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Proof. Fromλ∈C(σ2)we have |〈ξ〉|β|γ ∂αx ∂βξ λ| ≤ C σ for |α+β| = 2. Sinceλ≥0,

thanks to Glaeser’s inequality one has |∂αx ∂βξ λ| ≤ C′ √σ√λ 〈ξ〉−|β|
γ for |α + β| = 1.

For |α′ + β′| ≥ 1 note that

|∂α′
x ∂

β′
ξ′ (∂

α
x ∂
β
ξ λ)| � σ1−(|α′+β′ |−1)/2〈ξ〉−|β|

γ 〈ξ〉−|β′ |
γ

� σM−|α′+β′ |/2M1/2〈ξ〉−1/2
γ 〈ξ〉(|α′|−|β′ |)/2

γ 〈ξ〉−|β|
γ

�
√
σM−|α′+β′ |/2√λ 〈ξ〉(|α′ |−|β′ |)/2

γ 〈ξ〉−|β|
γ

because λ ≥ cMσ〈ξ〉−1
γ and σ ≥ M〈ξ〉−1

γ which proves the first assertion. Noting

that
√
σ〈ξ〉−|β|

γ ≤ CM−1/2
√
λ 〈ξ〉(|α|−|β|)/2

γ it is clear that λ ∈ S(λ, g). �

Lemma 7.8. Assume that λ ∈ C(σ) and λ ≥ cM〈ξ〉−1
γ with some c > 0. Then

λ ∈ S(λ, g). If λ ∈ C(1) and λ ≥ c with some c > 0, then λ ∈ S(λ, g).

Proof. It suffices to repeat the proof of Lemma 7.7. �

Corollary 7.1. For s ∈ R we have λs
j ∈ S(λs

j , g), j = 1, 2, 3.

Define

κ =
1
t

+
1
ω

=
t + ω
tω

, t > 0.

Lemma 7.9. κ is an admissible weight for g and κs ∈ S(κs, g) for s ∈ R.

Proof. Since ω−1 is admissible for g it is clear that so is κ = t−1 +ω−1. Noting
that ω−1 ∈ S(ω−1, g) and ω−1 ≤ κ it is also clear that

|∂αx ∂βξ κ| = |∂αx ∂βξω−1| � M−|α+β|/2κ〈ξ〉(|α|−|β|)/2
γ

for |α + β| ≥ 1, which proves κ ∈ S(κ, g). �

Lemma 7.10. One has

∂αx ∂
β
ξ κ

s ∈ S(M−(|α+β|−1)/2κsω−1ρ1/2〈ξ〉−1/2+(|α|−β|)/2
γ , g), |α + β| ≥ 1.

Proof. Since ∂αx ∂
β
ξ κ

s = κs−1∂αx ∂
β
ξ κ it is enough to show the case s = 1. The

proof for the case s = 1 follows easily from Lemma 6.2. �

Lemma 7.11. Denote ε̄ =
√

3/ē c̄1/2 = 4
√

6/ē. There is C > 0 such that

1
κλ1

≤ ε̄2(1 + CM−4)κ,
1
σ2κ

≤ κ.
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Proof. In view of Propositions 4.1 and 5.1 one sees that

λ1 ≥ (1/ε̄2)(1 − CM−4) min {t2, ω2}.
Denote c = ε̄2(1 − CM−4)−1. If ω2 ≥ t2 and hence λ1 ≥ t2/c, then 1/λ1 ≤ c/t2,
which shows that

1
κλ1

≤ c
κt2

=
c tω

(t + ω)t2
=

cω
(t + ω)t

≤ c(t + ω)
tω

= cκ.

If t2 ≥ ω2 and hence λ1 ≥ ω2/c, then 1/λ1 ≤ c/ω2 and hence

1
κλ1

≤ c
κω2

=
c tω

(t + ω)ω2
=

c t
(t + ω)ω

≤ c(t + ω)
tω

= cκ,

thus the first assertion. To show the second assertion it suffices to note that σ ≥ t
and then σ2(t + ω)2 ≥ t2(t + ω)2 ≥ t2ω2. �

8 Lower bounds of op(λj)

8.1 Some preliminary lemmas. Introduce a metric

ḡ = 〈ξ〉γ|dx|2 + 〈ξ〉−1
γ |dξ|2

independent of M so that g = M−1 ḡ. We start with

Lemma 8.1. Let m be an admissible weight for g and p ∈ S(m, g) sat-

isfy p ≥ c m with some constant c > 0. Then p−1 ∈ S(m−1, g) and there ex-
ist k, k̃ ∈ S(M−1, g) such that

p#p−1#(1 + k) = 1, (1 + k)#p#p−1 = 1, p−1#(1 + k)#p = 1,

p−1#p#(1 + k̃) = 1, (1 + k̃)#p−1#p = 1, p#(1 + k̃)#p−1 = 1.

Proof. In this proof every constant is independent of γ ≥ 1 and M. It is clear
that p−1 ∈ S(m−1, g). Write p#p−1 = 1 − r where r ∈ S(M−1, g). Since

|r|(l)S(1,ḡ) = sup
|α+β|≤l,(x,ξ)∈R2d

|〈ξ〉(|β|−|α|)/2
γ ∂αx ∂

β
ξ r| ≤ ClM

−1,

from the L2-boundedness theorem (see [7, Theorem 18.6.3]), we have

‖op(r)‖ ≤ CM−1.

Therefore for large M there exists the inverse (1 − op(r))−1 which is given by

1 +
∞∑

=1

r#
 ∈ S(1, ḡ)
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(see [1], [20]). Denote k =
∑∞

=1 r#
 ∈ S(1, ḡ) and prove k ∈ S(M−1, g). It can be

seen from the proof (e.g., [20]) that for any l ∈ N one can find Cl > 0, independent
of γ, such that

|k|(l)S(1,ḡ) ≤ Cl,

because |k|(l)S(1,ḡ) depends only on l, |r|(l′)S(1,ḡ) with some l′ = l′(l) and structure
constants of ḡ which is independent of γ. Note that k satisfies (1 − r)#(1 + k) = 1,
that is

(8.1) k = r + r#k.

Since r ∈ S(M−1, g) it follows from (8.1) that |k|(l)S(1,ḡ) ≤ ClM−1. Assume that

(8.2) sup |〈ξ〉(|β|−|α|)/2
γ ∂αx ∂

β
ξ k| ≤ Cα,β,νM

−1−l/2, |α + β| ≥ l

for 0 ≤ l ≤ ν. Let |α + β| ≥ ν + 1 and note that

∂αx ∂
β
ξ k = ∂αx ∂

β
ξ r +

∑
C···(∂α

′′
x ∂

β′′
ξ r)#(∂α

′
x ∂
β′
ξ k)

where
α′ + α′′ = α and β′ + β′′ = β.

From the assumption (8.2) we have ∂α
′

x ∂
β′
ξ k ∈ S(M−1−|α′+β′ |/2〈ξ〉(|α′ |−|β′ |)/2

γ , ḡ)

if |α′ + β′| ≤ ν and ∂α
′

x ∂
β′
ξ k ∈ S(M−1−ν/2〈ξ〉(|α′ |−|β′ |)/2

γ , ḡ) if |α′ + β′| ≥ ν + 1.
Since r ∈ S(M−1, g) one has

(∂α
′′

x ∂
β′′
ξ r)#(∂α

′
x ∂
β′
ξ k) ∈ S(M−1−(ν+2)/2〈ξ〉(|α|−|β|)/2

γ , ḡ),

which implies that (8.2) holds for 0 ≤ l ≤ ν + 1 and hence for all ν by induction
on ν. This proves that k∈S(M−1, g). The proof of the assertions for k̃ is similar.�

Here recall [27, Lemmas 3.1.6, 3.1.7].

Lemma 8.2. Let q ∈ S(1, g) satisfy q ≥ c with a constant c independent of M.

Then there is C > 0 such that

(op(q)u, u) ≥ (c − CM−1/2)‖u‖2.

Proof. One can assume that c = 0. We see that q(x, ξ) + M−1/2 is an ad-
missible weight for ḡ and (q + M−1/2)1/2 ∈ S((q + M−1/2)1/2, ḡ). Moreover,
∂αx ∂

β
ξ (q + M−1/2)1/2 ∈ S(M−1/2〈ξ〉(|α|−|β|)/2

γ , ḡ) for |α + β| = 1. Therefore

q + M−1/2 = (q + M−1/2)1/2#(q + M−1/2)1/2 + r, r ∈ S(M−1, ḡ)

which proves the assertion. �
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Lemma 8.3. Let q ∈ S(1, g). Then there is C > 0 such that

‖op(q)u‖ ≤ (sup |q| + CM−1/2)‖u‖.
Lemma 8.4. Let m > 0 be an admissible weight for g and m ∈ S(m, g). Then

there is C > 0 such that

(op(m)u, u) ≥ (1 − CM−2)‖op(
√

m)u‖2.

If q ∈ S(m, g) then there is C > 0 such that

|(op(q)u, u)| ≤ (sup (|q|/m) + CM−1/2)‖op(
√

m )u‖2.

Proof. First note that m±1/2 are admissible weights and m±1/2 ∈ S(m±1/2, g).
Write

q̃ = (1 + k)#m−1/2#q#m−1/2#(1 + k̃) ∈ S(1, g),

where m1/2#(1 + k)#m−1/2 = 1 and m−1/2#(1 + k̃)#m1/2 = 1 such that

m1/2#q̃#m1/2 = q.

Since k, k̃ ∈ S(M−1, g) one sees that q̃ = qm−1 + r with r ∈ S(M−1, g). Thanks to
Lemma 8.3 we have

‖op(qm−1)v‖ ≤ (sup (|q|/m) + CM−1/2)‖v‖
hence |(op(q)u, u)| is bounded by

|(op(qm−1)op(m1/2)u, op(m1/2)u)| + CM−1‖op(m1/2)u‖2

which proves the second assertion. The first assertion follows from the second
since m = m1/2#m1/2 + r with r ∈ S(M−2m, g). �

Lemma 8.5. Let mi > 0 be two admissible weights for g and assume that
mi ∈ S(mi, g) and m2 ≤ C m1 with C > 0. Then there is C′ > 0 such that

‖op(m2)u‖ ≤ C′‖op(m1)u‖.

Proof. Write m̃2 = m2#m−1
1 #(1 + k) ∈ S(1, g) such that m2 = m̃2#m1 with

k ∈ S(M−1, g). Then

‖op(m2)u‖ = ‖op(m̃2)op(m1)u‖ ≤ C′‖op(m1)u‖
proves the assertion. �
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8.2 Lower bounds of op(λj).

Lemma 8.6. There exist C > 0 and M0 such that

Re (op(λj#κ)u, u) ≥ (1 − CM−2)‖op(κ1/2λ1/2
j )u‖2, M ≥ M0.

Proof. Since
λj#κ = κλj + rj1 + rj2

where rj1 is pure imaginary and rj2 ∈ S(M−2κλj, g), the assertion follows from
Lemma 8.4. �

Lemma 8.7. There exist c > 0 and M0 such that

(op(λ1)u, u) ≥ c ‖op(λ1/2
1 )u‖2 + cM2‖〈D〉−1

γ u‖2, M ≥ M0.

Proof. From Propositions 4.1 and 5.1 it follows that λ1 ≥ c′ Mσ〈ξ〉−1
γ with

some c′ > 0. Write

λ1 − c Mσ〈ξ〉−1
γ = λ1/2 + (λ1/2 − c Mσ〈ξ〉−1

γ ),

where c > 0 is chosen so that λ̃1 = λ1/2 − c Mσ〈ξ〉−1
γ ≥ c1Mσ〈ξ〉−1

γ with c1 > 0.
Note that λ̃1 ∈ C(σ2) since Mσ〈ξ〉−1

γ ∈ C(σ2). Thanks to Lemmas 7.5 and 7.7 it
follows that λ̃1 ∈ S(λ̃1, g) and λ̃1 is an admissible weight for g. Thus we have
(op(λ̃1)u, u) ≥ (1 − CM−2)‖op(λ̃1/2

1 )u‖2 ≥ 0 if M ≥ √
C by Lemma 8.4. Since

M2〈ξ〉−2
γ ≤ Mσ〈ξ〉−1

γ it follows from Lemma 8.5 that

M‖〈D〉−1
γ u‖2 ≤ C‖op(σ1/2〈ξ〉−1/2

γ )u‖2.

Therefore the proof follows from Lemma 8.4. �
Similar arguments prove the following lemma.

Lemma 8.8. There exist c > 0 and M0 such that

(op(λ2)u, u) ≥ c ‖op(λ1/2
2 )u‖2 + c M‖〈D〉−1/2

γ u‖2, M ≥ M0,

(op(λ3)u, u) ≥ c‖u‖2, M ≥ M0.

We now summarize what we have proved in

Proposition 8.1. There exist c > 0, C > 0 and M0 such that

Re (op(Λ#κ)W,W) ≥ (1 − CM−2)‖op(κ1/2Λ1/2)W‖2,

Re (op(Λ)W,W) ≥ c (‖op(Λ1/2)W‖2 + ‖op(D)W‖2),

for M ≥ M0 where D = diag(M〈ξ〉−1
γ ,M

1/2〈ξ〉−1/2
γ , 1).
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9 System with diagonal symmetrizer

Diagonalizing the Bézoutmatrix introduced in Section 5 we reduce the system (5.2)
to a system with a diagonal symmetrizer.

Lemma 9.1. Let p ∈ C(σk). Then ∂αx ∂
β
ξ p ∈ S(σk−|α+β|/2〈ξ〉−|β|

γ , g).

Proof. The proof is clear from

|∂α′
x ∂

β′
ξ (∂αx ∂

β
ξ p)| � σk−|α′+β′+α+β|/2〈ξ〉−|β′+β|

γ

� σk−|α+β|/2〈ξ〉−|β|
γ σ−|α′+β′ |/2〈ξ〉−|α′+β′ |/2

γ 〈ξ〉(|α′|−|β′ |)/2
γ

for σ ≥ ρ ≥ M〈ξ〉−1
γ . �

Lemma 9.2. Let p ∈ C(σk) and q ∈ C(σ
). Then

p#p − p2 ∈ S(σ2k−2〈ξ〉−2
γ , g), p#q − pq ∈ S(σk+
−1〈ξ〉−1

γ , g).

Proof. The assertions follows from Lemma 9.1 and the Weyl calculus of
pseudodifferential operators. �

In what follows, in order to simplify notation we sometimes abbreviate S(m, g)
to S(m) where m is admissible for g. Since a ∈ C(σ), b ∈ C(σ3/2) one sees
that A#[ξ] = A(t, x, ξ)[ξ] + R, with R whose first row is (0, S(σ1/2), S(σ)) for
∂
β
ξ [ξ] ∈ S(1, g), by (4.5). Moving R to B we denote L = Dt − op(Ã) − op(B) where

(9.1) Ã =

⎡
⎢⎣
0 a b

1 0 0
0 1 0

⎤
⎥⎦ [ξ], B =

⎡
⎢⎣
b1 b2 + dM + S(σ1/2) b3 + S(σ)
0 0 0
0 0 0

⎤
⎥⎦

and transform L to another system using T introduced in Section 5.3. Note that
T−1#T = I − R with R ∈ S(M−1, g). Thanks to Lemma 8.1 there is K ∈ S(M−1, g)
such that (I − R)#(I + K) = I = (I + K)#(I − R) and hence

T−1#T#(I + K) = I, (I + K)#T−1#T = I, T#(I + K)#T−1 = I.

Therefore one can write

(9.2) L op(T) = op(T) L̃

where L̃ = Dt − op((I + K)#T−1#(Ã + B)#T) + op((I + K)#T−1#(DtT)).

Lemma 9.3. Notations being as above. Then K ∈ S(M−1〈ξ〉−1
γ , g).
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Proof. Write T = (tij). Then T−1#T = (
∑3

k=1 tki#tkj). Denote

3∑
k=1

tki#tkj = δij + rij.

Taking Lemma 5.6 into account, we see that rii ∈ S(σ−1〈ξ〉−2
γ , g)⊂S(M−1〈ξ〉−1

γ , g)
and rij ∈ S(σ1/2〈ξ〉−1

γ , g) ⊂ S(M−2〈ξ〉−1
γ , g) for i �= j thanks to Lemma 9.2 hence

R ∈ S(M−1〈ξ〉−1
γ , g). Since K ∈ S(M−1, g) satisfies K = R + R#K we conclude the

assertion. �
Therefore K#T−1#(Ã + B)#T ∈ S(M−1, g) is clear. Hence

L̃ = Dt − op(T−1#(Ã + B)#T − T−1#(DtT)) + op(S(M−1, g)).

In view of Lemmas 5.6 and 5.7 it follows from Lemma 9.2 that

T−1#(∂tT) = T−1∂tT +

⎡
⎢⎣

S(σ−1〈ξ〉−1
γ ) S(σ−1/2〈ξ〉−1

γ ) S(〈ξ〉−1
γ )

S(σ−1/2〈ξ〉−1
γ ) S(σ−1〈ξ〉−1

γ ) S(σ−1/2〈ξ〉−1
γ )

S(〈ξ〉−1
γ ) S(σ−1/2〈ξ〉−1

γ ) S(〈ξ〉−1
γ )

⎤
⎥⎦(9.3)

hence T−1#(∂tT) = T−1∂tT + S(M−1, g) because σ ≥ M〈ξ〉−1
γ .

We now study T−1#Ã#T . Noting that ∂αx ∂
β
ξ a ∈ S(σ1/2〈ξ〉−|β|

γ , g) and

∂αx ∂
β
ξ b ∈ S(σ〈ξ〉−|β|

γ , g) for |α + β| = 1 and ∂βξ [ξ] ∈ S(1, g), |β| = 1 we have

T−1#Ã = T−1Ã + R, R =

⎡
⎢⎣

S(1) S(M−2) S(M−6)
S(M−2) S(1) S(M−8)
S(M−8) S(M−2) S(M−6)

⎤
⎥⎦ .

Therefore T−1#Ã#T = (T−1Ã)#T + R1 with

R1 = R#T =

⎡
⎢⎣
S(M−4) S(M−2) S(1)
S(M−2) S(1) S(M−2)
S(M−4) S(M−2) S(M−8)

⎤
⎥⎦ .

Note that

T−1Ã =

⎡
⎢⎣

C(σ1/2) 1 + C(σ) C(σ5/2)
−1 + C(σ) C(σ1/2) C(σ3)
C(σ5/2) C(σ) C(σ3/2)

⎤
⎥⎦ [ξ]

and hence

〈ξ〉|β|γ ∂αx ∂βξ (T−1Ã) =

⎡
⎢⎣

S(1) S(1) S(M−8)
S(1) S(1) S(M−10)

S(M−8) S(M−2) S(M−4)

⎤
⎥⎦ , |α + β| = 1.
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Then thanks to (5.11) one sees that

(T−1Ã)#T = T−1ÃT + R2, R2 =

⎡
⎢⎣

S(1) S(M−2) S(M−2)
S(1) S(M−2) S(M−2)

S(M−2) S(M−4) S(M−6)

⎤
⎥⎦ .

Thus we obtain T−1#Ã#T = T−1ÃT + R1 + R2 where

R1 + R2 =

⎡
⎢⎣

S(1) S(M−2) S(M−2)
S(1) S(M−2) S(M−2)

S(M−2) S(M−4) S(M−6)

⎤
⎥⎦ .

Recall B given by (9.1). Since dM ∈ S(M, g) one sees by Lemma 5.6 that

T−1#B =

⎡
⎢⎣

S(σ) S(Mσ) S(σ)
S(σ3/2) S(Mσ3/2) S(σ3/2)

b1 + S(σ) b2 + dM + S(σ1/2) b3 + S(σ)

⎤
⎥⎦

because σ ≤ CM−4. Thus we conclude that T−1#B#T is written as

(9.4)

⎡
⎢⎣

S(σ) S(Mσ) S(σ)
S(σ3/2) S(Mσ3/2) S(σ3/2)

b3 + S(Mσ1/2) −b2 − dM + S(σ1/2) b1 + S(σ)

⎤
⎥⎦ .

Noting that b3(t, x, ξ) − b̄3 ∈ S(M−2, g) we can summarize what we have proved
in

Proposition 9.1. One can write L · op(T) = op(T) · L̃ where

L̃ = Dt − op(A + B), A = (T−1AT)[ξ] , B = B1 − T−1DtT

B1 = T−1#B#T =

⎡
⎢⎣

S(1) S(1) S(1)
S(1) S(1) S(1)

b̄3 + S(M−1) −2Mē + S(M−1) S(1)

⎤
⎥⎦ .

10 Weighted energy estimates

10.1 Energy form. Let w = tφ(t, x, ξ) and consider the energy with scalar
weight op(w−n):

E(V) = e−θt(op(Λ)op(w−n)V, op(w−n)V),

where θ > 0 is a large positive parameter and n is fixed such that

(10.1) n > (4
√

2 ) |3 b̄3 + iē|/ē + C∗ + 2 + 8(1 + 3
√

2)
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where C∗ is given by (3.14). It is clear from (4.17) that (10.1) follows from

(10.2) n > 12
√

2
|Psub(0, 0, 0, ξ̄)|

ē
+ C̄∗, C̄∗ = C∗ + 10 + 32

√
2.

Note that ∂tφ = ω−1φ and hence

∂tw
−n = −n

(1
t

+
1
ω

)
w−n = −nκw−n.

Recall that V satisfies

(10.3) ∂tV = op(iA + iB)V + F, B = B1 − T−1DtT.

Noting that � is real and diagonal hence op(Λ)∗ = op(Λ) one has

d
dt
E = − θe−θt(op(Λ)op(w−n)V, op(w−n)V)

− 2nRe e−θt(op(Λ)op(κw−n)V, op(w−n)V)

+ e−θt(op(∂t�)op(w−n)V, op(w−n)V)

+ 2Re e−θt(op(Λ)op(w−n)(op(iA + iB)V + F), op(w−n)V).

(10.4)

Consider op(φ−n)op(Λ)op(κφ−n) = op(φ−n#Λ#(κφ−n)). Since κ and φ−n are ad-
missible weights for g one has κ#φ−n = κφ−n − r with r ∈ S(M−1κφ−n, g). Let
r̃ = r#φn#(1 + k) ∈ S(M−1κ, g) such that r = r̃#φ−n and hence κφ−n = (κ + r̃)#φ−n.
Thus we have

Re (op(Λ)op(κw−n)V, op(w−n)V) ≥ Re (op(Λ#κ)op(w−n)V, op(w−n)V)

− |(op(Λ#r̃)op(w−n)V, op(w−n)V)|.
Since λj#r̃ ∈ S(M−1κλj, g) thanks to Lemma 8.4 the second term on the right-hand
side is bounded by CM−1‖op(κ1/2Λ1/2)op(w−n)V‖. Applying Proposition 8.1, and
denoting Wj = op(w−n)Vj, one can conclude that

Re (op(Λ)op(κw−n)V, op(w−n)V) ≥ (1 − CM−1)‖op(κ1/2Λ1/2)W‖2,

Re (op(Λ)op(w−n)V, op(w−n)V) ≥ c(‖op(Λ1/2)W‖2 + ‖op(D)W‖2),

for M ≥ M0.

Definition 10.1. To simplify notation we denote

E1(V) = ‖op(κ1/2Λ1/2)op(w−n)V‖2 = t−2n‖op(κ1/2Λ1/2)op(φ−n)V‖2,

E2(V) = ‖op(Λ1/2)op(w−n)V‖2 = t−2n‖op(Λ1/2)op(φ−n)V‖2.

Now we summarize:
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Lemma 10.1. One can find C > 0, c > 0 and M0 such that

nRe (op(Λ)op(κw−n)V,op(w−n)V) + θRe (op(Λ)op(w−n)V, op(w−n)V)

≥ n(1 − CM−1)E1(V) + c θE2(V), M ≥ M0.

10.2 The term (op(Λ)op(w−n)op(B)V, op(w−n)V). Recall thatλi ∈S(λi, g)
and λ1 ≤ Cσλ2 ≤ Cσ2λ3 with some C > 0. We show

Lemma 10.2. Let W = op(φ−n)V. Then we have

|(op(λi)op(b)Wj,Wi)| ≤ CM−2E1(V) + CM2E2(V), b∈ S(σ−1/2, g), j ≥ i,

|(op(λ3)op(b)W2,W3)| ≤ CM−2E1(V) + CM2+2lE2(V), b∈ S(Ml, g),

|(op(λ3)op(b)W1,W3)| ≤ (
√

3 ε̄‖op(b)‖ + CM−1/2)E1(V), b∈ S(1, g),

|(op(λ2)op(b)W1,W2)| ≤ (ε̄‖op(λ1/2
2 b)‖ + CM−1/2)E1(V), b∈ S(σ−1/2, g).

Proof. Letb ∈ S(σ−1/2, g). Noting thatλ1/2
i λ

−1/2
j ∈ S(σ(j−i)/2, g) one canwrite

r = (1 + k)#(κ−1/2λ
−1/2
i )#(λi#b)#λ−1/2

j #(1 + k̃) ∈ S(σ(j−i)/2, g), j ≥ i

for σκ ≥ 1, such that (κ1/2λ
1/2
i )#r#λ1/2

j = λi#b. Then we have

|(op(λi)op(b)Wj,Wi)| ≤ M−2‖op(κ1/2Λ1/2)W‖2 + CM2‖op(Λ1/2)W‖2

for j ≥ i. Let b ∈ S(Ml, g) and denote

r = (1 + k)#(κ−1/2λ
−1/2
2 )#(λ3#b)#λ−1/2

3 #(1 + k̃)

such that (κ1/2λ1/2
2 )#r#λ1/2

3 = λ3#b. Since r ∈ S(κ−1/2λ1/2
3 λ−1/2

2 , g) ⊂ S(1, g) in
view of Lemma 7.11 then |(op(λ3)op(b)W2,W3)| is bounded by

CM−2‖op(κ1/2Λ1/2)W‖2 + CM2+2l‖op(Λ1/2)W‖2.

We check (op(λ3)op(b)W1,W3) for b ∈ S(1, g). Noting that κ−1λ
−1/2
1 ∈ S(1, g), by

Lemma 7.11, write

r = (1 + k)#(κ−1/2λ
−1/2
1 )#(λ3#b)#(κ−1/2λ

−1/2
3 )#(1 + k̃) ∈ S(1, g)

such that (κ1/2λ
1/2
1 )#r#(κ1/2λ

1/2
3 ) = λ3#b. Since k, k̃ ∈ S(M−1, g) it is easy to

see that r = (λ1/2
3 λ

−1/2
1 κ−1)#b + r̃ with r̃ ∈ S(M−1/2, g). By Proposition 5.1 and

Lemma 7.11 one sees that |λ1/2
3 λ

−1/2
1 κ−1| ≤ √

3 ε̄ + CM−4, hence

|(op(λ3)op(b)W1,W3)| = |(op(r)op(κ1/2λ1/2
1 )W1, op(κ1/2λ1/2

3 )W3)|
≤ (

√
3 ε̄‖op(b)‖ + CM−1/2)‖op(κ1/2Λ1/2)W‖2.
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Next consider (op(λ2)op(b)W1,W2) for b ∈ S(σ−1/2, g) = S(λ−1/2
2 , g). Denote

r = (1 + k)#(κ−1/2λ
−1/2
2 )#(λ2#b)#(λ−1/2

1 κ−1/2)#(1 + k̃) ∈ S(1, g)

such that (κ1/2λ
1/2
2 )#r#(λ1/2

1 κ1/2) = λ2#b. Write r = (κ−1λ
−1/2
1 )#(λ1/2

2 b) + r̃ with
r̃ ∈ S(M−1, g). Thus repeating the same arguments as above one concludes the last
assertion. �

In particular, this lemma implies

Corollary 10.1. Let B = (bij) ∈ S(1, g). Then with W = op(w−n)V

|(op(Λ)op(B)W,W)| ≤ (
√

3 ε̄‖op(b31)‖ + CM−1/2)E1(V) + CE2(V).

From Proposition 9.1 there results φ−n#B1 − B1#φ−n ∈ S(M−1φ−n, g), so one
concludes by Corollary 10.1 that

(10.5) |(op(Λ)[op(w−n), op(B1)]V,W)| ≤ CM−1E1(V) + CE2(V)

where W = op(w−n)V again. Write T−1∂tT = (t̃ij) and recall (5.12) and note
that t̃12 = −t̃21 ∈ C(σ−1/2) and t̃31 ∈ S(1, g). Then thanks to Lemma 6.5 one sees
that λj#(φ−n#t̃j1 − t̃j1#φ−n)#φn is in

S(σ1−j/2ω−1ρ1/2〈ξ〉−1
γ , g) ⊂ S(M−1

√
κλ1

√
κλj, g), j = 2, 3,

because Cλ1 ≥ Mρ〈ξ〉−1
γ , Cλ2 ≥ M〈ξ〉−1

γ and ω−1 ≤ κ. Therefore repeating
similar arguments one concludes that

(10.6) |(op(Λ)[op(w−n), op(T−1∂tT)]V,W)| ≤ CM−1E1(V).

Recalling B = B1 − T−1DtT it follows from (10.5) and (10.6) that

(10.7) |(op(Λ)[op(w−n), op(B)]V,W)| ≤ CM−1E1(V) + CE2(V).

With B = (qij) we see that qij ∈ S(σ−1/2, g) for j ≥ i and

q21 = i∂t(3b/2aM) + S(1), q31 = b̄3 + iē/3 + S(M−1), q32 = −2Mē + S(M−1)

by Proposition 9.1. Applying Lemma 10.2, we have from (5.13), recalling Propo-
sition 5.1 and ε̄ =

√
3/ēc̄1/2, that

|(op(Λ)op(B)op(w−n)V, op(w−n)V)|
≤ (|3b̄3 + iē|/ēc̄1/2 + (6 +

√
2)/c̄1/2 + CM−1/2)E1(V) + CM4E2(V).

(10.8)

Combining the estimates (10.8) and (10.7) we obtain

Lemma 10.3. The term |(op(Λ)op(w−n)op(B)V, op(w−n)V)| is bounded by
the right-hand side of (10.8).
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10.3 The term (op(Λ)op(w−n)op(iA)V, op(w−n)V). Note that

φ−n#([ξ]r) − ([ξ]r)#φ−n ∈ S(φ−nσs−1/2ω−1ρ1/2, g) for r ∈ C(σs)

by Lemma 6.5. Recalling Corollary 5.3 and A = AT [ξ], then denoting

φ−n#A − A#φ−n = (rij),

we see that rij ∈ S(φ−nω−1ρ1/2, g) ⊂ S(M−2κφ−n, g) for j ≥ i because ω−1 ≤ κ.
Writing λi#rij = λi#r̃ij#φ−n with r̃ij ∈ S(M−2κ, g) one obtains

|(op(λi)op(rij)Vj,Wi)| ≤ CM−2‖op(κ1/2Λ1/2)W‖2 for j ≥ i

since λi#r̃ij ∈ S(M−2κλi, g). From Lemma 5.8 one has ã21 = λ1 C(σ−1), hence
thanks to Lemmas 6.5 and 7.7

φ−n#(ã21[ξ]) − φ−nã21[ξ] ∈ S(σ−1/2λ1/2
1 ω−1ρ1/2φ−n, g) ⊂ S(λ1/2

1 κφ−n, g)

for ω−1 ≤ κ again. Thus we have

|(op(λ2)op(r21)V1,W2)| ≤ CM−2‖op(κ1/2Λ1/2)W‖2

since λ1/2
2 ≤ CM−2. Similarly from ã31 = λ1 C(σ1/2), ã32 = λ2 C(1) and Lemma 7.7

it follows that r3j ∈ S(σ2−jλ
1/2
j ω−1ρ1/2φ−n, g) ⊂ S(M−2λ

1/2
j κφ−n, g) for j = 1, 2.

Here we have used ∂αx ∂
β
ξ λ2 ∈ S(λ1/2

2 〈ξ〉−|β|
γ , g) for |α + β| = 1 which follows

from λ2 ∈ C(σ) easily. Then one obtains

|(op(λ3)op(r3j)Vj,W3)| ≤ CM−2‖op(κ1/2Λ1/2)W‖2, j = 1, 2.

Therefore (op(Λ)op(w−n)op(A)V, op(w−n)V) − (op(Λ)op(A)W,W) is bounded by
a constant times M−2E1(V).

Next we studyΛ#A−ΛA = (qij). From Corollary 5.3 and Lemma 7.7 we have

λ1#(ã1j[ξ]) − λ1ã1j[ξ] ∈ S(σ1/2λ
1/2
1 , g), λ2#(ã2j[ξ]) − λ2ã2j[ξ] ∈ S(λ1/2

2 , g)

for j ≥ 1 and j ≥ 2 respectively. Then noting that Cλ1/2
1 κ ≥ 1 and Cλ2κ ≥ 1

|(op(qij)Wj,Wi)| ≤ CM−2‖op(κ1/2Λ1/2)W‖2 + CM2‖op(Λ1/2)W‖2, j ≥ i.

Repeating similar arguments one has λi#(ãij[ξ]) − λiãij[ξ] ∈ S(M−2κλ
1/2
i λ

1/2
j , g)

and hence

|(op(qij)Wi,Wj)| ≤ CM−2‖op(Λ1/2κ1/2)W‖2 for i > j.

Thus we conclude that

|(op(Λ)op(w−n)op(A)V, op(w−n)V)−(op(ΛA)W,W)|
≤ CM−2E1(V) + CM2E2(V).

(10.9)

Since ΛA = A∗Λ we have
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Lemma 10.4. One can find C > 0 such that

|Re (op(Λ)op(w−n)op(iA)V, op(w−n)V)| ≤ CM−2E1(V) + CM2E2(V).

10.4 The term (op(∂tΛ)op(w−n)V, op(w−n)V). We start with

Lemma 10.5. We have ∂tλj ∈ S(κλj, g), j = 1, 2.

Proof. Note that Lemma 3.6 with ε =
√

2M〈ξ〉−1
γ implies

|∂t�M| ≤ C∗(1/t + 1/ω)�M = C∗κ�M.

Recalling ∂tλ1 = −∂tq(λ1)/∂λq(λ1) it follows from (5.6) and (5.9) that

|∂tλ1| ≤ (1 + CM−2)(|∂taM/aM|λ1 + |∂t�M|/6aM).

Since (1+CM−2)λ1 ≥ �M/6aM byProposition 5.1 and1/aM ≤ κ/e byLemma7.11
one concludes that

(10.10) |∂tλ1| ≤ (1 + CM−2)(C∗ + 1)κλ1.

Note that

|∂αx ∂βξ ∂tλ1| ≤ Cσ1−|α+β|/2〈ξ〉−|β|
γ ≤ Cσ1/2〈ξ〉−1/2

γ 〈ξ〉(|α|−|β|)/2
γ for ∂tλ1 ∈ C(σ).

From Lemma 7.11 and Cλ1 ≥ Mσ〈ξ〉−1
γ it follows that

κλ1 ≥ κ√λ1M
1/2σ1/2〈ξ〉−1/2

γ /C ≥ M1/2σ1/2〈ξ〉−1/2
γ /C′,

which proves that |∂αx ∂βξ ∂tλ1|≤CM−1/2κλ1〈ξ〉(|α|−|β|)/2
γ for |α+β|=1. For |α+β| ≥ 2

it follows that

|∂αx ∂βξ ∂tλ1| � σ−(|α+β|−2)/2〈ξ〉−|β|
γ � M〈ξ〉−1

γ M−|α+β|/2〈ξ〉(|α|−|β|)/2
γ

≤ σ−1Mσ〈ξ〉−1
γ M−|α+β|/2〈ξ〉(|α|−|β|)/2

γ ≤ Cκλ1M
−|α+β|/2〈ξ〉(|α|−|β|)/2

γ

because κσ ≥ 1. Thus ∂tλ1 ∈ S(κλ1, g). On the other hand, ∂tλj ∈ S(κλj, g),
j = 2, 3 is clear since ∂tλj ∈ C(1) ⊂ S(1, g) ⊂ S(κλ2, g) for Cλ2κ ≥ 1. This
completes the proof. �

Note that from (5.6), (5.9) and |∂t�M| � a2
M we see that

(10.11) |∂tλ2| ≤ (1 + CM−2)|∂taM|λ2/aM + CaM ≤ (1 + CM−2)κλ2

for Cκλ2 ≥ 1. Since |(op(∂tλ3)W3,W3)| ≤ C‖op(λ3)W3‖2 is evident, by applying
Lemma 8.4 one obtains from (10.10) and (10.11)

Lemma 10.6. We have

|(op(∂tΛ)op(w−n)V, op(w−n)V)| ≤ (C∗ + 2 + CM−1/2)E1(V) + CE2(V).
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10.5 Conclusion. In what follows we denote ‖u‖s = ‖〈D〉sγu‖, and by
Hs = Hs(Rd) the set of tempered distributions u on R

d such that ‖u‖s < +∞.

Definition 10.2. Denote by H−n,s(0, δ) the set of f such that

t−n〈D〉sγf (t, ·) ∈ L2((0, δ) × R
d).

Consider the term Re (op(Λ)op(w−n)F, op(w−n)V) where F = t(F1,F2,F3).
Write Λ = (κ1/2Λ1/2)#R#(κ−1/2Λ1/2) with R ∈ S(1, g). Because of the choice
of n it follows from (10.4) and Lemmas 10.1, 10.3, 10.4 and 10.6 that one can
find ci > 0 and M0, γ0, θ0 such that

d
dt
E(V) ≤ − c1e

−θtE1(V) − c2θe
−θtE2(V)

+ |Re (op(Λ)op(w−n)F, op(w−n)V)|
for M ≥ M0, γ ≥ γ0 and θ ≥ θ0.

(10.12)

Thanks to Lemma 6.3 one has κ−1/2φ−nλ1/2
j ∈ S(M−n

√
t 〈ξ〉nγ, g), so we see easily

that

|Re (op(Λ)op(w−n)F, op(w−n)V)| ≤ CM−1E1(V) + CM−2n+1t2n+1‖F‖2
n.

Since M〈ξ〉−1
γ /C ≤ φ ≤ CM−4 and t−1/2 ≤ κ1/2 ≤ t−1/2 +ω−1/2 ≤ t−1/2 +M−1〈ξ〉γ

and 〈ξ〉−3/2+j/2
γ ≤ Cλ1/2

j for 1 ≤ j ≤ 3, then

M8nt−1‖V‖2
−1/C ≤ t2nE1(V) ≤ CM−2n(t−1‖V‖2

n + ‖V‖2
n+1),

M8n‖V‖2
−1/C ≤ t2nE2(V) ≤ CM−2n‖V‖2

n.
(10.13)

Assume Dj
tV ∈ H−n−1/2+j/2,n+1−j(0,M−4), j = 0, 1. From this one sees that

limt→+0 ‖V(t)‖n exists and is 0. Using this, we see that limt→+0 t−n‖V(t)‖n = 0.
Noting that E(V) ≤ CM−nt−2n‖V(t)‖2

n and integrating (10.12) over t we obtain

Proposition 10.1. There exist ci > 0, C > 0 and M0, γ0, θ0 such that for

any V with Dj
tV ∈ H−n−1/2+j/2,n+1−j(0,M−4), j = 0, 1, one has

c1t
−2ne−θt‖V(t)‖2

−1 + c2

∫ t

0
e−θss−2n−1‖V(s)‖2

−1ds + c3θ

∫ t

0
e−θss−2n‖V(s)‖2

−1ds

≤ CM1−10n
∫ t

0
e−θss−2n+1‖L̃V(s)‖2

nds

for 0 ≤ t ≤ M−4, M ≥ M0, γ ≥ γ0, θ ≥ θ0.
Corollary 10.2. For any V with Dj

tV ∈ H−n−1/2+j/2,n+1−j(0,M−4), j = 0, 1
∫ t

0
s−2n−1‖V(s)‖2

−1ds ≤ C
∫ t

0
s−2n+1‖L̃V(s)‖2

nds, 0 ≤ t ≤ M−4.
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Consider the adjoint operator P̂∗ of P̂. Noting that aM ∈ C(σ), b ∈ C(σ3/2)
and (4.5), (5.1), we see that

P̂∗ = D3
t − aM(t, x,D)[D]2Dt − b(t, x,D) [D]3

+ b1D
2
t + (b̃2 + dM)[D]Dt + b̃3[D]2 + c̃1Dt + c̃2[D]

with b̃j ∈ S(1, g) and c̃j ∈ S(M2, g), hence c̃j[D]−1 ∈ S(M−3, g) where it is not
difficult to check that b̃3 − (b3 + ie) ∈ S(M−3, g). Denote by L̃∗ the corresponding
first order system (which is not the adjoint of L̃). Since the power n of theweightφ−n

depends only on a, b and b3 (see (10.1)), then we can choose the same n for P̂∗ as
for P̂. Now employing the weighted energy

E∗(V) = eθt(op(Λ)op(tnφn)V, op(tnφn)V)

and repeating the same arguments for E(V) and carrying out the integration

−
∫ δ

t

d
dt
E∗ dt, 0 < t < δ = M−4,

we have

Proposition 10.2. There exist ci > 0, C > 0 and M0, γ0, θ0 such that for

any V with Dj
tV ∈ Hn−1/2+j/2,1−j(0,M−4), j = 0, 1, one has

c1t
2neθt‖V(t)‖2

−n−1 + c2

∫ δ

t
eθττ2n−1‖V(τ)‖2

−n−1dτ

+ c3θ

∫ δ

t
e−θττ2n‖V(τ)‖2

−n−1dτ

≤ CM−10nδ2neθδ‖V(δ)‖2 + CM1−10n
∫ δ

t
eθττ2n+1‖L̃∗V(τ)‖2dτ, 0 ≤ t ≤ δ,

for M ≥ M0, γ ≥ γ0, θ ≥ θ0 where

L̃∗V = op(T)t(P̂∗u, 0, 0) and op(T)V = t(D2
t u, [D]Dtu, [D]2u).

Remark 10.1. It is clear from the proof that for any n′ ≥ n, Propositions 10.1
and 10.2 hold.

11 Preliminary existence result

Let s ∈ R and we estimate 〈D〉sV . In what follows we fix M and γ (actually
it is enough to choose γ = M5, see (4.1)) such that Propositions 10.1 and 10.2
hold, therefore from now on we can assume 〈D〉γ = 〈D〉 = [D] without restrictions
while θ remains free. From (10.3) one has

∂t(〈D〉sV) = (op(iA + iB) + i[〈D〉s, op(A + B)]〈D〉−s)〈D〉sV + 〈D〉sF.
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Lemma 11.1. For any s ∈ R there is C > 0 such that

|([〈D〉s, op(A)]V, op(Λ)〈D〉sV)| ≤ CE2(〈D〉sV).

Proof. Denoting T−1AT = (ãij) thanks to Lemmas 5.8 and 7.7 we see that

(11.1)
((ã3j[ξ])#〈ξ〉s − 〈ξ〉s#(ã3j[ξ]))#〈ξ〉−s ∈ S(σ2−j

√
λj, g), j = 1, 2,

((ã21[ξ])#〈ξ〉s − 〈ξ〉sγ#(ã21[ξ]))#〈ξ〉−s ∈ S(σ−1/2
√
λ1, g)

where S(σ−1/2
√
λ1, g) = S(λ−1/2

2

√
λ1, g). From Corollary 5.3 it is easy to see

that ((ãij[ξ])#〈ξ〉s − 〈ξ〉s#(ãij[ξ]))#〈ξ〉−s ∈ S(1, g) for j ≥ i. Then together
with (11.1) the proof follows from a repetition of similar arguments. �

Lemma 11.2. For any s ∈ R and any ε > 0 there is C > 0 such that

|([〈D〉s, op(B)]V, op(Λ)〈D〉sV)| ≤ εE1(〈D〉sV) + CE2(〈D〉sV).

Proof. Write B1 = (b̃ij). Since b̃ij ∈S(1, g) then λi#(〈ξ〉s#b̃ij − b̃ij#〈ξ〉s)#〈ξ〉−s

is in S(〈ξ〉−1/2λi, g). Noting that Cλ1 ≥ σ〈ξ〉−1 and Cλ2 ≥ σ ≥ 〈ξ〉−1 it is easy to
see that S(〈ξ〉−1/2λi, g) ⊂ S(λ1/2

i λ
1/2
j , g) except for (i, j) = (3, 1). For (i, j) = (3, 1)

recalling b̃31 = b3 + S(σ1/2) by (9.4) one sees that

λ3#(〈ξ〉s#b̃31 − b̃31#〈ξ〉s)#〈ξ〉−s ∈ S(σ1/2〈ξ〉−1/2, g) ⊂ S(λ1/2
1 λ

1/2
3 , g)

(recall that M is fixed). Therefore one obtains

(11.2) |([〈D〉s, op(B1)]V, op(Λ)〈D〉sV)| ≤ CE2(〈D〉sV).

Next consider T−1∂tT = (t̃ij). Recalling t̃21 ∈ C(σ−1/2), t̃31 ∈ C(1) and t̃32 ∈C(σ1/2)
and noting that Cκλ1 ≥ 〈ξ〉−1 and Cλ2 ≥ σ ≥ 〈ξ〉−1, one has

λi#(〈ξ〉s#t̃ij − t̃ij#〈ξ〉s)#〈ξ〉−s ∈ S(
√
κλj

√
λi, g), i > j.

Therefore we have

|([〈D〉s, op(T−1∂tT)]V, op(Λ)〈D〉sV)| ≤ C
√
E1(〈D〉sV)

√
E2(〈D〉sV)

≤ εE1(〈D〉sV) + C2ε−1E2(〈D〉sV),

which together with (11.2) proves the assertion. �
Choosing ε > 0 smaller than c2 in Proposition 10.1 and θ large, we conclude

the following
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Proposition 11.1. For any s ∈ R there exists C > 0 such that for any V

with Dj
tV ∈ H−n−1/2+j/2,n+s+1−j(0, δ), j = 0, 1, one has

t−2n‖V(t)‖2
s−1 +

∫ t

0
τ−2n−1‖V(τ)‖2

s−1dτ ≤ C
∫ t

0
τ−2n+1‖L̃V(τ)‖2

n+sdτ

for 0 ≤ t ≤ δ.
Since L̃ = op(I + K)op(T−1) · L · op(T) with T , T−1 ∈ S(1, g), then

‖L̃V‖s ≤ Cs‖L · op(T)V‖s and ‖op(T)V‖s ≤ Cs‖V‖s

with some Cs > 0. Thanks to Lemma 5.7 one has ‖op(∂tT)V‖s ≤ Cst−1/2‖V‖s, so
replacing op(T)V by U one sees that for any U with Dj

tU∈Hn−1/2+j/2,n+s+1−j(0, δ),
j = 0, 1, we have

t−2n‖U(t)‖2
s−1 +

∫ t

0
τ−2n−1‖U(τ)‖2

s−1dτ ≤ C
∫ t

0
τ−2n+1‖LU(τ)‖2

n+sdτ.

Since U = t(D2
t u, [D]Dtu, [D]2u) and LU = t(P̂u, 0, 0) we have

Proposition 11.2. For any s ∈ R there is C > 0 such that for any u with

Dj
tu ∈ H−n−1/2,n+s+3−j(0, δ), 0 ≤ j ≤ 3, one has

t−2n
2∑

j=0

‖Dj
tu(t)‖2

s+1−j +
2∑

j=0

∫ t

0
τ−2n−1‖Dj

tu(τ)‖2
s+1−jdτ

≤ C
∫ t

0
τ−2n+1‖P̂u(τ)‖2

n+sdτ, 0 ≤ t ≤ δ.
(11.3)

Repeating the same arguments we conclude the following

Proposition 11.3. For any s ∈ R there is C > 0 such that for any u with

Dj
tu ∈ Hn−1/2+j/2,s+3−j(0, δ), 0 ≤ j ≤ 3, we have

t2n
2∑

j=0

‖Dj
tu(t)‖2

s+1−j +
2∑

j=0

∫ δ

t
τ2n−1‖Dj

tu(τ)‖2
s+1−jdτ

≤ C
( 2∑

j=0

‖Dj
tu(δ)‖2

n+s+2−j +
∫ δ

t
τ2n+1‖P̂∗u(τ)‖2

n+sdτ
)
, 0 < t ≤ δ.

(11.4)

Since (11.4) holds with n̄ ≥ n + 3 as noted in Remark 10.1, then, in the
resulting (11.4), replacing s by −3n̄ − s − 1, we have

∫ δ

0
t2n̄−1‖u(t)‖2

−3n̄−sdt ≤ C
∫ δ

0
t2n̄+1‖P̂∗u(t)‖2

−2n̄−s−1dt
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for any u ∈ C∞
0 ((0, δ) × R

d). This implies that
∣∣∣∣
∫ δ

0
(f, v)dt

∣∣∣∣ ≤
(∫ δ

0
t−2n̄+1‖f‖2

3n̄+sdt
)1/2(∫ δ

0
t2n̄−1‖v‖2

−3n̄−sdt
)1/2

≤ C
(∫ δ

0
t−2n̄+1‖f‖2

3n̄+sdt
)1/2(∫ δ

0
t2n̄+1‖P̂∗v‖2

−2n̄−s−1dt
)1/2

for any v ∈ C∞
0 ((0, δ) × R

d) and f ∈ H−n̄+1/2,3n̄+s(0, δ). Using the Hahn-Banach
theorem to extend the anti-linear form in P̂∗v:

(11.5) P̂∗v �→
∫ δ

0
(f, v)dt,

we conclude that there is some u ∈ H−n̄−1/2,2n̄+s+1(0, δ) such that
∫ δ

0
(f, v)dt =

∫ δ

0
(u, P̂∗v)dt, v ∈ C∞

0 ((0, δ) × R
d).

This implies that P̂u = f . Since u ∈ H0,2n̄+s+1(0, δ) and f ∈ H0,3n̄+s(0, δ), it follows
from [7, Theorem B.2.9] that Dj

tu ∈ H0,2n̄+s+1−j(0, δ) for j = 0, 1, 2, . . .. Thus with
w = 〈D〉n̄+su one has Dj

tw ∈ L2((0, δ)×R
d) for j = 0, . . . , n̄+1 hence Dj

tw(0) exists
in L2(Rd) which is 0 for j = 0, . . . , n̄ for w ∈ H−n̄+1/2,0(0, δ). Thus one can write

w(t) =
∫ t

0
(t − τ)n̄∂n̄+1

t w(τ)dτ/n̄!.

From this, one concludes that Dj
tu ∈ H−n̄+j−1/2,n̄+s(0, δ), hence we have that

Dj
tu ∈ H−n−1/2,n+s+3−j(0, δ) for 0 ≤ j ≤ 3 because n̄ ≥ n + 3, thus (11.3) holds

for this u. Now let f ∈ H−n+1/2,n+s(0, δ). Take a rapidly decreasing func-
tion ρ(ξ) with ρ(0) = 1; then fε = e−ε/tρ(εD)f ∈ H−n̄+1/2,2n̄+s+1(0, δ) and fε → f
in H−n+1/2,n+s(0, δ). As just proved above there is uε satisfying P̂uε = fε and (11.3).
Therefore choosing a weakly convergent subsequence {uε′ } one can conclude the
following

Theorem 11.1. There exists δ > 0 such that for any s in R and any f

in H−n+1/2,n+s(0, δ) there exists a unique u with Dj
tu ∈ H−n−1/2,1+s−j(0, δ),

j = 0, 1, 2, satisfying P̂u = f and (11.3).

Instead of (11.5), by considering the anti-linear form in P̂v:

P̂v �→
∫ δ

0
(f, v)dt +

1∑
j=0

(w2−j,D
j
tv(δ, ·)) + (w0, (D

2
t − [D]2a(δ, x,D))v(δ, ·))

for v ∈ C∞
0 ((0,∞) × R

d) and repeating similar arguments adopting (11.3), we
conclude the following
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Theorem 11.2. There exists δ > 0 such that for any s ∈ R and

any f ∈ Hn+1/2,n+s(0, δ) and wj ∈ Hn+s+2−j, j = 0, 1, 2, there is a unique u with
Dj

tu ∈ Hn−1/2,1+s−j(0, δ) satisfying P̂∗u = f , Dj
tu(δ, ·) = wj, j = 0, 1, 2, and (11.4).

Indeed we first see that there is u ∈ Hn−1/2,1+s(0, δ) satisfying P̂∗u = f
and Dj

tu(δ) = wj, j = 0, 1, 2 (e.g., [7, Chapter 23]). Since f ∈ H0,n+s(ε, δ)
and u ∈ H0,1+s(ε, δ) it follows from [7, Theorem B.2.9] that Dj

tu ∈ H0,1+s−j(ε, δ),
0 ≤ j ≤ 2, for any ε > 0. Applying (11.4) with t = ε we conclude that
Dj

tu ∈ Hn−1/2,1+s−j(0, δ), j = 1, 2, since ε > 0 is arbitrary.

12 Propagation of the wave front set

In Section 11 we have proved an existence result of the Cauchy problem for P̂,
which coincideswith the original P only in WM. Following [23], [10] (also [27]) we
show that the wave front set of u(t, ·), obtained by Theorem 11.1, propagates with
finite speed. This fact enables us to solve the Cauchy problem for the original P.

12.1 Estimate of the wave front set. Let χ(x) ∈ C∞
0 (Rd) be equal to 1

near x = 0 and vanish in |x| ≥ 1. Set

dε(x, ξ; y, η) = {χ(x − y)|x − y|2 + |ξ〈ξ〉−1 − η〈η〉−1|2 + ε2}1/2,

fε(t, x, ξ; y, η) = t − T + νdε(x, ξ; y, η), T > 0,
(12.1)

where (y, η) ∈ R
d × (Rd \ {0}) and ν is a positive small parameter. Note that

(12.2) |∂αx ∂βξ dε| ≤ C〈ξ〉−|β|, |α + β| = 1,

where C is independent of ε > 0. Define �ε by

(12.3) �ε(t, x, ξ) =

⎧⎨
⎩

exp (1/fε(t, x, ξ)) if fε < 0

0 otherwise

and note that�ε ∈ S(1, g0) for any fixed ε > 0 where g0 = |dx|2 + 〈ξ〉−2|dξ|2. From
now on, to simplify notation, we denote

E1(〈D〉sV) + E2(〈D〉sV) = t−2nNs(V), N0(V) = N(V).
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Lemma 12.1. There exists ν0 > 0 such that for any 0 < ν ≤ ν0 and

any ε > 0 there is C > 0 such that for any V with
∫ δ
0 t−2nN−1/4(V)dt < +∞ and

L̃V ∈ H−n+1/2,l(0, δ) with some l we have

E1(op(�ε)V) +
∫ t

0
τ−2nN(op(�ε)V)dτ

≤ C
∫ t

0
τ−2n+1‖op(�ε)L̃V‖2

ndτ + C
∫ t

0
τ−2nN−1/4(V)dτ, 0 < t ≤ δ.

Proof. Denote
Vμ = 〈μD〉−n̄V

with small μ > 0 where we choose n̄ = 2n + max{−l, 0} + 3. Assume L̃V = F so
that L̃Vμ = Fμ + RμVμ = Gμ where

Rμ = [〈μD〉−n̄, op(A + B)]〈μD〉n̄ and Fμ = 〈μD〉−n̄F.

Note that�ε1 = f−1
ε �ε∈S(1, g0) for any fixed ε>0 and�ε − fε#�ε1 ∈S(〈ξ〉−1, g0).

Since ∂t�ε = −�ε1/fε one can write

∂t(op(�ε)V
μ) = − op(f−1

ε �ε1)V
μ + (op(iA + iB))op(�ε)V

μ

+ [op(�ε), op(iA + iB)]Vμ + op(�ε)G
μ.

(12.4)

Since �ε#B1 − B1#�ε ∈ S(〈ξ〉−1/2, g) by Proposition 9.1 it is not difficult to see
from the proof of Corollary 10.1 that

|(op(Λ)op(φ−n)[op(�ε), op(B1)]V
μ, op(φ−n)op(�ε)V

μ)| ≤ c(ε)N−1/4(V
μ).

Denote �ε#(T−1∂tT) − (T−1∂tT)#�ε = (ϕij), hence ϕ21 ∈ S(σ−1〈ξ〉−1, g) and
ϕ31 ∈ S(σ−1/2〈ξ〉−1, g) from (5.12). Thus λj#ϕj1 ∈ S(〈ξ〉−1/2

√
κλ1

√
κλj, g) for

j = 2, 3 because Cλ1 ≥ σ〈ξ〉−1, Cλ2 ≥ σ and κσ ≥ 1. A repetition of similar
arguments proving (10.6) shows that

|(op(Λ)op(φ−n)[op(�ε), op(T−1∂tT)]Vμ, op(φ−n)op(�ε)V
μ)| ≤ c(ε)N−1/4(V

μ).

Note that �ε#A − A#�ε can be written

∑
|α+β|=1

(−1)|α|

(2i)|α+β|α!β!
(∂αx ∂

β
ξ�ε∂

β
x ∂
α
ξA − ∂βx ∂αξ�ε∂αx ∂βξA) + Rε = Hε + Rε

where it follows from Corollary 5.3 that Rε ∈ S(〈ξ〉−1/2, g) for σ ≥ 〈ξ〉−1. It is not
difficult to see from the proof of Corollary 10.1 that

|(op(Λ)op(φ−n)op(Rε)V
μ, op(φ−n)op(�ε)V

μ)| ≤ c(ε)N−1/4(V
μ).
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Note that Hε ∈ S(1, g) because ∂αx ∂
β
ξA ∈ S(〈ξ〉1−|β|, g) for |α + β| = 1. Write

�ε = fε#�ε1 + rε with rε ∈ S(〈ξ〉−1, g0).

Noting that φ−n#fε − fε#φ−n ∈ S(ω−1ρ1/2〈ξ〉−1φ−n, g) ⊂ S(φ−n〈ξ〉−1/2, g) and
fε#λj − λj#fε ∈ S(λj〈ξ〉−1/2, g) we see that

|(op(Λ)op(φ−n)op(iHε)V
μ, op(φ−n)op(�ε)V

μ)

− (op(Λ)op(φ−n)op(fε)op(iHε)V
μ, op(φ−n)op(�ε1)V

μ)|
is bounded by c(ε)N(〈D〉−1/4Vμ). Here we examine at iHε more carefully:

iHε =
( ∑

|α+β|=1

∂αx ∂
β
ξ (ãij[ξ])(∂

β
x∂
α
ξ fε)

1
fε
�1ε

)
= (hεij)

1
fε
�1ε.

Taking hεij ∈ S(1, g) and f−1
ε �ε1, �ε1 ∈ S(1, g0) into account one can write

fε#(iHε) = (hεij)#�ε1 + Rε with Rε ∈ S(〈ξ〉−1/2, g), so denoting H̃ε = (hεij),

|(op(Λ)op(φ−n)op(fε)op(iHε)V
μ, op(φ−n)op(�ε1)V

μ)

− (op(Λ)op(φ−n)op(H̃ε)op(�ε1)V
μ, op(φ−n)op(�ε1)V

μ)|
is bounded by c(ε)N−1/4(Vμ). From Corollary 5.3 we see that hεij ∈ C(1) for j ≥ i,
hε21, h

ε
32 ∈ C(σ1/2) and hε31 ∈ C(σ), so in view of Lemma 6.5 one has

λi#(φ−n#hεij − hεij#φ
−n) ∈ S(κλi〈ξ〉−1φ−n, g) for j ≥ i

and
λi#(φ−n#hεij − hεij#φ

−n) ∈ S(κλiλ
1/2
j 〈ξ〉−1/2φ−n, g) for i > j.

From this we see that

|(op(Λ)op(φ−n)op(H̃ε)op(�ε1)V
μ, op(φ−n)op(�ε1)V

μ)

− (op(Λ)op(H̃ε)op(φ−n)op(�ε1)V
μ, op(φ−n)op(�ε1)V

μ)|
is bounded by c(ε)N−1/4(Vμ).

Lemma 12.2. One can write

hεij =
∑

|α+β|=1

kεijαβ#lijαβ + rεij,

where kεijαβ ∈ S(1, g0) such that

|kεijαβ| ≤ Cν

with some C > 0 independent of ν and ε for any 1 ≤ i, j ≤ 3. As for lijαβ and rεij one

has lijαβ ∈ S(1, g) and rεij ∈ S(σ−1/2〈ξ〉−1, g) for j ≥ i and lijαβ ∈ S(σ(i−3)/2
√
λj, g),

rεij ∈ S(σ(i−3)/2
√
λj〈ξ〉−1/2, g) for i > j.
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Proof. Set kεijαβ = 〈ξ〉|α|∂βx ∂αξ fε and lijαβ = 〈ξ〉−|α|∂αx ∂
β
ξ (ãij[ξ]); then the assertion

for kεijαβ is clear from (12.2). The assertions for lijαβ follow from Corollary 5.3 and
Lemmas 5.8, 7.7. Note that ∂μx ∂

ν
ξ lijαβ ∈ S(σ−1/2〈ξ〉−|ν|, g),

|μ + ν| = 1 for j ≥ i,

and ∂μx ∂
ν
ξ l21αβ, ∂μx ∂

ν
ξ l32αβ ∈ S(〈ξ〉−|ν|, g) and ∂μx ∂

ν
ξ l31αβ ∈ S(σ1/2〈ξ〉−|ν|, g) for

|μ + ν| = 1, which follows from ã21, ã32 ∈ C(σ) and ã31 ∈ C(σ5/2). Then
since σ≥〈ξ〉−1

γ and Cλ1 ≥σ〈ξ〉−1
γ the assertions for rεij are checked immediately.�

With Rε = (rεij) and W = op(φ−n)op(�ε1)Vμ, recalling λ1 ≤ Cσλ2 ≤ C′σ2λ3, it
is easy to see that

|(op(Rε)W, op(Λ)W)| ≤ c(ε)‖op(Λ1/2)〈D〉−1/4W‖2.

Consider |(op(hεij)Wj, op(λi)Wi)|. Thanks to Lemma 12.2 this is bounded by

C‖op(λ1/2
j )Wj‖‖op(kεijαβ)op(λ1/2

i )Wi‖
with C independent of ε because λ1/2

i #lijαβ ∈ S(λ1/2
j , g) in view of Lemma 12.2. On

the other hand, taking Lemma 12.2 into account, it follows from the sharp Gårding
inequality (e.g., [7, Theorem 18.1.14]) that

‖op(kεijαβ)op(λ1/2
i )Wi‖ ≤ Cν‖op(λ1/2

i )Wi‖ + C(ν, ε)‖op(λ1/2
i )〈D〉−1/2Wi‖.

Therefore applying the above-obtained estimates one can find C > 0 independent
of ε and ν such that

|Re(op(Λ)op(H̃ε)op(φ−n)op(�ε1)V
μ, op(φ−n)op(�ε1)V

μ)|
≤ Cν‖op(Λ1/2)op(φ−n)op(�ε1)V

μ‖2 + C′(ν, ε)‖op(Λ1/2)op(φ−n)〈D〉−1/4Vμ‖2.

It follows from the same reasoning that

|(op(Λ)op(φ−n)op(f−1
ε �ε)V

μ, op(φ−n)op(�ε)V
μ)|

− (op(Λ)op(φ−n)op(�ε1)V
μ, op(φ−n)op(�ε1)V

μ)| ≤ c(ε)N−1/4(V
μ).

We conclude finally that −Im(op(Λ)op(φ−n)L̃(op(�ε)Vμ), op(φ−n)op(�ε)Vμ) is
bounded by

−(1 − Cν)‖op(Λ1/2)op(φ−n)op(�ε1)V
μ‖2 + c(ν, ε)N−1/4(V

μ)

+ Re(op(Λ)op(φ−n)op(�ε)G
μ, op(φ−n)op(�ε)V

μ).
(12.5)

We fix ν0 such that 1 − Cν0 ≥ 0. Since |∂αξ 〈μξ〉−n̄| ≤ Cα〈μξ〉−n̄〈ξ〉−|α| with Cα
independent of μ > 0 we see that

|(op(�)op(φ−n)op(�ε)R
μVμ, op(φ−n)op(�ε)V

μ)| ≤ CE1(op(�ε)V
μ).
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Therefore |(op(�)op(w−n)op(�ε)Gμ, op(w−n)op(�ε)Vμ)| is bounded by

ε1E1(op(�ε)V
μ) + Cε1 t

−2n+1‖op(�ε)F
μ‖2

n + CE1(op(�ε)V
μ)

for any ε1 > 0. Note that Dj
tV
μ ∈ H0,2n+7/4−j(0, δ), j = 0, 1, . . ., hence Dj

tV(0)
exists in Hn+3/4 which is 0 for j = 0, 1, . . . , n, thus limt→+0 t−n‖Vμ(t)‖n = 0 for
μ > 0. Applying (10.12) to op(�ε)Vμ instead of V , choosing ε1 < c1 and then
letting μ→ 0 one concludes the proof. �

Applying 〈D〉s to (12.4) and repeating similar arguments one obtains

Proposition 12.1. For any s ∈ R, any 0 < ν ≤ ν0 and any ε > 0 one can
findC>0 such that for anyV with

∫ δ
0 t−2nNs−1/4(V)dt<+∞ and L̃V∈H−n+1/2,l(0, δ)

with some l we have

E1(〈D〉sop(�ε)V) +
∫ t

0
τ−2nNs(op(�ε)V)dτ

≤ C
(∫ t

0
τ−2n+1‖op(�ε)L̃V‖2

n+sdτ +
∫ t

0
τ−2nNs−1/4(V)dτ

)
, 0 ≤ t ≤ δ.

12.2 The wave front set propagates with finite speed.

Lemma 12.3. Assume that V ∈ H−n−1/2,l1+1(0, δ) and L̃V ∈ H−n+1/2,l2 (0, δ),
and that op(�ε0 )L̃V ∈ H−n+1/2,n+s0 (0, δ) with some l1, l2, s0 ∈ R, ε0 > 0. Then for

every ε > ε0 we have op(�ε)V ∈ H−n−1/2,s(0, δ) for all s ≤ s0 − 5/4. Moreover,
∫ t

0
τ−2n−1‖op(�ε)V(τ)‖2

sdτ ≤ C
∫ t

0
(τ−2n−1‖V(τ)‖2

l1+1 + τ−2n+1‖L̃V(τ)‖2
l2)dτ

+ C
∫ t

0
τ−2n+1‖op(�ε0 )L̃V(τ)‖2

n+s0
dτ, 0 < t ≤ δ.

Proof. We may assume l1 ≤ s0 otherwise there is nothing to be proved. Let J
be the largest integer such that l1 + J/4 ≤ s0. Take εj > 0 such that

ε0 < ε1 < · · · < εJ = ε.

We write �εj = �j and fj = fεj in this proof. Inductively we show that
∫ t

0
τ−2nNl1+j/4(op(�j)V)dτ

≤ C
∫ t

0
τ−2n−1‖V(τ)‖2

l1+1dτ

+ C
∫ t

0
τ−2n+1{‖L̃V(τ)‖2

l2 + ‖op(�0)L̃V(τ)‖2
l1+n+j/4}dτ.

(12.6)
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Choose ψj(x, ξ) ∈ S(1, g0) so that

suppψj ⊂ {fj < 0} and {fj+1 < 0} ⊂ {ψj = 1}.

Noting that

op(�j+1)L̃ op(ψj) = op(�j+1#ψj)L̃ + op(�j+1)[L̃, op(ψj)]

we apply Proposition 12.1 with s = l1 + (j + 1)/4, � = �j+1 and V = op(ψj)V .
Since �j+1#ψj − �j+1 ∈ S−∞, then ‖op(�j+1)L̃ op(ψj)V‖2

l1+(j+1)/4+n is bounded
by c‖op(�j+1)L̃V‖2

l1+(j+1)/4+n + C(j)‖V‖2
l1+1 and hence by

(12.7) C(j)
{‖op(�0)L̃V‖2

l1+(j+1)/4+n + {‖L̃V‖2
l2 + ‖V‖2

l1+1}

because �j+1 − kj#�0 ∈ S−∞ with some kj ∈ S(1, g0). Since ψj − k̃j#�j ∈ S−∞

with some k̃j ∈ S(1, g0) it follows that

Nl1+j/4(op(�j+1)op(ψj)V) ≤ CNl1+j/4(op(�j)V) + C‖V‖2
l1+1.

Consider Nl1+(j+1)/4(op(�j+1)op(ψj)V). Noting that �j+1#ψj − �j+1 ∈ S−∞ the
same reasoning shows that

(12.8) Nl1+(j+1)/4(op(�j+1)V) ≤ CNl1+(j+1)/4(op(�j+1)op(ψj)V) + C‖V‖2
l1+1.

Multiply (12.8) and (12.7) by t−2n and t−2n+1 respectively and integrate from 0 to t.
We conclude from Proposition 12.1 that (12.6) holds for j + 1 and hence for j = J.
Since l1 + J/4 ≤ s0, l1 + J/4 > s0 − 1/4 and ‖V‖s−1/C ≤ Ns(V) the assertion
follows. �

Let �i (i = 1, 2, 3) be open conic sets in R
d × (Rd \{0}) with relatively compact

basis such that �1 � �2 � �3. Take hi(x, ξ) ∈ S(1, g0) with supp h1 ⊂ �1 and
supph2 ⊂ �3 \�2. Consider a solution V with V ∈ H−n−1/2,l(0, δ) to the equation

L̃V = op(h1)F, F ∈ H−n+1/2,s(0, δ).

Proposition 12.2. The notation is as above. There exists δ′ = δ′(�i) > 0 such
that for any r ∈ R there is C > 0 such that

∫ t

0
τ−2n−1‖op(h2)V(τ)‖2

rdτ

≤ C
∫ t

0
{τ−2n+1‖F(τ)‖2

s + τ−2n−1‖V(τ)‖2
l }dτ, 0 < t ≤ δ′.

(12.9)
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Proof. Let fε = t − ν0τ̂ + ν0dε(x, ξ; y, η) with a small τ̂ > 0. It is clear that
there is ε̂ > 0 such that {t ≥ 0} ∩ {fε̂ ≤ 0} ∩ (R× supph1) = ∅ for any (y, η) /∈ �2.
Take ε̂ < ε̃ < τ̂. It is also clear that one can find a finite number of (yi, ηi) ∈ �3\�2,
i = 1, . . . ,M, such that with δ′ = ν0(τ̂− ε̃)/2

�3 \ �2 �
( M⋃

i=1

{fε̃(δ′, x, ξ; yi, ηi) ≤ 0}
)
,

{t ≥ 0} ∩ {fε̃(t, x, ξ; yi, ηi) ≤ 0} ∩ (R × supph1) = ∅.

Now �iε is defined by (12.3) with fε(t, x, ξ; yi, ηi). Then since
∑
�iε̃ > 0

on [0, δ′] × supp h2 there is k ∈ S(1, g0) such that

h2 − k
∑
�iε̃ ∈ S−∞.

Noting that op(�iε̂)op(h1)F ∈ H−n+1/2,r(0, δ) for any r ∈ R we apply Lemma 12.3
with �ε0 = �ε̂, �ε = �iε̃ and s0 = r + 5/4 to obtain

∫ t

0
τ−2n−1‖op(�iε̃)V(τ)‖2

rdτ

≤ C
∫ t

0
τ−2n−1‖V(τ)‖2

l dτ

+
∫ t

0
τ−2n+1(‖op(�iε̂)op(h1)F(τ)‖2

2n+r+5/4 + ‖F(τ)‖s)dτ

for ‖L̃V(τ)‖s ≤ C‖F(τ)‖s. Since�iε̂#h1 ∈ S−∞ on summing up the above estimates
over i = 1, . . . ,M one concludes the desired assertion. �

Lemma 12.4. The same assertion as Proposition 12.2 holds for L.

Proof. Assume that U ∈ H−n−1/2,l(0, δ) satisfies LU = op(h1)F where
F ∈ H−n+1/2,s(0, δ). Choose �̃i such that �1 � �̃1 � �̃2 � �2 � �3 � �̃3

and h̃i ∈ S(1, g0) such that supp h̃1 ⊂ �̃1, supp h̃2 ⊂ �̃3 \ �̃2 and h̃i = 1 on the
support of hi. Recall that L op(T) = op(T) L̃, hence

L̃V = (I + op(K))op(T−1)op(h1)F

with U = op(T)V . Since there is T̃ ∈ S(1, g) such that (I+K)#T−1#h1−h̃1T̃ ∈ S−∞,
it follows from Proposition 12.2 (or rather its proof) that (12.9) holds with h̃2 in
place of h2. Similarly, since there is T̃ ∈ S(1, g) such that h2#T − h̃2T̃ ∈ S−∞

repeating the same arguments we conclude the assertion. �
Returning to P̂ we have
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Proposition 12.3. The notation is as above. Then there exists δ′ = δ′(�i) > 0
such that for any s, r∈R there is C such that for any uwithDj

tu∈H−n−1/2,l+2−j(0, δ′),
j = 0, 1, 2, with some l satisfying P̂u = op(h1)f where f ∈ H−n+1/2,s(0, δ′), one has

2∑
j=0

∫ t

0
τ−2n−1‖op(h2)D

j
tu(τ)‖2

r+2−jdτ

≤ C
(∫ t

0
τ−2n+1‖f (τ)‖2

sdτ +
2∑

j=0

∫ t

0
τ−2n−1‖Dj

tu(τ)‖2
l+2−jdτ

)
, 0 < t ≤ δ′.

Thanks to Theorem 11.1, for any f ∈ H−n+1/2,n+s(0, δ) there is a unique solution
u ∈ H−n−1/2,s+1(0, δ) to P̂u = f satisfying (11.3). Denote this map by

Ĝ : H−n+1/2,n+s(0, δ) � f �→ u ∈ H−n−1/2,s+1(0, δ).

From Proposition 12.3 and Theorem 11.1 we conclude

Proposition 12.4. With the notation as above, let �i (i = 1, 2, 3) be open
conic sets in R

d × (Rd \ {0}) with relatively compact basis such that �1 � �2 � �3

and hi(x, ξ) ∈ S(1, g0) with supph1 ⊂ �1 and supph2 ⊂ �3 \�2. Then there exists
δ′ = δ′(�i) > 0 such that for any r, s one can find C > 0 such that

2∑
j=0

∫ t

0
τ−2n−1‖op(h2)D

j
tĜ op(h1)f (τ)‖2

r−jdτ ≤ C
∫ t

0
τ−2n+1‖f (τ)‖2

sdτ

for 0 < t ≤ δ′ and for any f ∈ H−n+1/2,s(0, δ′).

Denote by H∗
n,s(0, δ] the set of all f with tn〈D〉sf (t, ·) ∈ L2((0,∞) × R

d) such
that f = 0 for t ≥ δ. Thanks to Theorem 11.2, for any f ∈ H∗

n+1/2,n+s(0, δ] there
is a unique solution u ∈ Hn−1/2,s+1(0, δ) to P̂∗u = f with Dj

tu(δ) = 0, j = 0, 1, 2,
satisfying (11.4), hence u ∈ H∗

n−1/2,s+1(0, δ]. Denote this map by

Ĝ∗ : H∗
n+1/2,n+s(0, δ] � f �→ u ∈ H∗

n−1/2,s+1(0, δ].

Repeating similar arguments to those proving Proposition 12.4, one obtains

Proposition 12.5. The notation is as in Proposition 12.4. There exists
δ′ = δ′(�i) > 0 such that for any r, s one can find C > 0 such that

2∑
j=0

∫ δ′

t
τ2n−1‖op(h2)D

j
tĜ

∗ op(h1)f (τ)‖2
r−jdτ ≤ C

∫ δ′

t
τ2n+1‖f (τ)‖2

sdτ

for 0 < t ≤ δ′ and f ∈ H∗
n+1/2,s(0, δ

′].

Remark 12.1. As already remarked in Remark 10.1, it is clear from the proof
that Theorems 11.1 and 11.2 and Propositions 12.4 and 12.5 hold for any n′ greater
than n.
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12.3 Remarks on propagation of singularities. In this section we
give a more precise picture of the propagation of wave front set WF(u) of u ap-
plying the same arguments as in Sections 12.1 and 12.2. Denote X = [0, δ) × U

and
◦
X = (0, δ) × U and by �, �1 the set of characteristics and simple character-

istics of p respectively. As explained in the Introduction every characteristic in

T∗ ◦
X \ 0 is at most double and a double characteristic is effectively hyperbolic. Let

U be an open conical set in ⊂ T∗ ◦
X \ 0. According to [21] we say that a continuous

curve γ(t) : (0, a] → U ∩�, parametrized by t, is a generalized bicharacteristic if
γ−1(� \�1) = {ti} is discrete in (0, a] and γ is a parametrized smooth bicharacter-
istic of p on (ti, ti+1). In the present case a generalized bicharacteristic is described
rather easily. Let ρ ∈ U be a double characteristic. Then from [27] one can find a
conical open set V � ρ and a smooth function ψ(x, ξ), homogeneous of degree 0
in ξ, such that the double characteristics of p in V are contained in {t = ψ} and
there are exactly two smooth bicharacteristics enter ρ transversally to t = ψ in the
direction of decreasing t (also exactly two in the direction of increasing t) (see,
e.g.,[18]). Therefore γ consists of segments of a smooth bicharacteristic of p, the
only end points of these segments lying in�, and a transition to one of two segments
takes place there. Let γi, i = 1, 2 be two bicharacteristic segments entering ρ in the
direction of decreasing t (or two segments in the direction of increasing t). Then
from [24, Theorem 2.1], [21, Theorem 1.7] we have ρ �∈ WF(u) if γi �∈ WF(u),
i = 1, 2, and ρ �∈ WF(Pu).

Lemma 12.5. If γ(t) is a generalized bicharacteristic, then

lim
t→+0

γ(t)

exists.

Proof. Write p =
∏m

j=1(τ− τj(t, x, ξ)). Then thanks to [4] for any 0 < δ1 < δ
and U′ � U there is L > 0 such that

|∇xτj(t, x, ξ)|/|ξ|, |∇ξτj(t, x, ξ)| ≤ L,

(t, x, ξ) ∈ [0, δ1] × U′ × R
d, 1 ≤ j ≤ m.

In each (ti, ti+1) it is clear that γ(t) = (t, x(t), τ(t), ξ(t)) is a bicharacteristic of
some τ − τj(t, x, ξ) and hence dx/dt = −∇ξτj(t, x, ξ) and dξ/dt = ∇xτj(t, x, ξ).
This shows that x(t) and ξ(t) are uniformly Lipschitz continuous in (0, a] with the
Lipschitz constant L, though τ(t) is not Lipschitz continuous in (0, a] in general.
Then limt→+0 x(t) and limt→+0 ξ(t) exist. Since τ(t) = τk(t, x(t), ξ(t)) for some k and
τk(t, x, ξ) are continuous in X × R

d, then limt→+0 τ(t) also exists. �
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Denote
K−(ρ) =

⋃
γ

γ(t)

where γ varies over all generalized bicharacteristics such that γ(a) = ρ, extended
to t = 0 according to Lemma 12.5. Note that for any ε > 0 the set K−(ρ) ∩ {t = ε}
consists of a finite number of characteristic points. Thanks to the propagation
results near double effectively hyperbolic characteristics mentioned above, if

(12.10) WF(u) ∩ K−1(ρ) ∩ {t = ε} = ∅
with some ε > 0 then we have ρ �∈ WF(u).

Theorem 12.1. With the notation as above, let K0(ρ) = π(K−(ρ) ∩ {t = 0})
where π : (t, x, τ, ξ) → (x, ξ) is the projection. Let Pu∈C∞(X) and Dj

tu(0, ·)=uj.

If K0(ρ) ∩ (
⋃m−1

j=0 WF(uj)) = ∅ then ρ �∈ WF(u).

We give a sketch of the proof. Since characteristics are at most triple we may
assume that m = 3. It suffices to show that (12.10) holds with some ε > 0. In (12.1)
we take T = 2ν. Since K0(ρ) is compact one can find 0 < ν < ν0 and finitely many
(yi, ηi), i = 1, . . . , k such that

K0(ρ) ⊂
k⋃

i=1

{f0(0, x, ξ, yi, ηi) < 0}

and

{f0(0, x, ξ, yi, ηi) ≤ 0} ∩
( 2⋃

j=0

WF(uj)
)

= ∅.

Let �i,ε be the symbol defined by (12.3) with fε(t, x, ξ, yi, ηi). Then we have

(12.11) op(�i,ε(0))uj ∈ Hs, 0 ≤ j ≤ 2, 1 ≤ i ≤ k, ∀s ∈ R

for small enough ε > 0. Using the same reduction as in the proof of Theo-
rem 1.2 it suffices to study Pu = f where Dj

tu ∈ H−n−1/2,l1−j(0, δ), 0 ≤ j ≤ 2 and
f ∈ H−n−1/2,l2 (0, δ) with some lj ∈ R such that

op(�i,ε)f ∈ H−n−1/2,s(0, δ), 1 ≤ i ≤ k, ∀s ∈ R

for small enough ε > 0 which follows from (12.11). Repeating the same arguments
as in Sections 12.1 and 12.2 we conclude that op(�i,0)D

j
tu ∈ L2((0, δ′),Hs) for any

1 ≤ i ≤ k, 0 ≤ j ≤ 2 and any s ∈ R with some δ′ > 0. Finally, using the equation
we have

op(�i,0)D
j
tu ∈ L2((0, δ′),Hs), 1 ≤ i ≤ k, ∀s ∈ R, ∀j ∈ N.

Since �i,0(t, yi, ηi) < 0 for t < ν this proves (12.10) with some ε > 0. �
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13 Proof of Theorem 1.1

Applying Proposition 12.4 we prove Theorem 1.1 following [23], [27].

13.1 Solution operator with finite speed of propagation. Consider

(13.1) P = Dm
t +

m∑
j=1

aj(t, x,D)〈D〉jDm−j
t

which is a differential operator in t with coefficients aj ∈ S0. We say that G is a
solution operator for P with finite propagation speed of the wave front set (which
we abbreviate to “solution operator with finite speed of propagation” from now
on) with loss of (n, l) derivatives if G satisfies the following conditions:

(i) There exists δ > 0 such that for any s ∈ R there is C > 0 such that for
f ∈ H−n+1/2,s(0, δ) we have PGf = f and

m−1∑
j=0

∫ t

0
τ−2n−1‖Dj

tGf (τ)‖2
−l+s+m−jdτ ≤ C

∫ t

0
τ−2n+1‖f (τ)‖2

sdτ.

(ii) For any hj(x, ξ) ∈ S(1, g0), j = 1, 2 with supph2 � (Rd × R
d) \ supp h1 there

exists δ′ > 0 such that for any r, s ∈ R there is C > 0 such that

m−1∑
j=0

∫ t

0
τ−2n−1‖op(h2)D

j
tGop(h1)f (τ)‖2

r−jdτ ≤ C
∫ t

0
τ−2n+1‖f (τ)‖2

sdτ

for f ∈ H−n+1/2,s(0, δ′) and 0 < t ≤ δ′.
Let P1 and P2 be two operators of the form (13.1). We say that

P1 ≡ P2 at (x̂, ξ̂)

if there exist δ′ > 0 and a conic neighborhood W of (x̂, ξ̂) such that

(13.2) P1 − P2 =
m∑
j=1

Rj(t, x,D)〈D〉jDm−j
t

with Rj ∈ S0 which are in S−∞(W) uniformly in 0 ≤ t ≤ δ′.
Theorem 13.1. Assume that for any (x̂, η), |η| = 1 one can find Pη of the

form (13.1) for which there is a solution operator with finite speed of propagation

with loss of (n, 
(η)) derivatives such that P ≡ Pη at (x̂, η). Then there exist δ > 0,

 = sup 
(η) and a neighborhood U of x̂ such that for every f ∈ H−n+1/2,s+
(0, δ)
there exists u with Dj

tu ∈ H−n,s+m−j(0, δ), 0 ≤ j ≤ m − 1, satisfying Pu = f
in (0, δ) × U.
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Proof. By assumption, Pη has a solution operator Gη with finite speed of
propagation with loss of (n, 
(η)) derivatives. There are finite open conic neigh-
borhoods Wi of (x̂, ηi) such that

⋃
i Wi ⊃  ×(Rd \{0}), where is a neighborhood

of x̂, and P ≡ Pηi at (x̂, η) with W = Wi in (13.2). Now take another open conic
covering {Vi} of  × (Rd \ {0}) with Vi � Wi, and a partition of unity {αi(x, ξ)}
subordinate to {Vi} so that

∑
i αi(x, ξ) = α(x) where α(x) = 1 in a neighborhood

of x̂. Define

G =
∑

i

Gηiαi.

Then denoting P − Pηi = Ri we have

PGf =
∑

i

PGηiαif =
∑

i

PηiGiαif +
∑

i

RiGiαif = α(x)f − Rf

where R =
∑

i RiGηiαi. Then

∫ t

0
τ−2n−1‖Rf (τ)‖2

s+
dτ ≤ C
∫ t

0
τ−2n+1‖f (τ)‖2

s+
dτ

for 0 ≤ t ≤ δ′′ with some δ′′ > 0 by the condition (ii) where 
 = maxi 
(ηi).
Choosing 0 < δ1 ≤ δ′′ such that δ21C ≤ 1/2 one has

∫ t

0
τ−2n+1‖Rf (τ)‖2

s+
dτ ≤ 1
2

∫ t

0
τ−2n+1‖f (τ)‖2

s+
dτ, 0 < t ≤ δ1

for f ∈ H−n+1/2,s+
(0, δ). With S =
∑∞

k=0 Rk one has Sf ∈ H−n+1/2,s+
(0, δ1) and

∫ t

0
τ−2n+1‖Sf (τ)‖2

s+
dτ ≤ 2
∫ t

0
τ−2n+1‖f (τ)‖2

s+
dτ.

Let γ(x) ∈ C∞
0 (Rd) be equal to 1 near x̂ such that suppγ � {α = 1}. Since

γ(α− R)S = γ(I − R)S = γ it follows that γ(x)PGSf = γ(x)f , that is

P(GSf ) = f on {γ(x) = 1}.

With u = GSf one has

m−1∑
j=0

∫ t

0
τ−2n−1‖Dj

tu(τ)‖2
s+m−jdτ ≤ C

∫ t

0
τ−2n+1‖Sf (τ)‖2

s+
dτ

which proves the assertion. �
We define a solution operator with finite speed of propagation for P∗ with

obvious modifications.
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Theorem 13.2. Assume that for every (x̂, η), |η| = 1, one can find P∗
η of the

form (13.1) such that P∗ ≡ P∗
η at (x̂, η) for which a solution operator with finite

speedof propagationwith loss of (n, 
(η))derivatives exists. Then there exist δ > 0,


 = sup 
(η) and a neighborhood U of x̂ such that for every f ∈ H∗
n+1/2,s+
(0, δ]

there exists u with Dj
tu ∈ H∗

n−1/2,s+m−j(0, δ], 0 ≤ j ≤ m − 1, satisfying P∗u = f

in (0, δ) × U.

13.2 Local existence and uniqueness. First consider a third order oper-
ator P of the form (2.1). To reduce P to the case a1(t, x,D) = 0 we apply a Fourier
integral operator, which is actually the solution operator S(t′, t) of the Cauchy
problem

Dtu + a1(t, x,D)u = 0, u(t′, x) = φ(x)

such that S(t′, t)φ = u(t). Then it is clear that S(t, 0)(Dt + a1)S(0, t) = Dt. Now
P̃ = S(t, 0)PS(0, t) has the form (2.1) with a1 = 0 (see, e.g., [5], [33]). Assume
that P̃ has a solution operator with finite speed of propagation G̃ with loss of (n, 
)
derivatives. Then one can show that G = S(0, t)G̃S(t, 0) is a solution operator for P

with finite speed of propagation with loss of (n, 
) derivatives.
Let |η| = 1 be given. Assume that p has a triple characteristic root τ̄ at (0, 0, η)

and (0, 0, τ̄, η) is effectively hyperbolic. Theorem 11.1 and Proposition 12.4 imply
that P̂, which coincides with the original P in WM, given by (4.3), has a solution
operator with finite speed of propagation with loss of (n, n + 2) derivatives.

Next assume that p has a double characteristic root τ̄ at (0, 0, η) such that
(0, 0, τ̄, η) is effectively hyperbolic characteristic if it is a singular point. Note that
one can write

p(t, x, τ, ξ) = (τ + b(t, x, ξ))(τ2 + a1(t, x, ξ)τ + a2(t, x, ξ)) = p1p2

in a conic neighborhood of (0, 0, η) where p1(0, 0, τ̄, η) �= 0. There exist P̂i

such that P ≡ P̂1 · P̂2 at (0, η) where the principal symbol of P̂i coincides
with pi in a conic neighborhood of (0, 0, η). If P̂i has a solution operator with
finite speed of propagation Gi with loss of (n, 
i) derivatives, then one can see
that G2G1 is a solution operator with finite speed of propagation for P̂1 · P̂2 with
loss of (n, 
1 + 
2) derivatives. Consider the case that (0, 0, τ̄, η) is a singular
point. Then Fp(0, 0, τ̄, η) = c Fp2(0, 0, τ̄, η) with some c �= 0 and (0, 0, τ̄, η) is an
effectively hyperbolic characteristic of p2. Write p2 as

(13.3) p2(t, x, τ, ξ) = τ2 − a(t, x, ξ)|ξ|2

such that τ̄ = 0 is a double characteristic and (0, 0, 0, η) is a singular point.
To apply earlier results [26, 27] on operators with double effectively hyperbolic
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characteristics, we need some modifications because a(t, x, ξ) is assumed to be
non-negative only in the t ≥ 0 side in the present case. One can improve [27,
Lemma 1.2.2] to

Proposition 13.1. Assume that a(t, x, ξ) is smooth in some conic neighbor-

hood of (0, 0, η), homogeneous of degree 0 in ξ, and non-negative in t ≥ 0,
and (0, 0, 0, η) is an effectively hyperbolic singular point of p2 = 0. Then there

exist a smooth function ψ(x, ξ) in a conic neighborhood V of (0, η) and constants

0 < κ < 1, c > 0 such that

(13.4) {ψ, a}2 ≤ 4 κ a, a(t, x, ξ) ≥ c min {t2, (t − ψ(x, ξ))2}
for (x, ξ) ∈ V, t ≥ 0 where ψ(x, ξ) satisfies |∂αx ∂βξψ| � 〈ξ〉−|β|.

Indeed that the same time function given in [25] under the assumption
a(t, x, ξ) ≥ 0 in a full neighborhood in t, denoted by Y(t, x, ξ) there, satisfies (13.4)
can be proved by applying [25, Theorem 1.1]. Then repeating similar arguments
as in [26, 27] we conclude that there is a solution operator with finite speed of
propagation for P̂2. Since P̂1 is a first order operator with real principal symbol p1,
it is easy to see that P̂1 has a solution operator with finite speed of propagation.
Therefore P has a solution operator with finite speed of propagation. Consider
now the case that (0, 0, 0, η) is not a singular point. It is easy to see that (0, 0, 0, η)
is not a singular point implies ∂ta(0, 0, η) > 0, which is the case that P̂2 is a
hyperbolic operator of principal type, and some detailed discussion is found in [7,
Chapter 23.4]. It is easily proved that P̂2 has a solution operator with finite speed
of propagation, because it suffices to employ the weight t−n (φ−n is now absent) in
order to obtain weighted energy estimates.

Turn to the general case. Let |η| = 1 be arbitrarily fixed. Write

p(0, 0, τ, η) =
r∏

j=1

(τ− τj)mj

where
∑

mj = m and τj are real and distinct from each other, with mj ≤ 3 which
follows from the assumption. There exist T > 0 and a conic neighborhood U
of (0, η) such that one can write

p(t, x, τ, ξ) =
r∏

j=1

p(j)(t, x, τ, ξ),

p(j)(t, x, τ, ξ) = τmj + aj,1(t, x, ξ)τ
mj−1 + · · · + aj,mj(t, x, ξ),

for (t, x, ξ) ∈ (−T,T) × U where aj,k(t, x, ξ) are real valued, homogeneous of
degree k in ξ and p(j)(0, 0, τ, η) = (τ − τj)mj and p(j)(t, x, τ, ξ) = 0 has only real
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roots in τ for (t, x, ξ) ∈ [0,T) × U. If (0, 0, τj, η) is a singular point of p, and
necessarily mj ≥ 2, then (0, 0, τj, η) is a singular point of p(j) and it is easy to see
that Fp(0, 0, τj, η) = cjFp(j) (0, 0, τj, η) with some cj �= 0, and hence Fp(j) (0, 0, τj, η)
has non-zero real eigenvalues if Fp(0, 0, τj, η) does, and vice versa. It is well
known that one can find P(j) such that

P ≡ P(1)P(2) · · ·P(r) at (0, η)

where P(j) are operators of the form (13.1) with m = mj whose principal sym-
bol coincides with p(j) in some conic neighborhood of (0, 0, η). Since each P(j)

has a solution operator with finite speed of propagation with loss of (nj, nj + 2)
derivatives, thanks to Theorem 11.1 and Proposition 12.4, hence so does P with
loss of (n, r(n + 2)) derivatives with n = maxj nj noting Remark 12.1. Therefore
Theorem 1.1 results from Theorem 13.1.

Repeating parallel arguments to the existence proof for P above, we obtain

Theorem 13.3. Under the same assumption as in Theorem 1.1 there ex-

ist δ > 0, a neighborhood U of the origin and n > 0, 
 > 0 such that for
any s ∈ R and any f ∈ H∗

n+1/2,s(0, δ] there exists u with Dj
tu ∈ H∗

n−1/2,−
+s+m−j(0, δ],
0 ≤ j ≤ m − 1, satisfying P∗u = f in (0, δ) × U.

Now we prove a local uniqueness result for the Cauchy problem for P applying
Theorem 13.3. From the assumption one can find a neighborhood W of the origin
ofRd and T > 0 such that everymultiple characteristic of p on (t, x, ξ) ∈ (0,T)×W
is at most double, and a double characteristic is effectively hyperbolic. Thanks
to [17, Main Theorem] there exists ĉ > 0 such that for any solution v to P∗v = f

vanishing in t ≥ δ′ with f ∈ C∞
0 ((0, δ′) × {|x| < ε}) (δ′ ≤ T) one has

suppxv(t, ·) ⊂ {|x| ≤ ε + ĉ δ′}, 0 < t ≤ δ′.
Now assume that u satisfies Pu = 0 in (0, δ)×U and ∂kt u(0, x) = 0 for all k. Choose
ε > 0 and δ′ > 0 such that {|x| ≤ ε + ĉ δ′} ⊂ U, δ′ ≤ δ. Then we see that

0 =
∫ δ′

0
(Pu, v)dt =

∫ δ′

0
(u,P∗v)dt =

∫ δ′

0
(u, f )dt.

Since f ∈ C∞
0 ((0, δ′) × {|x| < ε}) is arbitrary, we conclude that

u(t, x) = 0, (t, x) ∈ (0, δ′) × {|x| ≤ ε}.
Theorem 13.4. Assume (1.2) and that every singular point (0, 0, τ, ξ),

|(τ, ξ)| �= 0 of p = 0 is effectively hyperbolic. If u(t, x) ∈ C∞([0, δ) × U) satis-

fies Pu = 0 in [0, δ) × U and ∂kt u(0, x) = 0 for all k, then u = 0 in a neighborhood
of (0, 0).
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