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Abstract. We discuss abstract Birman–Schwinger principles to study spec-
tra of self-adjoint operators subject to small non-self-adjoint perturbations in a
factorised form. In particular, we extend and in part improve a classical result
by Kato which ensures that the spectrum does not change under small pertur-
bations. As an application, we revisit known results for Schrödinger and Dirac
operators in Euclidean spaces and establish new results for Schrödinger operators
in three-dimensional hyperbolic space.

1 Introduction

1.1 Motivations. The present paper has three purposes. The first is to
develop an abstract version of the so-called Birman–Schwinger principle, which is
a well known tool from the theory of Schrödinger operators. It is customarily used
to transfer a differential equation to an integral equation and has been employed
in many circumstances over the last half century since the pioneering works of
Birman [7] and Schwinger [48]. In recent years, the method has been revived in
the context of spectral theory of non-self-adjoint Schrödinger and Dirac operators
with complex potentials as a replacement of unavailable variational techniques
(see, e.g., [27, 15, 22, 29, 14, 26, 23, 16, 24, 33, 34, 10] to quote just a few of
the most recent works). While its usefulness is very robust, the method is usually
applied to concrete problems ad hoc and not always rigorously. Here we suggest
an abstract machinery directly applicable to concrete problems. Abstract versions
of the Birman–Schwinger principle have been discussed before (see Remark 4
below), but this was usually restricted to (discrete) eigenvalues. In contrast, we
also cover eigenvalues embedded in the essential spectrum as well as residual,
continuous and essential spectra.

Our second goal is to use our abstract machinery to prove that the spectrum
does not change under small perturbations, if smallness is being measured in terms
of uniform bounds on the Birman–Schwinger operator. In particular, we will be
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able to derive such results without any smoothness assumptions (in the sense of
Kato [37]) and will thus be able to extend and improve upon Kato’s classical result
(Theorem 4 below) on this topic.

Our third and final goal is to show the applicability of the abstract Birman–
Schwinger principles. This will be illustrated via some known spectral enclosures
for Schrödinger and Dirac operators in Euclidean spaces, which we recover, and
via a completely new result, namely the stability of the spectrum for Schrödinger
operators in three-dimensional hyperbolic space.

1.2 Assumptionsandnotations. Throughout this paperH andH′ denote
complex separable Hilbert spaces and B(H,H′) denotes the space of bounded
linear operators fromH toH′. As usual, we set B(H) := B(H,H), etc. We denote
the inner product (which is linear in the second component) and norm inHaswell as
inH′ by the same symbols, namely (·, ·) and ‖·‖, respectively. The latter is also used
to denote the operator norms in B(H,H′),B(H) and so on. The particularmeaning
of each symbol should always be clear from the context. We denote the domain,
kernel, range and adjoint of an operator A from H → H′ by D(A), N(A), R(A)
and A∗, respectively. Recall that the spectrum σ(H) of any closed operator H

in H is the set of those complex numbers λ for which H − λ : D(H) → H is not
bijective. The resolvent set is the complement ρ(H) := C \ σ(H). The point
spectrum σp(H) of H is the set of eigenvalues of H (i.e., the operator H −λ is not
injective). For the surjectivity, one says that λ ∈ σ(H) belongs to the continuous
spectrum σc(H) (respectively, residual spectrum σr(H)) of H if λ �∈ σp(H) and
the closure of the range of H − λ equals H (respectively, the closure is a proper
subset ofH). Finally, we say that λ ∈ C belongs to the essential spectrum σe(H)
of H if λ is an eigenvalue of infinite geometric multiplicity or the range of H − λ

is not closed.
Our standing hypotheses are as follows.

Assumption 1. H0 is a self-adjoint operator in H and |H0| := (H2
0)

1/2. More-
over, A : D(A) ⊂ H → H′ and B : D(B) ⊂ H → H′ are linear operators such that
D(|H0|1/2) ⊂ D(A) ∩ D(B). We assume that for some (hence all) b > 0

(1.1) A(|H0| + b)−1/2 ∈ B(H,H′), B(|H0| + b)−1/2 ∈ B(H,H′).

Next, we set G0 := (|H0| + 1) and introduce the Birman–Schwinger operator

(1.2) Kλ := [AG−1/2
0 ][G0(H0 − λ)−1][BG−1/2

0 ]∗ ∈ B(H′), λ ∈ ρ(H0).

Our final assumption is that there exists λ0 ∈ ρ(H0) such that

(1.3) −1 /∈ σ(Kλ0).
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Remark 1. The condition D(|H0|1/2) ⊂ D(A) ∩ D(B) could be removed from
Assumption 1 for it is implicitly contained in (1.1). On the other hand, it is well
known that this inclusion of domains is not sufficient to guarantee the boundedness
requirement of (1.1).

Remark 2. We note that Kλ is a bounded extension of the (maybe more famil-
iar) Birman–Schwinger operator A(H0 − λ)−1B∗, defined on D(B∗). In particular,
if D(B∗) is dense in H′, then Kλ = A(H0 − λ)−1B∗. For instance, the latter is true
if B is closable. Moreover, setting Gδ := (|H0|+ 1 + δ) for δ > −1, we note that we
also have that

(1.4) Kλ = [AG−1/2
δ ][Gδ(H0 − λ)−1][BG−1/2

δ ]∗,

as follows from the fact that functions of H0 commute (taking the respective
domains into account) and

[BG−1/2
0 ]∗ = [(BG−1/2

δ )(G1/2
δ G−1/2

0 )]∗ = [G1/2
δ G−1/2

0 ]∗[BG−1/2
δ ]∗

= [G1/2
δ G−1/2

0 ][BG−1/2
δ ]∗.

Remark 3. The composition V := B∗A (with its natural domain) is a well
defined operator in H. However, since H0 is not necessarily bounded from below,
the machinery of closed sectorial forms and the customary Friedrichs extension
of the operator sum H0 + V are not available to us. As a replacement, below we
will introduce a unique closed extension HV of H0 + V by means of the so-called
pseudo-Friedrichs extension [36, Sec. VI.3.4] (see Section 2 for more details).
The condition (1.3) is needed for this construction for it guarantees that HV has a
non-empty resolvent set, namely λ0 ∈ ρ(HV). Vice versa, if λ0 ∈ ρ(H0) ∩ ρ(HV),
then (1.3) holds. We refer to (2.4) and the text below it to see this equivalence.

Remark 4. There exist a variety of approaches to the Birman–Schwinger
principle for factorable perturbations of a given (self-adjoint) operator H0, i.e., for
a suitable closed extension HV of H0+B∗A. Let us mention Kato’s pioneering work
[37] and the work by Konno and Koroda [39]. As some of the more recent articles
on the topic we mention works by Gesztesy et al. [30], Latushkin and Sukhtayev
[42], Frank [28] and of Behrndt, ter Elst and Gesztesy [3]. The assumptions on A,B

and H0 made in these works are not uniform but vary from paper to paper. Our
own assumptions take an intermediate position. For instance, we do not assume
that A or B are closed, which is important for some applications (cf. Example 1
below this remark).

On the other hand, we do assume that H0 is self-adjoint (but not necessarily
bounded below), which some of the mentioned papers don’t, and we do assume



364 M. HANSMANN AND D. KREJČIŘÍK

that D(|H0|1/2) ⊂ D(A) ∩ D(B). The latter assumption allows for a quite explicit
description of HV via quadratic forms (see Section 2). In contrast to this, the weaker
assumption that D(H0) ⊂ D(A)∩D(B) made in some of the mentioned papers would
allow to define HV only implicitly via an associated resolvent equation (see (1.14)).

Example 1 (Frank [28]). To give an explicit example of a situation where A
or B are not closed, we will use the one discussed in a remark in Appendix B of
[28]. This example also illuminates why it can be advantageous to allow for the
case H′ �= H. Given an open set � ⊂ R2, let H0 denote the Neumann Laplacian in
H := L2(�), i.e., the self-adjoint operator associated with the closed form

h0[ψ] :=
∫
�

|∇ψ|2, D(h0) := H1(�).

Assuming that the boundary ∂� is sufficiently regular, the trace operator

τ : D(τ) ⊂ L2(�) → L2(∂�) := H′

with D(τ) := H1(�) is well defined (though not closable) and (1.1) holds. Given
any bounded function α : ∂� → C, we set A := |α|1/2τ and B := sgn ᾱA, where
sgn z := z/|z| if z �= 0 and sgn z := 0 if z = 0. Then HV is the Robin Laplacian
associated with the form

hα[ψ] :=
∫
�

|∇ψ|2 +
∫
∂�
α|ψ|2, D(hα) := H1(�).

Similarly, one can introduce Schrödinger operators with Dirac delta potentials
supported on hypersurfaces.

While Assumption (1.1) is usually easy to verify in concrete applications (for
instance, it is certainly true if A and B are closed as follows from the closed graph
theorem), the direct verification of (1.3) might not be that easy. For this reason, the
next lemma discusses some sufficient conditions for (1.3) which might be easier
to verify.

Lemma 1. Assume (1.1). Then assumption (1.3) is satisfied if one of the

following three conditions holds:
(i) there exists λ0 ∈ ρ(H0) such that ‖Kλ0‖ < 1,

(ii) there exists a ∈ (0, 1) and δ > 0 such that

(1.5) ‖[B(|H0| + δ)−1/2]∗[A(|H0| + δ)−1/2]‖ ≤ a,

(iii) there exists a ∈ (0, 1) and δ > 0 such that

(1.6) |(Bφ,Aψ)| ≤ a ‖(|H0|+δ)1/2φ‖‖(|H0|+δ)1/2ψ‖, φ,ψ ∈ D(|H0|1/2).
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Moreover, the assumptions (1.1) and (1.3) are both satisfied if

(iv) there exists a ∈ (0, 1) and b > 0 such that

(1.7) max(‖Aψ‖2, ‖Bψ‖2) ≤ a ‖|H0|1/2ψ‖2 + b ‖ψ‖2, ψ ∈ D(|H0|1/2).
In addition, if A and B are closed then it is sufficient that (1.7) holds for

ψ ∈ D where D is a core of |H0|1/2.
Proof. (i) follows from the fact that the spectral radius is dominated by the

operator norm. For (ii) we first note that in view of (1.4) for δ > 0 we have

Kλ = [A(|H0| + δ)−1/2][(|H0| + δ)(H0 − λ)−1][B(|H0| + δ)−1/2]∗, λ ∈ ρ(H0).

Since for two bounded operators C,D we have σ(CD) \{0} = σ(DC) \{0}, we thus
obtain that −1 /∈ σ(Kλ) if, and only if,

−1 /∈ σ([(|H0| + δ)(H0 − λ)−1][B(|H0| + δ)−1/2]∗[A(|H0| + δ)−1/2])

and the last condition is satisfied if the norm of the operator on the right-hand side
is smaller than one. But by assumption there exist a, δ > 0 such that

‖[B(|H0| + δ)−1/2]∗[A(|H0| + δ)−1/2]‖ ≤ a < 1,

hence it suffices to choose λ ∈ ρ(H0) such that ‖(|H0|+ δ)(H0 −λ)−1‖ ≤ 1/a. The
latter is satisfied if λ = iη with η > 0 sufficiently large, which concludes the proof
of (ii). Continuing, we note that (iii) follows from (ii) since

‖[B(|H0| + δ)−1/2]∗A(|H0| + δ)−1/2‖ ≤ a

⇔ ‖[A(|H0| + δ)−1/2]∗B(|H0| + δ)−1/2‖ ≤ a

⇔ ∀f, g ∈ H : |(B(|H0| + δ)−1/2f,A(|H0| + δ)−1/2g)| ≤ a ‖f‖‖g‖
⇔ ∀φ,ψ ∈ D(|H0|1/2) : |(Bφ,Aψ)| ≤ a ‖(|H0| + δ)1/2φ‖‖(|H0| + δ)1/2ψ‖.

Concerning (iv) we note that given (1.7), for φ ∈ H andψ = (|H0|+δ)−1/2φ, where
δ = b/a, we obtain that

‖A(|H0| + δ)−1/2φ‖2 ≤ a ‖|H0|1/2ψ‖2 + b‖ψ‖2 = a ‖(|H0| + δ)1/2ψ‖2 = a ‖φ‖2.

Hence A(|H0|+ δ)−1/2 is bounded and ‖A(|H0|+ δ)−1/2‖ ≤ √
a and the same is true

of B(|H0|+ δ)−1/2 and its norm, so (1.1) is satisfied. Moreover, the validity of (1.3)
follows from (ii), the submultiplicativity of the operator norm and the fact that the
norm of a bounded operator and its adjoint coincide. Finally, concerning the last
statement of (iv) we note that in case A and B are closed, the estimates (1.7) will
hold for all φ,ψ ∈ D(|H0|1/2) once they hold for φ,ψ in a core of |H0|1/2. �

Before introducing the pseudo-Friedrichs extension HV of the operator
sum H0 + V , let us discuss our main results about this operator. We emphasise
that HV is possibly not self-adjoint, while H0 is.
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1.3 Our main results. The well-known version of the Birman–Schwinger
principle is formulated by the following equivalence.

Theorem 1. Suppose Assumption 1. Then

(1.8) ∀λ ∈ C \ σ(H0), λ ∈ σp(HV) ⇐⇒ −1 ∈ σp(Kλ).

We establish the validity of this equivalence in the fully abstract setting above
(Theorems 6 and 7). While in slightly different settings this result has been
proved a variety of times before (see, e.g., the papers cited in Remark 4), one
of the main points of the present paper is that suitably adapted versions of the
Birman–Schwinger principle hold also for:

• all eigenvalues σp(HV) \ σp(H0); (Theorem 8)
• residual spectrum σr(HV) \ σp(H0); (Theorems 9 and 10)
• essential spectrum σe(HV) \ σ(H0). (Theorem 11)
Such variants of the Birman–Schwinger principle seem to be less known. An

exception is [26] in which Fanelli, Vega and one of the present authors established
results of this type in the case of Schrödinger operators. By differentmethods, sim-
ilar conclusions for embedded eigenvalues of Schrödinger operators were achieved
in [19] and [29]. Let us also mention Pushnitski’s paper [45], where an abstract ex-
tension of the Birman–Schwinger principle onto the essential spectrum is obtained
for operators H0 and HV which are both self-adjoint and bounded from below. The
main novelty of the present paper is that H0 is an abstract self-adjoint operator
which is not necessarily bounded from below and the perturbation V is a possibly
non-self-adjoint operator.

Using the Birman–Schwinger operator and the Birman–Schwinger principle,
we establish stability results about the spectrum of HV , assuming that Kz is uni-
formly bounded in z, i.e.,

(1.9) sup
z∈ρ(H0)

‖Kz‖ < ∞.

Example 2. Consider the LaplacianH0 :=− in L2(Rd) with D(H0) := H2(Rd)
and HV := H0 + V , where V : Rd → C is sufficiently regular, say V ∈ C∞

0 (Rd).
Then (1.9) holds if d ≥ 3. On the other hand, (1.9) does not hold if d = 1, 2
unless V = 0 identically. These results are related to the fact that the resolvent
kernel of H0 admits a singularity in the spectral parameter if, and only if, d = 1, 2.
Stability properties of the spectrum of Schrödinger operators are therefore very
different in low and high dimensions; see Section 7.1.

The first of our main results in this direction is the following theorem.
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Theorem 2. Suppose Assumption 1 and (1.9). Then σ(H0) ⊂ σ(HV).

Remark 5. It is clear that the conclusion of Theorem 2 is generally false
if (1.9) is not satisfied. Just consider the case where A = I and B = i · I, where
σ(HV) = σ(H0) + i, i.e., the spectrum of H0 is shifted into the complex plane.

From our point of view, the remarkable thing about Theorem 2 is that it holds
without any smallness assumption on supz ‖Kz‖. Indeed, in all applications of the
Birman–Schwinger principle to spectral estimates thatwe are aware of one assumes
that supz ‖Kz‖ is sufficiently small and then derives information about σ(HV).
The fact that some information can also be obtained without assuming that the
supremum is small seems to have been completely overlooked so far. A possible
reason for this might be that in typical applications the spectrum of H0 is purely
essential and that the resolvent difference of H0 and HV is usually compact, hence
σ(H0) = σe(H0) = σe(HV). In general, however, there is no reason to believe
that (1.9) should imply such a compactness property. In this respect, we leave
as an open problem whether there exists a non-compact Kz of the form (1.2)
satisfying (1.9).

In case that ‖Kz‖ is indeed uniformly small, i.e.,

(1.10) sup
z∈ρ(H0)

‖Kz‖ < 1,

one obtains much stronger information on σ(HV).

Remark 6. Let us note that given (1.10) Assumption 1 reduces to (1.1)
since (1.3) is automatically satisfied as we discussed in Lemma 1.

Theorem 3. Suppose Assumption 1 and (1.10). Then the following holds:

(i) σ(H0) = σ(HV).
(ii) [σp(HV) ∪ σr(HV)] ⊂ σp(H0) and σc(H0) ⊂ σc(HV).

In particular, if σ(H0) = σc(H0), then σ(HV) = σc(HV) = σc(H0).

So the spectra of HV and H0 coincide if the perturbation V is small in the sense
of (1.10). Moreover, the spectrum of HV is purely continuous if it is the case of H0.
As we will see, these stability properties follow directly from Theorem 2 and from
Theorem 1 and its variants mentioned below it.

Remark7. It iswell known thatσ(H0)=σ(HV) need not be true if sup‖Kz‖≥1,
see, e.g., the proof of the d = 3 case of Theorem 2 in [27]. On the other hand, it
is an interesting question whether there are examples of H0 and V satisfying (1.9),
where σc(H0) is strictly smaller than σc(HV).
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We do not know whether in general, given (1.10), the continuous-, point- and
residual spectra of H0 and HV coincide. However, this is the case if A is relatively
smooth with respect to H0, which means that A : D(A) ⊂ H → H′ is closed with
D(H0) ⊂ D(A) and

(1.11) sup
z∈C\R, ψ∈H\{0}

|�(z)| · ‖A(H0 − z)−1ψ‖2/‖ψ‖2 <∞.

The notion of relative smoothness is due to Kato [37] and we should note that there
exist several equivalent ways to introduce this concept.

Corollary 1. Suppose Assumption 1 and (1.10). Moreover, assume that A is

relatively smooth with respect to H0. Then

σc(HV) = σc(H0), σp(HV) = σp(H0) and σr(HV) = σr(H0) = ∅.

Proof of Corollary 1. In view of Theorem 3 it is sufficient to show that
σp(H0) ⊂ σp(HV). So suppose that for some λ ∈ R and ψ ∈ D(H0) \ {0} we have
H0ψ = λψ. Then for ε > 0 we also have −iε(H0 − λ− iε)−1ψ = ψ and hence

‖A(H0 − λ− iε)−1ψ‖ = ε−1‖Aψ‖.
Since this is true for all ε > 0, assumption (1.11) implies that Aψ = 0. We will
see below that HV is a closed extension of H0 + B∗A, so we obtain that ψ ∈ D(HV)
and HVψ = H0ψ = λψ. �

Remark 8. Even if A and B are closed and satisfy Assumption 1 and (1.10),
this does not imply that A is H0-smooth. For instance, the mentioned assumptions
on A and B are satisfied if B = 0 and A is any closed operator from H → H′

with D(|H0|1/2) ⊂ D(A).

There is one important case where (1.10) does imply smoothness of A with
respect to H0, namely if A = DB for some D ∈ B(H′). This leads to another
corollary of Theorem 3.

Corollary 2. Suppose Assumption 1 and (1.10). Moreover, suppose that A is
closed and that A = DB for some D ∈ B(H′). Then

σc(HV) = σc(H0), σp(HV) = σp(H0) and σr(HV) = σr(H0) = ∅.

Proof of Corollary 2. By [37, Thm. 5.1] the H0-smoothness of A is equiv-
alent to the fact that

(1.12) sup
z∈C\R, ψ∈D(A∗)\{0}

|([(H0 − z)−1 − (H0 − z)−1]A∗ψ,A∗ψ)|/‖ψ‖2 < ∞.
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But using our assumptions, for z ∈ C \ R and ψ ∈ D(A∗) with ‖ψ‖ = 1 we can
estimate

|((H0 − z)−1A∗ψ,A∗ψ)| = |(A(H0 − z)−1B∗D∗ψ,ψ)| ≤ ‖Kz‖‖D‖
≤ ‖D‖ sup

z∈C\R
‖Kz‖.

Using the same inequality to estimate the second term of the difference in (1.12)
we see that the left-hand side of (1.12) is indeed finite. Now apply Corollary 1. �

In order to put Theorem 3 and its corollaries into perspective, we need to take
a closer look at Kato’s classical work [37]. We do this in the following section.

1.4 Kato’s results. The main result of Kato’s 1966 paper [37] is the fol-
lowing theorem.

Theorem4 ([37, Thm. 1.5]). Let H0 be self-adjoint inH and suppose that A,B
are closed operators from H to H′ with D(H0) ⊂ D(A) ∩ D(B) which are smooth

relative to H0. Moreover, suppose that there exists c < 1 such that

(1.13) sup
z∈C\R

‖A(H0 − z)−1B∗‖ ≤ c.

Then there exists a closed extension H̃V of H0 + B∗A which is similar to H0 (so

in particular, the continuous, point and residual spectra of H̃V and H0 coincide).
Moreover, the operator H̃V satisfies the generalised second resolvent equation

(1.14) ∀ξ ∈ C \ R, (H̃V − ξ)−1 − (H0 − ξ)−1 = −(H0 − ξ)−1B∗A(H̃V − ξ)−1.

Remark 9. Here the similarity means that there exists an operator W ∈ B(H)
such that W−1 ∈ B(H) and H̃V = WH0W−1. In other words, H̃V is quasi-self-
adjoint (cf. [41]). We note that Kato actually states his theorem for the more
general case that H0 is closed and densely defined with σ(H0) ⊂ R.

To compare Kato’s result with our results of the previous section, one first
needs to check that his operator H̃V and our pseudo-Friedrichs extension HV (to
be constructed below) do indeed coincide if Assumption 1 is satisfied. This will
be done in the Appendix (Proposition 2) under the additional assumption that
D(A) = D(B) = D(|H0|1/2).

Now let us start with a comparison of the assumptions of Kato and of our results
above. First, we note that Kato requires the operators A and B to be closed, which
we don’t, but that he doesn’t assume that D(|H0|1/2) ⊂ D(A) ∩ D(B), which we
do. Second, we note that given Kato’s assumptions, the operator A(H0 − z)−1B∗
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is just the closure of our Birman–Schwinger operator Kz, so assumption (1.13)
is the same as our assumption (1.10). In particular, let us emphasise that Kato
does not provide any conclusions under the weaker assumption (1.9) as we do
in Theorem 2 above. Moreover, in addition to the smallness assumption (1.13),
Kato does also require that A and B are H0-smooth (which does not follow from
(1.13) as we discussed in Remark 8) so the stability results we obtain in Theorem 3
and Corollary 1 are certainly not a consequence of Kato’s Theorem 4. Having
made all these observations we of course also have to admit that in case that all
of Kato’s (and our) assumptions are satisfied, his conclusion that HV and H0 are
similar is considerably stronger than our observation that their spectra coincide.
In particular, using Kato’s result one can derive the following improved version of
Corollary 2.

Corollary 3. SupposeAssumption 1, (1.10) and that D(A)=D(B) = D(|H0|1/2).
Moreover, suppose that A and B are closed and that A = D0B and B = D1A for
some D0,D1 ∈ B(H′). Then HV and H0 are similar.

Proof. As the proof of Corollary 2 showed, given the above assumptions A
and B are smooth relative to H0, hence Kato’s theorem applies. �

Remark 10. In particular, the previous corollary applies in case that A = UB,
where U∈B(H,H′) is a partial isometry with initial set R(B), since then B=U∗A.
This example is important in applications to Schrödinger operators; see Sec-
tion 7 below.

Having stated the advantages of Kato’s and our own results, let us conclude this
section by noting that Kato’s proof of Theorem 4 is very different from our proof
of Theorem 3. In fact, he uses the method of stationary scattering theory (and the
similarity transformation W he constructs has the meaning of a wave operator),
while we work directly with the mentioned variants of the Birman–Schwinger
principle.

1.5 Organisation of the paper. In Section 2we introduce the operatorHV

as the pseudo-Friedrichs extension of H0 + V . Sections 3, 4 and 5 are devoted to
establishing the aforementioned variants of the Birman–Schwinger principle for
the point, residual and essential spectra, respectively. In Section 6 we provide the
proofs of Theorem 2 and Theorem 3. Finally, in Section 7 we apply the abstract
theorems to Schrödinger and Dirac operators; we recall some classical as well as
recently established properties, and prove completely new results for Schrödinger
operators in three-dimensional hyperbolic space. Finally, the appendix contains a
proof that Kato’s extension H̃V and our pseudo-Friedrichs extension HV coincide
given some suitable assumptions.
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2 The pseudo-Friedrichs extension

By our standing Assumption 1, H0 is a self-adjoint operator in a complex sep-
arable Hilbert space H. Recall (cf. [36, Sec. VI.2.7]) that the absolute value
|H0| := (H2

0)
1/2 is also self-adjoint, D(|H0|) = D(H0) is a core of |H0|1/2 and H0

and |H0| commute (in the sense of their resolvents). The operator

G0 : D(H0) → H, G0 := |H0| + 1

is bijective. We define a sesquilinear form associated with H0 by

h0(φ,ψ) := (G1/2
0 φ,H0G

−1
0 G1/2

0 ψ), φ,ψ ∈ D(h0) := D(|H0|1/2).
Since H0G−1

0 ∈ B(H) is self-adjoint, we see that h0 is symmetric, i.e.,

h0(φ,ψ) = h0(ψ,φ) =: h∗
0(φ,ψ)

for φ,ψ ∈ D(|H0|1/2). Moreover,

h0(φ,ψ) = (φ,H0ψ)

and, by symmetry,
h0(ψ,φ) = (H0ψ,φ)

for every φ ∈ D(|H0|1/2) and ψ ∈ D(H0).
Let

A : D(A) ⊂ H → H′ and B : D(B) ⊂ H → H′

be two operators satisfying D(|H0|1/2) ⊂ D(A) ∩ D(B) and (1.1). Our goal is to
introduce a closed extension HV of the operator sum H0 + V , with V := B∗A, as
the pseudo-Friedrichs extension [36, Thm. VI.3.11] (see also [50] for more
recent developments). It is a suitable generalisation of the Friedrichs extension in
the case when H0 is not necessarily bounded from below.

The idea is to replace V by its sesquilinear form

v(φ,ψ) := (Bφ,Aψ), φ,ψ ∈ D(v) := D(|H0|1/2).
Noting that, by assumption (1.1), we can rewrite v as

v(φ,ψ) = (BG−1/2
0 G1/2

0 φ,AG−1/2
0 G1/2

0 ψ) = (G1/2
0 φ, [BG−1/2

0 ]∗AG−1/2
0 G1/2

0 ψ),

φ,ψ ∈ D(|H0|1/2),
we obtain that for

hV := h0 + v, D(hV) := D(|H0|1/2),
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we have

(2.1) hV(φ,ψ)=(G1/2
0 φ, (H0G

−1
0 +[BG−1/2

0 ]∗AG−1/2
0 )G1/2

0 ψ), φ,ψ∈D(|H0|1/2).
Hence, we define

(2.2) HV := G1/2
0 (H0G

−1
0 + [BG−1/2

0 ]∗AG−1/2
0 ) G1/2

0

with its natural domain. Clearly, D(HV ) ⊂ D(|H0|1/2) and if ψ ∈ D(H0) ∩ D(V),
where D(H0) ⊂ D(|H0|1/2) and

D(V) = A−1D(B∗) = {ψ ∈ D(A) : Aψ ∈ D(B∗)} ⊂ D(|H0|1/2),
then for all φ in the dense set D(|H0|1/2) we have (φ,HVψ) = (φ,H0ψ) + (φ,Vψ),
so HVψ = (H0 +V)ψ. This shows that HV ⊃ H0 +V and one has the representation
formula

(2.3) ∀φ ∈ D(|H0|1/2), ψ ∈ D(HV), (φ,HVψ) = hV(φ,ψ).

Now let us verify that HV is a closed operator. We will do this by showing
that ρ(HV) is non-empty. For this purpose, we use assumption (1.3), i.e., there
exists λ0 ∈ ρ(H0) such that −1 /∈ σ(Kλ0). Using that I ⊃ G1/2

0 G−1
0 G1/2

0 , with this
choice of λ0 we can write

HV − λ0 = G1/2
0 ([H0 − λ0]G

−1
0 + [BG−1/2

0 ]∗AG−1/2
0 ) G1/2

0 .

In particular, we obtain that

(2.4) (HV − λ0)
−1 = G−1/2

0 ([H0 − λ0]G
−1
0 + [BG−1/2

0 ]∗AG−1/2
0 )−1G−1/2

0 ,

provided that

[H0 − λ0]G
−1
0 + [BG−1/2

0 ]∗AG−1/2
0

= [H0 − λ0]G
−1
0 (I + G0(H0 − λ0)

−1[BG−1/2
0 ]∗AG−1/2

0 )

has a bounded inverse. But this is the case if, and only if,

−1 /∈ σ(G0(H0 − λ0)
−1[BG−1/2

0 ]∗AG−1/2
0 )

which is the case (as we already argued in the proof of Lemma 1 (ii)) if, and only
if, −1 /∈ σ(Kλ0). So we conclude that indeed λ0 ∈ ρ(HV) and HV is closed.

Next, let us show that D(HV) = R((HV − λ0)−1) is dense in H. To this end, note
that from (2.4) we obtain that

(2.5) [(HV − λ0)
−1]∗ = G−1/2

0 ([H0 − λ0]G
−1
0 + [AG−1/2

0 ]∗BG−1/2
0 )−1G−1/2

0 ,
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wherewe used thatG−1/2
0 ∈B(H) is self-adjoint and [H0−λ0]G−1

0 +[BG−1/2
0 ]∗AG−1/2

0

is invertible in B(H). Now the operator on the right-hand side of (2.5) is clearly
injective and hence

D(HV ) = R(HV − λ0)−1 = (N([(HV − λ0)
−1])∗)⊥ = H,

so HV is densely defined. In particular, its adjoint H∗
V exists and λ0 ∈ ρ(H∗

V) with

(2.6) (H∗
V − λ0)

−1 = G−1/2
0 ([H0 − λ0]G

−1
0 + [AG−1/2

0 ]∗BG−1/2
0 )−1G−1/2

0 .

It follows that D(H∗
V) ⊂ R(G−1/2

0 ) = D(|H0|1/2) and

(2.7) H∗
V = G1/2

0 (H0G
−1
0 + [AG−1/2

0 ]∗BG−1/2
0 ) G1/2

0 .

Moreover, with the adjoint form

v∗(φ,ψ) := v(ψ,φ) = (Aφ,Bψ), D(v∗) := D(v) = D(|H0|1/2),
we obtain the representation formula

(2.8) ∀φ ∈ D(|H0|1/2), ψ ∈ D(H∗
V ), (φ,H∗

Vψ) = h∗
V(φ,ψ),

where h∗
V = h∗

0 + v∗.
Let us summarise the properties of the pseudo-Friedrichs extension into the

following theorem.

Theorem 5. Suppose Assumption 1 and set V := B∗A. There exists a unique

closed extension HV of H0 + V such that D(HV) ⊂ D(|H0|1/2), D(H∗
V) ⊂ D(|H0|1/2)

and the representation formulae (2.3) and (2.8) hold.

Proof. It remains to verify the uniqueness claim. Let ĤV be another closed
extension of H0 + V with the properties stated in the theorem. Let φ ∈ D(|H0|1/2)
and ψ ∈ D(ĤV) ⊂ D(|H0|1/2). Then (2.3) and (2.1) imply that

(φ, ĤVψ) = h0(φ,ψ) + v(φ,ψ) = (G1/2
0 φ,H0G

−1
0 G1/2

0 ψ) + (G1/2
0 φ,CG1/2

0 ψ),

where C = [BG−1/2
0 ]∗AG−1/2

0 . But this implies that

[H0G
−1
0 + C]G1/2

0 ψ ∈ D(G1/2
0 ) = D((G1/2

0 )∗)

and
ĤVψ = G1/2

0 (H0G
−1
0 + C)G1/2

0 ψ.

By (2.2), it follows that ψ ∈ D(HV) and ĤVψ = HVψ. This shows that ĤV ⊂ HV .
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Now, let φ ∈ D(|H0|1/2) and ψ ∈ D((ĤV)∗) ⊂ D(|H0|1/2). Then (2.8) implies

(φ, (ĤV)∗ψ) = h∗
0(φ,ψ) + v∗(φ,ψ) = h0(ψ,φ) + (Bψ,Aφ)

= (H0G
−1
0 G1/2

0 φ,G1/2
0 ψ) + (CG1/2

0 φ,G1/2
0 ψ)

= (G1/2
0 φ,H0G

−1
0 G1/2

0 ψ) + (G1/2
0 φ,C∗G1/2

0 ψ),

where the second equality employs the commutativity of H0 and G0. Arguing as
above, this implies that

(ĤV)∗ψ = G1/2
0 (H0G

−1
0 + C∗)G1/2

0 ψ

and hence by (2.7) it follows that ψ ∈ D(H∗
V ) and (ĤV)∗ψ = H∗

Vψ. This shows that
(ĤV)∗ ⊂ H∗

V , so ĤV ⊃ HV . �
We conclude this section about the pseudo-Friedrichs extension with the fol-

lowing generalised version of the second resolvent identity.

Proposition 1. For all z ∈ ρ(H0) ∩ ρ(HV),

(2.9) (HV − z)−1 − (H0 − z)−1 = −[B(H0 − z̄)−1]∗A(HV − z)−1.

Proof. Given any f, g ∈ H, set φ := (H0 − z̄)−1f and ψ := (HV − z)−1g. Then

(f, [(HV − z)−1 − (H0 − z)−1]g) = ((H0 − z̄)φ,ψ) − (φ, (HV − z)ψ)

= (H0φ,ψ) − (φ,HVψ)

= h0(φ,ψ) − hV(φ,ψ)

= (Bφ,Aψ)

= (B(H0 − z̄)−1f,A(HV − z)−1g)

= (f, [B(H0 − z̄)−1]∗A(HV − z)−1g),

where the third equality holds because both φ,ψ ∈ D(|H0|1/2). �

3 The point spectrum

This section deals with the point spectrum of HV . As a byproduct of the following
two theorems, we obtain a proof of Theorem 1. For instance, the next theorem
establishes the implication =⇒ of Theorem 1.

Theorem 6. Suppose Assumption 1. Let HVψ = λψ with some λ ∈ C \ σ(H0)
and ψ ∈ D(HV) \ {0}. Then g := Aψ �= 0 and Kλg = −g.
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Proof. Suppose that g = Aψ = 0. Then for every f ∈ D(H0) we have

(H0f, ψ) = h0(f, ψ) = hV(f, ψ) − (Bf,Aψ) = hV(f, ψ) = (f,HVψ) = (f, λψ).

This shows that ψ ∈ D(H∗
0 ) = D(H0) and H0ψ = H∗

0ψ = λψ, so λ ∈ σp(H0), a
contradiction. Hence g �= 0.

Now for every φ ∈ H, one has

(3.1)

(φ,Kλg) = ([AG−1/2
0 ]∗φ, [G0(H0 − λ)−1][BG−1/2

0 ]∗g)

= ([BG−1/2
0 ][G0(H0 − λ)−1]∗[AG−1/2

0 ]∗φ,Aψ)

= (Bη,Aψ) = v(η,ψ)

with η := G−1/2
0 [G0(H0 − λ)−1]∗[AG−1/2

0 ]∗φ ∈ D(|H0|1/2). Using (2.3), it follows
that

(3.2)

(φ,Kλg) = (η,HVψ) − h0(η,ψ)

= λ (η,ψ) − h0(η,ψ)

= λ (G1/2
0 η,G−1

0 G1/2
0 ψ) − (G1/2

0 η,H0G
−1
0 G1/2

0 ψ)

= −(G1/2
0 η, (H0 − λ)G−1

0 G1/2
0 ψ)

= −([AG−1/2
0 ]∗φ,G0(H0 − λ)−1(H0 − λ)G−1

0 G1/2
0 ψ)

= −([AG−1/2
0 ]∗φ,G1/2

0 ψ)

= −(φ,Aψ) = −(φ, g).

Since this is true for every φ ∈ H, it follows that Kλg = −g. �
The following theorem establishes the opposite implication ⇐= of Theorem 1.

Theorem 7. Suppose Assumption 1. Let Kλg = −g with some λ ∈ C \ σ(H0)
and g ∈ H \ {0}. Then ψ := G1/2

0 (H0 − λ)−1[BG−1/2
0 ]∗g ∈ D(HV), ψ �= 0 and

HVψ = λψ.

Proof. Since ψ ∈ D(|H0|1/2) we see that if ψ = 0, then

0 = AG−1/2
0 G1/2

0 ψ = Kλg = −g,

leading to a contradiction. Hence ψ �= 0. Now for every φ ∈ D(|H0|1/2)
hV(φ,ψ)

= h0(φ,ψ) + v(φ,ψ) = (G1/2
0 φ,H0G

−1
0 G1/2

0 ψ) + (Bφ,Aψ)

= (G1/2
0 φ,H0(H0 − λ)−1[BG−1/2

0 ]∗g) + (Bφ,AG1/2
0 (H0 − λ)−1[BG−1/2

0 ]∗g)

= (G1/2
0 φ, [BG−1/2

0 ]∗g) + λ(G1/2
0 φ, (H0 − λ)−1[BG−1/2

0 ]∗g) + (Bφ,Kλg)

= λ (φ,ψ).
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At the same time, by (2.1)

hV(φ,ψ) = (G1/2
0 φ, (H0G

−1
0 + [BG−1/2

0 ]∗AG−1/2
0 )G1/2

0 ψ)

for every φ ∈ D(|H0|1/2). But this implies that

(H0G
−1
0 + [BG−1/2

0 ]∗AG−1/2
0 ) G1/2

0 ψ ∈ D(G1/2
0 ),

hence by (2.2) we obtain that ψ ∈ D(HV) and

HVψ = G1/2
0 [H0G

−1
0 + [BG−1/2

0 ]∗AG−1/2
0 ]G1/2

0 ψ = λψ. �

We continue with a theorem extending the implication =⇒ of Theorem 1 to
suitable points λ ∈ σ(H0).

Theorem 8. Suppose Assumption 1. Let HVψ = λψ with some λ ∈ σc(H0)
and ψ ∈ D(HV) \ {0}. Then g := Aψ �= 0 and Kλ+iε g

w−−−→
ε→0±

−g.

Proof. As in the proof of Theorem 6 we see that g �= 0.
Now we note that λ is real and so λ + iε �∈ σ(H0) for all ε ∈ R \ {0}. As in the

proof of Theorem 6, for every φ ∈ H, we have

(φ,Kλ+iεg) = −([AG−1/2
0 ]∗φ,G0(H0 − λ− iε)−1(H0 − λ)G−1

0 G1/2
0 ψ)

= −(φ, g) − iI(ε),

where

(3.3) I(ε) := ε ([AG−1/2
0 ]∗φ,G0(H0 − λ− iε)−1G−1

0 G1/2
0 ψ).

It remains to show that I(ε) vanishes as ε → 0. Using the spectral theorem, we
have

I(ε) =
∫
σ(H0)

f (ε) d([AG−1/2
0 ]∗φ,E0(r)G

1/2
0 ψ) with f (ε) :=

ε

r − λ− iε
,

where E0 denotes the spectral measure of H0. First, one has

f (ε) −−→
ε→0

⎧⎨
⎩0 if r �= λ,

i ifr = λ.

In any case, however, E0({λ}) = 0 because λ �∈ σp(H0). Hence, f (ε) → 0 as ε → 0
almost everywhere with respect to the spectral measure. Second, neglecting the
real part of r − λ− iε, one has

|f (ε)| ≤
⎧⎨
⎩1 if �λ = 0,

|ε|
|�λ+ε| ≤ 1 if �λ �= 0,
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where the last inequality holds for all ε with sufficiently small |ε|. Hence |f (ε)| is
bounded by an ε-independent constant and∫

σ(H0)
d|([AG−1/2

0 ]∗ϕ,E0(r)G
1/2
0 ψ)| ≤ ‖[AG−1/2

0 ]∗ϕ‖‖G1/2
0 ψ‖ <∞.

The dominated convergence theorem implies that I(ε) → 0 as ε → 0. �

Remark 11. Until (3.3), the proof of Theorem8 follows the lines of [26, proof
of Lem. 2] or [24, proof of Lem. 3] dealing with Schrödinger or Dirac operators,
respectively. To show that I(ε) → 0 as ε → 0 in the abstract case, here we have
developed a completely new approach.

Corollary 4. Suppose Assumption 1. Let λ ∈ σp(HV).

(i) If λ �∈ σ(H0), then ‖Kλ‖ ≥ 1.

(ii) If λ ∈ σc(H0), then lim infε→0± ‖Kλ+iε‖ ≥ 1.

Proof. Let λ ∈ σp(HV), let ψ �= 0 be a corresponding eigenvector and set
φ = Aψ �= 0.

If λ �∈ σ(H0), then Theorem 6 implies φ �= 0,

‖φ‖2 ‖Kλ‖ ≥ |(φ,Kλφ)| = ‖φ‖2,

from which the claim (i) immediately follows.
If λ ∈ σc(H0), we similarly write

‖φ‖2 ‖Kλ+iε‖ ≥ |(φ,Kλ+iεφ)H|.

Taking the limit ε → 0±, Theorem 8 implies

‖φ‖2 lim inf
ε→0±

‖Kλ+iε‖ ≥ ‖φ‖2,

from which the desired claim (ii) immediately follows since, again, φ �= 0. �

4 The residual spectrum

In view of the general characterisation (see, e.g., [41, Prop. 5.2.2])

(4.1) σr(HV) = {λ �∈ σp(HV) : λ̄ ∈ σp(H
∗
V)},

the analysis of the residual spectrum of HV can be reduced to the analysis of the
point spectrum of the adjoint H∗

V .
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From the construction of the pseudo-Friedrichs extension in Section 2, it is
clear that the roles of A and B are just interchanged when considering H∗

V . It leads
one to consider the adjoint Birman–Schwinger operator

(4.2) K∗
z = [BG−1/2

0 ][G0(H0 − z̄)−1][AG−1/2
0 ]∗.

In view of the above considerations, Theorems 1, 6, 7 and 8 remain true if, in
their statements, we simultaneously replace HV by H∗

V , A by B, B by A and Kλ by K∗̄
λ

(notice the complex conjugate of λ in the latter). As a consequence of (4.1), we
therefore get the following theorem extending Theorem 1 to the residual spectrum.

Theorem 9. Suppose Assumption 1. Then

∀λ ∈ C \ σ(H0), λ ∈ σr(HV) ⇐⇒ −1 ∈ σr(K
∗
λ).

Similarly, we get the following theorem extending Theorem 8 to the residual
spectrum.

Theorem 10. Suppose Assumption 1. Let

H∗
Vψ = λ̄ψ

with some λ ∈ σr(HV) ∩ σc(H0) and

ψ ∈ D(H∗
V) \ {0}.

Then g := Bψ �= 0 and K∗
λ+iε g

w−−−→
ε→0±

−g.

As consequence, we also get the following analogue of Corollary 4.

Corollary 5. Suppose Assumption 1. Let λ ∈ σr(HV).
(i) If λ �∈ σ(H0), then ‖K∗

λ‖ ≥ 1.
(ii) If λ ∈ σc(H0), then lim infε→0± ‖K∗

λ+iε‖ ≥ 1.

5 The essential spectrum

As mentioned in the introduction, among the variety of definitions of essential
spectra for non-self-adjoint operators, here we choose that of Wolf (denoted by σe2

in [21, Chap. IX.1]). That is, λ ∈ C belongs to the essential spectrum σe(H) of
a closed operator H in H if λ is an eigenvalue of infinite geometric multiplicity or
the range of H − λ is not closed. This is equivalent to the existence of a sequence
{ψn}n∈N ⊂ D(H) weakly convergent to zero such that ‖ψn‖ = 1 for every n ∈ N

and (H − λ)ψn → 0 as n → ∞.
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The following theorem is a modification of Theorem 8 to deal with the es-
sential spectrum. Note, however, that we do not require that the sequence is
weakly converging to zero in this theorem. The admissible points therefore satisfy
λ ∈ σe(HV) ∪ σp(HV). However, better results of Theorems 6 and 8 are available
for eigenvalues.

Theorem 11. Suppose Assumption 1. Let (HV − λ)ψn → 0 as n → ∞ with

some λ ∈ C \ σ(H0) and {ψn}n∈N ⊂ D(HV) such that ‖ψn‖ = 1 for all n ∈ N. Then
φn := Aψn �= 0 for all sufficiently large n and

(5.1) lim
n→∞

(φn,Kλφn)
‖φn‖2

= −1.

Proof. First of all, let us show that φn �= 0 for all sufficiently large n. In fact,
we establish the stronger fact that

(5.2) lim inf
n→∞ ‖φn‖ > 0.

By contradiction, let us assume that there exists a subsequence {φnj}j∈N such that
nj → ∞ andφnj = Aψnj → 0 as j → ∞. From the identity (2.3) and the hypothesis,
we deduce that for fj := (H0 − λ)−1ψnj we have

|h0(fj, ψnj ) − λ (fj, ψnj)|
≤ |hV(fj, ψnj) − λ (fj, ψnj )| + |(Bfj,Aψnj)|
= |(fj, (HV − λ)ψnj)| + |(B(H0 − λ)−1ψnj, φnj)|
≤ ‖fj‖‖(HV − λ)ψnj‖ + ‖B(H0 − λ)−1‖‖φnj‖
≤ ‖(H0 − λ)−1‖‖(HV − λ)ψnj‖ + ‖B(H0 − λ)−1‖‖φnj‖.

Here we used that B(H0 − λ)−1 = (BG−1/2
0 )(G1/2

0 (H0 − λ)−1) ∈ B(H,H′). In
particular, we see that |h0(fj, ψnj)−λ (fj, ψnj)| → 0 for j → ∞. On the other hand,
since fj ∈ D(H0) we also have

h0(fj, ψnj ) − λ (fj, ψnj) = ((H0 − λ)fj, ψnj ) = ‖ψnj‖2 = 1

for every j ∈ N, which leads to a contradiction. Hence φn �= 0 for all sufficiently
large n and (5.2) holds true.

The rest of the proof is similar to that of Theorem 8. Since λ �∈ σ(H0), (3.1) im-
plies (φn,Kλφn) = v(ηn, ψn), where ηn := G−1/2

0 [G0(H0 − λ)−1]∗[AG−1/2
0 ]∗φn be-

longs to D(|H0|1/2) and ‖ηn‖ ≤ C0‖φn‖ with some constant C0 independent of n.
In analogy with (3.2), we have

v(ηn, ψn) = hV(ηn, ψn) − h0(ηn, ψn)

= (ηn, (HV − λ)ψn) + λ (ηn, ψn) − h0(ηn, ψn)

= (ηn, (HV − λ)ψn) − ‖φn‖2.
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Consequently,∣∣∣ (φn,Kλφn)
‖φn‖2

+ 1
∣∣∣ =

|(ηn, (HV − λ)ψn)|
‖φn‖2

≤ ‖ηn‖
‖φn‖2

‖(HV − λ)ψn‖

≤ C0

‖φn‖ ‖(HV − λ)ψn‖.

Using (5.2) and the hypothesis, we get the desired claim. �

Remark 12. Theorem 11 is inspired by [26, Lem. 3] proved for Schrödinger
operators with λ ∈ C \ R. Here we have developed an abstract approach and
included real points λ �∈ σ(H0) as well.

Corollary 6. Suppose Assumption 1. If λ ∈ [σe(HV) ∪ σp(HV)] \ σ(H0), then
‖Kλ‖ ≥ 1.

Proof. Let λ �∈ σ(H0). If λ ∈ σp(HV), then the claim follows from part (i) of
Corollary 4. However, the following alternative argument applies as well. Given
any λ ∈ σe(HV) ∪ σp(HV), let {ψn}n∈N ⊂ D(HV) be a corresponding sequence
satisfying ‖ψn‖ = 1 for every n ∈ N and HVψn − λψn → 0 as n → ∞. By
Theorem 11, the sequence {ψn}n∈N defined by φn = Aψn has non-zero elements
for all sufficiently large n and

‖Kλ‖ ≥ lim
n→∞

|(φn,Kλφn)|
‖φn‖2

= 1,

where the estimate is due to the Schwarz inequality. �

6 The remaining proofs

Proof of Theorem 3. First, let us note that given (1.10), Corollary 4 implies
that σp(HV) ⊂ σp(H0) and, noting that ‖Kz‖ = ‖K∗

z ‖ for every z ∈ ρ(H0), Corol-
lary 5 implies that σr(HV) ⊂ σp(H0). Here we used that the residual spectrum of a
self-adjoint operator is empty. Taken together we thus showed that

(6.1) [σp(HV) ∪ σr(HV)] ⊂ σp(H0),

which is the first statement of part (ii) of Theorem 3. Now let us note that in
general, σc(HV) ⊂ σe(HV), so by Corollary 6 we obtain that

(6.2) σc(HV) ⊂ σ(H0).

The inclusions (6.1) and (6.2) ensure that σ(HV) ⊂ σ(H0). Since the reverse
inclusion will be shown in the proof of Theorem 2 (which, to be sure, does not rely
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in any way on the results of Theorem 3), we obtain that σ(HV) = σ(H0), which is
part (i) of Theorem 3. In particular, this implies that σc(H0) ⊂ σ(HV) and since
σp(H0) ∩ σc(H0) = ∅, the inclusion (6.1) implies that σc(H0) ⊂ σc(HV), which is
the second statement of part (ii) of Theorem 3. This concludes the proof. �

Proof of Theorem 2. Interestingly enough, and in contrast to the proof of
Theorem 3 given above, the proof of this theorem does not rely on the Birman–
Schwinger principles. We will prove the theorem by contradiction.

So assume that (1.9) holds and set C0 := supz∈C\R ‖Kz‖ < ∞. Moreover, let us
suppose that there exists λ0 ∈ σ(H0) ∩ ρ(HV). We will derive a contradiction in
four steps:

Step 1. Since λ0 ∈ σ(H0) and H0 is self-adjoint there exists a sequence {fn}
in D(H0) such that ‖fn‖ = 1, n ∈ N, and (H0 −λ0)fn → 0 for n → ∞. In particular,
since λ0 ∈ R for every λ ∈ C \ R we obtain that

(6.3)
A[(H0 − λ)−1 − (λ0 − λ)−1]fn = (λ0 − λ)−1A(H0 − λ)−1(λ0−H0)fn → 0

(n → ∞).

Here we used that A(H0 − λ)−1 = (AG−1/2
0 )(G1/2

0 (H0 − λ)−1) ∈ B(H,H′) by
assumption (1.1).

Step 2 (compare the proof of Theorem 11). We have

L := lim inf
n→∞ ‖Afn‖ > 0.

Indeed, suppose that this is not the case. Then there would exist a subsequence
{fnj} of {fn} such that Afnj → 0 for j → ∞. Since λ0 = λ0 ∈ ρ(H∗

V), we could then
estimate

|h∗
V(fnj, (H

∗
V − λ0)

−1fnj ) − λ0(fnj, (H
∗
V − λ0)

−1fnj )|
= |h∗

0(fnj, (H
∗
V−λ0)

−1fnj ) + v ∗(fnj, (H
∗
V −λ0)

−1fnj) − λ0(fnj, (H
∗
V −λ0)

−1fnj )|
= |h0((H∗

V − λ0)−1fnj, fnj ) + (Afnj,B(H∗
V − λ0)

−1fnj )

− λ0(fnj , (H
∗
V − λ0)

−1fnj )|
= |((H0 − λ0)fnj, (H

∗
V − λ0)

−1fnj) + (Afnj,B(H∗
V − λ0)

−1fnj)|
≤ ‖(H0 − λ0)fnj‖‖(H∗

V − λ0)
−1‖ + ‖Afnj‖‖B(H∗

V − λ0)
−1‖.

Here we used that B(H∗
V − λ0)−1 ∈ B(H,H′) as follows from (2.6) and assump-

tion (1.1). In particular, we see that

h∗
V(fnj, (H

∗
V − λ0)

−1fnj) − λ0(fnj, (H
∗
V − λ0)

−1fnj) → 0 (j → ∞).
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On the other hand, since (H∗
V − λ0)−1fnj ∈ D(H∗

V), we also obtain from (2.8) that

h∗
V(fnj, (H

∗
V − λ0)

−1fnj ) − λ0(fnj, (H
∗
V − λ0)

−1fnj )

= (fnj , (H
∗
V − λ0)(H

∗
V − λ0)

−1fnj )

= ‖fnj‖2 = 1

for all j ∈ N, which leads to a contradiction. Hence L = lim infn→∞ ‖Afn‖ > 0.
Step 3. Now let ε0 > 0 such that λ0 + iε ∈ ρ(H0) ∩ ρ(HV) for all ε ∈ (0, ε0).

Then using the resolvent identity (2.9), the triangle inequality and the fact that

A[B(H0 − λ0 + iε)−1]∗ = A[BG−1/2
0 G0(H0 − λ0 + iε)−1G−1/2

0 ]∗ = Kλ0+iε,

for all ε ∈ (0, ε0) we obtain that

‖A(HV − λ0 − iε)−1‖
= ‖A(H0 − λ0 − iε)−1 − A[B(H0 − λ0 + iε)−1]∗A(HV − λ0 − iε)−1‖
≥ ‖A(H0 − λ0 − iε)−1‖ − ‖A[B(H0 − λ0 + iε)−1]∗A(HV − λ0 − iε)−1‖
≥ ‖A(H0 − λ0 − iε)−1‖ − C0‖A(HV − λ0 − iε)−1‖.

Hence for all ε ∈ (0, ε0) and n ∈ N we obtain (with the fn’s as in Step 1) that

(6.4)
‖A(HV − λ0 − iε)−1‖ ≥ (1 + C0)

−1‖A(H0 − λ0 − iε)−1‖
≥ (1 + C0)

−1‖A(H0 − λ0 − iε)−1fn‖.
Step 4. Now fix some ε ∈ (0, ε0) and choose n(λ0, ε) ∈ N such that, using

(6.3) with λ = λ0 + iε, we have

‖A[(H0 − λ0 − iε)−1 − (−iε)−1]fn‖ ≤ 1 (n ≥ n(λ0, ε)).

The triangle inequality implies that for n ≥ n(λ0, ε)

‖A[(H0 − λ0 − iε)−1fn‖ ≥ 1
ε
‖Afn‖ − 1

and hence using (6.4) we obtain that

(6.5) ‖A(HV − λ0 − iε)−1‖ ≥ (1 + C0)
−1

(1
ε
‖Afn‖ − 1

)
, n ≥ n(ε, λ0).

Now consider the limes inferior of both sides of (6.5) with respect to n → ∞ and
use Step 2 to obtain that

‖A(HV − λ0 − iε)−1‖ ≥ (1 + C0)
−1|

(L
ε

− 1
)
.
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But since L > 0 and ε ∈ (0, ε0) was arbitrary, this implies that

(6.6) lim sup
ε→0

‖A(HV − λ0 − iε)−1‖ = ∞.

But λ0 ∈ ρ(HV) and the function

λ �→ A(HV − λ)−1 = A(HV − λ0)
−1 + (λ− λ0)A(HV − λ0)

−1(HV − λ)−1

is analytic (hence continuous) in a neighbourhood of λ0, so

lim
ε→0

‖A(HV − λ0 − iε)−1‖ = ‖A(HV − λ0)
−1‖ < ∞

(that A(HV − λ0)−1 ∈ B(H,H′) can be seen by writing the operator as
[AG−1/2

0 ][G1/2
0 (HV − λ0)−1], which is okay since D(HV ) ⊂ D(|H0|1/2), and not-

ing that here the first operator is bounded by (1.1) and the second is bounded by
the closed graph theorem). This contradicts (6.6) and hence σ(H0) ∩ ρ(HV) must
be empty, i.e., σ(H0) ⊂ σ(HV). �

7 Applications

In this section, we apply the abstract theorems to concrete problems.

7.1 Schrödinger operators in the Euclidean spaces. Given any pos-
itive integer d, let H0 := − in H := L2(Rd) with D(H0) := H2(Rd). One has
σ(H0) = [0,+∞) and the spectrum is purely absolutely continuous. The absolute
value |H0| satisfies ‖|H0|1/2ψ‖ = ‖∇ψ‖ for every ψ ∈ D(|H0|1/2) = H1(Rd).

Given any V ∈ L1
loc(R

d), we use the decomposition

(7.1) V(x) = sgnV(x) |V(x)| = sgnV(x) |V(x)|1/2 |V(x)|1/2

for almost every x ∈ R
d. We choose

A(x) := |V(x)|1/2 and B(x) := sgnV(x) |V(x)|1/2.
We use the same symbols A,B for the associated operators of multiplication with
D(A) = D(B) = D(|H0|1/2). Note that by the Sobolev inequality, a sufficient
condition to satisfy (1.7) is V = V1 +V2 with V1 ∈ Lp(Rd) and V2 ∈ L∞(Rd), where

(7.2)

p = 1 if d = 1,

p > 1 if d = 2,

p = d/2 if d ≥ 3,

and ‖V1‖Lp(Rd) < Cp,d.
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Here C1,1 := ∞ (the largeness of the norm ‖V1‖L1(R) is unrestricted if d = 1) and
Cp,d := d(d−2)|Sd|/4 if d ≥ 3, where |Sd| denotes the volume of the d-dimensional
unit sphere (cf. [44, Thm. 8.3]). If d = 2, an estimate on the constant Cp,2 is also
known (cf. [44, Thm. 8.5(ii)]), but we shall not need it. In summary, V falls within
the class of perturbations considered in Assumption 1 and the pseudo-Friedrichs
extension HV is well defined.

Remark 13. Since H0 is bounded from below, the associated form

h0[ψ] = ‖|H0|1/2ψ‖2 = ‖∇ψ‖2, D(h0) = H1(Rd),

is closed and bounded from below. The form of the perturbation V reads

v[ψ] =
∫
Rd

V|ψ|2, D(v) = H1(Rd).

Under our assumption (7.2), the perturbed form hV is closed and sectorial with
D(hV) = D(h0) = H1(Rd). Since the Friedrichs extension of the operator H0 + V

initially defined on D := C∞
0 (Rd) is the only m-sectorial extension with domain

contained in D(hV) (cf. [36, Thm. VI.2.11]), it follows that the pseudo-Friedrichs
extension HV defined by Theorem 5 is actually the usual Friedrichs extension.

Spectral properties of HV substantially differ in high dimensions d ≥ 3 and low
dimensions d = 1, 2.

7.1.1 High dimensions. Applying the abstract results of Theorems 3
and 4, we get the following result about the stability of the spectrum against
small perturbations.

Theorem 12 ([37, Thm. 6.4], [27, Thm. 2] and [29, Thm. 3.2]). Let d ≥ 3
and V ∈ Ld/2(Rd). There exists a positive dimensional constant cd such that if

(7.3) ‖V‖Ld/2(Rd) < cd,

then
σ(HV) = σc(HV) = [0,+∞).

Moreover, HV and H0 are similar to each other.

Proof. The idea of the proof in all dimensions d ≥ 3 is due to Frank [27].
Based on a uniform Sobolev inequality due to [38], Frank established the resolvent
estimate (cf. [27, Eq. (8)])

∀z ∈ C \ [0,+∞), ‖(H0 − z)−1‖Lp(Rd)→Lp′ (Rd) ≤ kp,d |z|−(d+2)/2+d/p,



BIRMAN–SCHWINGER PRINCIPLE AND SPECTRAL STABILITY 385

where 2d/(d + 2) ≤ p ≤ 2(d + 1)/(d + 3), 1/p + 1/p′ = 1 and kp,d is a positive
constant. For every φ,ψ ∈ H1(Rd) and z �∈ [0,+∞) we obtain, taking Remark 2
into account,

|(φ,Kzψ)| = |(|V|1/2φ, (H0 − z)−1|V|1/2ψ̃)|
≤ kp,d |z|−(d+2)/2+d/p ‖|V|1/2φ‖Lp(Rd)‖|V|1/2ψ̃‖Lp(Rd)

≤ kp,d |z|−(d+2)/2+d/p ‖V‖Lp/(2−p)(Rd)‖φ‖‖ψ̃‖,

where ψ̃ := (sgn V̄)ψ, so ‖ψ̃‖ = ‖ψ‖. Since H1(Rd) is dense in L2(Rd), this
inequality extends to the whole Hilbert space and we get

‖Kz‖ ≤ kp,d |z|−(d+2)/2+d/p ‖V‖Lp/(2−p)(Rd).

Choosing p := 2d/(d + 2), we get the uniform (i.e., z-independent) bound

‖Kz‖ ≤ kp,d ‖V‖Ld/2(Rd).

By assuming (7.3) with cd := k−1
p,d, we get the validity of (1.10). It follows by

Theorem 3 that the spectrum of HV is purely continuous and equal to [0,+∞).
Furthermore, the same estimates as above ensure that the supremum in (1.12) is
bounded (also for A being replaced by B) from above by 2kp,d ‖V‖Ld/2(Rd). Con-
sequently, A,B are H0-smooth and hence similarity of H0 and HV follows by
Corollary 3. �

Remark 14. Assuming smallness of V in different scales of Lebesgue spaces,
Theorem 12 comes back to Kato [37, Thm. 6.4]. The identification of the opti-
mal Lebesgue space Ld/2(Rd) (thanks to the availability of the uniform Sobolev
inequality [38]) and the present proof is due to Frank [27, Thm. 2], who established
the absence of (discrete) eigenvalues of HV outside [0,+∞). In [29, Thm. 3.2],
Frank and Simon excluded (embedded) eigenvalues inside [0,+∞) as well. The
novelty of our statement here is that we additionally show that Frank’s condition
actually implies the stability of the continuous and residual spectra, too, and even
the similarity of HV to H0.

For physical applications in dimension d = 3, the space L3/2(R3) is too restric-
tive, for it excludes potentials with critical singularities V(x) ∼ |x|−2 as x → 0.
To include the singular potentials, Frank [27, Thm. 3] showed that the L3/2-norm
can be replaced by the Morrey–Campanato norm. Alternatively, one can use the
following old observation of Kato.
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Theorem 13 ([37, Thm. 6.1]). Let d = 3 and V ∈ L1
loc(R

d). Let L be the

integral operator in L2(R3) with the kernel

|V(x)|1/2 |V(y)|1/2
4π |x − y| .

If L is bounded and there exists a constant c < 1 such that

(7.4) ‖L‖ ≤ c,

then the conclusions of Theorem 12 hold true.

Proof. The idea of the proof is based on the explicit knowledge of the integral
kernel of (H0 − z)−1 in R3:

(7.5) Gz(x, y) :=
e−√−z |x−y|

4π |x − y| ,

where z ∈ C \ (0,+∞) and x, y ∈ R
3 with x �= y. We use the branch of the square

root on C \ (−∞, 0] with positive real part. The peculiarity of dimension d = 3 is
that one has the uniform pointwise bound

(7.6) ∀z ∈ C \ (0,+∞), x, y ∈ R
3, x �= y, |Gz(x, y)| ≤ G0(x, y).

Consequently, for every φ,ψ ∈ C∞
0 (R3), one has

(7.7)
|(φ,Kzψ)| ≤

∫
R3

∫
R3

(|V|1/2|φ|)(x) |Gz(x, y)| (|V|1/2|ψ|)(y) dxdy

≤
∫
R3

∫
R3

(|V|1/2|φ|)(x) G0(x, y) (|V|1/2|ψ|)(y) dxdy.

Note that the last integral is well defined because the functions φ,ψ are assumed to
have a compact support. Using the definition ofL and the fact that the spaceC∞

0 (R3)
is dense in L2(R3), one gets

|(φ,Kzψ)| ≤ (|φ|,L |ψ|) ≤ c‖φ‖‖ψ‖
for every φ,ψ ∈ L2(R3). Consequently, ‖Kz‖ ≤ c uniformly in z ∈ C \ [0,+∞),
so (1.10) holds true. Furthermore, the same estimates as above ensure that the
supremum in (1.12) is bounded from above by 2c. Hence, the sufficient conditions
of the abstract Theorem 3 and Corollary 3 are satisfied. �

It is desirable to obtain sufficient conditions which guarantee the validity
of (7.4). An obvious choice is to bound the operator norm of L by its Hilbert–
Schmidt norm leading to the sufficient condition

(7.8) ‖V‖R(R3) :=

√∫
R3

∫
R3

|V(x)| |V(y)|
|x − y|2 dx dy < 4π,
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where ‖ · ‖R(R3) is the Rollnik norm. This weaker version of Theorem 13 is
mentioned in [37, Rem. 6.2] (see also [49, Thm. III.12] and [46, Thm. XIII.21] for
partial results). Note that R(R3) ⊃ L3/2(R3) by the Sobolev inequality.

An alternative approach was followed by Fanelli, Vega and one of the present
authors in [26].

Theorem 14 ([37, Thm. 6.1], [26, Thm. 1]). Let d = 3 and V ∈ L1
loc(R

d). If
there exists a constant c < 1 such that

(7.9) ∀ψ ∈ H1(R3),
∫
R3

|V||ψ|2 ≤ c
∫
R3

|∇ψ|2,

then the conclusions of Theorem 12 hold true.

Proof. First of all, notice that (7.9) is equivalent to ‖|V|1/2H−1/2
0 g‖2 ≤ c ‖g‖2

for every g ∈ R(H1/2
0 ). Since 0 ∈ σc(H0) (in fact, the spectrum of H0 is purely

continuous), the range R(H1/2
0 ) is dense in L2(R3). Consequently, |V|1/2H−1/2

0

extends to a bounded operator in L2(R3) with

(7.10) ‖|V|1/2H−1/2
0 ‖ ≤ √

c.

By taking the adjoint, H−1/2
0 |V|1/2 also extends to a bounded operator in L2(R3)

with

(7.11) ‖H−1/2
0 |V|1/2‖ ≤ √

c.

We come back to the inequality (7.7) valid for every φ,ψ ∈ C∞
0 (R3). Using

the dominated convergence theorem, we write

|(φ,Kzψ)| ≤ lim
ε→0+

∫
R3

∫
R3

(|V|1/2|φ|)(x) G−ε2(x, y) (|V|1/2|ψ|)(y) dxdy

= lim
ε→0+

(|V|1/2|φ|, (H0 + ε2)−1|V|1/2|ψ|)
= lim
ε→0+

((H0 + ε2)−1/2|V|1/2|φ|, (H0 + ε2)−1/2|V|1/2|ψ|)
= (H−1/2

0 |V|1/2|φ|,H−1/2
0 |V|1/2|ψ|)

≤ ‖H−1/2
0 |V|1/2‖2‖φ‖‖ψ‖

≤ c ‖φ‖‖ψ‖.
Here the last equality employs that |V|1/2|φ|, |V|1/2|ψ| ∈ R(H1/2

0 ). Since C∞
0 (R3)

is dense in L2(R3), we get ‖Kz‖ ≤ c uniformly in z ∈ C \ (0,+∞), so (1.10) holds
true. Furthermore, the same estimates as above ensure that the supremum in (1.12)
is bounded from above by the constant 2c. Hence, the sufficient conditions of the
abstract Theorem 3 and Corollary 3 are satisfied. �
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Remark 15. Except for the similarity of HV and H0, Theorem 14 was derived
in [26] without the knowledge of Kato’s Theorem 4 from [37]. Unaware of The-
orem 2, the inclusion σc(HV) ⊂ σ(H0) was derived by explicitly constructing a
singular sequence of HV corresponding to all points of [0,+∞).

It turns out that the hypotheses (7.4) and (7.9) are equivalent. The fact that (7.9)
implies (7.4) is clear from the proof of Theorem 14. Conversely, L = TT∗ with
T := |V|1/2H−1/2

0 , so [36] implies ‖T‖ ≤ √
c, which is (7.10) equivalent to (7.9).

By the Sobolev inequality, (7.9) holds provided that V ∈ L3/2(R3) and (cf. (7.2))

‖V‖L3/2(R3) < C3/2,3 = 33/2π2/4.

This gives an estimate to the constant c3 of Theorem 12. It turns out that this
value is optimal as demonstrated by Frank [27, Thm. 2]. Outside the range of the
Lebesgue as well as Rollnik classes, sufficient conditions ensuring (7.9) follow
by the Hardy inquality − ≥ (1/4)|x|−2; see [26, Eq. (7)]. To conclude, let us
compare the smallness sufficient conditions which ensure that the operators HV

and H0 are similar to each other in the three-dimensional situation:

(7.3) =⇒ (7.8) =⇒ (7.9) ⇐⇒ (7.4) .

Lebesgue L3/2 Rollnik R form-subordination Kato

We expect that Theorem 14 extends to higher dimensions.

Conjecture 1. Let d > 3 and V ∈ L1
loc(R

d). If there exists a constant c < 1
such that

∀ψ ∈ H1(Rd),
∫
Rd

|V||ψ|2 ≤ c
∫
Rd

|∇ψ|2,

then the conclusions of Theorem 12 hold true.

7.1.2 Low dimensions. The stability of the spectrum does not hold in
low dimensions d = 1, 2, because of the criticality of the Laplacian when d < 3.
Indeed, it is well known (see, e.g., [46, Thm. XIII.11]) thatHV possessesat least one
(discrete) negative eigenvalue whenever V ∈ C∞

0 (Rd) is real-valued, non-positive
and non-trivial and d = 1, 2. In dimension d = 2, however, the stability of the
spectrum can be achieved by adding a magnetic field to H0; see [25].

In any case, the Birman–Schwinger principle can be used to obtain sharp
estimates for the eigenvalues, even when V is complex-valued. Here we focus on
dimension d = 1, where a simple formula for the integral kernel of the resolvent
of H0 is available.
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Theorem 15 ([1, Thm. 4] & [19, Corol. 2.16]). Let d = 1 and V ∈ L1(R).
(i) σr(HV) = ∅.
(ii) σe(HV) = [0,+∞).
(iii) σp(HV) ⊂ {λ ∈ C : |λ| ≤ 1

4‖V‖2
L1(R)}.

Proof. Property (i) is a general fact for Schrödinger operators because of
the T-self-adjointness property H∗

V = THVT, where Tψ := ψ̄ is the complex
conjugation (time-reversal operator in quantum mechanics). Consequently, if λ̄ is
an eigenvalue of H∗

V , then necessarily λ is an eigenvalue of HV , so (i) follows by
the general criterion (4.1).

The other properties employ the fact that the unperturbed resolvent (H0 − z)−1

is an integral operator in L2(R) with the kernel

Gz(x, y) :=
e−√−z |x−y|

2
√−z

,

where z ∈ C \ [0,+∞). Consequently,

∀z ∈ C \ [0,+∞), x, y ∈ R, |Gz(x, y)| =
e−�√−z |x−y|

2 |√−z| ≤ 1

2
√|z| .

Property (ii) follows because of the compactness of Kz. Under the hypotheses
V ∈ L1(R), the operator HV is m-sectorial (cf. Remark 13). Hence, there exists a
negative z with sufficiently large |z| such that z ∈ ρ(H0) ∩ ρ(HV) and (H0 − z)−1 is
m-accretive. Then

‖Kz‖2
HS =

∫
R

∫
R

|V(x)| |Gz(x, y)|2 |V(y)| dxdy ≤ ‖V‖2
L1(R)

4 |z| ,

where ‖ · ‖HS denotes the Hilbert–Schmidt norm, so Kz is compact. By Proposi-
tion 1,

(HV − z)−1 − (H0 − z)−1 = −[sgn V̄ |V|1/2(H0 − z)−1]∗|V|1/2(HV − z)−1.

Since |V|1/2(HV − z)−1, sgn V̄ and (H0 − z)−1/2 are bounded operators, the dif-
ference of the resolvents is compact if the operator T := |V|1/2(H0 − z)−1/2 is
compact. This is the case if, and only if, TT∗ is compact. It remains to notice that
‖TT∗‖HS = ‖Kz‖HS and recall the general stability theorem [21, Thm. IX.2.4].

Property (iii) is the main part of the theorem. Similarly as above, we have

‖Kz‖2 ≤ ‖Kz‖2
HS ≤ ‖V‖2

L1(R)

4 |z|
for every z ∈ C \ [0,+∞). Consequently, ‖Kz‖ > 1 if |z| > 1

4‖V‖2
L1(R). This

proves the desired inclusion (including the embedded eigenvalues) by virtue of
Corollary 4. �
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The same machinery has been recently applied to possibly non-self-adjoint
biharmonic Schrödinger operators in [33] and the wave operator with complex-
valued dampings in [40]. The Birman–Schwinger principle is not limited to
continuous spaces; see [34, 8] for Schrödinger operators on lattices.

7.2 Dirac operators in the three-dimensional Euclidean space. Let

H0 := −iα · ∇ + mα4

in H := L2(R3;C4) with D(H0) := H1(R3;C4), where m > 0 is a constant and
α := (α1, α2, α3) with αμ being the usual 4×4 Hermitian Dirac matrices satisfying
the anticommutation rules αμαν +αναμ = 2δμνIC4 forμ, ν ∈ {1, . . . , 4} and the dot
denotes the scalar product in R

3. One has σ(H0) = (−∞,−m]∪ [+m,+∞) and the
spectrum is purely absolutely continuous.

Notice that H2
0 = (−+ m2)IC4 , where − +m2 is the self-adjoint Schrödinger

operator in L2(R3) with the usual domain H2(R3). The absolute value of H0

thus equals |H0| =
√− + m2IC4 , which is again a self-adjoint operator when

considered on the domain H1(R3;C4). The form domain of
√− + m2 equals the

fractional Sobolev space H1/2(R3); cf. [44, Sec. 7.11]. Notice that C∞
0 (R3) is dense

in H1/2(R3); cf. [44, Sec. 7.14].
Given any V ∈ L1

loc(R
3;C4×4), we use the matrix polar decomposition

V(x) = U(x) |V(x)| = U(x) |V(x)| |V(x)|1/2

for almost every x ∈ R3. Here U(x) is unitary and |V(x)| =
√

V(x)∗V(x) as
before. We set A(x) := |V(x)|1/2 and B(x) := |V(x)|1/2U(x)∗ as in the case of
Schrödinger operators. Now, however, we have A(x)U(x)∗ �= U(x)∗A(x) in general,
which somewhat complicates the analysis. We use the same symbols A,B for the
extended operators of matrix multiplication initially defined on D := C∞

0 (R3;C4).
Notice that D is dense in H1/2(R3;C4) = D(|H0|1/2).

To minimise conditions imposed on the matrix-valued potential V , we
follow [24] and consider the matrix norm v(x) := ‖V(x)‖C4→C4 for almost
every x ∈ R

3. The non-negative scalar function v belongs to L1
loc(R

3). Note
that v(x) = ‖|V(x)|‖C4→C4 = ‖|V(x)|1/2‖2

C4→C4 . We assume that there exist num-
bers a ∈ (0, 1) and b ∈ R such that

(7.12) ∀f ∈C∞
0 (R3),

∫
R3
v(x)|f (x)|2 dx≤a

∫
R3

| 4
√− f (x)|2 dx+b

∫
R3

|f (x)|2 dx.

Then Assumption 1 holds true. A sufficient condition to satisfy (7.12) is v = v1 +v2
with v1 ∈ L3(R3) and v2 ∈ L∞(R3), where ‖v1‖L3(R3) < (2π2)1/3. This can be
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shown with help of the Hölder inequality and a quantified version of the Sobolev-
type embedding Ḣ1/2(R3) ↪→ L3(R3); see [24, Prop. 1]. Alternative sufficient
conditions can be obtained by means of Kato’s inequality

√− ≥ (2/π)|x|−1; see
[24, Rem. 3].

In summary,V fallswithin the class of perturbations considered inAssumption 1
and the pseudo-Friedrichs extension HV is well defined. Contrary to Schrödinger
operators, the Dirac operators cannot be introduced via the Friedrichs extension
because of the unboundedness from below of the latter.

To apply the Birman–Schwinger principle to HV , one customarily uses the iden-
tity (H0 − z)−1 = (H0 + z)(H2

0 − z2)−1 to get an explicit formula for the unperturbed
resolvent. More specifically, (H0 −z)−1 is an integral operator in H with the kernel
obtained by applying H0 + z to the Green function (7.5) at energy m2 − z2. Esti-
mating the norm of Kz by the Hilbert–Schmidt norm and applying Corollary 4, one
obtains various enclosures for the eigenvalues of HV . This strategy was followed
by Fanelli and one of the present authors in [24]. As an example, we mention the
following result.

Theorem 16 ([24, Thm. 2]). Assume v ∈ L3(R3) ∩ L3/2(R3). If

(7.13) C1 ‖v‖L3(R3) + C2 |�λ| ‖v‖L3/2(R3) < 1,

where

C1 :=
(π

2

)1/3√
1 + e−1 + 2e−2 and C2 :=

217/6

3π2/3 ,

then λ �∈ σp(HV).

Given a potential V with sufficiently small norm ‖v‖L3(R3), the hypothesis (7.13)
excludes the existence of eigenvalues in thin tubular neighbourhoods of the imag-
inary axis, with the thinness determined by the norm ‖v‖L3/2(R3). Note that eigen-
values embedded in the essential spectrum (−∞,−m] ∪ [+m,+∞) are excluded
as well. As an alternative result, [24, Thm. 1] provides a quantitative enclosure for
more general potentials satisfying merely v ∈ L3(R3).

For V being matrix-valued and possibly non-Hermitian, a systematic study of
the spectrum of the Dirac operator HV was initiated by the pioneering work of
Cuenin, Laptev and Tretter [15] in the one-dimensional setting and followed by
[13, 23, 16]. Some spectral aspects in the present three-dimensional situation are
also covered by [20, 47, 14, 12, 17]. The same machinery has been recently applied
to non-self-adjoint Dirac operators on lattices [10].
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7.3 Schrödinger operators in three-dimensional hyperbolic space.
In order to derive completely new results with the help of the Birman–Schwinger
principle, we eventually consider Schrödinger operators in hyperbolic spaces. This
class of operators does not seem to have been considered previously in the non-self-
adjoint context except for the recent works [11, 31]. However, the study of spectral
properties of self-adjoint realisations is enormous; see, e.g., [32, 43, 35, 4, 9, 6] and
references therein. Here we restrict ourselves to the three-dimensional case and
refer to [31] and [11] for the hyperbolic plane and higher dimensions, respectively.

Let H3 be the three-dimensional hyperbolic space, i.e., a complete, simply
connected Riemannian manifold with all sectional curvatures equal to −1. There
are three (isometric) standard realisations of H3 given by the half-space, ball and
hyperboloid models (cf. [32, Sec. 1]), but we shall not need them. We denote
by H0 the self-adjoint Laplacian in H := L2(H3), introduced in a standard way
as the Friedrichs extension of the Laplace–Beltrami operator initially defined on
D := C∞

0 (H3). More specifically, H0 is the operator associated with the closed
form h0[ψ] :=

∫
H3 |∇ψ|2 with D(h0) := H1(H3) being the usual Sobolev space. The

absolute value |H0| satisfies

‖|H0|1/2ψ‖ = ‖∇ψ‖
for every ψ ∈ D(|H0|1/2) = H1(H3). Note that C∞

0 (H3) is a core of |H0|1/2. It is
well known [32, Sec. 2] that

(7.14) σ(H0) = [1,+∞)

and that the spectrum is purely absolutely continuous. The shifted operator H0 −1
is subcritical, meaning that it satisfies a Hardy-type inequality (see [2, 5] for
original proofs and [6] for recent improvements)

(7.15)
∫
H3

|∇ψ|2 −
∫
H3

|ψ|2 ≥ 1
4

∫
H3

|ψ(x)|2
ρ(x, x0)2

dx,

where ρ(x, x0) denotes the Riemannian distance between the points x, x0 ∈ H
3

and x0 is fixed.
Now let V ∈ L1

loc(H
3) and make the same decomposition (7.1) as in the Eu-

clidean case. The operators A,B are defined analogously. We assume the subordi-
nation condition

(7.16) ∃c < 1, ∀ψ ∈ H1(H3),
∫
H3

|V||ψ|2 ≤ c
(∫

H3
|∇ψ|2 −

∫
H3

|ψ|2
)
.

Then Assumption 1 holds true and the pseudo-Friedrichs extension HV is well
defined. It coincides with the usual m-sectorial Friedrichs extension in this case,
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because (7.16) ensures that V is relatively form-boundedwith respect to H0 with the
relative bound less than 1. In viewof (7.15), a sufficient condition to satisfy (7.16) is
given by the pointwise inequality |V(x)| ≤ (c/4)ρ(x, x0)−2 for almost every x ∈ H

3.

We note that (7.16) implies that the shifted operator HV − 1 is m-accretive and
hence, in particular, the spectrum of HV is contained in the complex half-plane
{λ : �λ ≥ 1}. Actually, a much stronger statement is true.

Theorem 17. If (7.16) holds, then

σ(HV) = σc(HV) = [1,+∞).

Moreover, HV and H0 are similar to each other.

Proof. The proof is similar to the proof of Theorem 14. We start with an
equivalent formulation of (7.16). Writing g := (H0 − 1)1/2ψ in (7.16), we have

‖|V|1/2(H0 − 1)−1/2g‖2 ≤ c(‖∇(H0 − 1)−1/2g‖2 − ‖(H0 − 1)−1/2g‖2) = c ‖g‖2.

Since 1 ∈ σc(H0) (in fact, the spectrum of H0 is purely continuous), the range
of (H0 − 1)1/2 is dense in L2(H3) and we see that (1.7) is equivalent to

(7.17) ‖|V|1/2(H0 − 1)−1/2‖2 ≤ c.

It follows (by taking the adjoint) that also

(7.18) ‖(H0 − 1)−1/2|V|1/2‖2 ≤ c.

The main ingredient of the proof is the explicit form of the integral ker-
nel Gz(x, y) of the unperturbed resolvent (H0 − z)−1 which is given by

(7.19) Gz(x, y) :=
e−√−(z−1)ρ(x,y)

4π sinhρ(x, y)
,

where z ∈ C \ (1,+∞) and x, y ∈ H
3 with x �= y. To get (7.19), one may integrate

the formula for the heat kernel [18, p. 179] over positive times. As in the Euclidean
case (cf. (7.6)), one has the uniform pointwise bound

∀z �∈ (1,+∞), ∀x, y ∈ H
3, x �= y, |Gz(x, y)| ≤ G1(x, y).
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Consequently, for every φ,ψ ∈ C∞
0 (H3), one has

|(φ,Kzψ)| ≤
∫
H3

∫
H3

(|V|1/2|φ|)(x) |Gz(x, y)| (|V|1/2|ψ|)(y) dxdy

≤
∫
H3

∫
H3

(|V|1/2|φ|)(x) G1(x, y) (|V|1/2|ψ|)(y) dxdy

= lim
ε→0+

∫
H3

∫
H3

(|V|1/2|φ|)(x) G1−ε2(x, y) (|V|1/2|ψ|)(y) dxdy

= lim
ε→0+

(|V|1/2|φ|, (H0 − 1 + ε2)−1|V|1/2|ψ|)
= lim
ε→0+

((H0 − 1 + ε2)−1/2|V|1/2|φ|, (H0 − 1 + ε2)−1/2|V|1/2|ψ|)
= ((H0 − 1)−1/2|V|1/2|φ|, (H0 − 1)−1/2|V|1/2|ψ|)
≤ ‖(H0 − 1)−1/2|V|1/2‖2‖φ‖‖ψ‖
≤ c ‖φ‖‖ψ‖.

Here the limits are justified with help of the dominated convergence theorem and
the last inequality follows by (7.18). Since C∞

0 (H3) is dense in L2(H3), we get
‖Kz‖ ≤ c uniformly in z ∈ C \ [1,+∞), so (1.10) holds true. Furthermore, the
same estimates as above ensure that the supremum in (1.12) is bounded from above
by the constant 2c. Hence, the sufficient conditions of the abstract Theorem 3 and
Corollary 3 are satisfied. �

Appendix A Kato’s and pseudo-Friedrichs extensions
coincide

Suppose that H0,A,B satisfy Assumption 1 and that in addition A,B are closed
and smooth relative to H0. Moreover, suppose that

D(A) = D(B) = D(|H0|1/2).

Let HV denote the pseudo-Friedrichs extension constructed in Section 2 and let H̃V

denote the closed extension of H0 + B∗A provided by Kato’s Theorem 4.

Proposition 2. Given the above assumptions we have HV = H̃V .

Proof. By [37, Theorem 1.5], A is smooth relative to H̃V and B is smooth
relative to H̃∗

V , hence D(H̃V ) ⊂ D(A) = D(|H0|1/2) and D(H̃∗
V ) ⊂ D(B) = D(|H0|1/2),

which establishes two of the uniqueness requirements of Theorem 5. It remains
to verify (2.3) and (2.8). Let φ ∈ D(|H0|1/2) and ψ ∈ D(H̃V). Given ξ ∈ C \ R,
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let g ∈ H be the unique vector satisfying ψ = (H̃V − ξ)−1g. Then, using (1.14),

h0(φ,ψ) = (G1/2
0 φ,H0G

−1
0 G1/2

0 ψ) = (G1/2
0 φ,H0G

−1/2
0 (H̃V − ξ)−1g)

= (G1/2
0 φ,H0G

−1/2
0 (H0 − ξ)−1g)

− (G1/2
0 φ,H0G

−1/2
0 (H0 − ξ)−1B∗A(H̃V − ξ)−1g)

= (φ, g) + ξ(φ, (H0 − ξ)−1g) − (G1/2
0 φ,H0G

−1/2
0 (H0 − ξ)−1B∗Aψ).

If φ ∈ D(H0), then

(G1/2
0 φ,H0G

−1/2
0 (H0 − ξ)−1B∗Aψ) = (H0φ, (H0 − ξ)−1B∗Aψ)

= ([(H0 − ξ)−1B∗]∗H0φ,Aψ)

= (B(H0 − ξ̄)−1H0φ,Aψ)

= (Bφ,Aψ) + ξ(B(H0 − ξ̄)−1φ,Aψ)

= v(φ,ψ) + ξ(φ, (H0 − ξ)−1B∗Aψ),

where we used that

(H0 − ξ)−1B∗ = [(H0 − ξ)−1B∗]∗∗ = [B(H0 − ξ)−1]∗

which follows from the fact that B∗ is densely defined (since B is closed) and
[(H0 − ξ)−1B∗]∗ = B(H0 − ξ)−1 ∈ B(H,H′) is densely defined as well. The
obtained identity extends to all φ ∈ D(|H0|1/2), since D(H0) is a core of D(|H0|1/2).
Therefore, using (1.14) again,

hV(φ,ψ) = h0(φ,ψ) + v(φ,ψ)

= (φ, g) + ξ(φ, (H0 − ξ)−1g) − ξ(φ, (H0 − ξ)−1B∗Aψ)

= (φ, g) + ξ(φ, (H̃V − ξ)−1g)

= (φ, (H̃V − ξ)ψ) + ξ(φ,ψ) = (φ, H̃Vψ)

for every φ ∈ D(|H0|1/2) and ψ ∈ D(H̃V). This establishes (2.3). The validity
of (2.8) can be proved in the samemanner. The uniquenessof the pseudo-Friedrichs
extension ensures that necessarily H̃V = HV as desired.
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[11] X. Chen, The Sobolev inequalities on real hyperbolic spaces and eigenvalue bounds for
Schrödinger operators with complex potentials, Anal. PDE, to appear, arXiv:1811.08874
[math.AP].
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[24] L. Fanelli and D. Krejčiřı́k, Location of eigenvalues of three-dimensional non-self-adjoint Dirac
operators, Lett. Math. Phys. 109 (2019), 1473–1485.
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