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Abstract. We establish new characterizations for (pseudo)isometric exten-
sions of topological dynamical systems. For such extensions, we also extend results
about relatively invariant measures and Fourier analysis that were previously only
known in the minimal case to a significantly larger class, including all transitive
systems. To bypass the reliance on minimality of the classical approaches to iso-
metric extensions via the Ellis semigroup, we show that extensions of topological
dynamical systems can be described as groupoid actions and then adapt the con-
cept of enveloping semigroups to construct a uniform enveloping semigroupoid
for groupoid actions. This approach allows to deal with the more complex orbit
structures of nonminimal systems.
We study uniform enveloping semigroupoids of general groupoid actions and
translate the results back to the special case of extensions of dynamical systems.
In particular, we show that, under appropriate assumptions, a groupoid action is
(pseudo)isometric if and only if the uniform enveloping semigroupoid is actually
a compact groupoid. We also provide an operator theoretic characterization based
on an abstract Peter–Weyl-type theorem for representations of compact, transitive
groupoids on Banach bundles which is of independent interest.

Introduction

Given a topological dynamical system (K, ϕ) consisting of a compact space K and
a homeomorphism ϕ : K → K, its enveloping Ellis semigroup E(K, ϕ) introduced
by R. Ellis in [Ell60] is the pointwise closure

E(K, ϕ) := {ϕn | n ∈ Z} ⊆ KK.

It is an important tool in topological dynamics capturing the long-term behavior of
a dynamical system. Moreover, it allows to study the system (K, ϕ) via algebraic
properties of E(K, ϕ). In particular, the elegant theory of compact, right-topological
semigroupshas been used to describe and study properties of topological dynamical
systems. We refer to [Aus88, Chapters 3 and 6] and [Gla07] for the general theory
of the Ellis semigroup and to [ABKL15], [Sta19], or [GGY18, Section 4] for some
recent applications.
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In the special case of an equicontinuous system, E(K, ϕ) is actually a compact
topological group which agrees with the uniform enveloping semigroup

Eu(K, ϕ) := {ϕn | n ∈ Z} ⊆ C(K,K)

where the closure is takenwith respect to the the compact-open topology onC(K,K),
i.e., the topology of uniform convergence. In this case one can use the Peter–Weyl
theorem to understand the representation of the compact group E(K, ϕ) on C(K). In
particular, one can prove the following characterizations of equicontinuous systems
(K, ϕ) involving the Koopman operator Tϕ : C(K) → C(K), f �→ f ◦ ϕ.

Theorem. For a topological dynamical system (K, ϕ) the following assertions
are equiavalent:

(a) (K, ϕ) is equicontinuous.
(b) Eu(K, ϕ) is a compact group.

(c) The Koopman operator Tϕ has discrete spectrum, i.e., the union of its
eigenspaces is total in C(K).

The main goals of this article is to develop the techniques to prove an anlogous
statement for “structured” extensions

q : (K, ϕ) → (L, ψ)

of dynamical systems. The importance of these extensions is in particular due to
the famous structure theorem for distal minimal flows proved by H. Furstenberg.
It states that any distal minimal flow can be constructed via a Furstenberg
tower consisting of equicontinuous (equivalently: pseudoisometric) extensions
(see, e.g., [dV93, Section V.3]). Beyond this result, such extensions (especially
the case of compact group extensions) have continued to play an important role in
the structure theory of dynamical systems (see [HK18], [Zie07]), the construction
of new dynamical systems (see, e.g., [Dol02] or [GHSY20, Section 6]), and
applications to number theory (see [FKPLM16]).

First steps towards a characterization of pseudoisometric extensions were made
by A. W. Knapp in [Kna67], though his results use the Ellis semigroup and only
cover minimal distal systems, making essential use of minimality. We suggest
to work around this built-in dependence on recurrence and propose a new, more
general approach to structured extensions q : (K, ϕ) → (L, ψ). Instead of looking
at an extension as a morphism between two group actions, we show that an
extension can be equivalently regarded as a single system defined by a groupoid
action. In analogy to enveloping semigroups, we introduce and study an enveloping
semigroupoid Eu(q) to describe the structuredness of q. This leads in particular
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to the following characterization of open pseudoisometric extensions. Recall here
that in case of minimal systems every pseudoisometric extension is necessarily
open (see, e.g., [Aus88, Theorem 7.3]), and therefore this is a natural framework
to work with.

Theorem. For an open extension q : (K, ϕ) → (L, ψ) of topological dynamical
systems such that dimfix(Tψ) = 1, the following assertions are equivalent:

(a) q is pseudoisometric.
(b) The uniform enveloping semigroupoid Eu(q) is a compact groupoid.

(c) The union of all finitely generated, projective, closed Tϕ-invariant C(L)-
submodules of C(K) is dense in C(K).

Note that previously merely the implication (a) =⇒ (c) was somewhat known
and only in the minimal distal case (see [Kna67, Theorem 1.2]). The condition
that Tψ has no nonconstant fixed functions covers a significantly larger family than
minimal systems, including all transitive systems but also many dynamical systems
with more complex orbit structures.

Groupoids are generalizations of groups that allow to capture local symmetry.
They play an important role in noncommutative geometry by providing a frame-
work for studying operator algebras, index theory, and foliations (see [Con95]
or [MS06]). In ergodic theory, G. W. Mackey used groupoids for his theory of
virtual groups in order “to bring to light and exploit certain apparently far reaching
analogies between group theory and ergodic theory” ([Mac66, p. 187 and Section
11]). And in topological dynamics, they have long been used as a bridge between
dynamics and C∗-algebras in order to study questions around orbit equivalence;
see [Tom87], [GPS95], and more recently [MM14].

It is the goal of this article to demonstrate that groupoids also provide a natural
approach to extensions of topological dynamical systems and that the systematic
analysis of the occurring groupoid structures allows to simplify and generalize
existing results on (pseudo)isometric and equicontinuous extensions. In the pro-
cess, we investigate the representation theory of compact, transitive groupoids and
prove theorems in Section 4 that are of independent interest, including a general
Peter–Weyl-type theorem in Theorem 4.8. Beyond the above-mentioned charac-
terization, we also apply our abstract results to prove the existence of relatively
invariant measures for certain pseudoisometric extensions (see Theorem 7.3) and
to show that, much as in the case of equicontinuous systems, pseudoisometric
extensions admit Fourier-analytic decompositions; see Theorem 7.4.
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Organization of the article. Since all results on extensions of dynamical
systems proved in this article depend only on groupoid structure, most results are
formulated in the more general framework of groupoids and their actions. For the
reader’s convenience, however, the main results (the applications to extensions of
topological dynamical systems) are gathered in Section 7.

In Section 1, we recall the concepts of (semi)groupoids and their actions and
show in Examples 1.12 and 1.13 how an extension of dynamical systems can be
described as a groupoid action. We then begin generalizing concepts for extensions
to the context of general groupoid actions (see Definition 1.16). Section 2 is
devoted to a generalization of the compact-open topology in Definition 2.8 which
we will need to define the uniform enveloping semigroupoid. In particular, we
prove a characterization of convergence for nets of mappings defined on distinct
fibers of a bundle (see Proposition 2.4). This plays a key role throughout the
article. After these preparations, Section 3 then introduces the uniform enveloping
semigroupoid of a groupoid action as a generalization of the uniform enveloping
semigroup for group actions; see Definition 3.3. We use the generalized Arzelà–
Ascoli Theorem 3.13 to show in Theorem 3.27 that—under an assumption of
topological ergodicity—a groupoid action is pseudoisometric if and only if its
uniform enveloping semigroupoid is a compact groupoid.

To explain what this compactness means on the operator-theoretic level, Sec-
tion 4 collects results about representations of compact groupoids on Banach
bundles. We first prove a Peter–Weyl-type theorem for representations of compact
transitive groupoids on Banach bundles in Theorem 4.8. This is then applied to the
uniform enveloping (semi)groupoid of pseudoisometric groupoid actions to derive
the desired operator-theoretic characterizations of structuredness, one of our main
results Theorem 4.14.

In preparation of Section 7, Section 5 investigates the existence and uniqueness
of relatively invariant measures for certain (pseudo)isometric groupoid actions; see
Theorem 5.12. In Section 7, we then prove Fourier analytic results for transitive
actions of compact groupoids, generalizing the Fourier analysis of compact groups
and their actions (see Theorem 6.7). Via the uniform enveloping (semi)groupoids
this can be used to obtain a better understanding of pseudoisometric groupoid
actions. Finally, Section 7 restates all our main results in the case of extensions of
topological dynamical systems.

Terminology andnotation. All compact spaces are assumed to be Hausdorff
though we may occasionally specify the Hausdorff property for emphasis. The
neighborhood filter of a point x ∈ X in a topological space X is denoted by UX(x)
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or simply U(x) when there is no room for ambiguity. If X is a uniform space, we
write UX for the uniform structure of X.

At several points in the paper we consider bundles, i.e., continuous surjections
p : E → L for some topological total space E (usually with some additional
structure) to a topological (usually compact) base space L. For l ∈ L, we
write El := p−1(l) for the fiber over l of such a bundle. Moreover, if p1 : E1 → L
and p2 : E2 → L are two bundles over the same base space L, we define

E1 ×p1,p2 E2 := {(x, y) ∈ E1 × E2 | p1(x) = p2(y)} ⊆ E1 × E2

and equip this set with the subspace topology induced by the product topology
on E1 × E2. We also write E1 ×L E2 := E1 ×p1,p2 E2 if the mappings p1 and p2 are
clear.

We use the letters S and G for semigroups and groups and the letters S and G

for semigroupoids and groupoids, respectively. By a topological dynamical
system we mean a triple (K,G, ϕ) consisting of a non-empty compact space K,
a Hausdorff topological group G, and a continuous action ϕ : G × K → K of G

on K. For g ∈ G, we denote the map ϕ(g, ·) : K → K by ϕg. We omit ϕ from the
notation if there is no room for confusion and if G = Z, we abbreviate (K,G, ϕ)
by (K, ϕ) and identify ϕ with the map ϕ(1, ·) : K → K that completely determines
the action.

As usual, a morphism q : (K,G, ϕ) → (L,G, ψ) between dynamical systems
(K,G, ϕ) and (L,G, ψ) is a continuous mapping q : K → L such that the diagram

K
ϕg

q

K

q

L
ψg

L

commutes for all g ∈ G. A surjective morphism q : (K,G, ϕ) → (L,G, ψ) is an
extension (of topological dynamical systems).

Finally, if K is a compact space, we write C(K) for the Banach space of all
continuous complex-valued functions on K. We identify its dual space C(K) with
the space of all complex regular Borel measures on K and write P(K) ⊆ C(K)′

for the space of all probability measures in C(K)′. The Dirac measure defined by
a point x ∈ K is denoted by δx. If ϑ : K → L is a continuous mapping between
compact spacesK and L, we writeϑ∗μ for the pushforwardof a measureμ ∈ C(K)′,
i.e., ∫

L
f dϑ∗μ =

∫
K

f ◦ ϑ dμ for f ∈ C(L).
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Moreover, we define the Koopman operator Tϑ ∈ L (C(L),C(K)) of ϑ by
Tϑf := f ◦ ϑ for f ∈ C(L). For a topological dynamical system (K,G, ϕ), the
mapping

Tϕ : G → L (C(K)), g �→ Tϕg−1

is the Koopman representation of (K,G, ϕ).
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1 Groupoids and groupoid actions

Following [MMMM13, Definitions 2.1, 2.2, and 2.17], we recall the definition of
groupoids and semigroupoids which generalize the concepts of groups and semi-
groups, respectively, in the sense that the multiplication is only partially defined.
The reader is also referred to [IR19] or [Hig71] as other general introductions to
groupoids.

Definition 1.1. A semigroupoid consists of a set S, a set S(2) ⊆ S × S of
composable pairs, and a product map · : S(2) → S that is associative in the sense
that

(i) if (g1, g2), (g2, g3) ∈ S(2), then (g1 · g2, g3), (g1, g2 · g3) ∈ S(2) and

(g1 · g2) · g3 = g1 · (g2 · g3).

We usually abbreviate g · h by gh if there is no room for confusion. We call a
semigroupoid G a groupoid if there is an inverse map −1 : G → G such that,
additionally, for each g ∈ G

(ii) (g−1, g) ∈ G(2) and if (g, h) ∈ G(2), then g−1(gh) = h ,
(iii) (g, g−1) ∈ G(2) and if (h, g) ∈ G(2), then (hg)g−1 = h .
If G is a groupoid,

G(0) := {g−1g | g ∈ G}
is called the unit space of G and the maps

s : G → G(0), g �→ g−1g,

r : G → G(0), g �→ gg−1
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are called the source and range maps of G. For u, v ∈ G(0), we write Gu := s−1(u),
Gv := r−1(v), and Gv

u := Gu ∩ Gv . A groupoid is transitive if Gv
u 
= ∅ for all

u, v ∈ G(0) and a group bundle if Gv
u = ∅ for all u, v ∈ G(0) with u 
= v . If G is a

group bundle, we write p := r = s. Subsemigroupoids and subgroupoids of a
given semigroupoid or groupoid are defined in a straightforward way.

A topological semigroupoid is a semigroupoid (S, S(2), ·) with a Hausdorff
topology on S such that the product map is continuous. We define topological
groupoids analogously by demanding that the inverse map be continuous, too.

Remark 1.2. One can deduce several calculation rules from the groupoid
axioms which we will tacitly use throughout the article. For example,

• (g−1)−1 = g for every g ∈ G, and
• (h−1, g−1) ∈ G(2) with h−1g−1 = (gh)−1 whenever (g, h) ∈ G(2).

We refer to [MMMM13, Section 2, in particular Lemma 2.19 and Proposition 2.21]
for the statement and proof of these and other useful rules.

Below, we collect examples of semigroupoids and groupoids which play an
important role throughout the article (see also [Ren80, Examples 1.2] for some of
these and other examples).

Example 1.3. Let K be a compact space. Then K is a compact groupoid with

K(2) = {(x, x) | x ∈ K}

and multiplication and inversion trivially defined. We call such a groupoid a trivial
groupoid.

Example 1.4. Given a groupoid G, the subgroupoid

Iso(G) := {g ∈ G | s(g) = r(g)}

of G is a group bundle called the isotropy bundle of G.

Example 1.5. Let K be a set. Then GK := K × K is a groupoid with the set of
composable pairs

G
(2)
K := {((x, y), (y, z)) | x, y, z ∈ K},

a product map defined by (x, y) · (y, z) := (x, z), and the inverse map (x, y) �→ (y, x).
The groupoid GK is called the pair groupoid of K. It the property that the
equivalence relations on K can be identified with full subgroupoids of GK . Here
a subgroupoid is called full if it has the same unit space as its ambient groupoid.
Note that a subgroupoid of K × K is transitive if and only if it equals K × K.
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Example 1.6. For a topological space X, consider the space

P(X) := C([0, 1],X)

of paths in X, and define π1(X) to be the quotient of P(X) modulo homotopy with
fixed end points. Then π1(X) is a groupoid with respect to the product map given
by concatenation of paths, called the fundamental groupoid of X (cf., [Bro06,
Chapter 6]). The source and range maps send an equivalence class [γ] to the
starting and end points γ(0) and γ(1), respectively. Moreover, the units in π1(X)
are the equivalence classes of constant paths and so the unit space π1(X)(0) may
be identified with X. The isotropy groups π1(X)xx for x ∈ X are precisely the usual
fundamental groups π1(X, x).

A fundamental groupoid π1(X) is transitive if and only if X is path-connected
and such fundamental groupoids are archetypal examples for transitive groupoids.
If π1(X) is transitive, all isotropy groups π1(X)xx, π1(X)yy are isomorphic via conju-
gation by a path η from x to y,

cη : π1(X)yy → π1(X)xx, [γ] �→ [η]−1[γ][η].

In the same way one sees that, in general, all isotropy groups of a transitive
groupoid are isomorphic. This explains the heuristic that transitive groupoids
behave similarly to groups, which we will make repeated use of. However, this
does not mean that the study of a transitive groupoid can always be replaced with
the study of a single isotropy group, as it is frequently done for the fundamental
groupoid. Isotropy groups contain only part of the picture and, as we will see, the
groupoid perspective emerges as the natural conceptual generalization of existing
approaches for groups.

The following standard construction allows to completely encode the dynamics
of a group action within a groupoid and motivates part of the terminology around
groupoids.

Example 1.7. Let (K,G) be a topological dynamical system. Then the action
groupoid or transformation groupoid G � K is the set G × K with

(G � K)(2) := {((g2, g1x), (g1, x)) | g1, g2 ∈ G, x ∈ K}

and

· : (G � K)(2) → G � K, ((g2, g1x), (g1, x)) �→ (g2g1, x),
−1 : G � K → G � K, (g, x) �→ (g−1, gx).
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We identify its unit space

(G � K)(0) = {(1, x) | x ∈ K}
with K.

The “structure-preserving maps” between semigroupoids are the following.

Definition 1.8. Ahomomorphism	 : S → T of semigroupoids (or groupo-
ids) is a mapping 	 : S → T satisfying

(	(g1),	(g2)) ∈ T(2) and 	(g1g2) = 	(g1)	(g2)

for all (g1, g2) ∈ S(2). We write 	(0) for the induced map S(0) → T(0). Moreover,
we call 	 a factor map and T a factor of S if 	 is surjective. Homomorphisms
and factors of topological semigroupoids are defined by additionally requiring 	
to be continuous.

Example 1.9. Let G be a groupoid.
(a) The inclusions of the unit space G(0) and the isotropy bundle Iso(G) are

groupoid homomorphisms.
(b) The map

(r, s) : G → G(0) × G(0), g �→ (r(g), s(g))

is a groupoid morphism between G and the pair groupoid G(0) × G(0). In
particular, its image RG is an equivalence relation, called the orbit relation
on G(0).

We now consider groupoid actions (or G-spaces, see, e.g., [ADR00, Section
2.1]). For their definition we remind the reader of the notation for fibers and fiber
products of surjective maps fixed in the introduction. Moreover, recall that given
a groupoid G we write Gu and Gu for the elements with source and range u ∈ G(0),
respectively, and set Gv

u := Gu ∩ Gv for u, v ∈ G(0) (see Definition 1.1).

Definition 1.10. Let G be a topological groupoid. A groupoid action of G
on a compact space K is a tuple (K, q,G, ϕ) with a continuous, open surjection
q : K → G(0) and a continuous mapping

ϕ : G ×s,q K → K, (g, x) �→ ϕg (x) =: gx

such that
(i) q(gx) = r(g) for all (g, x) ∈ G ×s,q K,
(ii) (g1g2)x = g1(g2x) for all (g1, g2) ∈ G(2) and x ∈ Ks(g2),
(iii) ux = x for all u ∈ G(0) and x ∈ Ku .
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If x ∈ K, the orbit of x under G is defined as Gx := {gx | g ∈ Gq(x)}. A groupoid
action is called

• transitive if Gx = K for some/every x ∈ K,
• fiberwise transitive if the fiber groups Gu

u act transitively on Ku for
every u ∈ G(0).

A morphism (p,	) : (K1, q1,G1) → (K2, q2,G2) of groupoid actions consists of
a groupoid morphism	 : G1 → G2 and an open continuous map p : K1 → K2 such
that

(i) q2 ◦ p = 	(0) ◦ q1,
(ii) p(gx) = 	(g)p(x) for all (g, x) ∈ G ×s,q1 K1.

If G1 = G2 and 	 is the identity, we abbreviate (p,	) as p. A morphism (p,	)
is called a factor map or an extension if p and 	 are surjective. In this
case, (K1, q1,G1) is called an extension of (K2, q2,G2) and (K2, q2,G2) a factor
of (K1, q1,G1).

Remark 1.11. As in the case of group actions, we usually omit ϕ and just
write (K, q,G) for a groupoid action (K, q,G, ϕ). We emphasize that for a groupoid
action (K, q,G) we always require that K (and consequently also the unit spaceG(0))
is compact and q to be open. The latter assumption is quite common (see [ADR00,
Section 2.1]), but, as explained in the introduction, is also natural for the purpose
of examining pseudoisometric extensions. Likewise, we demand that morphisms
between groupoid actions are open. Finally, note also that a groupoid action
(K, q,G) is transitive if and only if (K, q,G) is fiberwise transitive andG is transitive.

Example 1.12. Let (K,G, ϕ) be a topological dynamical system. Then
(K, q,G, ϕ) is a groupoid action where q : K → {1} = G(0), x �→ 1.

Next, we consider one of this article’s key examples which motivates our
systematic study of groupoid actions.

Example 1.13. Let q : (K,G, ϕ) → (L,G, ψ) be an open extension of topo-
logical dynamical systems. Then the action groupoid G � L defines a groupoid
action (K, q,G � L, ηϕ) via

ηϕ : (G � L) ×s,q K → K, ((g, l), x) �→ ϕg(x).

Conversely, let (L,G, ψ) be a topological dynamical system and (K, q,G � L, η)
be an action of G � L on K. Then it is not hard to check that

ϕη : G × K → K, (g, x) �→ η(g,q(x))(x)

defines a continuous action (K,G, ϕη) of G on K such that

q : (K,G, ϕη) → (L,G, ψ)
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is an extension of topological dynamical systems. Since these constructions are
mutually inverse, an extension q : (K,G, ϕ) → (L,G, ψ) can be equivalently re-
garded as a groupoid action (K, q,G� L, η) of the action groupoid G� L on K. In
what follows, the reader should always have this example in mind when thinking
about groupoid actions.

Remark 1.14. There is also another way to obtain a groupoid action (K, q,G)
from an extension q : (K,G, ϕ) → (L,G, ψ) of dynamical systems: Let

S(q) := {ϕg|Kl : Kl → Kgl | g ∈ G, l ∈ L}.

Then one can also study the groupoid action (K, q, S(q)). Note, however, that
there is a loss of information because the action of G on K can no longer be
reconstructed from S(q) as opposed to the action of G�L which, in addition, keeps
track of which element of G acts. This difference is often immaterial, so there is no
harm in thinking directly about the transition groupoid S(q) instead of the action
groupoid G � L.

Example 1.15. Every topological groupoid (with compact unit space) acts
canonically on its unit space via conjugation. Indeed, if G is a groupoid with
compact unit space, then (G(0), idG(0),G, ϕ) with

ϕ : G ×s,id
G(0) G

(0) → G(0), (g, u) → gug−1

is a groupoid action mapping s(g) to r(g) for every g ∈ G. It is the smallest
action of G in the sense that if (K, q,G) is any groupoid action, then q : K → G(0)

defines an extension q : (G, q,K) → (G, idG(0) ,G(0)) of groupoid actions. Moreover,
(G(0), idG(0),G) is always fiberwise transitive, and it is transitive if and only if G is a
transitive groupoid.

As noted in Example 1.13, an extension of topological dynamical systems can
be equivalently regarded as a certain groupoid action, suggesting that properties
of extensions may be rephrased in terms of groupoid actions. The following
definition carries out this straightforward translation to general groupoid actions
for the standard notions of structuredness of extensions (cf. [dV93, Sections V.2
and V.5] and [Aus13]).

Definition 1.16. A groupoid action (K, q,G) is called

(i) weakly equicontinuous or stable if for each u ∈ G(0) and each entourage
U ∈ UK there is an entourage V ∈ UK such that (gx, gy) ∈ U for all g ∈ Gu

and x, y ∈ Ku with (x, y) ∈ V;



750 N. EDEKO AND H. KREIDLER

(ii) equicontinuous if for each entourage U ∈ UK there is an entourage V ∈ UK

such that for each u ∈ G(0) one has (gx, gy) ∈ U for all g ∈ Gu and x, y ∈ Ku

with (x, y) ∈ V;
(iii) pseudoisometric if there is a set P of continuous mappings

p : K ×q K → [0,∞)

such that
• pu = p|Ku×Ku is a pseudometric on Ku for every u ∈ G(0),
• the pseudometrics pu for p ∈ P generate the topology of Ku for

every u ∈ G(0),
• p(gx, gy) = p(x, y) for all x, y ∈ Ks(g) and g ∈ G;

(iv) isometric if it is pseudoisometric and the set P can be chosen to consist of
a single map which is (necessarily) a metric on each fiber.

Remark 1.17.
(a) It is immediate from Definition 1.16 that if q : (K,G) → (L,G) is an exten-

sion of topological dynamical systems, the extension is weakly equicontin-
uous, equicontinuous, . . . if and only if the corresponding groupoid action
(K, q,G � L) is.

(b) We show in Porposition 1.18 below that a pseudoisometric groupoid action
is equicontinuous. Hence, (iv) =⇒ (iii) =⇒ (ii) =⇒ (i). In general, none of
the converse implications hold: For (iii) and (iv) this is obvious, for (ii) and
(iii) see Example 3.15 below, and for the relation between and (i) and (ii) we
refer to [Aus13].

(c) Recall that if (K,G) and (L,G) are minimal group actions, q is equicontinu-
ous if and only if it is pseudoisometric if and only if it is weakly equicontin-
uous and open, see [dV93, Corollary 5.10] and [Bro79, Theorem 3.13.17].

Proposition 1.18. Let (K, q,G) be a pseudoisometric groupoid action. Then
(K, q,G) is equicontinuous.

Proof. Pick a set P as in Definition 1.16 iii. For each finite subset F ⊆ P
and ε > 0, set

UF,ε := {(x, y) ∈ K ×q K | ∀p ∈ F : p(x, y) < ε}

and note that ⋂
F⊆P finite
ε>0

UF,ε = �K.
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We claim that for every U ∈ UK , there are a finite set F ⊆ P and an ε > 0 such
that UF,ε ⊆ U which would yield the claim since UF,ε is G-invariant. In order to
prove the claim, first recall that UK = UK×K(�K) is just the neighborhood filter of
the diagonal. The claim then follows from the fact that if (Mα)α∈A is a decreasing
family of sets in a compact space X and U is an open neighborhood of⋂

α∈A

Mα,

then there is an α0 ∈ A such that Mα0 ⊆ U (use the finite intersection property). �
In analogy to group actions, we can associate an action groupoid to a groupoid

action (cf. [ADR00, Section 2.1]). We note this construction for later reference
since it will allow to investigate the orbit structure of groupoid actions.

Definition 1.19. For (K, q,G) a groupoid action we define the action
groupoid G� K of (K, q,G) as the fiber product G ×s,q K with

(G� K)(2) := {((h, gx), (g, x)) | x ∈ K, g ∈ Gq(x), h ∈ Gr(g)}
and the operations

· : (G� K)(2) → G� K, ((h, gx), (g, x)) �→ (hg, x),
−1 : G� K → G� K, (g, x) �→ (g−1, gx).

We identify its unit space

(G� K)(0) = {(q(x), x) | x ∈ K}
with K.

2 The compact-open topology for fiber maps

In order to define a uniform enveloping semigroupoid for groupoid actions, it is
necessary to find an appropriate topological space in which to carry out the com-
pactification. For the uniform enveloping semigroup of a topological dynamical
system (K,G), this is the space C(K,K) endowed with the compact-open topology,
as explained in the introduction. To generalize this, we extend the compact-open
topology to “fibered mappings” in this section and then introduce the uniform
enveloping semigroup in Section 3.
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Definition 2.1. For topological spaces X and Y as well as continuous surjec-
tions p : X → L and q : Y → L′ onto compact spaces L and L′ we set

Cq
p(X,Y)l

′
l := C(Xl,Yl′) for (l, l′) ∈ L × L′

and define the set of continuous fiber maps between p : X → L and q : Y → L′

as
Cq

p(X,Y) :=
⋃

l∈L,l′∈L′
Cq

p(K,X)l
′
l .

We define “source” and “range” maps

s : Cq
p(X,Y) → L, r : Cq

p(X,Y) → L′

by setting

s(ϑ) := l and r(ϑ) := l′ for ϑ ∈ Cq
p(K,X)l

′
l .

If Y is a topological space and q : Y → pt is the unique map onto a one-point
space pt, we abbreviate Cp(X,Y) := Cq

p(X,Y). Moreover, we write

Cp(X) := Cp(X,C).

Remark 2.2. If L = L′ and p = q in the definition above, the set Cq
q(K,K) with

Cq
q(K,K)(2) := {(ϑ, η) ∈ Cq

q(K,K) × Cq
q(K,K) | r(ϑ) = s(ϑ)}

is a semigroupoid with composition of mappings as the product map. We call this
the semigroupoid of continuous fiber maps of q.

The following generalization of the compact-open topology for spaces of fiber
maps is taken from [BB78, Section 1] where it is considered on the larger set of all
partial maps.

Definition 2.3. Let p : X → L and q : Y → L′ be continuous surjections of
topological spaces X and Y onto compact spaces L and L′. For a compact subset
C ⊆ X and an open subset O ⊆ Y , set

W(C,O) := {ϑ ∈ Cq
p(X,Y) | ϑ(C) ⊆ O} ⊆ Cq

p(X,Y)

where ϑ(C) = {ϑ(x) | x ∈ C with p(x) = s(ϑ)}. We then define the compact-open
topology on Cq

p(X,Y) to be the topology generated by all the sets of the form
W(C,O).

The classical characterization of convergence with respect to the compact-open
topology for locally compact spaces readily extends to this more general context.
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Proposition 2.4. Let p : X → L, q : Y → L′ be continuous surjections of

topological spaces X and Y onto compact spaces L and L′. Suppose that X is
locally compact. Then for a net (ϑα)α∈A in Cq

p(X,Y) and a ϑ ∈ Cq
p(X,Y) the

following assertions are equivalent:

(a) limα ϑα = ϑ with respect to the compact-open topology.

(b) The following two conditions are satisfied.

• limα s(ϑα) = s(ϑ).
• If (ϑβ)β∈B is a subnet of (ϑα)α∈A, then

lim
β
ϑβ(xβ) = ϑ(x)

for every net (xβ)β∈B in X that converges to some x ∈ X and satisfies

q(xβ) = s(ϑβ) for every β ∈ B.

In particular, the compact-open topology is the coarsest topology on Cq
p(X,Y) such

that the maps

s : Cq
p(X,Y) → L, ϑ �→ s(ϑ)

ev: Cq
p(X,Y) ×s,p X → Y, (ϑ, x) �→ ϑ(x)

are continuous.

Proof. First, suppose that (ϑα)α∈A and ϑ satisfy (b) and suppose that (ϑα)α∈A

does not converge to ϑ. Then there are a compact set C ⊆ X and an open set O ⊆ Y

such that ϑ ∈ W(C,O) and such that (ϑα)α∈A does not eventually lie in W(C,O).
This means that there is a subnet (ϑβ)β∈B of (ϑα)α∈A satisfying ϑβ 
∈ W(C,O) for
each β ∈ B. After again passing to a subnet, we may thus assume that there is a
convergent net (xβ)β∈B in C such that xβ ∈ Xs(ϑβ) and ϑβ(xβ) 
∈ O for each β ∈ B.
However, by (b), limβ ϑβ(xβ) = ϑ(x) ∈ O, a contradiction. Hence, (b) =⇒ (a).

Now, suppose that (ϑα)α∈A is a net in Cq
p(X,Y) converging to ϑ ∈ Cq

p(X,Y) in the
compact-open topology. To see that limα s(ϑα) = s(ϑ), suppose that s(ϑα) 
→ s(ϑ).
We construct a compact set C ⊆ X such that ϑ ∈ W(C, ∅) and a subnet of (ϑα)α∈A

which avoids W(C, ∅). To do this, first use the compactness of L to find a subnet
(ϑβ)β∈B of (ϑα)α∈A such that (s(ϑβ))β∈B converges to another point than s(ϑ).
Moreover, by again passing to a subnet, one may assume that there is a net (xβ)β∈B

in X converging to some x ∈ X such that xβ ∈ Xs(ϑβ) for each β ∈ B. Since by
assumption, p(xβ) = s(ϑβ) converges to a point different from s(ϑ), p(x) 
= s(ϑ).
Therefore, there is a compact neighborhood C ∈ U(x) with C ∩ Xs(ϑ) = ∅. Now
ϑ ∈ W(C, ∅) whereas eventually ϑβ 
∈ w(C, ∅) since xβ → x, a contradiction.
Therefore, limα s(ϑα) = s(ϑ).
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To establish the second part of (b), let (ϑβ)β∈B and (xβ)β∈B be as in (b). Let
O ∈ U(ϑ(x)) be a neighborhood of ϑ(x). Then V := ϑ−1(O) is a neighborhood
of x with respect to the subspace topology on Ks(ϑ). Therefore, there is a compact
neighborhood C ∈ U(x) such that C ∩ Ks(ϑ) ⊆ V . Because xβ → x, (xβ)β∈B

eventually lies in C and since ϑβ → ϑ in the compact-open topology, we conclude
that (ϑβ)β∈B eventually lies in W(C,O). Since O was an arbitrary neighborhood
of ϑ(x), this shows that limβ ϑβ(xβ) = ϑ(x). �

Remark 2.5. In general, the compact-open topology on Cq
p(X,Y) is not

Hausdorff. In fact, it is not difficult to infer from the characterization in Proposi-
tion 2.4 that it is Hausdorff if and only if p is open, as it will henceforth always
be the case. To show that the compact-open limit ϑ of a net (ϑα)α∈A is unique,
it suffices to show for every x ∈ Xs(ϑ) that ϑ(x) is uniquely determined. To see
that openness implies this, one can use the observation that a continuous surjection
p : X → L between a locally compact space X and a compact space L is open if
and only if the following condition is fullfilled: For every convergent net (lα)α∈A

in L with limit l ∈ L and every x ∈ Xl, there are a subnet (lβ)β∈B of (lα)α∈A and a
net (xβ)β∈B in X that converges to x and covers (lβ)β∈B in the sense that p(xβ) = lβ
for every β ∈ B. We will make use of this observation at several more occasions.

In order to prove a generalization of the Arzelà–Ascoli theorem below in
Theorem 3.13, we will need an equivalent description of the compact-open topol-
ogy. To find another natural way to topologize Cq

p(X,Y), observe that an element
ϑ ∈ Cq

p(X,Y) may be identified with its graph Gr(ϑ) ⊆ X × Y . Therefore, Cq
p(X,Y)

may be regarded as a subspace of the space C (X × Y) of closed subsets of X × Y ,
on which there exist many topologies, e.g., the Vietoris topology.

Definition 2.6. Let X be a topological space and C (X) the set of its non-empty
closed subsets. The Vietoris topology on C (X) is the topology generated by the
sets

U− := {A ∈ C (X) | A ∩ U 
= ∅},
U+ := {A ∈ C (X) | A ⊆ U}

for open subsets U ⊆ X.

Remark 2.7. It is known that if X is a Hausdorff space, then so is C (X); see
[Mic51, Theorem 4.9]. If X is compact, then C (X) is also compact; see [Mic51,
Theorem 4.9] or [EE14, Proposition 5.A.3]. If, additionally, X is a metric space,
the Vietoris topology coincides with the topology induced by the Hausdorffmetric;
see [Mic51, Theorem 3.4 and Proposition 3.6] or [EE14, Exercise 5.4].
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Definition 2.8. If p : X → L and q : Y → L′ are continuous surjections of
topological spaces X and Y onto compact spaces L and L′, we define the Vietoris
topology on Cq

p(X,Y) to be the initial topology with respect to the map

Gr: Cq
p(X,Y) → C (X × Y), ϑ �→ Gr(ϑ)

where C (X × Y) is equipped with the Vietoris topology.

Remark 2.9. In [HZ10], a slightly different version of the compact-open
topology on Cq

p(X,Y) is considered which, additionally, uses non-empty open sets
U ⊆ X and adds all the sets of the form

[U] := {f ∈ Cq
p(X,Y) | f−1(Y) ∩ U 
= ∅}

to generate the topology. If X is compact and p is open, however, p−1(p(U))c ⊆ X

is compact and [U] = W(p−1(p(U))c, ∅). Therefore, if X is compact, our compact-
open topology coincides with the one considered in [HZ10]. In particular, we
can note the following theorem which is formulated more generally in [HZ10,
Proposition 2.2] for later use.

Theorem 2.10. Let p : X → L and q : Y → L′ be continuous surjections
of topological spaces X and Y onto compact spaces L and L′. If X and Y are

compact and p is open, then the Vietoris topology and the compact-open topology
on Cq

p(X,Y) coincide.

3 Uniform enveloping semigroupoids

We are now ready to introduce the uniform enveloping semigroupoid of a groupoid
action. The main result of this section is Theorem 3.27 which states that, under
appropriate assumptions, Eu(K, q,G) is compact if and only if the groupoid action
(K, q,G) is pseudoisometric.

To define uniform enveloping semigroupoids, we regard the semigroupoid
Cq

q(K,K) of fiber maps introduced in Remark 2.2 as a topological semigroupoid
with respect to the compact-open topology. This allows to define the uniform
enveloping semigroupoid of a set of fiber maps.

Definition 3.1. Let q : K → L be an open, continuous surjection of compact
spaces and let F be a subset of the topological semigroupoid Cq

q(K,K). Then the
uniform enveloping semigroupoid Eu(F) of F is defined to be the smallest
closed subsemigroupoid of Cq

q(K,K) containing F.
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Remark 3.2. Note that this definition makes sense since the intersection of a
family of closed subsemigroupoids of a topological semigroupoid is again a closed
subsemigroupoid.

Definition 3.3. Let (K, q,G, ϕ) be a groupoid action and consider the tran-
sition semigroupoid S(K, q,G, ϕ) given by

S(K, q,G, ϕ) := {ϕg : Ks(g) → Kr(g) | g ∈ G} ⊆ Cq
q(K,K).

We call
Eu(K, q,G, ϕ) := Eu(S(K, q,G, ϕ))

the uniform enveloping semigroupoid of (K, q,G, ϕ).

Example 3.4. Let (K,G, ϕ) be a topological dynamical system and interpret
it as a groupoid action (K, q,G, ϕ) of G (see Example 1.12). Then

S(K, q,G, ϕ) = {ϕg | g ∈ G} ⊆ C(K,K)

is the transition group of (K,G) and the enveloping semigroupoid

Eu(K, q,G, ϕ) = Eu(S(K, q,G, ϕ)) ⊆ C(K,K)

is precisely the uniform enveloping semigroup Eu(K,G). Therefore,Eu generalizes
the uniform enveloping semigroup to arbitrary groupoid actions.

Example 3.5. Let q : (K,G, ϕ) → (L,G, ψ) be an open extension of topolog-
ical dynamical systems. As noted in Example 1.13, we can equivalently regard
the extension as an action (K, q,G � L, ηϕ) of the action groupoid G � L. For this
groupoid action, the transition groupoid is

S(K, q,G� L, ηϕ) = {ϕg|Kl | g ∈ G, l ∈ L} ⊆ Cq
q(K,K)

and the uniform enveloping semigroupoid is

Eu(K, q,G � L, ηϕ) = Eu({ϕg|Kl | g ∈ G, l ∈ L}) ⊆ Cq
q(K,K).

We will use the notations S(q) and Eu(q) to abbreviate these (semi)groupoids.

Example 3.6. Consider the rotation on the disc with varying speed of rotation,
i.e., the system (K, ϕ) given by K := D = {z ∈ C | |z| � 1} and

ϕ : K → K, ϕ(z) = ei|z|z.

If we set (L, ψ) := ([0, 1], id[0,1]), then

q : (K, ϕ) → (L, ψ), z �→ |z|
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defines an isometric extension between the two systems. If, for l ∈ [0, 1] and
α ∈ T, one lets

ϑα,l : Kl → Kl, z �→ αz

be the rotation by α on Kl, then it is instructive to verify that

Eu(q) = {ϑα,l | α ∈ T, l ∈ L}.

In particular, Eu(q) is a compact groupoid. This should be contrasted with the much
larger Ellis semigroup E(K,G) of the system which contains a homeomorphic copy
of βN since (K,G) is not tame (see, e.g., [Gla06, Theorem 1.2]).

Example 3.7. Let α ∈ T and

ψα : T → T, ψα(x) := αx,

ϕα : T2 → T2, ϕα(x, y) := (αx, xy)

be the rotation by α and the corresponding skew rotation. Then

q : (T2, ψα) → (T, ψα),

q(x, y) = x defines an isometric extension between the two systems. If α is rational,
then ϕα is periodic with some period N ∈ N and so

Eu(q) = S(q) = {ϕn
α|T2

l
| l ∈ T, n = 1, . . . ,N}.

Clearly, Eu(q) is a groupoid. Moreover, for fixed n ∈ N, it follows from the
characterization Proposition 2.4 that Eu(q) is compact. In case α is irrational,
(T2, ϕα) is minimal. Therefore, if one defines for (β, γ) ∈ T2

ϑ(β,γ) : T
2 → T2, (x, y) �→ (βx, γy),

then

Eu(q) = {ϑ(β,γ) | (β, γ) ∈ T2}.
In particular Eu(q) is a compact groupoid.

Example 3.8. Let K be a compact space, consider the pair groupoid K × K
and let R ⊆ K × K be a full subgroupoid, i.e., an equivalence relation on K (see
Example 1.5). Then Eu(R) is the smallest closed equivalence relation on K that
contains R. Many important equivalence relations in topological dynamics, such
as the equicontinuous structure relation or the distal structure relation, arise in this
way.
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As a special case, let G be a topological groupoid with compact unit space
and (G(0), idG(0),G) be its action on its unit space (see Example 1.15). Then
Eu(G(0), idG(0),G) lies in the groupoid

C
id

G(0)

id
G(0)

(G(0),G(0))

which is canonically isomorphic to the pair groupoid G(0) × G(0). Therefore, we
can identify the groupoid Eu(G(0), idG(0),G) with a closed equivalence relation on
G(0) × G(0). This equivalence relation is given by Eu(RG) where RG ⊆ G(0) × G(0) is
the orbit relation RG = (r, s)(G) ⊆ G(0) × G(0) of the action of G on its unit space;
see Example 1.9. Therefore, Eu(G(0), idG(0),G) can be identified with the smallest
closed equivalence relation on G(0) × G(0) that contains the orbit relation RG.

Remark 3.9. Note that the definition of the uniform enveloping semigroupoid
Eu(K, q,G) of a groupoid action (K, q,G) is more intricate than that of the uniform
enveloping semigroup E(K,G) of a group action (K,G): The uniform enveloping
semigroup is defined as the closure of a semigroup and it turns out that this closure
is automatically again a semigroup. In contrast to this, the following example
demonstrates that Eu(K, q,G) is generally not merely the closure of S(K, q,G).

Example 3.10. Consider the dynamical systems (L, ψ) defined byL :=[−1,1],
ψ(x) := sign(x)x2 for x ∈ L and (K, ϕ) given by K := [−1, 1] × Z2,

ϕ(x, g) := (ψ(x), g + 1) for (x, g) ∈ K.

Then the map
q : (K, ϕ) → (L, ψ), (x, g) �→ x

defines an isometric extension. The uniform enveloping semigroupoid of q is given
by

Eu(q) = {ϑx,y,h | x, y ∈ L, h ∈ Z2}
where ϑx,y,h denotes the function

ϑx,y,h : Kx → Ky, (x, g) �→ (y, g + h).

In contrast to this,

S(q) = S(q) ∪ {ϑx,0,h, ϑ0,x,h | x ∈ [−1, 1], h ∈ Z2}
∪ {ϑ−1,y,h, ϑy,−1,h | y ∈ [−1, 0], h ∈ Z2}
∪ {ϑ1,y,h, ϑy,1,h | y ∈ [0, 1], h ∈ Z2}.

Thus, the inclusion S(q) ⊆ Eu(q) is generally strict.
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3.1 Characterizing compactness. Usually, the uniform enveloping
semi-groupoid is neither compact, nor a groupoid. We therefore try to answer
the question: When is the uniform enveloping semigroupoid actually a compact
groupoid? As a first step to address this problem, we observe that the groupoid
property follows automatically once we have ensured compactness.

Proposition 3.11. Let (K, q,G) be a groupoid action. If Eu(K, q,G) is com-
pact, then it is a compact groupoid, i.e., every ϑ ∈ Eu(K, q,G) has an inverse

ϑ−1 ∈ Eu(K, q,G) and the mapping −1 : Eu(K, q,G) → Eu(K, q,G) is a homeomor-
phism.

Proof. Consider the set M of all elements ϑ ∈ Eu(K, q,G) having an in-
verse ϑ−1 in Eu(K, q,G). Then M is certainly closed under compositions and
contains S(K, q,G). To see that M = Eu(K, q,G) it therefore suffices to show that M
is closed in Eu(K, q,G). Pick a net (ϑα)α∈A in M converging to ϑ ∈ Eu(K, q,G).
Passing to a subnet, we may assume that (ϑ−1

α )α∈A converges to some element
� ∈ Eu(K, q,G). Using the characterization from Proposition 2.4 and the openness
of q, we conclude that � = ϑ−1. This shows that M = Eu(K, q,G). Moreover, if
(ϑα)α∈A is a net in Eu(K, q,G) converging to some ϑ ∈ Eu(K, q,G), then a similar
argument shows that ϑ−1 is the only cluster point of the net (ϑ−1

α )α∈A. �
We now try to characterize the compactness of the uniform enveloping semi-

groupoid by investigatingwhen a set is (pre)compact in the compact-open topology.
To this end, recall that if K is a compact space and Y is a uniform space, the precom-
pactness of a subsetF ⊆ C(K,Y) in the compact-open topology is characterized by
the classical Arzelà–Ascoli theorem: F is precompact if and only if F is equicon-
tinuous and im(F) =

⋃
f∈F im(f ) is precompact in Y . In what follows, we generalize

the notion of equicontinuity and the Arzelà–Ascoli theorem to compact bundles.

Definition 3.12. Let p : X → L, q : Y → L′ be continuous surjections onto
compact spaces and X and Y be uniform spaces. A subset F ⊆ Cq

p(X,Y) is
called (uniformly) equicontinuous if for each U ∈ UY there is a V ∈ UX such
that (ϑ(x1), ϑ(x2)) ∈ U for every ϑ ∈ F and every (x1, x2) ∈ V ∩ X ×L X with
s(ϑ) = p(x1) = p(x2).

Theorem 3.13. Let p : K → L, q : Y → L′ be continuous surjections onto
compact spaces, K be compact, and Y be a Hausdorff uniform space. If p is

open, then a subset F ⊆ Cq
p(K,Y) is precompact if and only if the following two

conditions are fulfilled:

(i) im(F) ⊆ Y is precompact.
(ii) F is equicontinuous.
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Proof. Suppose that (i) and (ii) hold. We may then assume that Y is compact.
In view of Remark 2.7, it suffices to show that the closure Gr(F) in C (K × Y) is
in fact contained in Gr(Cq

p(K,Y)). So we pick C ∈ Gr(F) and show that C = Gr(ϑ)
for some ϑ ∈ Cq

p(K,Y).

Let (ϑα)α∈A be a net in F such that Gr(ϑα) → C with respect to the Vietoris
topology. First, let (x, y) ∈ C and set l := p(x), l′ := q(x). We claim thatC ⊆ Kl×Yl′ :
If U ∈ UL(l) and V ∈ UL′(l′) are open neighborhoods of l and l′, then

C ∩ p−1(U) × q−1(V) 
= ∅.

Thus, there is an α0 ∈ A such that for all α � α0

Gr(ϑα) ∩ p−1(U) × q−1(V) 
= ∅.

Since ϑα ∈ Cq
p(K,Y), it follows that Gr(ϑα) ⊆ p−1(U) × q−1(V) for α � α0 and

hence that

C ⊆ p−1(U) × q−1(V).

Since U and V were arbitrary, C ⊆ Kl × Yl′ .

Since p is open, it follows that for every x ∈ Kl there is a y ∈ Yl′ such
that (x, y) ∈ C: Use Remark 2.5 and the compactness of im(F) to find a subnet
(Gr(ϑβ))β∈B and a net (xβ)β∈B such that (xβ)β∈B converges to x,

p(xβ) = s(ϑβ)

for every β ∈ B, and (ϑβ(xβ))β∈B converges to some y ∈ Y . Since (Gr(ϑβ))β∈B

converges to C with respect to the Vietoris topology, this then shows that (x, y) ∈ C.
In order to see that C is, in fact, the graph of a function ϑ : Kl → Yl′ , assume that
(x, y), (x, y′) ∈ C. Then there are nets (xα, ϑα(xα))α∈A, (x′

α, ϑα(x
′
α))α∈A converging

to (x, y) and (x, y′). It then follows from the equicontinuity of F that the nets
(ϑα(xα))α∈A and (ϑα(x′

α))α∈A have the same limits. This shows that y = y′, i.e., there
is a function ϑ : Kl → Yl′ with C = Gr(ϑ). Since ϑ(Kl) is contained in the compact
space Y , the closed graph theorem shows that ϑ is continuous, i.e., ϑ ∈ Cq

p(K,Y).
Hence, F is precompact.

For the converse implication, we may assume F to be compact. Using the
characterization of convergent nets in the compact-open topology from Proposi-
tion 2.4, it is then easy to see that im(F) is compact. If F were not equicontinuous,
we would find a net ((ϑα, xα, x′

α))α∈A in F ×L K ×L K and a U ∈ UY such that
limα xα = limα x′

α and (ϑα(xα), ϑα(x′
α)) /∈ U for every α ∈ A which clearly contra-

dicts the compactness of F. Thus, F is equicontinuous. �
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Corollary 3.14. For a groupoid action (K, q,G) the following assertions are

equivalent:

(a) (K, q,G) is equicontinuous.
(b) S(K, q,G) ⊆ Cq

q(K,K) is precompact.

(c) {f |Kr(g) ◦ ϕg | g ∈ G} ⊆ Cq(K) is equicontinuous for all f ∈ C(K) from
one/every subset M of C(K) that generates C(K) as a C∗-algebra.

(d) {f |Kr(g) ◦ ϕg | g ∈ G} ⊆ Cq(K) is relatively compact for all f ∈ C(K) from

one/every subset M of C(K) that generates C(K) as a C∗-algebra.

Proof. Given Theorem 3.13, the equivalence of (a) and (b) is hard not to
prove. Similarly, (c) and (d) are equivalent. So suppose M ⊆ C(K) is as in (c).
Straightforward arguments show that the property

{f |Kr(g) ◦ ϕg | g ∈ G} ⊆ Cq(K) is equicontinuous

is preserved under taking finite linear combinations, products, and conjugates of
functions in C(K). Thus, we may assume that M is dense in C(K). Now, to
verify the equicontinuity of (K, q,G), let V ∈ UK be a given entourage. Since the
functions in C(K) generate the uniformity on K and M is dense, we can find an
ε > 0 and an f ∈ M such that Uf,ε ⊆ V where

Uf,ε = {(x, y) ∈ K × K | |f (x) − f (y)| < ε}.

By assumption,

{f |Kr(g) ◦ ϕg | g ∈ G}
is equicontinuous and so we may find an entourage U ∈ UK such that for all g ∈ G

and all (x, y) ∈ U with q(x) = q(y) = s(g) one has

|f (gx) − f (gy)| < ε.

In other words, G maps K ×q K ∩ U into Uf,ε ⊆ V , so G is equicontinuous and (c)
implies (a). The converse implication is again easy to verify. �

In particular, if Eu(K, q,G) is compact, (K, q,G) is necessarily equicontinuous.
The following example shows that the converse is generally not true because the
inclusion S(K, q,G) ⊆ Eu(K, q,G) is generally strict, as noted in Remark 3.9 and
Example 3.10.

Example 3.15. Let L0 := [0,∞) and

ψ0 : L0 → L0, ψ0(x) := �x� + (x − �x�)2
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as well as K0 := L0 × Z2 and

ϕ0 : K0 → K0, ϕ0(x, g) := (ψ0(x), g + 1).

Then q0 :K0 →L0, (x, h) �→x is continuous and intertwinesϕ0 andψ0. Sinceψ0,ϕ0,
and q are proper, they extend canonically to the one-point compactifications K :=
K0 ∪ {∞K0} and L := L0 ∪ {∞L0} of K0 and L0 and thereby yield an extension
q : (K, ϕ) → (L, ψ) of topological dynamical systems. It is easy to see that S(q) is
compact since

S(q) ⊆ {ϑ∞} ∪ ⋃
n∈N0

{ϑx,y,g | x, y ∈ [n, n + 1], g ∈ Z2}

where for x, y ∈ L and g ∈ Z2, we define ϑx,y,g and ϑx as

ϑx,y,g : Kx → Ky, (x, h) �→ (y, g + h),

ϑx : Kx → {∞K0}, (x, h) �→ ∞K0 .

However,
Eu(q) = {ϑx,y,g | x, y ∈ L0, g ∈ Z2} ∪ {ϑx | x ∈ L}

and since ϑx is not invertible for x 
= ∞L0 , Eu(q) is neither a groupoid nor compact
(use Proposition 3.11).

Thus, in contrast to the case of group actions, in order to characterize the com-
pactness of Eu(K, q,G), a more restrictive property than equicontinuity is needed.
The following proposition shows that pseudoisometry is a sufficient condition for
the enveloping semigroupoid to be a compact groupoid.

Proposition 3.16. Let (K, q,G) be a pseudoisometric groupoid action. Then
Eu(K, q,G) is a compact groupoid.

Proof. Pick a set P as in Definition 1.16 (iii) and consider the set

I(P) :=

{
ϑ ∈ Cq

q(K,K)

∣∣∣∣ϑ : Ks(ϑ) → Kr(ϑ) is bijective and for all p ∈ P,

x, y ∈ Ks(ϑ) one has p(ϑ(x), ϑ(y)) = p(x, y)

}
.

By Theorem 3.13, I(P) is a compact (semi)groupoid containing S(K, q,G) and
therefore Eu(K, q,G) ⊆ I(P) is itself a compact semigroupoid. It follows from
Proposition 3.11 above that it is in fact a groupoid. �

The following proposition shows that if Eu(K, q,G) is transitive, then we can
actually characterize pseudoisometric exensions via the compactness of the uniform
enveloping semigroupoid.
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Proposition 3.17. Let (K, q,G) be a groupoid action such that Eu(K, q,G) is

a compact transitive groupoid. Then (K, q,G) is pseudoisometric.

Proof. Let P be a family of pseudometrics generating the topology of K. Then
for p ∈ P, define

p′ : K ×G(0) K → [0,∞), (x, y) �→ max
ϑ∈Eu(K,q,G)

s(ϑ)=q(x)

p(ϑ(x), ϑ(y)).

Then the family P′ := {p′ | p ∈ P} generates the topology of Ku for each u ∈ G(0)

since Eu(K, q,G)u is compact. Moreover, since the range and source map of
a compact transitive groupoid are open by Proposition 3.18 below, each p′ is
continuous and one readily verifies the invariance of the p′. �

Proposition 3.18. Let G be a compact transitive groupoid. Then (s, r), s, and
r are open and so is the restriction p of s and r to Iso(G).

Proof. We start with the restrictions to Iso(G): Pick g ∈ Iso(G) and set
u := p(g) ∈ G(0). Moreover, let (uα)α∈A be a net in G(0) converging to u. For
each α ∈ A there is an hα ∈ Guα

u and by passing to a subnet, we may assume
that limα hα = h ∈ Gu

u. But then g = limα hα(h−1gh)h−1
α and so we have found a

net (gα)α∈A in Iso(G) that converges to g and satisfies r(gα) = uα for every α ∈ A.
Thus, r is open.

To show that (s, r), s, and r are open, it suffices to show that (s, r) is open, so
let g ∈ G and (uα, vα)α∈A be a net in G(0) × G(0) converging to (u, v ) = (s(g), r(g)).
Since G is transitive, there is a net (hα)α∈A in G with s(hα) = uα and r(hα) = vα for
each α ∈ A. By compactness of G, we may assume that (hα)α∈A converges to some
element h ∈ G with s(h) = s(g) and r(h) = s(g). Set γ := gh−1 ∈ Iso(G)r(g) and,
using the openness result for the isotropy bundle, find, after possibly passing to
a subnet, a net (γα)α∈A in Iso(G) with p(γα) = vα for each α ∈ A. Then the net
(γαhα)α∈A converges to g and satisfies

(s(γαhα), r(γαhα)) = (s(hα), r(hα)) = (uα, vα)

for each α ∈ A. Hence, (s, r) is open. �

3.2 Characterizing transitivity. Proposition 3.17 is unsatisfying in that
it is not yet clear when Eu(K, q,G) is a transitive groupoid. Therefore, we show
in this subsection that the transitivity of Eu(K, q,G) can be characterized purely
in terms of G. To this end, recall from Example 1.15 that a groupoid is transitive
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if and only if the action on its unit space is transitive. This allows to reduce the
question when Eu(K, q,G) is transitive to a question purely about G and its action
(G(0), idG(0),G) on its unit space. The following lemma and Corollary 3.20 show
that we thus only need to consider the question when Eu(G(0), idG(0),G) is transitive.

Lemma 3.19. Let p : (K1, q1,G) → (K2, q2,G) be an extension of groupoid

actions. If Eu(K1, q1,G) is compact, then

	p : Eu(K1, q1,G) → Eu(K2, q2,G), ϑ → 	p(ϑ)

is a factor map of topological groupoids where

	p(ϑ) : (K2)s(ϑ) → (K2)r(ϑ), p(x) �→ p(ϑ(x))

for ϑ ∈ Eu(q1). Moreover,

	(0)
p : Eu(K1, q1,G)(0) → Eu(K2, q2,G)(0)

is bijective.

Proof. We first check that 	p is well-defined. Let S be the set of all ele-
mentsϑ∈Eu(K1,q1,G) with the following property: If x, y∈ (K1)s(ϑ) with p(x)=p(y),
then p(ϑ(x)) = p(ϑ(y)). Then S is a semigroupoid containing S(K1, q1,G) and we
show that it is closed in Eu(K1, q1,G). Let (ϑα)α∈A be a net in S converging
to ϑ ∈ Eu(K1, q1,G) and x, y ∈ (K1)s(ϑ) with p(x) = p(y). Since p and q2 are open,
we find, by passing to a subnet, a ((xα, yα))α∈A in K1 × K1 such that x = limα xα,
y = limα yα and p(xα) = p(yα) as well as q1(xα) = q1(yα) = s(ϑα) for every α ∈ A.
But then p(ϑα(xα)) = p(ϑα(yα)) for every α ∈ A and therefore

p(ϑ(x)) = lim
α

p(ϑα(xα)) = lim
α

p(ϑα(yα)) = p(ϑ(y)).

Thus, S is closed and therefore S = Eu(K1, q1,G). It is now clear, that

	p : Eu(K1, q1,G) → Cq2
q2

(K2,K2), ϑ �→ 	p(ϑ)

is a well-defined morphism of semigroupoids and a moment’s thought reveals that
it is continuous. Since Eu(K1, q1,G) is compact, we obtain that its image is a
closed subsemigroupoid of Cq2

q2
(K2,K2) containing S(q2) and therefore containing

Eu(K2, q2,G). On the other hand, 	−1
p (Eu(K2, q2,G)) is a closed subsemigroupoid

of Eu(K1, q1,G) containing S(K1, q1,G) showing that the image of 	p is pre-
cisely Eu(K2, q2,G). Moreover, 	(0)

p is easily shown to be bijective since p is an
extension of groupoid actions, i.e., q1 = q2 ◦ p. �
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Corollary 3.20. Let (K, q,G) be a groupoid action such that its enveloping

semigroupoid Eu(K, q,G) is compact. Then Eu(K, q,G) is transitive if and only
if Eu(G(0), idG(0),G) is transitive.

Proof. Consider the extension q : (K, q,G) → (G(0), idG(0),G) of groupoid ac-
tions. Then Lemma 3.19 shows that there is a surjective groupoid morphism
from Eu(K, q,G) to Eu(G(0), idG(0),G) which is bijective on the level of unit spaces.
Thus, Eu(K, q,G) is transitive if and only if Eu(G(0), idG(0),G) is. �

The question that now remains is: When is Eu(G(0), idG(0) ,G) transitive? To
understand this, first recall from Example 3.8 that the groupoid Eu(G(0), idG(0),G)
is isomorphic to Eu(RG) where RG is the orbit relation on G(0). Therefore, we need
to understand when the equivalence relation Eu(RG) is transitive which, as noted
in Example 1.5, amounts to understanding when Eu(RG) = G(0) × G(0). We now
consider the following illustrating examples.

Example 3.21. Let (L,G) be a topological dynamical system and let G � L
be the action groupoid of (L,G). In this case, RG�L = {(x, y) | ∃g ∈ G : gx = y} is
the regular orbit relation on L.

(a) If every orbit in (L,G) equals L, then RG×L = L × L, G � L is transitive,
and so is Eu(RG×L). However, this case almost never occurs in topological
dynamics.

(b) If (L,G) has a dense orbit, then RG�L is dense in L × L and so

Eu(RG�L) = L × L,

so Eu(RG�L) is transitive.
(c) Even if (L,G) does not have any transitive point, Eu(L, idL,G � L) may

still be transitive. To see this, revisit the system (L, ψ) considered in Ex-
ample 3.10: It follows either by direct computation or by observing the
transitivity of Eu(K, q,Z � L) that Eu(RG�L) is transitive. However, (L,Z)
itself is not transitive.

(d) Consider the system (L, ψ) on L := [0, 1] × Z2 given by the map

ψ : [0, 1] × Z2 → [0, 1] × Z2, (x, g) �→ (x2, g).

Then

Eu(RG�L) = {((x, g), (y, h)) ∈ [0, 1] × Z2 | g = h} � L × L.

In particular, Eu(RG�L) is not transitive.
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Remark 3.22. In light of Example 3.21, it is apparent that the orbit structure
of the action of a groupoid G on its unit space G(0) plays an essential role for
the transitivity of the enveloping groupoid Eu(G(0), idG(0) ,G) and the equivalence
relation Eu(RG). For topological dynamical systems (L, ψ), it has been character-
ized when Eu(RG�L), the smallest closed equivalence relation containing the orbit
relation, is all of L × L: It is equivalent to each of the following assertions:

(i) The fixed space fix(Tψ) of the Koopman operator Tψ : C(L) → C(L) is one-
dimensional.

(ii) The maximal trivial factor of (L, ψ) is a point.
See [Kü21] and [Ede21, Section 1] for more information. In analogy with ergodic
measure-preserving systems, we call such systems (L,G) topologically ergodic.
We now extend this characterization to groupoid actions.

Definition 3.23. A factor (M, t,H) of (K, q,G) with factor map (p,	) is
called a trivial factor if the acting groupoid H is trivial in the sense of 1.3. It is a
maximal trivial factor, if for any factor map (p̃, 	̃) : (K, q,G) → (M̃, t̃, H̃) onto
another trivial factor there is a unique factor map (m,�) such that the following
diagram commutes:

(K, q,G)
(p,	)

(p̃,	̃)

(M, t,H)

∃! (m,�)

(M̃, t̃, H̃)

We call (K, q,G) topologically ergodic if every trivial factor is a point and say
that a groupoid G is topologically ergodic if its action (G(0), idG(0),G) on its unit
space is topologically ergodic.

Lemma 3.24. Let (K, q,G, ϕ) be a groupoid action. Then the folowing asser-

tions hold:
(i) Maximal trivial factors are unique up to isomorphism.

(ii) If
Rϕ = {(x, y) ∈ K × K | y ∈ Gx}

denotes the orbit relation, then the space K/Eu(Rϕ) defines a maximal trivial

factor of (K, q,G).

Proof. Two trivial factors (M1, t1,H1) and (M2, t2,H2) are isomorphic if and
only if the associated equivalence relations on K agree. By construction, Eu(Rϕ)
is the smallest closed equivalence relation on K that contains the equivalence
relation Rϕ. Thus, K/Eu(Rϕ) is a maximal trivial factor of (K, q,G) and every other
maximal trivial factor is isomorphic to it. �
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In view of Lemma 3.24, we may from now on speak of the maximal trivial
factor fix(K, q,G) of a groupoid action (K, q,G). Summarizing our observations,
we obtain the following characterization.

Theorem 3.25. Let G be a topological groupoid with compact unit space.
Then the following assertions are equivalent.

(i) G is topologically ergodic.
(ii) The equivalence relation Eu(RG) equals G(0) × G(0).

(iii) The enveloping groupoid Eu(G(0), idG(0),G) is transitive.
(iv) The enveloping groupoid Eu(K, q,G) is transitive for every action (K, q,G)

of G such that Eu(K, q,G) is compact.

Since we are ultimately interested in groupoid actions that arise from extensions
of topological dynamical systems as in Example 1.13, the following corollary
provides a simple criterion for topological ergodicity.

Corollary 3.26. Let (K,G) be a topological dynamical system. Then the

action groupoid G � K is topologically ergodic if and only if the system (K,G) is.

We are now ready to state the main result of this section.

Theorem 3.27. Let (K, q,G) be a groupoid action by a topologically ergodic
groupoid G. Then the following assertions are equivalent:

(a) (K, q,G) is pseudoisometric.

(b) Eu(K, q,G) is a compact groupoid.

Proof. The implication (a) =⇒ (b) was established more generally in
Porposition 3.16. The converse implication follows from Proposition 3.17 since
if G is topologically ergodic, Eu(K, q,G) is a compact transitive groupoid by
Theorem 3.25. �

Remark 3.28. Let (K, q,G) be a groupoid action by a topologically ergodic
groupoid G. If K is metrizable, then Theorem 3.27 combined with the proof of
Proposition 3.17 reveal that (K, q,G) is isometric if and only if it is pseudoisometric.

3.3 Maximal trivial factors andKoopmanrepresentations. Asnoted
in Remark 3.22, topological ergodicity of a dynamical system (L, ψ) can be charac-
terized in terms of its Koopman operator, allowing for a very convenient criterion.
We extend this characterization to groupoids.
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Definition 3.29. Let (K, q,G, ϕ) be a groupoid action. The map

Tϕ : G → ⋃
u,v∈G(0)

L (C(Ku),C(Kv)), g �→ Tg

with Tg f := f ◦ ϕg−1 for f ∈ C(Ks(g)) is called the Koopman representation of
(K, q,G, ϕ). Moreover, the set

fix(Tϕ) := {f ∈ C(K) | ∀g ∈ G : Tg (f |Ks(g) ) = f |Kr(g)}
is called its fixed space. If G is a topological groupoid with compact unit space,
we write TG for the Koopman representation of (G, idG(0),G(0)) and call this the
Koopman representation of G.

Remark 3.30. If (K, q,G, ϕ) is a groupoid action, we can recover its fixed
space from the action groupoid G�K (see Definition 1.19). Concretely, we obtain,
under the usual identification of the unit space, the identity fix(Tϕ) = fix(TG�K).

The fixed space of the Koopman representation is always a unital commutative
C*-algebra and therefore isomorphic to C(X) where X is its (compact) Gelfand
space. Using this observation we obtain the following result characterizing the
maximal trivial factor of a groupoid action.

Proposition 3.31. Let (K, q,G, ϕ) be a groupoid actions. Then the Gelfand
space of the fixed space fix(Tϕ) defines a maximal trivial factor of (K, q,G, ϕ).

Proof. The Gelfand space of fix(Tϕ) is homeomophic to the compact space
M = K/Rfix with

Rfix := {(x, y) ∈ K × K | ∀f ∈ fix(Tϕ) : f (x) = f (y)}.
Clearly, Rfix is a closed and invariant equivalence relation containg the orbit rela-
tion Rϕ. We therefore immediately obtain that Eu(Rϕ) ⊆ Rfix. On the other hand,
if R is any closed invariant equivalence relation and πR : K → K/R the induced
map, then (x, y) ∈ R if and only if f (πR(x)) = f (πR(y)) for every f ∈ C(K/R).
However, TπR f = f ◦ πR ∈ fix(Tϕ) for every f ∈ C(K/R). This shows Rfix ⊆ Eu(Rϕ)
and consequently Rfix = Eu(Rϕ). The claim now follows from Lemma 3.24. �

Corollary 3.32. A groupoid action (K, q,G, ϕ) is topologically ergodic if and

only if fix(Tϕ) is one-dimensional.

Corollary 3.33. A groupoid G with compact unit space G(0) is topologically
ergodic if and only if fix(TG) is one-dimensional.
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4 Representations of compact transitive groupoids

In this section we study the representation theory of compact transitive groupoids
and apply it to the uniform enveloping (semi)groupoids of pseudoisometric
groupoid actions. We start by recalling the following consequence of the Peter–
Weyl theorem for representations of compact groups (see [EFHN15, Theorem
15.14]).

Theorem 4.1. Let T : G → L (E) be a strongly continuous representation of
a compact group G on a Banach space E. Then the following assertions hold:

(i) The union of all finite-dimensional invariant subspaces of E is dense in E.
(ii) If G is abelian, then the union of all one-dimensional invariant subspaces

of E is total in E.

We prove a generalization of this result to representations of compact tran-
sitive groupoids in Theorem 4.8. We then apply this generalization to prove
Theorem 4.14, the main result of this section that characterizes pseudoisometric
groupoid actions. To perform this generalization, we need to start by replacing
Banach spaces by Banach bundles (see, e.g., [DG83, Definition 1.1] or [Gie82,
Section 1 and Theorem 3.2]).

Definition 4.2. Let L be a compact space. A Banach bundle over L is a
topological space E together with a continuous open surjection p : E → L with the
following properties.

(i) Every fiber El is a Banach space.
(ii) The mappings

+: E ×L E → E, (e, f ) �→ e + f

· : C × E → E, (λ, e) �→ λe

are continuous.
(iii) The norm mapping

‖ · ‖ : E → [0,∞), e �→ ‖e‖
is upper semicontinuous.

(iv) For each l ∈ L the sets

{e ∈ E | p(e) ∈ U, ‖e‖ < ε}
for neighborhoods U ⊆ L of l and ε > 0 define a neighborhood base
of 0l ∈ El.
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A Banach bundle E is
• continuous if the norm mapping ‖ · ‖ of (iii) is continuous,
• of constant dimension n for some n ∈ N0 if dim(El) = n for every l ∈ L,
• of constant finite dimension if it is of constant dimension n for some

n ∈ N0,
• locally trivial if for each l ∈ L there are a compact neighborhood W of l,

n ∈ N0 and a homeomorphism 	 : p−1(W) → W × Cn with the following
properties:

- The diagram

p−1(W) 	

p

W × Cn

pr1

W

commutes where pr1 : W × Cn → W is the projection onto the first
component.

- 	|El : El → {l}×Cn is an isomorphism of vector spaces for every l ∈ W.
- There are constants c1, c2 > 0 such that

c1 · ‖e‖ � ‖pr2(	(e))‖ � c2 · ‖e‖
for every e ∈ p−1(W) where pr2 : W × Cn → Cn is the projection onto
the second component.

Moreover, we write

�(E) := {σ ∈ C(L,E) | p ◦ σ = idL}
for the space of continuous sections of E.

Remark 4.3. (i) If E is a Banach bundle over a compact space L, then �(E)
is canonically a module over C(L) and a Banach space with the norm defined
by ‖σ‖ := supl∈L ‖σ(l)‖El for σ ∈ �(E). Moreover, ‖fσ‖ � ‖f‖ · ‖σ‖ for all
f ∈ C(L) and σ ∈ �(E), i.e., �(E) is a Banach module over C(L) (cf. [DG83,
Chapter 2]).

(ii) If E is a continuous Banach bundle, then its total space is Hausdorff (see
[Gie82, Proposition 16.4]).

(iii) A Banach bundle with finite-dimensional fibers which is locally trivial as a
vector bundle (in the usual sense) is locally trivial as a Banachbundle since the
required norm estimates follow from compactness and upper semicontinuity
of the norm (see [Gie82, Proposition 10.9]).

(iv) By [Gie82, Theorem 18.5], a Banach bundle of constant finite dimension has
a Hausdorff total space if and only if it is locally trivial.
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We also recall the notion of subbundles.

Definition 4.4. A subbundleof a Banach bundle E is a subsetF ofE together
with the restricted mapping p|F : F → L such that the following conditions are
satisfied.

• Fl = F ∩ El is a closed linear subspace of El for every l ∈ L.
• The restricted mapping p|F is still open.

Under these conditions, F together with p|F is again a Banach bundle (see
[Gie82, Section 8]).

There are plenty of examples of Banach bundles coming from differential
geometry. Here we are interested in Banach bundles arising from surjections
between compact spaces.

Example 4.5. Let q : K → L be an open continuous surjection between
compact spaces. Then a moment’s thought reveals that the compact-open topology
on Cq(K) agrees with the topology generated by the base

V(F,U, ε) := {f ∈ Cq(K) | s(f ) ∈ U, ‖f − F|Ks(f )‖ < ε}
for F ∈ C(K), open U ⊆ L, and ε > 0 (considered, e.g., in [Kna67, p. 30]).
Togetherwith the canonicalmapping p := s : Cq(K) → L, the space Cq(K) becomes
a continuous Banach bundle over L. Moreover, the mapping

C(K) → �(Cq(K)), F �→ [l �→ Fl]

is an isometric isomorphism of Banach modules over C(L) by means of which we
identify the continuous sections of Cq(K) with C(K).

Next, we introduce the notion of continuous representations for topological
groupoids (cf. Definition 3.1 of [Bos11]). Note here that if E is a Banach bundle
over a compact space L, then the space G (E) of all invertible bounded linear
operators

T : El → El̃

for l, l̃ ∈ L is a subsemigroupoid of Cp
p(E,E) and itself a groupoid.

Definition 4.6. Let G be a topological groupoid. A continuous represen-
tation of G on a Banach bundle E over G(0) is a homomorphism

T : G → G (E)

of groupoids such that

G ×s,p E → E, (g, v ) �→ T(g)v
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is continuous. Moreover, we call a subset F of E T-invariant if

T(g)(F ∩ Es(g)) ⊆ F

for every g ∈ G.

An important class of examples of continuous groupoid representations are the
Koopman representations we already considered in Definition 3.29.

Proposition 4.7. Let (K, q,G, ϕ) be a groupoid action. Then the Koopman
representation

G → G (Cq(K)), g �→ Tg

is a continuuous representation of G.

Proof. We only check that the mapping

G ×s,s Cq(K) → Cq(K), (g, f ) �→ Tg f

is continuous since the remaining assertions are obvious. Pick a net ((gα, fα))α∈A

in G ×s,s Cq(K) converging to (g, f ) ∈ G ×s,s Cq(K). We have to show that Tgα fα
converges to Tg f with respect to the compact-open topology.

Let ((gβ, fβ))β∈B be a subnet and (xβ)β∈B be a convergent net in K with limit
x ∈ K that satisfies q(xβ) = s(g−1

β ) for every β ∈ B. Then limβ g−1
β (xβ) = g−1(x).

Since limβ fβ = f ,
lim
β

fβ(g−1
β (xβ)) = f (g−1(x)).

This shows that Tϕ is continuous. �
We now state our first main result: a Peter–Weyl-type theorem for compact

transitive groupoids. Here, a subset F of a Banach bundle E over a compact
space L is called fiberwise dense if F ∩ El is dense in El for every l ∈ L. The
notion of a fiberwise total set is defined analogously. Moreover, a groupoid G is
abelian if all its isotropy groups Gu

u for u ∈ G(0) are abelian.

Theorem 4.8. For a continuous representation T of a compact transitive

groupoid G on a Banach bundle E over the unit space G(0) the following assertions
hold.

(i) The union of all invariant subbundles of constant finite dimension is fiberwise
dense in E.

(ii) If G is abelian, then the union of all invariant subbundles of constant dimen-
sion one is fiberwise total in E.

(iii) If F1,F2 ⊆ E are two subbundles of constant finite dimension, then their sum
F1 + F2 is again an invariant subbundle of constant finite dimension.
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Remark 4.9. Notice that if E has a Hausdorff total space (in particular, if E

has continuous norm), then the subbundles in Theorem 4.8 are locally trivial (see
Remark 4.3 (iv)).

The proof of Theorem 4.8 uses the following lemma which reduces the problem
to a single isotropy group.

Lemma 4.10. Let T be a continuous representation of a compact transitive
groupoid on a Banach bundle E, u ∈ G(0), and V ⊆ Eu a closed Gu

u-invariant

subspace. Then setting Fr(g) := T(g)V for every g ∈ Gu defines an invariant
subbundle F ⊆ E.

Proof. Note first that F is well-defined. In fact, if g, h ∈ Gu with r(g) = r(h),
then

T(h)V = T(g)T(g−1h)V = T(g)V

since g−1h ∈ Gu
u and V is Gu

u-invariant. Clearly, F is G-invariant and fiberwise
closed.

To show that F is a subbundle of E, it suffices to check that p|F : F → G(0) is
open. So let f ∈ F and (vα)α∈A be a convergent net in G(0) with limit

v := p(f ) ∈ G(0).

Since (s, r) : G → G(0) × G(0) is open by Proposition 3.18, we may assume, after
passing to a subnet, that there is a net (gα)α∈A with limit v such that

s(gα) = v and r(gα) = vα

for every α ∈ A. The net (T(gα)f )α∈A then is a net over (vα)α∈A that converges to f ,
showing that p|F is open. �

Proof of Theorem 4.8. For fixed u ∈ G(0), use Theorem 4.1 to see that
the union of all finite-dimensional Gu

u-invariant subspaces is dense in Eu . But
by Lemma 4.10 each of these invariant subspaces defines a G-invariant subbun-
dle of constant finite dimension which implies (i). Likewise, a combination of
Theorem 4.1 and Lemma 4.10 proves (ii) and (iii). �

We can now apply Theorem 4.8 to representations of uniform enveloping
groupoids Eu(K, q,G) of groupoid actions (K, q,G) on the Banach bundle Cq(K).
However, as in Knapp’s article [Kna67], we are primarily interested in results for-
mulated in terms of the Banach space C(K) (instead of the Banach bundle Cq(K)).
Since C(K) can be identified with the space �(Cq(K)) of continuous sections
of Cq(K), the following remark explains why this can be achieved.
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Remark 4.11. Let p : E → L be a Banach bundle and �(E) its space of
continuous sections. As noted in Remark 4.3, �(E) is a C(L)-module and if F ⊆ E
is a subbundle, then �(F) is a closed submodule of �(E). Conversely, if � ⊆ �(E)
is a closed submodule, one can define a corresponding subbundle F� ⊆ E as
follows: For l ∈ L, let evl : �(E) → El denote the point evaluation in l and set

F� :=
⋃
l∈L

evl(�) ⊆ E.

It is shown in [Gie82, Theorem 8.6 and Remark 8.7] that this does indeed define
a subbundle of E and that the assignments F �→ �(F) and � �→ F� are mutually
inverse. In particular, there is a one-to-one correspondence between subbundles
of E. Thus, it is natural to try to rephrase properties for subbundles in terms of
their associated submodules.

We now translate the notions “invariant subbundle” and “locally trivial” to the
language of modules.

Definition 4.12. Let T be a representation of a groupoid G on a Banach
bundle E. Then a subset M ⊆ �(E) is called T-invariant if Tg Msg ⊆ Mr(g) for
every g ∈ G.

It is easy to see that a subbundle F ⊆ E is invariant if and only if the submodule
�(F) ⊆ �(E) is invariant.

The following result, which is a Banach bundle version of the classical Serre–
Swan duality (see [Swa62]), characterizes local triviality. Recall here that a mod-
ule � over a commutative unital ring R is projective if there is an R-module �̃
such that the module �⊕ �̃ is free, i.e., has a basis.

Proposition 4.13. For a Banach bundle E over a compact space L the fol-
lowing assertions are equivalent:

(a) E is locally trivial.

(b) �(E) is a finitely generated and projective C(L)-module.

Proof. The implication “(a) ⇒ (b)” follows directly from the Serre–Swan
theorem. Conversely, assume that (b) holds. Using the Serre–Swan theorem a
second time, we find a locally trivial vector bundle F over L and a (not necessarily
continuous) C(L)-module isomorphism T : �(F) → �(E). We now construct a
bundle morphism 	 : F → E from T and show that it is continuous in order to
prove that E and F are isomorphic.
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Equip F with any map ‖ ·‖ : F → [0,∞) turning F into a Banach bundle (these
always exist, see [Swa62, Lemma 2]). Then by Remark 4.3 (iii), F is also locally
trivial as a Banach bundle. If l ∈ L and σ ∈ �(F) with σ(l) = 0, then we find k ∈ N,
hj ∈ C(L) with hj(l) = 0 and τj ∈ �(F) for j = 1, . . . , k such that σ =

∑k
j=1 hjτj by

[Swa62, Lemma 4]. But then

(Tσ)(l) =
k∑

j=1

hj(l)(Tτj)(l) = 0

for every l ∈ L. We therefore obtain a well-defined linear map 	l : Fl → El by
setting 	lσ(l) := (Tσ)(l) for σ ∈ �(F) and l ∈ L. Moreover, since Fl is finite-
dimensional, 	l is bounded for every l ∈ L. We show as in the proof of [Swa62,
Theorem 1] that

	 : F → E, f �→ 	p(f )f

is continuous. Pick l ∈ L. Since F is locally trivial, we find a neighbor-
hood V ∈ UL(l), sections σ1, . . . , σn ∈ �(F) such that σ1(l̃), . . . , σn(l̃) define a
base in Fl̃ for every l̃ ∈ V , and continuous functions h1, . . . , hn : p−1(V) → C such
that

f =
n∑

j=1

hj(f )σj(p(f )) for every f ∈ p−1(V).

But then	(f ) =
∑n

j=1 hj(f )(Tσj)(p(f )) for every f ∈ p−1(V). Since Tσj is continuous
for every j ∈ {1, . . . , n} we obtain that 	 is continuous and hence a morphism
of Banach bundles (see [Gie82, Definition 10.1, Proposition 10.2]). Moreover,
Tσ = 	 ◦ σ for every σ ∈ �(F), i.e., T is the operator induced by the morphism 	

between the spaces of continuous sections (see [Gie82, Section 10]). However, by
the bounded inverse theorem, a morphism of Banach bundles is an isomorphism
if and only if the induced operator between the spaces of continuous sections
is bijective (see [Gie82, Remark 10.19 (b)]). Thus, the bundles E and F are
isomorphic and E is locally trivial. �

With these translations we now formulate the main result of this section.

Theorem 4.14. Let (K, q,G, ϕ) be a groupoid action by a topologically er-
godic groupoid G. Then the following assertions are equivalent:

(a) (K, q,G, ϕ) is pseudoisometric.
(b) Eu(K, q,G) is a compact groupoid.

(c) The union of all locally trivial Tϕ-invariant subbundles is fiberwise dense in
Cq(K).

(d) The union of all finitely generated, projective, closed, Tϕ-invariant C(G(0))-
submodules of C(K) is dense in C(K).
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(e) The finitely generated, projective, closed, Tϕ-invariant C(G(0))-submodules

of C(K) generate C(K) as a C∗-algebra.

Moreover, if these assertions hold, then all locally trivial Tϕ-invariant subbundles

of Cq(K) have constant finite dimension and the set of these subbundles is closed
under finite sums.

We first prove some short and useful lemmas about locally trivial Banach
bundles.

Lemma 4.15. Let E be a Banach bundle over a compact space L which is

locally trivial. If M ⊆ E is a bounded subset, i.e., supe∈M ‖e‖p(e) < ∞, then it is

precompact.

Proof. We may assume M to be closed. Now pick a net (eα)α∈A in M. Passing
to a subnet, we may assume that (p(eα))α∈A converges to some l ∈ L. By choosing
a local trivialization as in Definition 4.2, the claim reduces to the case of a trivial
Banach bundle L × Cn for which it is obvious. �

Lemma 4.16. Let E be a Hausdorff Banach bundle over a compact space L

and F ⊆ E a locally trivial subbundle. Then F is closed.

Proof. Take a net (eα)α∈A in F converging to some e ∈ E. There is an α0 ∈ A

such that supα�α0
‖eα‖ < ∞ and by Lemma 4.15 we find a subnet converging to

an element of F. Since E is a Hausdorff space, we obtain that e ∈ F. �

Lemma 4.17. Let (K, q,G, ϕ) be a groupoid action. If F ⊆ Cq(K) is a Tϕ-

invariant locally trivial subbundle, then F is also invariant under the induced

representation of Eu(K, q,G).

Proof. Let F be a locally trivial Tϕ-invariant subbundle and consider the set

S := {ϑ ∈ Eu(K, q,G) | Fr(ϑ) ◦ ϑ ∈ Fs(ϑ)}.

It is clear that S is a subsemigroupoid of Cq
q(K,K) that contains S(K, q,G). We

show that it is closed which implies S = Eu(K, q,G). So take a net (ϑα)α∈A in S

converging to ϑ ∈ Eu(K, q,G) and e ∈ Fr(ϑ) = C(Kr(ϑ)). Since F is a subbundle,
we then find a continuous extension f ∈ C(K) with f |Kr(ϑ) = e and f |Ku ∈ Fu for
all u ∈ G(0). Then

e ◦ ϑ = lim
α

f |Kr(ϑα ) ◦ ϑα ∈ F

by Lemma 4.16. �
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Proof of Theorem 4.14. First recall that (a) and (b) are equivalent by
Theorem 3.27. We now show that (b) implies (c) and (d) as well as the ad-
ditional claims. So assume that Eu(K, q,G) is a compact groupoid. Then it is
also transitive by Theorem 3.25 since G is topologically ergodic. Applying The-
orem 4.8 to the Koopman representation of Eu(K, q,G) on Cq(K) yields that the
union of all Eu(K, q,G)-invariant subbundles of constant finite dimension is fiber-
wise dense in Cq(K) and that the set of these subbundles is closed under finite
sums. Since Cq(K) is Hausdorff, these Banach bundles are locally trivial by Re-
mark 4.3(iv). Conversely, since every Tϕ-invariant locally trivial subbundle is
invariant with respect to the representation of Eu(K, q,G) by Lemma 4.17, all its
fibers are isomorphic and it therefore has to be of constant finite dimension.

To show that (d) holds, observe that for each locally trivial invariant subbundle
F ⊆ Cq(K), the set

�̃(F) := {σ ∈ �(Cq(K)) | ∀u ∈ G(0) : σ(u) ∈ Fu} ⊆ �(Cq(K))

is a C(G(0))-submodule of �(Cq(K)) which is isometrically isomorphic to �(F)
as a Banach module over C(G(0)). In particular, �̃(F) is finitely generated and
projective as a C(G(0))-module (see Remark 4.3 and Proposition 4.13) and closed
in �(Cq(K)). Let M be the union of all modules �̃(F) where F is a locally trivial
subbundle. Then M is a C(G(0))-submodule since the sum F = F1 + F2 of two
locally trivial invariant subbundles of F1 and F2 is again a locally trivial invariant
subbundle and �̃(F1) + �̃(F2) ⊆ �̃(F). Moreover, by Theorem 4.8, M is stalkwise
dense in the sense of [Gie82, Definition 4.1] and via a Stone–Weierstraß theorem
for bundles (see [Gie82, Corollary 4.3]), this implies that M is dense in �(Cq(K)).
Using the canonical isomorphism �(Cq(K)) ∼= C(K) noted in Example 4.5, we
conclude that the union of all closed finitely generated and projective Tϕ-invariant
C(G(0))-submodules is dense in C(K). Hence, (b) also implies (d).

Clearly, (d) implies (e). But also (c) implies (e): Assume that (c) holds. By
the Stone–Weierstraß theorem it suffices to show that the elements of finitely
generated, projective, closed, Tϕ-invariant C(G(0))-submodules separate the points
of K. Let x, y ∈ K. If q(x) 
= q(y), then we find f ∈ C(G(0) with f (q(x)) 
= f (q(y))
and therefore the elements of the submodule C(G(0)) · � separate x and y. On
the other hand, if u := q(x) = q(y), we find a locally trivial invariant subbundle
F ⊆ Cq(K) and a section σ ∈ �(F) with σ(u)(x) 
= σ(u)(y). Since �(F) defines a
finitely generated, projective, closed, Tϕ-invariant C(G(0))-submodule of C(K), this
shows the claim.

To finish the proof, we assume that e holds. We show thatEu(K, q,G) is compact
which, by Proposition 3.11, already yields (b). By Theorem3.13 it suffices to show
thatEu(K, q,G) is equicontinuous. Recall fromCorollary 3.14 that this is equivalent
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to {f ◦ ϑ | ϑ ∈ Eu(K, q,G)} being equicontinuous or, equivalently, precompact
in Cq(K) for every f in a set generating C(K) as a C*-algebra. In particular,
by (e) we only have to show precompactness of this set for f ∈ C(K) contained
in a finitely generated, projective, and closed Tϕ-invariant C(G(0))-submodule of
C(K). Given such a submodule � ⊆ C(K), the subspaces Fu := �|Ku are finite-
dimensional for u ∈ G(0). As noted in Remark 4.11, they define a subbundle of the
Banach bundle Cq(K) and�(F) is isomorphic to� as a Banachmodule overC(G(0)).
Therefore F is locally trivial by Proposition 4.13. Clearly, it is Tϕ-invariant. Since
{f ◦ ϑ | ϑ ∈ Eu(K, q,G)} is contained in F by Lemma 4.17, its precompactness
follows using Lemma 4.15 since it is a bounded subset of Cq(K). We therefore
obtain that Eu(K, q,G) is compact which finishes the proof. �

5 Haar systems and relatively invariant measures

Using the (uniform) enveloping semigroup, it can be shown that any equicontin-
uous, minimal system (K,G) has a unique invariant probability measure which is
the pushforward of the Haar measure on the compact group E(K,G). A relative
version of this result also holds in the sense that, given an equicontinuous extension
q : (K,G) → (L,G) of minimal systems, there exists a unique relatively invariant
measure for the extension (see [Gla75, Corllary 3.7]). We recall the definition and
remind the reader of the notation introduced in the introduction.

Definition 5.1. Let (K, q,G) be a groupoid action. A relatively invariant
measure for (K, q,G) is a continuous mapping

μ : G(0) → P(K), u �→ μu

such that

• q∗μu = δu for all u ∈ G(0),
• ϕ∗

gμr(g) = μs(g) for all g ∈ G.

We call μ fully supported if suppμu = Ku for every u ∈ G(0).

Example 5.2. Let q : (D, ϕ) → ([0, 1], id[0,1]) be the extension from Exam-
ple 3.6 where ϕ is the rotation with varying velocity onD. Then the groupoid action
(D, q, S(q)) has a unique relatively invariant measure μ which is fully supported.

Relatively invariant measures have been studied systematically by Glasner in
[Gla75]: They allow to lift measures along extensions; they serve as a topological
version of the conditional expectations that ergodic theory relies on considerably;
and as we discuss in Section 6, they are also essential for the Fourier analysis
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of pseudoisometric extensions. In this Section, we show that unique relatively
invariant measures exist for pseudoisometric extensions of topologically ergodic
systems. This extends previous results to a much larger class of nonminimal
systems, including in particular all transitive systems. As above, it is essential to
consider extensions as groupoid actions to carry out this generalization.

Since the unique invariant measure of a compact transitive group action is
given by the pushforward of the Haar measure, we try to adapt this argument to the
groupoid case. We therefore consider Haar systems, a generalization of Haar mea-
sures to group bundles and more generally groupoids; see [Ren80, Definition 2.2].

Definition 5.3. Let G be a compact group bundle and for u ∈ G(0) let mu be
the Haar measure on the fiber group Gu. Then G has a continuous Haar system
if the mapping

G(0) → C, u �→
∫

f dmu

is continuous for each f ∈ C(G).

It is known that a compact group bundle G has a continuous Haar system if and
only if the mapping p : G → G(0) is open (see [Ren91, Lemma 1.3]). In particular,
by Proposition 3.18 the isotropy bundle of every compact transitive groupoid has
a continuous Haar system. With this knowledge, we can prove the first result of
this section. Recall from Definition 1.10 that a groupoid action is called transitive
if every orbit is the entire space.

Theorem 5.4. Let (K, q,G) be an action by a compact transitive groupoid G.

Then the following assertions hold.

(i) (K, q,G) admits a relatively invariant measure.

(ii) (K, q,G) admits a unique relatively invariant measure if and only if the action
(K, q,G) is transitive. In this case, the measure is fully supported.

The proof requires the following continuity lemma.

Lemma 5.5. Let q : K → L be a continuous open surjection between compact
spaces and

μ : L → P(K), l �→ μl

a continuous map with q∗μl = δl for every l ∈ L. Moreover, let (fα)α∈A be a

convergent net in Cq(K) with limit f ∈ Cq(K). Then

lim
α

∫
Ks(fα)

fα dμs(fα) =
∫

Ks(f )

f dμs(f ).
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Proof. Choose F ∈ C(K) such that F|Ks(f ) = f . For each α ∈ A choose an
xα ∈ Ks(fα) such that

|fα(xα) − F(xα)| = sup
x∈Ks(fα )

|fα(x) − F(x)|.

For each subnet of (fα)α∈A we then find a subnet (fβ)β∈B such that x = limβ xβ exists
in K. But then

lim
β

sup
x∈Ks(fβ )

|fβ(x) − F(x)| = lim
β

|fβ(xβ) − F(xβ)| = 0.

As a consequence,

lim
α

∣∣∣∣
∫

Ks(fα)

fα dμs(fα) −
∫

Ks(fα)

F dμs(fα)

∣∣∣∣ � lim
α

sup
x∈Ks(fα )

|fα(x) − F(x)| = 0,

which implies the claim. �

Proof of Theorem 5.4. As above, we denote the Haar measure on Gu
u by mu

for u ∈ G(0). In order to prove (i), it suffices to consider the case that (K, q,G) is
transitive (in which case G is automatically transitive). To see this, note that for
fixed x ∈ K, the orbit Gx is a closed, G-invariant subset and that q restricted to Gx

is again an open surjection (use Proposition 3.18).
Now suppose (K, q,G) is transitive. For x ∈ K, denote by

ρx : G
q(x)
q(x) → Kq(x), g �→ gx

the induced map onto the orbit of x. Now pick a point xu ∈ Ku for each u ∈ G(0)

and set
μu := (ρxu )∗(mu).

It is clear from the transitivity of the group action of Gu
u on Ku that μu does

not depend on the choice of xu ∈ Ku and that suppμu = Ku for every u ∈ G(0).
Moreover, ϕ∗

gμs(g) = μr(g) for every g ∈ G.
Now take f ∈ C(K). We show that limα μuα(f ) = μu(f ) for every net (uα)α∈A

converging to some u ∈ L. By passing to a subnet, we may assume that there is a
convergent net (xα)α∈A in K with limit x ∈ K that satisfies q(xα) = uα for all α ∈ A.
Then ρxα → ρx with respect to the compact-open topology and so f ◦ ρxα → f ◦ ρx

with respect to the compact-open topology. Therefore, Lemma 5.5 yields

lim
α∈A

〈f, μuα〉 = lim
α∈A

〈f ◦ ρxα ,muα〉 = 〈f ◦ ρx,mu〉 = 〈f, μu〉.

Hence, μ : G(0) → P(K) is continuous. This shows (i) as well as the existence of a
fully supported relatively invariant measure in case of a transitive action.
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It remains to show that there is a unique relatively invariant measure if and
only if (K, q,G) is transitive. Since we have seen that any orbit of K carries
a relatively invariant measure, the action must be transitive if there is only one
relatively invariant measure. Conversely, suppose (K, q,G) is transitive and let μ
be the relatively invariant measure constructed above. Take any relatively invariant
measure ν : G(0) → P(K) for (K, q,G) and let u ∈ G(0). Then ν is invariant under
the action of Gu

u . Since a transitive action of a compact group is equicontinuous
and minimal and therefore uniquely ergodic, νu = μu . Since u ∈ G(0) was arbitrary,
μ is the unique relatively invariant measure for (K, q,G). �

In order to apply Theorem 5.4 to a pseudoisometric groupoid action (K, q,G)
via the uniform enveloping groupoid, we have to understand when the induced
action of Eu(K, q,G) is transitive. As noted in Remark 1.11, the transitivity of the
groupoid action (K, q,Eu(K, q,G)) can be split into two transitivity properties:

• “Transitivity in direction of G(0)”: The induced action (G(0), idG(0),Eu(K, q,G)
on the unit space G(0) is transitive.

• “Transitivity in direction of q”: The isotropy groups of Eu(K, q,G) act tran-
sitively on the fibers of q, i.e., (K, q,Eu(K, q,G)) is fiberwise transitive.

We have already shown that transitivity in direction of G(0) is equivalent to G being
topologically ergodic, so it remains to find a useful characterization for fiberwise
transitivity. To this end, we introduce a notion of relative topological ergodicity
for groupoid actions and show that it yields the desired characterization.

Definition 5.6. A groupoid action (K, q,G) is called relatively topologi-
cally ergodic if the canonical map α : fix(K, q,G) → fix(G(0), id,G) is an isomor-
phism of maximal trivial factors.

Remark 5.7. A groupoid action (K, q,G) is relatively topologically ergodic
if and only if the restricted operator

Tq|fix(TG) : fix(TG) → fix(Tϕ), f �→ f ◦ q

is bijective.

Clearly, every topologically ergodic groupoid action is relatively topologically
ergodic. However, there are groupoid actions which are only relatively topologi-
cally ergodic, but not topologically ergodic.

Example 5.8. If G is any groupoid with compact unit space which is not
topologically ergodic, then the action (G(0), idG(0),G) is still topologically ergodic.
More concretely, let (K,G) be a topological dynamical system which is not topo-
logically ergodic. Then the action of the action groupoid G � K on K is relatively
topologically ergodic but not topologically ergodic.
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The following result now relates ergodicity of a pseudoisometric groupoid
action with fiberwise transitivity of the action of the induced uniform enveloping
groupoid.

Proposition 5.9. For a pseudoisometric groupoid action (K, q,G) the follow-

ing assertions are equivalent.
(a) The action of G on K is relatively topologically ergodic.

(b) The action of Eu(K, q,G) on K is fiberwise transitive.

The proof follows from the following lemma which provides a more explicit
characterization of topological ergodicity in terms of orbits of the uniform envelop-
ing groupoid.

Lemma 5.10. Let (K, q,G, ϕ) be a pseudoisometric groupoid action. Then
the following assertions hold:

(i) The map
Eu(K, q,G)� K → Eu(Rϕ), (ϑ, x) �→ (x, ϑ(x))

is a surjective morphism of compact groupoids.

(ii) The orbits of Eu(K, q,G) on K are precisely the equivalence classes of Eu(Rϕ).
(iii) For each x ∈ K

q
(
Eu(K, q,G)x

)
= Eu(G

(0), idG(0),G)q(x).

Moreover, (K, q,G) is relatively topologically ergodic if and only if for each

x ∈ K

Eu(K, q,G)x = q−1(Eu(G
(0), idG(0),G)q(x)),

i.e., if every Eu(K, q,G)-invariant subset A ⊆ K is q-saturated.

Proof. For i, notice that the set

S := {ϑ ∈ Eu(K, q,G) | ∀x ∈ Ks(ϑ) : (x, ϑ(x)) ∈ Eu(Rϕ)}
is a closed subsemigroupoid of Eu(K, q,G) that contains S(K, q,G) and therefore

S = Eu(K, q,G).

Clearly, the mapping

Eu(K, q,G) � K → Eu(Rϕ), (ϑ, x) �→ (x, ϑ(x))

is continuous and a morphism of groupoids. Since its image is a compact sub-
semigroupoid of Eu(Rϕ) that contains Rϕ, (i) holds. Moreover, (ii) is a direct
consequence of (i).
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For part (iii), use Lemma 3.19 to see that the extension

q : (K, q,G) → (G(0), idG(0),G)

extends to an extension

q : (K, q,Eu(K, q,G)) → (G(0), idG(0),Eu(G
(0), idG(0),G)).

Thus, q maps orbits of Eu(K, q,G) onto orbits of Eu(G(0), idG(0),G). Now, consider
the following commutative diagram:

(K, q,G)
q qK

fix

(G(0), idG(0),G)

qG
(0)

fix

fix(K, q,G)

α

fix(G(0), idG(0),G)

Suppose that (K, q,G) is relatively topologically ergodic, i.e., that α is an isomor-
phism. Then every Eu(K, q,G)-invariant subset A ⊆ K is qK

fix-saturated by (ii) and
since the above diagram commutes, it is also saturated with respect to qG(0)

fix ◦ q and
hence with respect to q.

Conversely, suppose that everyEu(K, q,G)-invariant subsetA ⊆ K is q-saturated
and take such a set A. Then

q(A) = q(Eu(K, q,G)A) = Eu(G
(0), idG(0),G)q(A).

In other words, q(A) is also saturated with respect to qG(0)

fix . Hence, we conclude
that qK

fix and qG(0)

fix ◦ q = α ◦ qK
fix have the same saturated sets, meaning that α has to

be injective. Therefore, α is an isomorphism. �

Proof of Proposition 5.9. If (a) holds and x ∈ K, then

q−1(q(x)) ⊆ Eu(K, q,G)x

by Lemma 5.10 (iii) which yields q−1(q(x)) = Eu(K, q,G)q(x)
q(x)x.

Now assume that (b) holds. We take x ∈ K and y ∈ q−1(Eu(G(0), idG(0),G)x). By
Lemma 3.19 we find ϑ ∈ Eu(K, q,G) with s(ϑ) = q(x) and r(ϑ) = q(y). But then
we can apply (b) to find � ∈ Eu(K, q,G) with s(�) = r(�) = q(y) and ϑ(�(x)) = y.
This shows that

y = (ϑ ◦ �)(x) ∈ Eu(K, q,G)x

and therefore (a) by Lemma 5.10 (iii). �
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Corollary 5.11. For a pseudoisometric groupoid action (K, q,G) the follow-

ing assertions are equivalent:
(a) (K, q,G) is topologically ergodic.

(b) G is topologically ergodic and (K, q,G) is relatively topologically ergodic.
(c) (K, q,Eu(K, q,G)) is transitive.

For the groupoid actions satisfying the equivalent conditions of Corollary 5.11,
we now prove the existence and uniqueness of relatively invariant measures.

Theorem 5.12. Let (K, q,G) be a pseudoisometric and topologically ergodic
groupoid action. Then there is a unique relatively invariant measure for (K, q,G).
Moreover, this relatively invariant measure is fully supported.

Proof. The existence of a fully supported relatively invariant measure follows
by combining Corollary 5.11 and Theorem 5.4. To establish uniqueness, we
need to know that any relatively invariant measure for (K, q,G) also is a relatively
invariant measure for (K, q,Eu(K, q,G)) to apply Theorem 5.4 again. This is done
in Lemma 5.13 below. �

Lemma 5.13. Let (K, q,G) be a groupoid action with relatively invariant
measure μ. Then μ also is a relatively invariant measure for the groupoid action

(K, q,Eu(K, q,G)).

Proof. We need to show that ϑ∗μs(ϑ) = μr(ϑ) for every ϑ ∈ Eu(K, q,G). The
set

S := {ϑ ∈ Eu(K, q,G) | ϑ∗μs(ϑ) = μr(ϑ)}
is a subsemigroupoid Eu(K, q,G) that contains S(K, q,G). We only have to check
that it is closed. If (ϑα)α∈A is a net in S converging to ϑ ∈ Eu(K, q,G) and f ∈ C(K),
then limα Tϑα f = Tϑf in Cq(K) and therefore limα〈Tϑα f, μs(ϑα)〉 = 〈Tϑf, μs(ϑ)〉 by
Lemma 5.5. Thus,

〈f, ϑ∗μs(ϑ)〉 = lim
α
〈Tϑf, μs(ϑ)〉 = lim

α
〈f, (ϑα)∗μs(ϑα)〉 = lim

α
〈f, μr(ϑα)〉 = 〈f, μr(ϑ)〉.

This shows that ϑ ∈ S and so Eu(K, q,G) = S. �

6 Fourier analysis

The classical Peter–Weyl theorem allows, given a compact group G with its Haar
measure m, to decompose the Hilbert space L2(G,m) into a canonical orthogonal
sum of finite-dimensional G-invariant subspaces. These subspaces and the pro-
jections onto them are defined by means of the unitary dual Ĝ which consists of
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equivalence classes [π] of irreducible unitary representations π of G. As we recall
in Theorem6.1 below, this Fourier-analytic result can easily be extended to a transi-
tive action (K,G) of a compact group G, allowing to similarly decompose the space
L2(K, μ) where μ denotes the unique invariant probability measure on K obtained
as the pushforward of the Haar measure m. The goal of this section is to generalize
this to a Fourier analysis result for actions of compact transitive groupoids which is
of interest on its own but will also be applied to uniform enveloping semigroupoids
in Section 7.

To understand the situation for a transitive action (K,G) of a compact group,
letμ denote the above-mentioned unique G-invariant probability measure on K. In
order to obtain prospectiveprojection operators onL2(K, μ), define for f ∈L2(K, μ),
[π] ∈ Ĝ, and μ-a.e. x ∈ K

(P[π]f )(x) := dim([π])
∫

G
tr([π])(g)f (g−1x) dm(g).

Here, dim([π]) and tr([π]) denote the dimension and trace of [π], respectively. With
these definitions, one obtains the following easy consequence of the Peter–Weyl
theorem.

Theorem 6.1. Let (K,G) be a transitive action of a compact group G and μ
its unique invariant probability measure. Then the following assertions hold.

(i) P[π] ∈ L (L2(K, μ)) is an orthogonal projection for every [π] ∈ Ĝ.
(ii) The ranges rg(P[π]) for [π] ∈ Ĝ are finite-dimensional, invariant subspaces

of C(K) and are pairwise orthogonal in L2(K, μ).
(iii) For every f ∈ L2(K, μ) and [π] ∈ Ĝ

‖P[π]f‖C(K) � ‖f‖L2(K,μ).

(iv) Each f ∈ C(K) is contained in

lin{P[π]f | [π] ∈ Ĝ}‖·‖C(K) ⊆ C(K).

(v) For each f ∈ L2(K, μ) we have

(f | f ) =
∑

[π]∈Ĝ

(P[π]f | P[π]f ).

(vi) Each f ∈ L2(K, μ) can be decomposed into a series

f =
∑

[π]∈Ĝ

P[π]f

converging in L2(K, μ).
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Proof. A simple application of the Cauchy–Schwarz inequality and Fubini’s
theorem shows that P[π] ∈ L (L2(K, μ)) for every [π] ∈ Ĝ. Moreover, if g ∈ G and
Tg ∈ L (L2(K, μ)) is the Koopman operator defined by Tgf (x) := f (g−1x) for x ∈ K

and f ∈ L2(K, μ), then P[π]Tg = TgP[π] since the trace of a representation is constant
on conjugacy classes. In particular, rg(P[π]) is Tg-invariant for every g ∈ G.

Now, note that by Fourier analysis of compact groups (see, e.g., [Fol15, Sec-
tions 5.2 and 5.3]), the remaining assertions are clear if (K,G) is given by multipli-
cation from the left on K = G. In this case, we denote the projections by Q[π] for
[π] ∈ Ĝ. If (K,G) is a general transitive action of G, we fix x ∈ K. The orbit map

�x : G → K, g �→ gx

then is a continuous surjection. It induces an isometry T�x ∈ L (C(K),C(G)) which
then extends to an isometric embedding T�x ∈ L (L2(K, μ),L2(G,m)). Since
T�xP[π] = Q[π]T�x for every [π] ∈ Ĝ, the statements now readily extend to the
general situation. �

In order to prove a version of THeorem 6.1 for transitive actions of compact
groupoids, it is necessary to replace the unique invariant probability measure with
the unique relatively invariant measure of Theorem 5.4, and the induced Hilbert
space with the space of continuous sections of a (continuous) Hilbert bundle.

Definition 6.2. Let q : K → L be an open continuous surjection between com-
pact spaces andμ : L → P(K), l �→ μl aweak*-continuousmappingwith q∗μl = δl
and suppμl = Kl for every l ∈ L. We consider the Banach bundle defined by

L2
q(K, μ) :=

⋃
l∈L

L2(Kl, μl)

with the canonical mapping p : L2
q(K, μ) → L and the topology defined by the sets

V(F,U, ε) := {f ∈ L2
q(K, μ) | p(f ) ∈ U, ‖f − F|Kp(f )‖L2(Kp(f ),μp(f )) < ε}

for F ∈ C(K), U ⊆ L open, and ε > 0.

Remark 6.3. In the situation of Definition 6.2, it is standard to check
that L2

q(K, μ) endowed with the natural norm mapping is a continuous Banach
bundle. In fact, it is even a Hilbert bundle, i.e., the map

(· | ·) : L2
q(K, μ) ×L L2

q(K, μ) → C, (f1, f2) �→ (f1 | f2)μp(f1) :=
∫

f1f2 dμp(f1)

is continuous. Its space of sections �(L2
q(K, μ)) equipped with the “vector-valued

inner product”

(· | ·)μ : �(L2(K, μ)) → C(L), σ �→ [l �→ (σ(l) | σ(l))μl]
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is then a Hilbert C*-module over C(L) (see, e.g., [DG83] or [Lan95] for this
concept). We indentify C(K) with a submodule of �(L2

q(K, μ)) via the injective
C(L)-module homomorphism

C(K) → �(L2
q(K, μ)), f �→ [l → f |Kl ].

By the Stone–Weierstraß theorem for bundles (see [Gie82, Corollary 4.3]), C(K)
is dense in �(L2

q(K, μ)).

Given a transitive action (K, q,G) of a compact groupoid G, we now obtain a
Hilbert bundle in a canonical way by applying the conctruction of Definition 6.2 to
the unique relatively invariant measure of Theorem 5.4. The space �(L2

q(K, μ)) of
continuous sections of this bundle will then take the role the Hilbert space L2(K, μ)
played in the case of a group action.

Finally, in order to formulate a version of Theorem 6.1 for groupoid ac-
tions (K, q,G), the last required ingredient is a generalization of the occurring
projection operators P[π]. Below, we first define them on each fiber of the Hilbert
bundle L2(K, μ) using the irreducible representations of the isotropy bundle Iso(G)
of G. In order for the fiber operators to fit together to a well-defined projection
operator on �(L2(K, μ)) and to ensure its G-invariance, we need to enforce a com-
patibility condition on the irreducible representations of Iso(G) that are employed.

Definition 6.4. Let G be a compact groupoid.
(i) If π is an irreducible unitary representation of Gu

u and g ∈ Gu , we define
πg (h) := π(g−1hg) for h ∈ G

r(g)
r(g). Moreover, set

[π]g := [πg] ∈ ˆ
G

r(g)
r(g).

(ii) We call a map
γ : G(0) → ⋃

u∈G(0)

Ĝu
u

an invariant section if
• γ(u) ∈ Ĝu

u for every u ∈ G(0).
• γ(u)g = γ(gug−1) for all u ∈ G(0) and g ∈ Gu .

Moreover, �G denotes the set of all such invariant sections.

Remark 6.5. If G is a transitive compact groupoid and u ∈ G(0) is fixed, then
every [π] ∈ Ĝu

u defines an invariant section via γ[π](g−1ug) := [πg ] for all g ∈ Gu ,
and every invariant section is of this form. In this case, we therefore obtain a
bijection

Ĝu
u → �G, [π] �→ γ[π],

i.e., up to choosing a base point u ∈ G(0), the set �G can simply be seen as one of
the unitary duals of the isotropy groups of G.



788 N. EDEKO AND H. KREIDLER

We can now define the projection operators defined by such invariant sections.
Recall here that a compact groupoid acting transitively has to be transitive itself
and therefore the observations of Remark 6.5 are valid in this context.

Definition 6.6. Let (K, q,G) be a transitive groupoid action of a compact
groupoid Gwith unique relatively invariant measureμ. For γ ∈ �G the associated
projectionPγ is defined by (Pγσ)(u) := Pγ(u)σ(u) for u ∈ G(0) and σ ∈ �(L2

q(K, μ)).

We now obtain our Fourier analytic result for transitive actions of compact
groupoids extending results of Knapp (cf. [Kna67, Theorem 1.2]). Here, two
subsets M1,M2 ⊆ �(L2(K, μ)) are called orthogonal if

(σ1 | σ2)μ = 0

for all σ1 ∈ M1, σ2 ∈ M2. Moreover, linC(G(0)) denotes the linear hull with respect
to the C(G(0))-module structure on C(K). Recall also from Remark 6.3 that we
identify C(K) with a dense submodule of �(L2

q(K, μ)).

Theorem 6.7. For a transitive action (K, q,G, ϕ) of a compact groupoid G

with unique relatively invariant measure μ the following assertions hold:

(i) For every γ ∈ �G, Pγ ∈ L (�(L2
q(K, μ))) is a projection and a C(G(0))-module

homomorphism.

(ii) For every σ ∈ �(L2
q(K, μ)) and γ ∈ �G

‖Pγσ‖C(K) � ‖σ‖�(L2
q(K,μ)).

(iii) The ranges rg(Pγ) for γ ∈ �G are closed, finitely generated, projective, Tϕ-

invariant C(G(0))-submodules of C(K) and are pairwise orthogonal
in �(L2

q(K, μ)).
(iv) Each f ∈ C(K) is contained in

linC(G(0)){Pγf | γ ∈ �G} ⊆ C(K).

(v) For each σ ∈ �(L2
q(K, μ))

(σ | σ)μ =
∑
γ∈�G

(Pγσ | Pγσ)μ

with convergence in C(G(0)).
(vi) Each σ ∈ �(L2

q(K, μ)) can be decomposed into a series

σ =
∑
γ∈�G

Pγσ

converging in �(L2
q(K, μ)).
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Proof. We start with the proof of assertions (i), (ii), and (iii), so fix γ ∈ �G.
We first show that Pγf ∈ C(K) for every f ∈ C(K). So let f ∈ C(K) and define for
every x ∈ K the continuous function

Fx : Gq(x)
q(x) → C, g �→ tr(γ(q(x))(g)f (g−1x).

We claim that the map

F : K → Cp
p(Iso(G)), x �→ Fx

is continuous which would imply the continuity of Pγf via the integral continuity
criterion fromLemma 5.5. To see that F is indeed continuous, we use the continuity
characterization from Proposition 2.4. So let (xα)α∈A be a net in K with limit x ∈ K,
(xβ)β∈B be any subnet, and let (gβ)β∈B be a net in Iso(G) such that p(gβ) = q(xβ)
for every β ∈ B. Since G is transitive, there is an hβ ∈ G

p(gβ)
p(g) for every β ∈ B and

by the usual subnet arguments we may assume that (hβ)β∈B converges to the unit
p(g) = q(x) of Gp(g)

p(g). Since γ is an invariant section, we obtain for every β ∈ B

tr(γ(q(xβ))(gβ)) = tr(γ(q(h−1
β xβhβ))

hβ(gβ)) = tr(γ(q(x))hβ(gβ))

= tr(γ(q(x))(h−1
β gβhβ).

Therefore,

lim
β

Fxβ (gβ) = lim
β

tr(γ(q(xβ))(gβ))f (g−1
β xβ)

= lim
β

tr(γ(q(x))(h−1
β gβhβ))f (g−1

β xβ)

= tr(γ(q(x))(g))f (g−1x)

= Fx(g).

Hence, F is continuous and so Pγf ∈ C(K). Moreover, for f ∈ C(K) it follows
from Theorem 6.1 (iii) that

‖Pγf‖C(K) � ‖f‖�(L2(K,μ)).

Forσ∈�(L2
q(K, μ)) we already know fromTheorem6.1(ii) that (Pγσ)(u)∈C(Ku)

for every u ∈ G(0). Moreover, for ε > 0 there is fε ∈ C(K) with

‖fε|Ku − σ(u)‖L2(Ku ,μu ) � ε

for all u ∈ G(0) since C(K) is dense in �(L2
q(K, μ)). But then

‖(Pγfε)|Ku − (Pγσ)(u)‖C(Ku) � ε
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for every u ∈ G(0 and ε > 0 by Theorem 6.1 (iii). Using this observation and
the fact that—by the above—Pγfε ∈ C(K) for every ε > 0 it is easy to check
that Pγσ ∈ C(K). Moreover, since C(K) is dense in �(L2(K, μ)), we obtain

‖Pγσ‖C(K) � ‖σ‖�(L2
q(K,μ))

for every σ ∈ �(L2
q(K, μ)). This proves (ii). Due to the fiberwise definition of Pγ,

one readily verifies that it is a projection and a C(G(0))-module homomorphism,
proving (i).

We now prove that rg(Pγ) is G-invariant, i.e., for all h ∈ G that

Th(rg(Pγ)|Ks(h) ) ⊆ rg(Pγ)|Kr(h) .

To that end, let h ∈ G and note that rg(Pγ)|Ks(h) is finite-dimensional, so since
Pγ(C(K)) is dense in rg(Pγ),

rg(Pγ)|Ks(h) = Pγ(C(K))|Ks(h).

Therefore, an element of rg(Pγ)|Ks(h) can be written as (Pγf )|Ks(h) for some f ∈ C(K).
If an element of rg(Pγ)|Ks(h) is presented in this way, then for every x ∈ Kr(h)

(Th(Pγf )|Ks(h) )(x) = dim(γ(s(h)))
∫
G

s(h)
s(h)

tr(γ(s(h)))(g)f (g−1h−1x) dms(h)(g)

= dim(γ(s(h))h−1
)
∫
G

r(h)
r(h)

tr(γ(s(h)))(hgh−1)f (hg−1x) dmr(h)(g)

= dim(γ(r(h)))
∫
G

r(h)
r(h)

tr(γ(r(h)))(g)(Th−1f )(g−1x) dmr(h)(g)

= (PγTh(f |Ks(h) ))(x).

Hence, rg(Pγ) is a G-invariant submodule of C(K) and it is also closed since it
is the range of a projection. Now, to prove the remaining claims in iii, consider
the disjoint union F of the vector spaces Fu := rg(Pγ)|Ku for u ∈ G(0). Using
the correspondence between submodules and subbundles noted in Remark 4.11, it
follows that F is a subbundle of the Banach bundle Cq(K) and that

rg(Pγ) → �(F), f �→ [u �→ f |Ku ]

is an isometric isomorphism of Banach modules over C(G(0)). Since the fibers
of F are finite-dimensional by Theorem 6.1 and all have the same dimension by
invariance of F and transitivity of G, we conclude that F is a locally trivial Banach
bundle (see Remark 4.3 (iv)). By Proposition 4.13, �(F) is finitely generated and
projective. Thus

rg(Pγ) ∼= �(F)
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is a closed, finitely generated, projective, Tϕ-invariant C(G(0))-submodule of C(K).
Finally, it is a consequence of Theorem 6.1 that the ranges of Pγ1 and Pγ2 are
orthogonal for distinct γ1, γ2 ∈ �G. This proves (iii).

The approximation property (iv) is clear on each fiber of Cq(K) by Theo-
rem 6.1(iv), so we use the Stone–Weierstraß theorem for bundles to achieve uni-
form approximation: Take f ∈ C(K) and consider the closed submodule � of C(K)
generated by f and every Pγf for γ ∈ �G. By Example 4.5 and the correspondence
from Remark 4.11 we obtain a subbundle F of Cq(K) by Fu :=�|Ku for u ∈G(0) and

� → �(F), f �→ [u �→ f |Ku ]

is an isometric isomorphism of Banach modules over C(G(0)). By Theorem 6.1(iv)

linC(G(0)){Pγf | γ ∈ �G}
defines a stalkwise dense subset of �(F) in the sense of [Gie82, Definition 4.1].
By the Stone–Weierstraß theorem [Gie82, Corollary 4.3], this set is dense in �(F)
and therefore

linC(G(0)){Pγf | γ ∈ �G} = �.

In particular,
f ∈ linC(G(0)){Pγf | γ ∈ �G}.

Parts (v) and (vi) follow directly from the corresponding parts of Theorem 6.1
and Dini’s theorem. �

7 Applications to extensions of topological dynamical
systems

In this final section we translate our results on groupoid actions to extensions
of topological dynamical systems. Recall from Example 1.13 that every open
extension q : (K,G) → (L,G) can be equivalently described as a groupoid action
(K, q,G�L) and that the unit space of G�L can be identified with L. In particular,
we obtain a uniform enveloping semigroupoid Eu(K, q,G � L) which we denote
by Eu(q) in the following.

We also remind the reader that the usual notions of structuredness of the exten-
sion (i.e., being stable, equicontinuous, pseudoisometric, or isometric) are equiva-
lent to the corresponding concepts for the groupoid action. Finally, recall from the
introduction that a topological dynamical system (K,G) is topologically ergodic
if fix(Tϕ) contains only the constant functions. This is the case if and only if the
action groupoid G � K is topologically ergodic and there are many examples for
such systems (e.g., transitive systems) which are not minimal.
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With these correspondences in mind, we restate our main results in the case of
extensions of topological dynamical systems, starting with the characterization of
equicontinuity via compactness from Corollary 3.14.

Theorem 7.1. For an open extension q : (K,G, ϕ) → (L,G, ψ) of topological
dynamical systems the following assertions are equivalent:

(a) q is equicontinuous.

(b) {ϕg|Kl | g ∈ G, l ∈ L} ⊆ Cq
q(K,K) is precompact.

(c) {(Tϕg f )|Kl | g ∈ G, l ∈ L} ⊆ Cq(K) is equicontinuous for every f ∈ C(K).
(d) {(Tϕg f )|Kl | g ∈ G, l ∈ L} ⊆ Cq(K) is precompact for every f ∈ C(K).

We have noted that—in contrast to extensions of minimal systems—there is
a significant difference between equicontinuous and pseudoisometric extensions:
There are examples of extensions of nonminimal systemswhich are equicontinuous
but not pseudoisometric; see Example 3.15. The following result, combining
Theorem 3.27, Remark 3.28 and Theorem 4.14, indicates that pseudoisometric
extensions are the most “natural” generalizations of almost periodic systems.

Theorem 7.2. For an open extension q : (K,G, ϕ) → (L,G, ψ) of topologi-

cal dynamical systems such that (L,G, ψ) is topologically ergodic, the following
assertions are equivalent.

(a) q is pseudoisometric.
(b) The uniform enveloping semigroupoid Eu(q) is a compact groupoid.

(c) The union of all locally trivial Tϕ-invariant subbundles is fiberwise dense in
Cq(K).

(d) The union of all finitely generated, projective, closed Tϕ-invariant C(L)-
submodules of C(K) is dense in C(K).

If these assertions hold, then the locally trivial invariant subbundles in (c) are of

constant finite dimension. Moreover, if K is metrizable, then (a) can be replaced by

(a′) q is isometric.

Theorem7.2 shows that the known characterizations of almost periodic systems
via the enveloping semigroup or the Koopman operator extend in a canonical way
to extensions of dynamical systems. In particular, it provides a clear picture of
(pseudo)isometric extensions from an operator theoretic point of view.

If we require both systems to be topologically ergodic, we even obtain the
existence of relatively invariant measures, a result previously only known in the
minimal case (see, e.g., [Gla75, Section 3] and Corollary 3.7 therein, or [Kna67,
Proposition 5.5]). Given an extension q : (K,G) → (L,G) of dynamical systems,
a map μ : L → P(K) is called a relatively invariant measure for q, if μ is
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weak*-continuous, supp(μl) ⊆ Kl, and g∗μl = μgl for every g ∈ G and l ∈ L. A
relatively invariant measure is called fully supported if supp(μl) = Kl for each
l ∈ L. It is immediate that a map μ : L → P(K) is a relatively invariant measure for
the extension q : (K,G) → (L,G) if and only if it is a relatively invariant measure
for the groupoid action (K, q,G � L). As a direct consequence of Theorem 5.12,
we obtain the following existence result for relatively invariant measures.

Theorem 7.3. Every open pseudoisometric extension of topologically ergodic
topological dynamical systems has a unique and fully supported relatively invariant

measure.

Finally, applying Theorem 6.7 to the uniform enveloping groupoid of an open,
pseudoisometric extension yields Fourier analytic results for such extensions (cf.
[Kna67, Theorem 1.2]).

Theorem 7.4. Let q : (K,G, ϕ) → (L,G, ψ) be an open pseudoisometric ex-

tension of ergodic topological dynamical systems,μ its unique relatively invariant
measure and � = �Eu(q) the space of invariant sections into the unitary dual of the

isotropy bundle of Eu(q).
(i) For every γ ∈ �, Pγ ∈ L (�(L2

q(K, μ))) is a projection and a C(L)-module
homomorphism.

(ii) The ranges rg(Pγ) for γ ∈ � are closed, finitely generated, projective, invari-
ant C(L)-submodules of C(K) and are pairwise orthogonal in �(L2

q(K, μ)).
(iii) The inequality

‖Pγσ‖C(K) � ‖σ‖�(L2
q(K,μ))

holds for every σ ∈ �(L2
q(K, μ)) and γ ∈ �.

(iv) Each f ∈ C(K) is contained in

linC(L){Pγf | γ ∈ �}.
(v) For each σ ∈ �(L2

q(K, μ))

(σ | σ)μ =
∑
γ∈�

(Pγσ | Pγσ)μ

with convergence in C(L).
(vi) Each σ ∈ �(L2

q(K, μ)) can be decomposed into a series

σ =
∑
γ∈�

Pγσ

that converges in �(L2
q(K, μ)).
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Thus, if both systems are ergodic, then a pseudoisometric extension can be
decomposed functional analytically into “simple” parts. This yields a precise
understanding of the extension in terms of its Koopman representation.
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