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Abstract. This paper is concerned with the nonlocal dispersal equation∫
�

J(x − y)u(y) dy − u(x) + λu(x) − [c(x) + δq(x)]up(x) = 0 in �̄,

where J is a nonnegative kernel function, the constants λ > 0, δ > 0 and p > 1,
the coefficients c(x), q(x) are nonnegative. We investigate the sharp patterns of
positive solutions when δ → 0. Our study reveals how the existence of sharp
profiles is determined by the behavior of c(x) and q(x). We find that sharp profiles
are quite different to the results of classical reaction-diffusion equations.

1 Introduction and main results

Let J : R
N → R be a nonnegative continuous function. It is known that the

nonlocal dispersal equation

(1.1) ut(x, t) = J ∗ u(x, t) − u(x, t) + f (x, u)

and its various forms arise in the study of different dispersal processes in material
science, neurology and genetics (e.g., [3, 21, 22, 28]). As stated in [14], let u(y, t)
be the density of population at location y at time t, and J(x − y) be the probability
distribution of the population jumping from y to x; then

∫
RN J(x−y)u(y, t) dydenotes

the rate at which individuals are arriving at location x from all other places and
u(x, t) =

∫
RN J(y − x)u(x, t) dy is the rate at which they are leaving location x to all

other places. Thus

Du(x, t) = J ∗ u(x, t) − u(x, t) =
∫
RN

J(x − y)u(y, t) dy − u(x, t)

is the dispersal of population and equation (1.1) describes the change of the popu-
lation density u(x, t) with the nonlinearity reaction function f (x, u). The operator D
is a nonlocal operator since the dispersal of u(x, t) at location x and time t does not

JOURNAL D’ANALYSE MATHÉMATIQUE, Vol. 149 (2023)

DOI 10.1007/s11854-022-0242-3

401



402 J.-W. SUN

only depend on u(x, t), but on all the values of u in a fixed spatial neighborhood
of x through the term J ∗ u(x, t). There is quite an extensive literature for the study
of nonlocal problems recently, among others, the papers [4, 5, 6, 37, 38, 19, 35]
and references therein.

In this paper, we consider the nonlocal dispersal equation

(1.2)
∫
�

J(x − y)u(y) dy − u(x) + λu(x) − c(x)up(x) = 0 in �̄,

where� ⊂ R
N (N ≥ 1) is a bounded domain, p > 1 and λ is a real parameter. The

coefficient c ∈ C(�̄) is nonnegative and nontrivial. Problem (1.2) has been widely
investigated; see, e.g., Bates and Zhao [1], Garcı́a-Melián and Rossi [17]. On the
other hand, the nonlocal dispersal equation (1.2) shares many properties with the
following classical reaction-diffusion equation:

(1.3)

⎧⎨
⎩
�u + λu − c(x)up = 0 in �,

u = 0 on ∂�,

which has attracted much attention; see del Pino [9], López-Gómez and Rabinowitz
[27] and Ouyang [29]. If the coefficient c(x) has a spatial degeneracy, i.e., it
vanishes in some subdomain, both the nonlocal dispersal equation and reaction-
diffusion equation shall make a fundamental change [15, 16, 12, 20, 31, 34, 30, 24,
10, 11, 13]. Throughout this paper, we make the following assumptions on J(x),
and c(x).
(A1) J ∈ C(RN) is nonnegative, symmetric with unit integral and J(0) > 0.
(A2) c ∈ C(�̄) and there exists a non-empty property subdomain �0 ⊂ � such

that
c(x) > 0 if and only if x ∈ �̄ \ �̄0.

Let λP(�) be the unique principle eigenvalue of the nonlocal problem∫
�

J(x − y)φ(y) dy − φ(x) = −λφ(x) in �̄.

We then have 0 ≤ λP(�) < 1 and λP(�) is monotone with respect to domain�; see
[18, 21]. The principal eigenvalue λP(�) is very important in the study of positive
solutions of (1.2). By (A2), we know that the coefficient c(x) is degenerate in �0.
In this case, the nonlocal equation (1.2) is quite different than the case when c(x)
is positive in �̄; see [33, 8, 36]. In order to find the sharp influence of a complex
environment on the nonlocal dispersal equation (1.2), we consider the asymptotic
profile of positive solutions to the nonlocal dispersal problem

(1.4)
∫
�

J(x − y)u(y) dy − u(x) + λu(x) − [c(x) + δq(x)]up(x) = 0 in �̄,
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where q ∈ C(�̄) is nonnegative and nontrivial and δ > 0 is a parameter. The aim
of this paper is to investigate the sharp patterns of positive solutions to (1.4). In
fact, we find that the degenerate set �̄0 = {x ∈ �̄ : q(x) = 0} will play a great role
on the patterns. Thus we distinguish between the following different situations:

(H1) �∗ = �̄0 ∩ �̄0 = ∅.
(H2) �∗ = �̄0 ∩ �̄0 = �̄0.
(H3) �∗ = �̄0 ∩ �̄0 is a proper subdomain of �0.

We first give the asymptotic profiles of positive solutions when the coeffi-
cient q(x) satisfies (H1).

Theorem 1.1. Assume that (H1) holds. Then there exists a unique positive

solution θδ ∈ C(�̄) to (1.4) if and only if λ > λP(�). Meanwhile, the following
hold:

(i) If λP(�) < λ < λP(�0), then

lim
δ→0+

θδ(x) = θ(x) uniformly in �̄,

where θ(x) is the unique positive solution to (1.2).
(ii) If λ ≥ λP(�0), then

lim
δ→0+

θδ(x) = ∞ uniformly in �̄.

Remark 1.2. Note that c(x) = 0 for x ∈ �0. We know that (1.2) admits a
unique positive solution θ ∈ C(�̄) if and only if λP(�) < λ < λP(�0); see [17].

Now we are ready to study the sharp patterns of positive solutions. We find that
the existence of sharp profiles is determined by the nonlocal dispersal equation

(1.5)
∫
�0

J(x − y)u(y) dy − u(x) = −λu(x) + q(x)up(x) in �̄0.

Letting

ϑδ(x) = δ
1

p−1 θδ(x) and ηδ(x) = δ
1

p(p−1) θδ(x),

we can establish the sharp profiles of θδ(x) as follows.
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Theorem 1.3. Assume that (H1) holds.

(i) If λP(�) < λ ≤ λP(�0), then

lim
δ→0+

ϑδ(x) = lim
δ→0+

ηδ(x) = 0 uniformly in �̄.

(ii) If λ > λP(�0), then

lim
δ→0+

ϑδ(x) = α(x) uniformly in �̄0,

lim
δ→0+

ϑδ(x) = 0 uniformly in any compact subset of �̄ \ �̄0,

and

lim
δ→0+

ηδ(x) =
[∫

�0
J(x − y)α(y) dy

c(x)

] 1
p

uniformly in any compact subset of �̄ \ �̄0,

where α ∈ C(�̄0) is the unique positive solution of (1.5).

The conclusions in Theorems 1.1 and 1.3 give the sharp patterns of positive
solutions to (1.4) under the assumptions (H1). If q(x) > 0 for x ∈ �̄, we can see
that (H1) still holds. If q(x) = 0 for x ∈ �0 and �0 is a proper subset of �, then
the degeneracy also appears. Thus we know that if �∗ = ∅, the degeneracy of q(x)
does not change the sharp profiles of positive solutions to (1.4).

The profiles for positive solutions of the reaction-diffusion equation

(1.6)

⎧⎨
⎩
�u = −λu + [c(x) + δq(x)]up in �

u = 0 on ∂�

have been well investigated; see the works of Du and Li [12], López-Gómez [25],
Li, López-Gómez and Sun [23]. Let λL(�) be the principal eigenvalue of⎧⎨

⎩
�u = −λu in �,

u = 0 on ∂�.

Then we know from [26, 27] that (1.6) admits a unique positive solution uδ(x)
for λ > λL(�) and the asymptotic profiles of uδ(x) with respect to δ are well
established. If (H1) holds and λ ∈ (λL(�), λL(�0)), then

lim
δ→0+

uδ(x) = u(x) uniformly in �̄,

where u(x) is the unique positive solution of (1.3), and

lim
δ→0+

uδ(x) = ∞ uniformly in �̄0



NONLOCAL DISPERSAL EQUATIONS 405

for anyλ ≥ λL(�0). In the latter case, we know that uδ(x) is still bounded as δ → 0+
in any compact subset of �̄\�̄0. However, from (ii) of Theorem 1.1 we obtain that
the profiles of nonlocal dispersal equation (1.4) are unbounded in �̄ as δ → 0+.
It follows from [25, 23] that the asymptotic profiles and sharp patterns of positive
solutions for (1.6) are quite different than the cases of (1.4).

Now let us consider the asymptotic profiles when the coefficients c(x) and q(x)
are all degenerate in �∗. The first case is that q(x) vanishes in �0.

Theorem 1.4. Assume that (H2) holds. Then there exists a unique positive
solution θδ ∈ C(�̄) to (1.4) if and only if

λP(�) < λ < λP(�0).

Moreover,

lim
δ→0+

θδ(x) = θ(x) uniformly in �̄;

here θ(x) is the unique positive solution of (1.5).

Remark 1.5. Note that

c(x) + δq(x) = 0 for x ∈ �∗ and δ > 0;

we know that (1.5) admits a unique positive solution θ ∈ C(�̄) if and only if
λP(�) < λ < λP(�0).

If the degenerate domain of q(x) is a proper subset of�0, we can prove that the
sharp patterns of (1.4) change drastically. If (H3) holds, we have the following
result.

Theorem 1.6. Assume that (H3) holds. Then there exists a unique solution

θδ ∈ C(�̄) to (1.4) if and only if λP(�) < λ < λP(�∗).
(i) If λP(�) < λ < λP(�0), then

lim
δ→0+

θδ(x) = θ(x) uniformly in �̄,

where θ(x) is the unique positive solution of (1.2).
(ii) If λP(�0) ≤ λ < λP(�∗), then

lim
δ→0+

θδ(x) = ∞ uniformly in �̄.

Letting ϑδ(x) = δ
1

p−1 θδ(x) and ηδ(x) = δ
1

p(p−1) θδ(x), we can obtain the sharp
profiles of (1.4) as follows.



406 J.-W. SUN

Theorem 1.7. Assume that (H3) holds.

(i) If λP(�) < λ ≤ λP(�0), then

lim
δ→0+

ϑδ(x) = lim
δ→0+

ηδ(x) = 0 uniformly in �̄.

(ii) If λP(�0) < λ < λP(�∗), then

lim
δ→0+

ϑδ(x) = α∗(x) uniformly in �̄0,

lim
δ→0+

ϑδ(x) = 0 uniformly in any compact subset of �̄ \ �̄0,

and

lim
δ→0+

ηδ(x) =
[∫

�0
J(x − y)α∗(y) dy

c(x)

] 1
p

uniformly in any compact subset of �̄ \ �̄0,

where α∗ ∈ C(�̄0) is the unique positive solution to the nonlocal dispersal
equation (1.5).

The sharp asymptotic profile of positive solutions to (1.4) is given by Theorems
1.4–1.7 if the degenerate domains of c(x) and q(x) are mixed. We find that if (H2)
holds, i.e., both c(x) and q(x) are degenerate in the same domain �0, the positive
solution will converge to the unique positive solution of the initial equation without
perturbation. In this case, no sharp pattern appears. However, if (H3) holds, we
can see that asymptotic behavior changes a lot and there exist sharp profiles for the
positive solutions of (1.4). Thus we know that the degenerate domain �0 of q(x)
plays a great role in the sharp patterns of positive solutions to nonlocal dispersal
equation (1.4).

In the present paper, we establish that the asymptotic profiles in the degeneracy
domain are different than the domain without degeneracy for nonlocal dispersal
equation (1.4). We prove that the nonlocal effect and the degenerate heterogenous
nonlinearities c(x), q(x) make the positive solutions of (1.4) blow up, but the blow-
up speeds are determined by q(x). The similar problem for the general semilinear
elliptic equation is studied in the author’s recent joint paper with Li and López-
Gómez [23]. The profiles for two kinds of equations are quite different. In fact,
the sharp patterns only appear in the degenerate domain for the elliptic problem,
where the singular boundary problem is very important. However, we know that
sharp patterns appear in the whole domain � with two different speeds for the
nonlocal dispersal problem.

The rest of this paper is organized as follows. In Section 2, we investigate the
asymptotic profiles if (H1) holds. The behavior of the principal eigenfunction with
respect to the parameter is also obtained. Section 3 is devoted to the proof of sharp
profiles if (H2) or (H3) holds.
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2 Asymptotic profiles with different degenerate domains

In this section, we investigate the asymptotic profiles of positive solutions to (1.4)
when the coefficients c(x) and q(x) are degenerate in different domains. To do this,
we first give the existence and uniqueness of positive solutions. Throughout this
section, we assume that q(x) satisfies (H1).

Lemma 2.1. Assume that δ > 0. Then there exists a unique positive solu-
tion θδ ∈ C(�̄) to (1.4) for every λ > λP(�) and no bounded positive solution

for λ ≤ λP(�).

Proof. The proof follows a similar argument as in [18]; we omit the details
here. �

2.1 The nonlocal eigenvalue problem. In order to investigate the lim-
iting behavior of positive solutions to (1.4), we consider the nonlocal eigenvalue
problem

(2.1)
∫
�

J(x − y)u(y) dy − u(x) −μc(x)u(x) = −σu(x) in �̄,

where μ > 0. It follows form [33, 7] that (2.1) admits a unique principal eigen-
value σP(μ,�) for μ ≥ 0 if c(x) has a spatial degeneracy. We first recall a basic
result of the eigenvalue problem (2.3) [33].

Lemma 2.2. Problem (2.1) admits a unique principal eigenvalue σP(μ,�)
for every μ ≥ 0. Moreover, σP(μ,�) is increasing with respect to μ and

lim
μ→∞ σP(μ,�) = λP(�0).

We shall investigate the asymptotic behavior of positive eigenfunctions to (2.1).

Lemma 2.3. Let φμ(x) and ψ(x) be the positive eigenfunctions associated

with σP(μ,�) for μ ≥ 0 and λP(�0) such that

max
�̄
φμ(x) = max

�̄0

ψ(x) = 1,

respectively. Then we have

lim
μ→∞φμ(x) = ψ(x) uniformly in �̄0,

and

lim
μ→∞φμ(x) = 0 uniformly in any compact subset of �̄ \ �̄0.
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Proof. Take x1, x2 ∈ �̄0. We know from (2.1) that

[1 − σP(μ,�)][φμ(x1) − φμ(x2)] =
∫
�
[J(x1 − y) − J(x2 − y)]φμ(y) dy.

Since λP(�) ≤ σP(μ,�) < λP(�0) < 1 for μ ≥ 0 and φμ(x) ≤ 1 for x ∈ �̄, we
get

|φμ(x1) − φμ(x2)| ≤
∫
� |J(x1 − y) − J(x2 − y)| dy

1 − λP(�0)
.

Then, subject to a subsequence, we know that there exists φ̂ ∈ C(�̄0) such
that 0 ≤ φ̂(x) ≤ 1 in �̄0 and

(2.2) lim
μ→∞φμ(x) = φ̂(x) uniformly in �̄0.

Using (2.1) we get

φμ(x) ≤
∫
� J(x − y)dy

1 − λP(�0) + μc(x)

for x ∈ �̄. Thus we know that

(2.3) lim
μ→∞φμ(x) = 0

for any x ∈ �̄ \ �̄0 and

lim
μ→∞φμ(x) = 0 uniformly in any compact subset of �̄ \ �̄0.

Now we show that φ̂(x) = ψ(x) for x ∈ �̄0. In view of (2.2) and (2.3), we get

(2.4)
∫
�0

J(x − y)φ̂(y)dy − φ̂(x) + λP(�0)φ̂(x) = 0 in �̄0

by the dominated convergence theorem. Note that max�̄ φμ(x) = 1. We can find
xμ ∈ �̄ such that φμ(xμ) = 1 for μ > 0. Then we have

(2.5)
∫
�

J(xμ − y)φμ(y)dy − 1 − μc(xμ) = −σP(μ,�).

Since � is bounded, without loss of generality, we may assume that xμ → x0

as μ → ∞ for some x0 ∈ �̄. We know from (2.5) that

c(x0) = lim
μ→∞ c(xμ) = lim

μ→∞

∫
� J(xμ − y)φμ(y)dy − 1 + σP(μ,�)

μ
= 0;

this also gives that x0 ∈ �̄0.
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It follows from (2.1) that
∫
�

J(x0 − y)φμ(y)dy − φμ(x0) = −σP(μ,�)φμ(x0),

and by (2.2)–(2.3) we obtain
∫
�0

J(x0 − y)φ̂(y)dy = [1 − λP(�0)]φ̂(x0).

Then we get from (2.5) that

lim
μ→∞μc(xμ) =

∫
�0

J(x0 − y)φ̂(y)dy − 1 + λN(�0)

= [1 − λN(�0)][φ̂(x0) − 1] ≤ 0.

Since μc(xμ) ≥ 0 for μ > 0, we must have φ̂(x0) = 1. In view of (2.4), we know

φ̂(x) > 0 in �̄0

from the maximum principle. Since ψ(x) is a positive eigenfunction of (2.4), we
obtain

φ̂(x) = cψ(x) in �̄0

for some constant c > 0. However, we get from max�̄ ψ(x) = 1 that c = 1; this
also shows that (2.2) holds for the entire sequences. �

2.2 Asymptotic profile for positive solutions. In this subsection, we
investigate the asymptotic behavior of positive solutions to (1.4). To this end, we
show that the positive solution is monotone with respect to δ.

Lemma 2.4. Assume that λ > λP(�) and δ > 0. Let θδ(x) be the unique

positive solution to (1.4). Then we know that

(2.6) θδ2 (x) < θδ1 (x)

for x ∈ �̄, provided δ2 > δ1 > 0. Meanwhile, if λP(�) < λ < λP(�0), then

(2.7) lim
δ→0+

θδ(x) = θ(x) uniformly in �̄;

here θ(x) is the unique positive solution of (1.2).

Proof. Since δ2 > δ1 > 0, we can see that θδ2 (x) is a lower-solution to (1.4)
with δ = δ1. But we know that θδ1 (x) is the unique solution of (1.4) with δ = δ1,
then (2.6) is followed by an upper-lower solutions argument.
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If λP(�) < λ < λP(�0), since θδ(x) < θ(x) for x ∈ �̄, we know that there exists
a positive function θ0(x) such that

lim
δ→0+

θδ(x) = θ0(x)

for x ∈ �̄. Applying the dominated convergence theorem we have

(2.8)
∫
�

J(x − y)θ0dy − θ0(x) = −λθ0(x) + c(x)θp
0(x).

Since (2.8) admits a unique positive solution for λP(�) < λ < λP(�0), we must
have θ0(x) = θ(x) for x ∈ �̄. It follows from Dini’s theorem that (2.7) holds. �

Lemma 2.5. Assume that δ > 0 and λ ≥ λP(�0). Let θδ ∈ C(�̄) be the
unique positive solution to (1.4). Then

lim
δ→0+

θδ(x) = ∞ uniformly in �̄.

Proof. Let σP(μ,�) be the unique principal eigenvalue to (2.1) for μ > 0
associated with a positive eigenfunction φμ(x) such that max�̄ φμ(x) = 1. Since
σP(μ,�) < λP(�0) for μ > 0 and λ ≥ λP(�0), we can take δ small such that

λ− σP(μ,�) ≥ μδq(x)

for x ∈ �̄. Then we can check that μ
1

p−1φμ(x) is a lower-solution to (1.4). Note
that θδ(x) is monotone with respect to δ. By the uniqueness of positive solutions,
we get

μ
1

p−1φμ(x) ≤ lim
δ→0+

θδ(x)

for x ∈ �̄. Letting μ → ∞, we get from Lemma 2.3 that

lim
δ→0+

θδ(x) = ∞ uniformly in �̄0.

Meanwhile, we can see that∫
�

J(x − y)θδ(y)dy = [1 − λ + (c(x) + δq(x))θp−1
δ (x)]θδ(x),

and ∫
�

J(x − y)θδ(y)dy ≥
∫
�0

J(x − y)θδ(y)dy,

so we have that
lim
δ→0+

θδ(x) = ∞ uniformly in �̄. �

The proof of Theorem 1.1 is followed by Lemmas 2.4–2.5.
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2.3 Sharpprofile for positive solutions. In this subsection, we establish
the sharp profile for positive solutions of (1.4). Set ϑδ(x) = δ

1
p−1 θδ(x). Then ϑδ(x)

satisfies

(2.9)
∫
�

J(x − y)ϑδ(y)dy − ϑδ(x) = −λϑδ(x) +
[c(x)
δ

+ q(x)
]
ϑp
δ(x) in �̄.

In order to give some estimate to ϑδ(x), we first consider the nonlocal dispersal
equation

(2.10)
∫
�

J(x − y)u(y)dy − u(x) = −λu(x) + q(x)up(x) in �̄.

If q(x) > 0 for x ∈ �̄, then no spatial degeneracy appears in (2.10) and it admits a
unique continuous positive solution v̂ (x) for λ > λP(�). Inspired by the works of
Du and Li [12], López-Gómez [25], we then have the following estimate.

Lemma 2.6. Assume that λ > λP(�) and δ > 0. Assume further that q(x) > 0
for x ∈ �̄. Let û(x) be the positive solution of (2.10). Then we have

(2.11) ϑδ(x) ≤ v̂ (x)

for x ∈ �̄.

Proof. Since∫
�

J(x − y)ϑδ(y)dy − ϑδ(x) + λϑδ(x) − q(x)ϑp
δ(x) =

c(x)
δ
ϑ

p
δ(x) ≥ 0

for x ∈ �̄, we get that ϑδ(x) is a lower-solution of (2.10). By the uniqueness of
positive solutions and an upper-lower solutions argument we obtain (2.11). �

If �0 is a proper subset, we shall consider the nonlocal dispersal equation

(2.12)
∫
�

J(x − y)u(y)dy − u(x) = −λu(x) + [c(x) + q(x)]up(x) in �̄.

We can see that c(x) + q(x) > 0 for x ∈ �̄ and there exists a unique continuous
positive solution û(x) to (2.12) for λ > λP(�). Similar to Lemma 2.6 we have the
following result.

Lemma 2.7. Assume that λ > λP(�) and 0 < δ ≤ 1. Assume further that �0

is a proper subset of �. Let û(x) be the positive solution of (2.10). Then we have

(2.13) ϑδ(x) ≤ û(x)

for x ∈ �̄.
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Remark 2.8. In fact we can see that (2.13) still holds if q(x) > 0 for x ∈ �̄.
However, if �0 is a proper subset of �, we can see that (2.11) is not valid since
there is no positive solution to (2.10) for λ ≥ λ(�0).

Now let us consider the nonlocal dispersal equation

(2.14)
∫
�0

J(x − y)u(y)dy − u(x) = −λu(x) + q(x)up(x) in �̄0.

We know that (2.14) admits a unique continuous positive solution ū(x) for
λ > λP(�0). Then by the method of upper-lower solutions, we obtain the lower
bound for ϑδ(x).

Lemma 2.9. Assume that λ > λP(�) and δ > 0. Let ū(x) be the positive
solution of (2.14). Then we have

ϑδ(x) ≥ ū(x)

for x ∈ �̄0.

In order to establish the sharp profiles, we need the following technical lemma.

Lemma 2.10. Assume that λ ≥ λP(�0) and δ > 0. Then there exists τ > 0
which is independent of δ such that

1 − λ + q(x)ϑp−1
δ (x) ≥ τ

for x ∈ �̄0.

Proof. We only prove the case λ > λP(�0), since 0 < λP(�) < λP(�0) < 1.
It follows from (2.9) that

∫
�0

J(x − y)ϑδ(y)dy ≤
∫
�

J(x − y)ϑδ(y)dy = [1 − λ + q(x)ϑp−1
δ (x)]ϑδ(x)

and so

1 − λ + q(x)ϑp−1
δ (x) ≥ 0 in �̄0

for x ∈ �̄0. But we know from Lemmas 2.7–2.9 that
∫
�0

J(x, y)ū(y)dy ≤ [1 − λ + q(x)ϑp−1
δ (x)]û(x)

for x ∈ �̄0. Since û(x) > 0 and ū(x) > 0 for x ∈ �̄0, we complete the proof. �
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At the end of this section, we prove the main theorem.

Proof of Theorem 1.3. We first prove the second claim. Set

l(x) = 1 − λ + q(x)ϑp−1
δ (x).

We know from Lemma 2.7 that l(x) ≥ τ for x ∈ �̄0 and δ > 0.

For any x1, x2 ∈ �̄0, without loss of generality, we assume that ϑδ(x1) ≥ ϑδ(x2).
A direct computation from (2.9) gives

∫
�
[J(x1 − y) − J(x2 − y)]ϑδ(y)dy

= [1 − λ + pq(x2)v̂
p−1][ϑδ(x1) − ϑδ(x2)] + [q(x1) − q(x2)]ϑ

p
δ(x1)

≥ [1 − λ + q(x2)ϑ
p−1
δ (x2)][ϑδ(x1) − ϑδ(x2)] + [q(x1) − q(x2)]ϑ

p
δ(x1)

≥ τ[ϑδ(x1) − ϑδ(x2)] + [q(x1) − q(x2)]ϑ
p
δ(x1),

where v̂ is between ϑδ(x1) and ϑδ(x2). Thus by Lemma 2.10,

|ϑδ(x1) − ϑδ(x2)| ≤ 1
τ

[ ∫
�

|J(x1, y) − J(x2, y)|û(y)dy + [q(x1) − q(x2)]û
p(x1)

]

for any x1, x2 ∈ �̄0. Subject to a subsequence, a simple compactness argument
gives that there exists ω ∈ C(�̄) such that ω(x) > 0 for x ∈ �̄0 and

(2.15) lim
δ→0+

ϑδ(x) = ω(x) uniformly in �̄0.

On the other hand, since
∫
�

J(x − y)ϑδ(y)dy − ϑδ(x) + λϑδ(x) =
[c(x)
δ

+ q(x)
]
ϑ

p
δ(x) in �̄,

by (2.11) we obtain

[c(x)
δ

+ q(x)
]
ϑp
δ(x) ≤

∫
�

J(x − y)û(y)dy + û(x) + λû(x)

≤ (2 + λ) max
�̄

û(x)

and

ϑδ(x) ≤
[ (2 + λ) max�̄ û(x)

c(x)
δ

+ q(x)

] 1
p

for �̄ \ �̄0. Hence

(2.16) lim
δ→0+

ϑδ(x) = 0 uniformly in any compact subset of �̄ \ �̄0.
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In view of (2.15) and (2.16), by the dominated convergence theorem, we know that

(2.17)
∫
�0

J(x, y)ω(y)dy − ω(x) = −λω(x) + q(x)ωp(x) in �̄0.

As (2.17) admits a unique continuous positive solution for λ > λP(�0), we must
haveω(x) = α(x) for x ∈ �̄0; here α(x) is the unique positive solution of (1.5). This
also implies that (2.15) holds for the entire original sequences.

At last, we can see that ηδ(x) = δ
1

p(p−1) θδ(x) satisfies
∫
�

J(x − y)ηδ(y)dy − ηδ(x) = −ληδ(x) + [c(x) + δq(x)]
η

p
δ(x)
δ1/p

in �̄

and so ∫
�

J(x − y)ϑδ(y)dy − ϑδ(x) = −λϑδ(x) + [c(x) + δq(x)]ηp
δ(x) in �̄.

A simple computation yields

ηδ(x) =
[∫
� J(x − y)ϑδ(y)dy − ϑδ(x) + λϑδ(x)

c(x) + δq(x)

] 1
p
.

Using (2.15)–(2.16), we get

lim
δ→0+

ηδ(x) =
[∫
�0

J(x − y)α(y)dy

c(x)

] 1
p

uniformly in any compact subset of �̄ \ �̄0.

Now we prove the first claim. If λP(�) < λ < λP(�0), the conclusion is
followed by Lemma 2.4. If λ = λP(�0), since the only nonnegative solution
to (2.17) is the trivial solution, a similar argument as above gives that

lim
δ→0+

ϑδ(x) = 0 uniformly in �̄. �

3 Asymptotic profiles with mixed degenerate domain

In this section, we investigate the profiles of positive solutions to (1.4) when the
coefficients c(x) and q(x) are degenerate in a common domain. To do this, we first
give the existence and uniqueness of positive solutions; one can see [18, 33] for a
similar proof.

Lemma 3.1. Assume that (H2) holds. Then there exists a unique solution

θδ ∈ C(�̄) to (1.4) for λP(�) < λ < λP(�0). Meanwhile, there exists no bounded
positive solution for λ ≤ λP(�) and λ ≥ λP(�0).
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Lemma 3.2. Assume that (H2)Potext holds. Let θδ(x) be the unique positive

solution of (1.4) for λP(�) < λ < λP(�0) and δ ≥ 0. Then we know that

θδ2 (x) < θδ1 (x)

for x ∈ �̄ and δ2 > δ1 ≥ 0. Meanwhile, we have

lim
δ→0+

θδ(x) = θ(x) uniformly in �̄,

here θ(x) = θ0(x) is the unique positive solution of (1.5).

Proof. Since δ2 > δ1 ≥ 0 and q(x) is nonnegative, we know that θδ2 (x) is a
lower-solution of (1.4) with δ = δ1. Using the fact that the positive solution is
unique, we obtain θδ2 (x) < θδ1 (x) for x ∈ �̄.

On the other hand, we know that

θδ(x) < θ(x)

for x ∈ �̄ and there exists a positive function θ0(x) such that

lim
δ→0+

θδ(x) = θ0(x)

and θ0(x) satisfies∫
�

J(x − y)θ0(y)dy − θ0(x) = −λθ0(x) + c(x)θp
0(x).

This also shows that θ0(x) = θ(x) for x ∈ �̄ and θδ(x) → θ(x) uniformly in �̄
as δ → 0+. �

At the end of this section, we consider the case that q(x) satisfies (H3). Then
we know that c(x) + δq(x) = 0 for x ∈ �̄∗ and δ > 0. We have the following result.

Lemma 3.3. Assume that (H3) holds. Then there exists a unique solution
θδ ∈ C(�̄) to (1.4) for λP(�) < λ < λP(�∗). Meanwhile, there exists no bounded

positive solution for λ ≤ λP(�) and λ ≥ λP(�∗).

Lemma 3.4. Assume that (H3) holds. Let θδ(x) be the unique positive solution
of (1.4) for λP(�) < λ < λP(�∗) and δ > 0. Then we know that

θδ2 (x) < θδ1 (x)

for x ∈ �̄ and δ2 > δ1 > 0. Meanwhile, we have

(3.1) lim
δ→0+

θδ(x) = θ(x) uniformly in �̄,

for λP(�) < λ < λP(�0); here θ(x) = θ0(x) is the unique positive solution of (1.5).
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Proof. Note that (H3) holds. We know that λP(�0) < λP(�∗); see [18]. Then
we can establish that (3.1) holds by an upper-lower solutions argument, since (1.5)
admits a unique positive solution for λP(�) < λ < λP(�0). �

If λP(�0) ≤ λ < λP(�∗), a similar argument as in the proof of Lemma 2.5 gives
that the unique positive solution blows up in � as δ → 0+; we omit the details.

Lemma 3.5. Let θδ ∈ C(�̄) be the unique positive solution to (1.4)
for λP(�0) ≤ λ < λP(�∗). Then

lim
δ→0+

θδ(x) = ∞ uniformly in �̄.

In order to analyze the sharp profiles, we consider the nonlocal dispersal equa-
tions

(3.2)
∫
�

J(x − y)u(y)dy − u(x) = −λu(x) + [c(x) + q(x)]up(x) in �̄

and

(3.3)
∫
�0

J(x − y)u(y)dy − u(x) = −λu(x) + q(x)up(x) in �̄0.

If (H3) holds, then c(x) + q(x) = 0 for x ∈ �∗ and there exists a unique continuous
positive solution û(x) to (3.2) for λP(�) < λ < λP(�∗). Meanwhile, we know
that (3.3) admits a unique continuous positive solution ū(x) forλP(�0)<λ<λP(�∗).
Since ϑδ(x) = δ

1
p−1 θδ(x) satisfies

∫
�

J(x − y)ϑδ(y)dy − ϑδ(x) = −λϑδ(x) +
[c(x)
δ

+ q(x)
]
ϑ

p
δ(x) in �̄,

by the method of upper-lower solutions, we obtain the following lemmas.

Lemma3.6. Assume that (H3) holds. Assume further that λP(�)<λ<λP(�∗)
and δ > 0. Let û(x) be the positive solution of (3.2). Then we have

ϑδ(x) ≤ û(x)

for x ∈ �̄.

Lemma3.7. Assume that (H3) holds. Assume further thatλP(�0)<λ<λP(�∗)
and δ > 0. Let ū(x) be the positive solution of (3.3). Then we have

ϑδ(x) ≥ ū(x)

for x ∈ �̄0.
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In order to establish the sharp profiles, we need the following technical lemma.

Corollary 3.8. Assume that (H3) holds. Assume further thatλP(�0)<λ<λP(�∗)
and δ > 0. Then there exists τ > 0, which is independent of δ, such that

1 − λ + q(x)ϑp−1
δ (x) ≥ τ

for x ∈ �̄0.

The conclusion of Theorem 1.7 can be proved by a similar argument as in the
proof of Theorem 1.3 with the help of Lemmas 3.6–3.7 and Corollary 3.8.
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