
SPECTRAL THEORY OF THE MULTI-FREQUENCY
QUASI-PERIODIC OPERATOR WITH A GEVREY TYPE

PERTURBATION

By

YUNFENG SHI

Abstract. In this paper we study the multi-frequency quasi-periodic operator
with a Gevrey type perturbation. We first establish the large deviation theorem
(LDT) for the multi-dimensional operator with a sub-exponential (or Gevrey) long-
range hopping, and then prove the pure point spectrum property. Based on the
LDT and the Aubry duality, we show the absence of a point spectrum for the 1D
exponential long-range operator with a multi-frequency and a Gevrey potential.
We also prove the spectrum has positive Lebesgue measure.

1 Introduction and main results

In this paper we study the spectral properties of the multi-frequency long-range
quasi-periodic operator with a Gevrey type perturbation. More precisely, we first
consider the multi-dimensional quasi-periodic operator with a Gevrey long-range
hopping and an analytic potential which satisfies the non-degeneracy condition.
We prove such an operator has a pure point spectrum (with sub-exponentially
decaying eigenfunctions) in the large coupling regime (see Theorem 1.1 in the
following). The Aubry duality of this operator is a 1D multi-frequency quasi-
periodic operator with an exponential long-range hopping and a Gevrey potential.
We show the absenceof a point spectrum for the Aubry duality in the small coupling
regime (see Theorem 1.2 in the following). We want to mention that in the small
coupling regime the non-degeneracy assumption on the potential is not needed.
While we can prove the absence of a point spectrum for the Aubry duality, we can
not obtain the existence of an absolutely continuous (ac) spectrum via the present
method. The Kotani’s theory suggests that the existence of an ac spectrum implies
the positivity of the Lebesgue measure of the spectrum, which motivates us to
study the measure of the spectrum (see Theorem 1.3 in the following) in the small
coupling regime.
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We start with the long-range hopping, which is a Toeplitz operator. Let

h : Rd/Zd = Td → R

be a function. We define the Toeplitz operator (with the symbol h) as

Th(m, n) = ĥm−n, m, n ∈ Zd,

where ĥn =
∫
Td h(θ)e−2πin·θdθ. We also define δmn = 1 if m = n, and δmn = 0

if m �= n.

1.1 Pure point spectrum. We first study the multi-dimensional operator
with a Gevrey long-range hopping and an analytic potential.

Assume that v is Gevrey regular, i.e., v(x) ∈ C∞(Td,R) satisfies for some
γ ∈ (0, 1] and ∀ n ∈ Zd

(1.1) |v̂n| ≤ e−ρ|n|γ ,

where ρ > 0, |n| = sup1≤i≤d |ni|. Notice that v is analytic if γ = 1.
We consider the operator

H̃λf,ω,θ = λTv + f (θ + nω)δnn′, θ ∈ Td,(1.2)

nω = (n1ω1, . . . , ndωd),(1.3)

where λ−1 > 0 is the coupling, θ is the phase, ω ∈ Td is the frequency and f is a
real analytic function satisfying the non-degeneracy condition: For all j = 1, . . . , d
and

θ¬
j = (θ1, . . . , θj−1, θj+1, . . . , θd) ∈ Td−1,

the map
θj �→ f (θj, θ

¬
j )

is a non-constant function of θj ∈ T.
We have

Theorem 1.1. Let H̃λf,ω,θ be defined by (1.2)–(1.3) with v satisfying (1.1)
and f satisfying the non-degeneracy condition. Then for any ε > 0, there exists
a λ0 = λ0(d, γ, ρ, f, ε) > 0 such that the following holds: For 0 ≤ λ ≤ λ0 and

θ ∈ Td, there exists some 
 = 
(d, γ, ρ, λf, θ) ⊂ Td with mes(
) ≤ ε such
that, if ω ∈ Td \
, then H̃λf,ω,θ has a pure point spectrum with sub-exponentially

(exponentially if γ = 1) decaying eigenfunctions.

Remark 1.1. This theorem extends the result of Bourgain [Bou07] to the
Gevrey long-range hopping case.
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The search for the nature of the spectrum and the behaviour of the eigenfunc-
tions for the 1D quasi-periodic operator has attracted much attention over the years.
Of particular importance is the phenomenon of the Anderson localization (AL),
where we say an operator satisfies AL if it has a pure point spectrum with exponen-
tially decaying eigenfunctions. The early results on the AL were perturbative and
restricted on “cos” type potentials [Sin87, FSW90]. The first non-perturbative1

AL was obtained by Jitomirskaya [Jit94] in the almost Matheiu operator (AMO)
setting. By developing a new type of KAM arguments, Eliasson [Eli97] proved a
pure point spectrum for the 1D Schrödinger operator with a large Gevrey potential.
Eliasson’s result is perturbative and needs the potential to satisfy some transversal-
ity condition. Later, the celebrated work of Jitomirskaya [Jit99] indicated that the
AL can hold for the AMO with the Diophantine condition if the coupling λ > 1.
Significantly, Bourgain–Goldstein [BG00] established the non-perturbative AL
for the 1D Schrödinger operator with a single-frequency and an analytic poten-
tial. Klein [Kle05, Kle14] proved the AL for the 1D Schrödinger operator with a
Gevrey potential. In the long-range setting Bourgain–Jitomirskaya [BJ02] proved
the non-perturbative AL for the exponential long-range operator with a “cos” po-
tential. In [Bou05] Bourgain extended the result of [BJ02] to an operator with
an analytic potential. An improvement of some long-range estimates of [BJ02]
has recently been established by Avila–Jitomirskaya [AJ10]. We also mention the
work of Jian–Shi–Yuan [JSY19] in which a non-perturbative AL was obtained for
some 1D long-range block operator. We refer the reader to [AJ09, AYZ17, JL18]
for more recent AL results in the 1D setting.

In the multi-dimensional case only the perturbative localization can be expected
[Bou02b]. The first multi-dimensional localization was obtained by Chulaevsky
and Dinaburg [CD93] for a single-phase operator with an exponential long-range
hopping. Their perturbative KAM methods seem not applicable in the multi-phase
case. Bourgain, Goldstein and Schlag [BGS02] developed a new way to combine
the multi-scale analysis developed by Fröhlich–Spencer [FS83] and some of the
non-perturbative methods to the case (n, θ, ω) ∈ Z2 × T2 × T2, and obtained the
AL for the large analytic potential. To perform such multi-scale analysis, the sub-
linear growth of the number of “bad” small boxes contained in a big box becomes
essential. In the single-phase case only the Diophantine condition of the frequency
can ensure the sub-linearity property. In the (n, θ, ω) ∈ Z2 × T2 × T2 case to get
the sub-linearity property, additionally arithmetic conditions on the frequency are
needed [BGS02]. It was also shown by Bourgain [Bou02a] that the Diophantine

1Here, by a non-perturbative argument we mean the argument allows the size of the perturbation to
be independent of the frequency.
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property of the frequency of the skew shift is sufficient to guarantee the sub-
linearity property. For (n, θ, ω) ∈ Zd ×Td ×Td with d ≥ 3, it is difficult to ensure
the sub-linearity property as in the case d ≤ 2 (or dD with the single-phase). To
overcome this problem, Bourgain [Bou07] introduced new methods and allowed
the eliminations of the frequency to depend on the potential when proving the
LDT. This enables him to extend results of [BGS02] to arbitrary dimension d. The
basic techniques of [Bou07] are also semi-algebraic sets arguments and matrix-
valued Cartan’s estimates, but need more delicate analysis. Recently, methods of
Bourgain [Bou07] have been largely extended by Jitomirskaya–Liu–Shi [JLS20]
to the long-range operator with (n, θ, ω) ∈ Zd × Tb × Tb for arbitrary b, d. The
result of [JLS20] is significantly more general and more technically complex, and
can also be viewed as both a clarification and at the same time streamlining of
[Bou07]. We also mention the work of Bourgain–Kachkovskiy [BK19] in which
the case (n, θ, ω) ∈ Z2 ×T2×Twas studied. For the multi-dimensional long-range
operator with a “cos” potential, localization results with the fixed Diophantine
frequency have been obtained by Jitomirskaya–Kachkovskiy [JK16] and Ge–You–
Zhou [GYZ].

1.2 Absence of a point spectrum. We then study the Aubry duality
of (1.2) in the case f (θ + nω) = g(θ + n ·ω), where θ ∈ T, n ·ω =

∑d
i=1 niωi and g is

a non-constant real analytic function. This leads to the 1D exponential long-range
quasi-periodic operator

(1.4) Hλv,ω,x = Tg + λv(x + �ω)δ��′, x ∈ Td, �, �′ ∈ Z,

where v is defined by (1.1).
If g(θ) = 2 cos 2πθ, the operator (1.4) becomes the standard multi-frequency

quasi-periodic Schrödinger operator. In particular, we call (1.4) the almost Mathieu
operator if it is a 1D quasi-periodic Schrödinger operator satisfying

v(x) = 2 cos2πx.

Denote by mes(·) the Lebesgue measure. We have

Theorem 1.2. Let Hλv,ω,x be defined by (1.4) with v satisfying (1.1). Then for
any ε > 0, there exists a λ0 = λ0(g, d, γ, ρ, ε) > 0 such that the following holds:

For 0 ≤ λ ≤ λ0, there exists some 
 = 
(g, d, γ, ρ, λ) ⊂ Td with mes(
) ≤ ε

such that, if ω ∈ Td \
, then Hλv,ω,x has no point spectrum for all x ∈ Td.

Remark 1.2. The non-degeneracy condition on v is not needed here. In
addition, we think the operator should have pure ac spectrum if 0 < λ � 1.
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In the following we review some results on the ac spectrum. Consider first the
one-frequency operator (i.e., d = 1) case. As is well-known, the spectrum of the
free Laplacian on Z is pure ac. Thus the question whether the pure ac spectrum
property holds for the Schrödinger operator with a small quasi-periodic potential
naturally arises. Early results were restricted on the AMO case [BLT83, CD89]. In
the continuous setting Eliasson [Eli92] proved a pure ac spectrum for a Schrödinger
operator with the Diophantine frequency and a small analytic quasi-periodic po-
tential by using the KAM scheme (see [HA09] for the discrete case). Later,
Bourgain–Jitomirskaya [BJ02] developed a non-perturbative argument to handle
the 1D discrete Schrödinger operator with a small analytic quasi-periodic potential
for a.e. phase x ∈ T. Puig [Pui06] improved partial results of Eliasson [Eli92]
to the non-perturbative and discrete setting. The proof of Puig was based on the
Aubry duality and a non-perturbative localization result in the exponential long-
range Hamiltonian in [BJ02]. Significantly, Avila–Jitomirskaya [AJ10] developed
a quantitative version of the duality based on the dual concepts of almost reducibil-
ity and almost localization, which ultimately implied a non-perturbative pure ac
spectrum result holds for the 1D analytic Schrödinger operator with the Diophan-
tine frequency for all phase x ∈ T. If 0 ≤ λ < 1, Avila–Damanik [AD08] proved
the pure ac spectrum of the AMO for every irrational frequency and for a.e. x ∈ T.

We also mention the work [AFK11] in which the existence of the ac spectrum
is obtained for a 1D analytic Schrödinger operator with any irrational frequency.
Remarkably, Avila [Avi10, Avi] even established the Almost Reducibility Conjec-
ture and proved the pure ac spectrum for the analytic quasi-periodic Schrödinger
operator in the subcritical regime.

Much less is known about the multi-frequencyquasi-periodic Schrödinger oper-
ator. Based on arguments of [FK09], Bjkerlöv–Krikorian [BK21] showed the exis-
tence of the ac spectrum for a smooth multi-frequency quasi-periodic Schrödinger
operator without the smallness restriction on the potential. Recently, Hou–Wang–
Zhou [HWZ20] proved the existence of the ac spectrum for the analytic multi-
frequency quasi-periodic Schrödinger operator with a Liouville frequency. Very
recently, Cai [Cai21] obtained the pure ac spectrum for the multi-frequency quasi-
periodic Schrödinger operator with a finitely differentiable potential relying on the
almost reducibility results of [CCYZ19].

1.3 Lebesgue measure of the spectrum. It is well-known that the spec-
trum of Hλv,ω,x is independent of x ∈ Td if 1 and ω are rationally independent. In
this case we denote by �λv,ω the spectrum of Hλv,ω,x. We have
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Theorem 1.3. Let v satisfy (1.1) and let g be a non-constant analytic func-

tion. Then for any ε > 0, there exists a λ0 = λ0(g, d, γ, ρ, ε) > 0 such that the
following holds: For 0 ≤ λ ≤ λ0, there exists some
 = 
(g, d, γ, ρ, λ) ⊂ Td with

mes(
) ≤ ε such that, if ω ∈ Td \
, then

mes(�λv,ω) ≥ c > 0,

where c = c(λ0).

Remark 1.3. The study of the Lebesgue measure of the spectrum for the
quasi-periodic operator has a long history. The famous Aubry–André conjec-
ture [AA80] states that the measure of the AMO is exactly |4 − 4λ| for ev-
ery frequency ω ∈ R \ Q. Before [AK06], only partial results were obtained
[HS89, AvMS90, Las94, JK02]. Remarkably, Avila–Krikorian [AK06] settled this
conjecture completely. We would also like to mention the recent elegant work
[JK19], where a short new proof of zero measure of the spectrum for the critical
(i.e., λ = 1) AMO was given. If one considers the more general Schrödinger oper-
ator, there is no explicit representation of the measure of the spectrum. However,
based on the LDT and semi-algebraic sets arguments, Bourgain [Bou05] was able
to prove that the Lebesgue measure of the spectrum for the 1D Schrödinger opera-
tor with a single-frequency and an analytic potential is strictly positive. Bourgain’s
result is non-perturbative. In the present work we extend Bourgain’s result to the
multi-frequency operator with a Gevrey potential and a long-range hopping (but
perturbative).

1.4 Perturbative essentials. As mentioned above, our results and meth-
ods are perturbative. Actually, even in the 1D Gevrey perturbation case, only
perturbative results could be expected. Due to the relatively lower regularity
(resp., slower decaying) of the potential (resp., long-range hopping), it seems that
only perturbative methods (such as the multi-scale analysis) are applicable. In fact,
the appropriate estimates on the Green’s functions are key to establish the above
spectral results. We can restrict our consideration to the case (n, θ, ω) ∈ Z×T×T.
We denote by H̃N(θ) the restriction of H̃λf,ω,θ on [−N,N] ⊂ Z. Following the
non-perturbative techniques (without any inductive arguments) of [BJ02, Bou05],
the Green’s function

GN(E; θ) = (H̃N(θ) − E)−1

can be represented via the Cramer’s rule as

GN(E; θ)(m, n) =
Mm,n

det(H̃N(θ) − E)
,
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whereMm,n is the (m, n)-minor of H̃N(θ)−E. As in [BJ02, Bou05], one may show
that

| det(H̃N(θ) − E)| ∼ eN
∫
T

log |f (θ)−E|dθ+o(λ)N

for θ being outside a set of measure at most e−Nc
, c ∈ (0, 1). Due to the sub-

exponentially decaying of v̂n, the best possible upper bound of Mm,n may be

|Mm,n| ≤ e−ρ|m−n|γ+N
∫
T

log |f (θ)−E|dθ+o(λ)N .

Consequently,

|GN(E; θ)(m, n)| ≤ e−ρ|m−n|γ+o(λ)N .

In the case of γ ∈ (0, 1), no off-diagonal decay of GN(E; θ) could be expected
for 0 < λ ≤ λ0. This technical difficulty is the main motivation of the present
paper to use methods developed by Bourgain [Bou07] and Jitomirskaya–Liu–Shi
[JLS20], which depend mainly on the multi-scale analysis. That of course will
lead to perturbative results.

1.5 Strategy of the proofs. We outline the proofs. First, we will prove
the LDT for Green’s functions of H̃λf,ω,θ . This depends on the multi-scale analysis
developed in [Bou07, JLS20]. The matrix-valued Cartan’s estimates and semi-
algebraic geometry arguments play essential roles in this step. In [JLS20] the
authors considered the multi-dimensional quasi-periodic operator with the expo-
nentially decaying long-range hopping (which deals with the more complicated
b-frequency setting). It turns out that the Gevrey long-range hopping case needs
to improve some arguments of [JLS20]:

• In the proof of the resolvent identity (see the Appendix for details) it needs
the off-diagonal decaying speeds of the Green’s functions to depend on the
Gevrey index γ. In the proof of the LDT it also needs to give more delicate
estimates on various parameters. The key idea is to remove more θ in some
sense when establishing the LDT . This depends sensitively on the Gevrey
index γ as well.

• Furthermore, the sub-linear growth property in our setting becomes more
precise, which heavily relies on γ.

To prove the pure point spectrum (i.e., Theorem 1.1), it suffices to eliminate
the energy in LDT and then apply the Shnol’s Theorem. This will be finished by
using semi-algebraic sets arguments (including the Yomdin–Gromov triangulation
Theorem) as in [Bou07].
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To prove the absence of point spectrum (i.e.,Theorem 1.2), we will combine
the LDT with a trick originated from Delyon [Del87]. In contrast with [Eli97,
Kle05, Kle14], our result holds without any transversality restriction on the Gevrey
potential. The proofs of [Kle05, Kle14] dealt with the Schrödinger operator with a
Gevrey potential directly. To prove the LDT, Klein performed an inductive scheme
as in [BG00, BGS01] and needed the transversality condition of the potential to
guarantee the validity of the initial step (or a Łojasiewicz type inequality). Instead,
in the present we establish the LDT for the Aubry dual operator of (1.4). It turns
out that this operator is actually a multi-dimensional quasi-periodic operator with
an analytic potential and a Gevrey long-range hopping.

To prove the spectrum has positive measure (i.e., Theorem 1.3), we will use a
renormalization scheme of Bourgain [Bou05] relying on the complexity estimates.
In [Bou05] Bourgain directly applied the LDT of [BG00] together with semi-
algebraic sets arguments (including theTarski–Seidenberg principle and bounds
on the Betti numbers) to construct sufficiently many approximate eigenvalues.
However, for the Schrödinger operator with a Gevrey potential, the only known
LDTs were proved by Klein [Kle05, Kle14], but require the potential to satisfty the
transversality condition. Moreover, Klein’s methods seem invalid in the long-range
case. To overcome these difficulties, we again use the powerful Aubry duality.
Precisely, by the well-known result (see [Pui06, JK16]), we have �λv,ω = �̃,
here �̃ denotes the spectrum of the Aubry duality of (1.4). It turns out that this
Aubry duality is a multi-dimensional Gevrey long-range operator with an analytic
potential. Bourgain [Bou05] claimed that his arguments remain valid for the long-
range operator in the 1D and single-frequency case once the LDT was established.
In this paper we extend Bourgain’s method to the multi-dimensional case.

1.6 The structure of this paper. The structure of the paper is as follows.
Some preliminaries are introduced in §2. The LDT is established in §3. In §4, §5
and §6, we finish the proof of Theorems 1.1, 1.2 and 1.3, respectively. Some key
estimates are included in the Appendix.

2 Preliminaries

2.1 The notations. Let a > 0, b > 0. We define a � b (resp., a � b) if
there is some ε > 0 (resp., small ε > 0) so that a ≤ εb. We write a ∼ b if a � b
and b � a. We write a± to denote a ± ε for some small ε > 0.
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For any x ∈ Rd, let |x| = max1≤i≤d |xi|. For  ⊂ Rd, we introduce

diam() = sup
n,n′∈

|n − n′|, dist(m,) = inf
n∈ |m − n|.

For θ ∈ Rd and 1 ≤ j ≤ d, let

θ¬
j = (θ1, . . . , θj−1, θj+1, . . . , θd) ∈ Rd−1.

For x ∈ Rd1 and ∅ �= X ⊂ Rd1+d2 , define the x-section of X to be

X(x) = {y ∈ Rd2 : (x, y) ∈ X}.
For example, X(θ¬

j ) = {θj ∈ T : (θj, θ¬
j ) ∈ X} if ∅ �= X ⊂ Td.

For x ∈ R, we denote by [x] its integer part.
Throughout this paper, we assume ρ ∈ (0, 1) for simplicity.

2.2 Some facts on semi-algebraic sets.

Definition 2.1 (Chapter 9, [Bou05]). A set S ⊂ Rn is called a semi-algebraic
set if it is a finite union of sets defined by a finite number of polynomial equalities
and inequalities. More precisely, let {P1, . . . ,Ps} ⊂ R[x1, . . . , xn] be a family of
real polynomials whose degrees are bounded by d. A (closed) semi-algebraic set S
is given by an expression

(2.1) S =
⋃
j

⋂
�∈Lj

{x ∈ Rn : P�(x)ςj�0},

where Lj ⊂ {1, . . . , s} and ςj� ∈ {≥,≤,=}. Then we say that S has degree at most
sd. In fact, the degree of S which is denoted by deg(S), is the smallest sd over all
representations as in (2.1).

Lemma 2.2 (Tarski–Seidenberg Principle, [Bou05]). Denote by (x, y) ∈
Rd1+d2 the product variable. If S ⊂ Rd1+d2 is semi-algebraic of degree B, then

its projections ProjxS ⊂ Rd1 and ProjyS ⊂ Rd2 are semi-algebraic of degree at
most BC, where C = C(d1, d2) > 0.

Lemma 2.3 ([Bou05]). Let S ⊂ Rd be a semi-algebraic set of degree B. Then

the sum of all Betti numbers of S is bounded by BC, where C = C(d) > 0.

Lemma 2.4 ([Bou07]). Let S ⊂ [0, 1]d=d1+d2 be a semi-algebraic set of degree

deg(S) = B and mesd(S) ≤ η, where

log B � log
1
η
.

Denote by (x1, x2) ∈ [0, 1]d1 × [0, 1]d2 the product variable. Suppose

η
1
d ≤ ε.
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Then there is a decomposition of S as

S = S1 ∪ S2

with the following properties. The projection of S1 on [0, 1]d1 has small measure

mesd1 (Projx1
S1) ≤ BC(d)ε,

and S2 has the transversality property

mesd2 (L ∩ S2) ≤ BC(d)ε−1η
1
d ,

where L is any d2-dimensional hyperplane in [0, 1]d s.t.

max
1≤j≤d1

|ProjL(ej)| < ε,
where we denote by e1, . . . , ed1 the x1-coordinate vectors.

In [Bou07], Bourgain proved a result for eliminating multi-variables.

Lemma 2.5 (Lemma 1.18, [Bou07]). Let S ⊂ [0, 1]d+r be a semi-algebraic

set of degree B and such that

mesd(S(y)) < η for ∀ y ∈ [0, 1]r.

Then the set {
(x1, . . . , x2r ) ∈ [0, 1]d2r

:
⋂

1≤i≤2r

S(xi) �= ∅
}

is semi-algebraic of degree at most BC and measure at most

BCηd−r2−r(r−1)/2
,

where C = C(d, r) > 0.

Lemma 2.6 (Lemma 1.20, [Bou07]). Let S ⊂ [0, 1]dr be a semi-algebraic set

of degree B and mes(S) < η with η > 0.
For ω = (ω1, . . . , ωr) ∈ [0, 1]r and n = (n1, . . . , nr) ∈ Zr, define

nω = (n1ω1, . . . , nrωr).

For any C > 1, define N1, . . . ,Nd−1 ⊂ Zr to be finite sets with the following
property:

min
1≤s≤r

|ns| > (B max
1≤s≤r

|ms|)C,
where n ∈ Ni,m ∈ Ni−1 (2 ≤ i ≤ d − 1).

Then there is some C = C(r, d) > 0 such that for maxn∈Nd−1 |n|C < 1
η
, one has

mes({ω ∈ [0, 1]r : ∃ n(i) ∈ Ni s.t., (ω, n(1)ω, . . . , n(d−1)ω) mod Zdr ∈ S}) ≤ BCδ,

where

δ−1 = min
n∈N1

min
1≤s≤r

|ns|.
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3 LDT of Green’s functions

If  ⊂ Zd, we denote H̃(θ) = RH̃λf,ω,θR, where R is the restriction operator.
Define the Green’s function as

G(E; θ) = (H̃(θ) − E + i0)−1.

We denote by QN an elementary region of size N centered at 0 (see [JLS20]), which
is one of the following regions:

QN = [−N,N]d

or

QN = [−N,N]d \ {n ∈ Zd : niςi0, 1 ≤ i ≤ d},
where for i = 1, 2, . . . , d, ςi ∈ {{n < 0}, {n > 0}, ∅} and at least two ςi are not ∅.
Denote by E0

N the set of all elementary regions of size N centered at 0. Let EN be
the set of all translates of elementary regions, namely,

EN :=
⋃

n∈Zd,QN∈E0
N

{n + QN}.

The main result of this section is

Theorem 3.1 (LDT). such that for all N ≥ N0 and 0 < λ ≤ λ0, the following
statements hold:

• There is some semi-algebraic set 
N = 
N(d, ρ, γ, λf, c1) ⊂ Td with
deg(
N) ≤ N4d, and as λ → ∞,

mes(Td\ ∩N≥N0

N) → 0.

• If ω ∈ 
N and E ∈ R, then there exists some set

XN = XN(d, ρ, γ, λf, c1, ω,E) ⊂ Td

such that

sup
1≤j≤d,θ¬j ∈Td−1

mes(XN(θ¬
j )) ≤ e−Nc1

,

and for θ /∈ XN, Q ∈ E0
N, one has

‖GQ(E; θ)‖ ≤ eNγ/2
,

|GQ(E; θ)(n, n′)| ≤ e− (1−5−γ)ρ
2 |n−n′ |γ for |n − n′| ≥ N/10.
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Proof of Theorem 3.1. The proof is based on the multi-scale analysis
scheme as in [Bou07, JLS20]. The proof breaks up into three steps.

Step 1: Proof of inductive step.
This will be completed by using semi-algebraic sets arguments and Cartan’s

estimates as in [Bou07] and [JLS20].

We define for 1 � N1 ∈ N the scales

N2 ∼ N2/c1
1 , log N ∼ Nc1

1 .

Then we have

Theorem 3.2. Let 
Ni (i = 1, 2) be some semi-algebraic set satisfying
deg(
Ni) ≤ N4d

i and let ρ̄i ∈ (0, ρ). Assume further the following holds: Ifω ∈ 
Ni

and E ∈ R, then there exists some semi-algebraic set XNi ⊂ Td satisfying
deg(XNi) ≤ NC(d)

i such that

sup
1≤j≤d,θ¬j ∈Td−1

mes(XNi(θ
¬
j )) ≤ e−N

c1
i ,

and for θ /∈ XNi, Q ∈ E0
Ni

, one has

‖GQ(E; θ)‖ ≤ eNi
γ/2
,(3.1)

|GQ(E; θ)(n, n′)| ≤ e−ρ̄i|n−n′ |γ for |n − n′| ≥ Ni/10(3.2)

(i = 1, 2).

Then there exist positive constants c2 < c3 < c4 < γ/10 (dependingonly on d) such
that the following holds: There exists some semi-algebraic set 
N ⊂ 
N1 ∩ 
N2

with

deg(
N) ≤ N4d and mes((
N1 ∩
N2 )\
N) ≤ N−c2

such that, if ω ∈ 
N, then for E ∈ R and θ ∈ Td, there is Nc3

10 < M < 10Nc4 such

that for all k ∈ \̄, one has θ + kω mod Zd /∈ XN1 , where

 = [−M,M]d, ̄ = [−M
γ

10d ,M
γ

10d ]d.

Proof. The main point of the proof is to eliminate (E, θ) by applying Lem-
mas 2.5 and 2.6. We refer to [Bou07] for details (see also comments in [JLS20]).
We remark that the resolvent identity is actually unnecessary in the proof. �

We then construct the XN by using Cartan’s estimates and the resolvent identity.
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Lemma 3.3 (Cartan’s estimates, [Bou05]). Let T(θ) be a self-adjoint N×N

matrix-valued function of a parameter θ ∈ [−δ, δ] satisfying the following condi-
tions:

(i) T(θ) is real analytic in θ ∈ [−δ, δ] and has a holomorphic extension to

Dδ = {θ ∈ C : |�θ| ≤ δ, |�θ| ≤ δ}
satisfying

sup
θ∈Dδ

‖T(θ)‖ ≤ K1, K1 ≥ 1.

(ii) For all θ ∈ [−δ, δ], there is a subset V ⊂ [1,N] with

|V| ≤ M

and
‖(R[1,N]\VT(θ)R[1,N]\V)−1‖ ≤ K2, K2 ≥ 1.

(iii) mes{θ ∈ [−δ, δ] : ‖T−1(θ)‖ ≥ K3} ≤ 10−3δ(1 + K1)−1(1 + K2)−1.

Let

0 < ε ≤ (1 + K1 + K2)
−10M.

Then

(3.3) mes{θ ∈ [−δ/2, δ/2] : ‖T−1(θ)‖ ≥ ε−1} ≤ Cδe− c log 1
ε

M log(K1+K2+K3) ,

where C, c > 0 are some absolute constants.

Applying Cartan’s estimates yields the following result.

Theorem 3.4. Fix 1 ≤ j ≤ d and θ¬
j ∈ Td−1. Write θ = (θj, θ¬

j ) ∈ Td.
Assume that the assumptions of Theorem 3.2 are satisfied. Assume further there

exist Ñ ∈ [Nc3/4,Nc4 ] and ̄ ⊂  ∈ EÑ with diam(̄) ≤ 4Ñ
γ

10d such that, for any
k ∈ \̄, there exists some EN1 � W ⊂ \̄ such that dist(k,\̄\W) ≥ N1/2,
and θ + kω mod Zd /∈ XN1 . Let

Yθ = {y ∈ R : |y − θj| ≤ e−10ρNγ
1 , ‖G(E; (y, θ¬

j ))‖ ≥ eÑγ/2}.
Then for ω ∈ 
N1 ∩
N2 , one has

mes(Yθ) ≤ e−Ñγ/3
.

Proof. The proof is similar to that in [JLS20]. LetD be the e−10ρNγ
1 -neighbour-

hood of θj in the complex plane, i.e.,

D = {y ∈ C : |�y| ≤ e−10ρNγ
1 , |�y − θj| ≤ e−10ρNγ

1 }.
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Applying Theorem 3.2 yields for all k ∈ \̄ and Q ∈ E0
N1

,

‖GQ(E; θ + kω)‖ ≤ eN1
γ/2
,(3.4)

|GQ(E; θ + kω)(n, n′)| ≤ e−ρ̄1|n−n′ |γ for |n − n′| ≥ N1/10.(3.5)

Note that for all n, n′ ∈ [−N1,N1]d, one has

e−10ρNγ
1 < e−3ρ̄1N

γ
1−ρ̄1|n−n′ |γ .

Then by Lemma A.1, (3.4) and (3.5), we have for any y ∈ D, Q ∈ E0
N1

and
k ∈ \̄,

‖GQ(E; (θj + y, θ¬
j ) + kω)‖ ≤ 2eN1

γ/2
,(3.6)

|GQ(E; (θj + y, θ¬
j ) + kω)(n, n′)| ≤ 2e−ρ̄1|n−n′ |γ for |n − n′| ≥ N1/10.(3.7)

Applying Lemma A.2 with M1 = M0 = N1 implies for any y ∈ D,

(3.8) ‖G\̄(E; (θj + y, θ¬
j ))‖ ≤ 4(2N1 + 1)deN1

γ/2 ≤ e2N1
γ/2
.

We want to use Lemma 3.3 to finish the proof. For this purpose, let

(3.9) T(y) = H̃((θj + y, θ¬
j )) − E, δ = δ1 = 2e−10ρNγ

1 .

It suffices to verify the assumptions of Lemma 3.3. Obviously, K1 = O(1). By
(3.8), one has

(3.10) M = |̄| ≤ 100dÑγ/10, K2 = e2N1
γ/2
.

Since ω ∈ 
N2 , (3.1) and (3.2) hold at scale N2 for y being outside a set of measure
at most e−N

c1
2 . Applying Lemma A.2 with M0 = M1 = N2 yields

‖T−1(y)‖ ≤ 4(2N2 + 1)deN2
γ/2 ≤ e2N2

γ/2
= K3

for y being outside a set of measure at most

(2Ñ + 1)de−N
c1
2 ≤ e−N

c1
2 /2.

It follows from 100Nγ
1 < Nc1

2 that

10−3δ1(1 + K1)
−1(1 + K2)

−1 ≥ e−N
c1
2 /2.

This verifies (iii) of Lemma 3.3. For ε = e−Ñγ/2
one has, by (3.9) and (3.10),

ε < (1 + K1 + K2)
−10M.

By (3.3) of Lemma 3.3, we obtain

mes(Yθ) ≤ e
− cÑγ/2

N2Ñγ/10 log Ñ ≤ e−Ñγ/3
. �
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Combining Theorems 3.2 and 3.4 yields

Theorem 3.5. Let ω ∈ 
N and fix N� ∈ [N,N2]. If E ∈ R and c1 < γc3/10,
then there exists some set XN� = XN�(E, ω) ⊂ Td such that

sup
1≤j≤d,θ¬j ∈Td−1

mes(XN�(θ
¬
j )) ≤ e−N

c1
� ,

and for θ /∈ XN� , Q ∈ E0
N� , one has

|GQ(E; θ)(n, n′)| ≤ e
−(ρ̄1− C

N
γ/2
1

)|n−n′ |γ
for |n − n′| ≥ N�/10,

where C = C(d, γ, ρ) > 0.

Proof. Fix 1 ≤ j ≤ d, θ¬
j ∈ Td−1 and θ = (θj, θ¬

j ) ∈ Td. As done in [JLS20] by
using Theorem 3.2, for such θ and any n ∈ Q ∈ E0

N� , there exist 1
4N

c3 ≤ Ñn,θ ≤ Nc4 ,
n,θ ∈ EÑ and ̄n,θ, such that

n ∈ ̄n,θ ⊂ n,θ ⊂ Q, dist(n,Q\n,θ) ≥ Ñ/2, diam(̄n,θ) ≤ 4Ñ
γ

10d
n,θ .

Moreover, for any k ∈ n,θ\̄n,θ, we have θ + kω mod Zd /∈ XN1 , and there exists
some EN1 � W ⊂ n,θ\̄n,θ such that

k ∈ W, dist(k,n,θ\̄n,θ\W) ≥ N1/2.

We now fix the above Ñn,θ, ̄n,θ,n,θ throughout the set

{(y, θ¬
j ) ∈ Rd : |y − θj| ≤ e−10ρNγ

1 }.
Recalling LemmaA.1 and the above constructions, the assumptions of Theorem3.4
are essentially satisfied. Applying Theorem 3.4 implies that there exists a set
Yn,θ ⊂ {y ∈ R : |y − θj| ≤ e−10ρNγ

1 } such that

(3.11) mes(Yn,θ) ≤ e−Ñγ/3
n,θ ,

and for θj /∈ Yn,θ, one has

‖Gn,θ (E; θ)‖ ≤ eÑγ/2
n,θ .

Applying Lemma A.3 with M0 = N1, = n,θ and 1 = ̄n,θ yields

|Gn,θ (E; θ)(n, n′)| ≤ e
−(ρ̄− C

N
γ/2
1

)|n−n′ |γ
for |n − n′| ≥ Ñn,θ/10.

Cover [0, 1] by pairwise disjoint e−10ρNγ
1 -size intervals and let

(3.12) XN�(θ
¬
j ) =

⋃
Q∈E0

N�
,n∈Q,θ=(θj,θ¬j )

Yn,θ.
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We remark that while θ = (θj, θ¬
j ) varies on a line for a fixed θ¬

j , the total number
of Yn,θ is bounded by e10ρNγ

1 . Thus by (3.11), (3.12) and c1 < γc3/10, one has

mes(XN�(θ
¬
j )) ≤ C(2N + 1)de10ρNγ

1e−Ñγ/3
n,θ ≤ e−N�c3γ/7 ≤ e−N�c1 .

Suppose now θ /∈ XN� . Applying Lemma A.2 with  = Q ∈ E0
N� , M0 = 1

4N
c3

and M1 = Ñn,θ ≤ Nc4 , one has

‖GQ(E; θ)‖ ≤ 4(2Nc4 + 1)deNc4γ/2 ≤ eN�γ/2 .

Applying Lemma A.3 with  = Q, M0 = 1
4N

c3 , M1 = Ñn,θ ≤ Nc4 and 1 = ∅, we
have

|GQ(E; θ)(n, n′)| ≤ e
−(ρ̄1− C

N
γ/2
1

)|n−n′ |γ
for |n − n′| ≥ N�/10.

This proves the theorem. �
Step 2: Proof of initial step.

Lemma 3.6. Let

XN =
⋃

|n|≤N

{θ : |f (θ + nω) − E| < δ}.

Then we have, for any 1 ≤ j ≤ d,

sup
θ¬j ∈Td−1

mes(XN(θ¬
j )) ≤ C(2N + 1)dδc,

where C = C(f ) > 0, c = c(f ) > 0. Moreover, if λ−1 ≥ 2δ−1(2N + 1)d, then for any
θ /∈ XN, ω ∈ Td and  ⊂ [−N,N]d, we have

‖G(E; θ)‖ ≤ 2δ−1,

|G(E; θ)(n, n′)| ≤ 2δ−1e−ρ|n−n′|γ .

Proof. The measure bound follows from a Łojasiewicz type inequality (see
Lemma 5.2 of [JLS20]) and the non-degeneracy condition of f immediately.

The Green’s function estimates follow from the Neumann series argument. For
details, we refer to [JLS20] (or the proof of Lemma A.1, which deals with some
more complicated setting). �

Step 3: Completion of the proof.
This will follow from Theorem 3.5, Lemma 3.6 and a multi-scale induction.

For details, we refer to [JLS20]. �
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4 Proof of Theorem 1.1

The key point of the proof is to eliminate the energy E in the LDT and this needs
to remove further ω by semi-algebraic geometry arguments (i.e., Lemma 2.4).

Proof of Theorem 1.1. The proof is rather standard and based on Theo-
rems 3.1, 3.2 and Lemma 2.4. We refer to [Bou07] for details. �

5 Proof of Theorem 1.2

In this section we will prove Theorem 1.2 by using the LDT and Delyon’s
trick [Del87].

Fix
ρ̄ = (1 − 5−γ)ρ.

We have Poisson’s identity: For H̃(θ)ξ = Eξ and n ∈  ⊂ Zd,

(5.1) ξn = −λ ∑
n′∈,n′′ /∈

G(E; θ)(n, n′)v̂n′−n′′ξn′′ .

Proof of Theorem 1.2. Let ω ∈ ⋂
N≥N0


N and 0 < λ ≤ λ0 be as in
Theorem 3.1. Suppose Hλv,ω,x has some eigenvalue E. Then there must be some
0 �= ψ = {ψ�}�∈Z ∈ �2(Z) so that∑

�′∈Z
ĝ�−�′ψ�′ + (λv(x + �ω) − E)ψ� = 0.

Define
F(θ) =

∑
�∈Z

ψ�e
2πi�θ

and
ξn(θ) = e2πin·xF(θ + n · ω).

We have

(5.2) ‖F‖L2(T) = ‖ψ‖�2(Z) > 0

and by direct computation

(5.3) (g(θ) − E)F(θ) + λ
∑
k∈Zd

v̂kξk(θ) = 0.

Then ∫
T

∑
n∈Zd

|ξn(θ)|2
1 + |n|2d

dθ =
∑
n∈Zd

‖F‖2
L2(T)

1 + |n|2d

≤ C‖F‖2
L2(T) <∞.
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This implies that for a.e. θ, we have
∑

n∈Zd
|ξn(θ)|2
1+|n|2d <∞ and

|ξn(θ)| ≤ C(θ, d)|n|d, C(θ, d) > 0.

We let θ = θ + n · ω in (5.3). Then

(g(θ + n · ω) − E)F(θ + n · ω) + λ
∑
k∈Zd

v̂ke
2πik·xF(θ + (n + k) · ω) = 0.

Multiplying by e2πin·x in the above equality implies

(5.4) (g(θ + n · ω) − E)ξn(θ) + λ
∑
k∈Zd

v̂n−kξk(θ) = 0.

Now let XN = XN(ω,E) be as in Theorem 3.1. We define

� =
⋃

M≥N0

⋂
N≥M

XN.

Then by mes(XN) ≤ e−Nc1 , one has mes(�) = 0. Fix θ ∈ T \�. Then there exists
M ≥ N0 such that

θ /∈ XN for N ≥ M.

Recalling (5.1), (5.4) and Theorem 3.1, one has, for N ≥ M � 1,

|F(θ)| = |ξ0(θ)| =
∣∣∣∣ ∑

|n|≤N,|n′ |>N

G[−N,N]d (E; θ)(0, n)v̂n−n′ξn′(θ)
∣∣∣∣

≤ C(θ, d)
∑

|n|≤N,|n′ |>N

e− ρ̄
2 |n|γ+ ρ̄

2 (N/10)γ+Nγ/2
e−ρ|n−n′|γ |n′|d

≤ C(θ, d)Nd
∑

|n′ |>N

e− ρ̄
2 |n′ |γ+ ρ̄

2 (N/10)γ+Nγ/2|n′|d

= o(N).

Letting N → ∞, we have F(θ) = 0 for a.e. θ ∈ T \�. Thus ‖F‖L2(T) = 0, which
contradicts (5.2).

This proves Theorem 1.2. �

6 Proof of Theorem 1.3

In this section we will prove Theorem 1.3 by applying the LDT. The main idea of
the proof is from Bourgain [Bou05], where the 1D analytic Schrödinger operator
with the single-frequency was investigated. For f (θ + nω) = g(θ + n ·ω), we denote
by �̃ the spectrum of H̃λf,ω,θ , which is also independent of θ. Thus to prove
Theorem 1.3, it suffices to show �̃ has positive Lebesgue measure.
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For simplicity, we write H̃(θ) = H̃λf,ω,θ and

H̃N(θ) = RH̃(θ)R for  ∈ E0
N.

We denote by {ek : k ∈ Zd} (resp., 〈·, ·〉) the standard orthogonal basis (resp., inner
product) on �2(Zd).

Lemma 6.1. Let ω ∈ ⋂
N≥N0


N and N0 � N0. Then there exists a positive

constant λ0 = λ0(N0) � 1 such that the following holds: If 0 ≤ λ ≤ λ0, then there
exist an interval I0 ⊂ [0, 1] and a continuous function EI0 (·) on I0 satisfying

|I0| ≥ N−C1
0

and for θ ∈ I0,

min
ξ∈Span{ek:k∈Zd,|k|≤N0}, ‖ξ‖=1

‖(H̃(θ) − EI0 (θ))ξ‖ ≤ e−c5(logN0)γ/c1 ,

where 0 < c5 = c5(γ, ρ) � 1 and C1 = C1(d) > 1.

Proof. Fix any θ. Denote by λs(θ), 1 ≤ s ≤ (2N0 + 1)d (resp., φs, ‖φs‖ = 1)
the eigenvalues (resp., corresponding eigenvectors) of H̃N0 (θ), where N0 � 1 will
be specified later. Then one has

(6.1) e0 =
∑

1≤s≤(2N0+1)d

〈e0, φs〉φs.

Obviously, we have

‖(H̃(θ) − f (θ))e0‖ ≤ ∑
m∈Zd

λe−ρ|m|γ ≤ C(ρ, γ, d)λ.

Thus

(6.2)
(H̃N0 (θ) − f (θ))e0 = (H̃(θ) − f (θ))e0 − RZd\[−N0,N0]d H̃(θ)e0

= O(λ).

On the other hand, we have

(6.3)

H̃N0 (θ)e0 =
∑

1≤s≤(2N0+1)d

〈e0, φs〉H̃N0 (θ)φs

=
∑

1≤s≤(2N0+1)d

〈e0, φs〉λs(θ)φs.

Thus by combining (6.1), (6.2) and (6.3), we obtain

(6.4)

( ∑
1≤s≤(2N0+1)d

|〈e0, φs〉|2|λs(θ) − f (θ)|2
)1/2

=
∥∥∥∥ ∑

1≤s≤(2N0+1)d

〈e0, φs〉(λs(θ) − f (θ))φs

∥∥∥∥
≤ Cλ.
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Since 1 = ‖e0‖2 =
∑

1≤s≤(2N0+1)d |〈e0, φs〉|2, there exists some s� ∈ [1, (2N0 + 1)d]
so that

(6.5) |〈e0, φs�〉| ≥ (2N0 + 1)−d/2,

which together with (6.4) implies

(6.6) |λs�(θ) − f (θ)| ≤ C(2N0 + 1)d/2λ.

Recall that ω ∈ 
N0,N0 � N0. We have by Theorem 3.2, there exist

M0 ∼ (logN0)
1/c1 ≥ N0 and Nc3

0 /10 ≤ M1 ≤ 10Nc4
0

so that θ + nω mod Zd /∈ XM0 for all n satisfying

Nc3
0 /10 ≤ Mγ/(10d)

1 ≤ |n| ≤ M1 ≤ 10Nc4
0 .

Fix Mγ/(10d)
1 ≤ |n| ≤ M1. Then we can find Q(n) ∈ EM0 so that

dist(n, \1 \ Q(n)) ≥ M0/2,

‖GQ(n)(E; θ)‖ ≤ eMγ/2
0 ,

|GQ(n)(E; θ)(k, k′)| ≤ e− ρ̄
2 |k−k′ |γ for |k − k′| ≥ M0/10.

Thus by the Poisson’s identity (5.1), we have, for M0 ≥ M0(γ, ρ̄) � 1 and
‖φs�‖ = 1,

(6.7)

|φs�(n)| =
∣∣∣∣ ∑

n1∈Q(n),n2∈\1\Q(n)

λGQ(n)(E; θ)(n, n1)v̂n1−n2φs�(n2)
∣∣∣∣

≤ ∑
n1∈Q(n),n2∈\1\Q(n)

eMγ/2
0 + ρ̄

2 (M0/10)γ− ρ̄
2 |n−n1|γ−ρ|n1−n2|γ

≤ ∑
n1∈Q(n),n2∈\1\Q(n)

eMγ/2
0 + ρ̄

2 (M0/10)γ− ρ̄
2 |n−n2|γ

≤ ∑
n1∈Q(n),n2∈\1\Q(n)

eMγ/2
0 + ρ̄

2 (M0/10)γ− ρ̄
2 (M0/2)γ

≤ e−c(logN0)γ/c1 .

We define

J = [M1 + Mγ/(10d)
1 /2],  = [−J, J]d ⊂ [−N0,N0]

d.

Then by (6.5),
‖Rφs�‖ ≥ (2N0 + 1)−d/2.
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Define now

ψ =
Rφs�

‖Rφs�‖
.

Since (H̃N0(θ) − λs� (θ))φs� = 0, we have

(6.8) R(H̃(θ) − λs� (θ))ψ = −‖Rφs�‖−1RH̃(θ)R[−N0,N0]d\φs� .

Thus by direct computations, we obtain

(H̃(θ) − λs�(θ))ψ = RZd\[−N0,N0]d H̃(θ)ψ + R[−N0,N0]d\H̃(θ)ψ

+ R(H̃(θ) − λs� (θ))ψ

= ‖Rφs�‖−1RZd\[−N0,N0]d H̃(θ)Rφs�

+ ‖Rφs�‖−1R[−N0,N0]d\H̃(θ)Rφs�

+ (−‖Rφs�‖−1RH̃(θ)R[−N0,N0]d\φs�) (by (6.8))

= (I) + (II) + (III).

For (I), we have

(6.9)

‖(I)‖2 ≤ λ2(2N0 + 1)d
∑

|m|>N0

( ∑
|n|≤J

e−ρ|m−n|γ
)2

≤ λ2(2N0 + 1)2de2ρJγ
( ∑

|m|>N0

e−ρ|m|γ
)2

≤ e−ρNγ
0 (since J ≤ 10Nc4

0 ).

For (II), we have, with (6.7),

(6.10)

‖(II)‖2 ≤ λ2(2N0 + 1)d
∑

J<|m|≤N0

∣∣∣∣ ∑
|n|≤J

e−ρ|m−n|γφs� (n)
∣∣∣∣2

≤ λ2(2N0 + 1)d
∑

J<|m|≤N0

( ∑
|n|≤Mγ/(10d)

1

e−ρ|m−n|γ
)2

+ λ2(2N0 + 1)d
∑

J<|m|≤N0

( ∑
Mγ/(10d)

1 ≤|n|≤J

e−c(log N0)γ/c1
)2

≤ λ2(10N0)
3de−cJγ + λ2(10N0)

3de−c(logN0)γ/c1

≤ e−3c5(log N0)γ/c1 .
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Similarly, for (III), we have

(6.11)

‖(III)‖2 ≤ λ2(2N0 + 1)d
∑

|m|≤J

∣∣∣∣ ∑
J≤|n|≤N0

e−ρ|m−n|γφs�(n)
∣∣∣∣2

≤ λ2(2N0 + 1)d
∑

|m|≤J

( ∑
J≤|n|≤M1

e−c(logN0)γ/c1
)2

+ λ2(2N0 + 1)d
∑
|m|≤J

( ∑
M1≤|n|≤N0

e−ρ|m−n|γ
)2

≤ e−3c5(logN0)γ/c1 .

Thus combining (6.9), (6.10) and (6.11), we obtain

min
ξ∈Span{ek:k∈Zd,|k|≤J}, ‖ξ‖=1

‖(H̃(θ) − λs�(θ))ξ‖ ≤ e−c5(logN0)γ/c1 ,

or equivalently

(6.12) ‖(R(H̃(θ) − λs�(θ))
∗(H̃(θ) − λs�(θ))R)−1‖ ≥ e2c5(logN0)γ/c1 .

Define for 1 ≤ s� ≤ (2N0 + 1)d and J ∈ [Nc3
0 /10,Nc4

0 ] the set �s�,J ⊂ [0, 1] of θ
for which (6.6) and (6.12) hold. It is well-known that λs�(θ) is Lipschitz continuous
in f (see [Tao12] for details). By a standard truncation argument, we can replace
f (θ) by a polynomial in θ of degree CN2

0 . Notice that λs�(θ) satisfies the equation

ζD +
∑
r<D

cr(θ)ζ
D = 0,

where D = (2N0 + 1)d and cr(θ) are polynomials of degree at most NC
0 . Express-

ing (6.12) by Cramer’s rule, a polynomial condition

P(θ, ζ) > 0

is obtained in (θ, ζ = λs�(θ)). Recalling Lemmas 2.2 and 2.3, �s�,J can be decom-
posed intoNC

0 many intervals I ′⊂�s�,J . For each such I ′, we setEI′(θ)=λs�(θ), θ∈ I ′.
Let F0 be the collection of all such intervals I ′ (counting all possible s�, J). Then
#F0 ≤ NC1

0 . In particular, for θ ∈ I ′ ⊂ �s�,J, we have

min
ξ∈Span{ek:k∈Zd,|k|≤N0}, ‖ξ‖=1

‖(H̃(θ) − EI′ (θ))ξ‖ ≤ e−c5(logN0)γ/c1 .
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We observe that

[fmin, fmax] =
⋃
s�,J

f (�s�,J)

⊂ ⋃
s�,J

⋃
I′⊂�s�,J

(λs�(I
′) + [−CNd/2

0 λ,CNd/2
0 λ]) (by (6.6))

=
⋃

I′∈F0

(EI′(I
′) + [−CNd/2

0 λ,CNd/2
0 λ]).

Thus for N0 � N0 and λ ≤ λ0(N0) � 1, we get

0 < fmax − fmin ≤ mes
( ⋃

I′∈F0

EI′(I
′)
)

+ NC1
0 λ ≤ mes

( ⋃
I′∈F0

EI′(I
′)
)

+
√
λ.

Define I0 to be the interval in F0 with the maximal length. Then by

[0, 1] ⊂ ⋃
I′∈F0

I ′ and #F0 ≤ NC1
0 ,

we obtain |I0| ≥ N−C1
0 . If θ ∈ I0, we have

min
ξ∈Span{ek:k∈Zd,|k|≤N0}, ‖ξ‖=1

‖(H̃(θ) − EI0 (θ))ξ‖ ≤ e−c5(logN)γ/c1 .

This proves the lemma. �
The following lemma is an inductive extension of Lemma 6.1.

Lemma6.2. Letγ/c1>100. Let I ⊂ [0, 1] be an interval andE(θ) ∈ σ(H̃N(θ))
be a continuous function on I. Assume again that

(6.13) min
ξ∈Span{ek :k∈Zd,|k|≤N}, ‖ξ‖=1

‖(H̃(θ) − E(θ))ξ‖ ≤ e−c5(logN)γ/c1 ,

where c5 > 0 is given by Lemma 6.1.
Let

(6.14) N � N1 ∼ e(logN)10
.

Then there exists a system (I ′,EI′(·))I′∈F1 such that the following holds: F1 is a
collection of at most NC1

1 intervals I ′ ⊂ I so that EI′(θ) ∈ σ(H̃N1 (θ)) is a continuous

function on I ′, and for θ ∈ I ′,

(6.15) min
ξ∈Span{ek:k∈Zd,|k|≤N1}, ‖ξ‖=1

‖(H̃(θ) − EI′(θ))ξ‖ ≤ e−c5(log N1)γ/c1 .

Moreover,

(6.16) mes
( ⋃

I′∈F1

EI′(I
′)
)

≥ mes(E(I)) − 1
N1
.
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Proof. The proof is similar to that of Lemma 6.1. Fix a θ ∈ I. Choose
a ξ with ‖ξ‖ = 1 and ξ ∈ Span{ek : k ∈ Zd, |k| ≤ N} so that (6.13) holds.
Denote by λs(θ), 1 ≤ s ≤ (2N1 + 1)d (resp., φs, ‖φs‖ = 1) the eigenvalues (resp.,
corresponding eigenvectors ) of H̃N1 (θ). Then one has

ξ =
∑

1≤s≤(2N1+1)d

〈ξ, φs〉φs.

Obviously, we have

‖(H̃(θ) − E(θ))ξ‖ ≤ e−c5(log N)γ/c1 .

Thus

‖(H̃N1(θ) − E(θ))ξ‖ = ‖(H̃(θ) − E(θ))ξ − RZd\[−N1,N1]d H̃(θ)ξ‖ ≤ 2e−c5(logN)γ/c1 .

On the other hand, one has

H̃N1 (θ) =
∑

1≤s≤(2N1+1)d

〈ξ, φs〉λs(θ)φs.

Thus ( ∑
|s|≤N1

|〈ξ, φs〉|2|λs(θ) − E(θ)|2
)1/2

≤ 2e−c5(log N)γ/c1 .

Since ‖ξ‖ = 1, there exists an s� ∈ [1, (2N1 + 1)d] so that

|〈ξ, φs�〉| ≥ (2N1 + 1)−d/2

and

(6.17) |λs�(θ) − E(θ)| ≤ 2(2N1 + 1)d/2e−c5(logN)γ/c1 .

As in the proof of Lemma 6.1, we have, for some M1 ∈ [Nc3
1 /10, 10Nc4

1 ],

|φs�(n)| ≤ e−c(log N1)γ/c1 for Mγ/(10d)
1 ≤ |n| ≤ M1.

Note that for J = [(Mγ/(10d)
1 + M1)/2] and  = [−J, J]d, one has

‖Rφs�‖ ≥ (2N1 + 1)−d/2.

Define

ψ =
Rφs�

‖Rφs�‖
.

Similar to the proof of Lemma 6.1, we have

min
ξ∈Span{ek:k∈Zd,|k|≤J}, ‖ξ‖=1

‖(H̃(θ) − λs�(θ))ξ‖ ≤ e−c5(logN1)γ/c1 ,
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or equivalently

(6.18) ‖(R(H̃(θ) − λs�(θ))
∗(H̃(θ) − λs�(θ))R)−1‖ ≥ e2c5(logN1)γ/c1 .

Similarly, we define for 1 ≤ s� ≤ (2N1 + 1)d and Nc3
1 /10 ≤ J ≤ 10Nc4

1

the set �s�,J ⊂ I of θ for which (6.17) and (6.18) hold. Using semi-algebraic
sets arguments as previously, �s�,J can be decomposed into NC

1 many intervals
I ′ ⊂ �s�,J . For each such I ′, we set EI′(θ) = λs� (θ), θ ∈ I ′. Let F1 be the collection
of all such intervals I ′ (counting all possible s�, J). Then #F1 ≤ NC1

1 . In particular,
for θ ∈ I ′ ⊂ �s�,J , we have

min
ξ∈Span{ek:k∈Zd,|k|≤N1}, ‖ξ‖=1

‖(H̃(θ) − EI′ (θ))ξ‖ ≤ e−c5(logN1)γ/c1 .

This proves (6.15). Observe that again since (6.17),

E(I) =
⋃
s�,J

E(�s�,J)

⊂ ⋃
s�,J

⋃
I′⊂�s�,J

(λs�(I
′) + [−2(2N1 + 1)d/2e−c5(logN)γ/c1 , 2(2N1 + 1)d/2e−c5(log N)γ/c1 ])

=
⋃

I′∈F1

(EI′(I
′) + [−2(2N1 + 1)d/2e−c5(logN)γ/c1 , 2(2N1 + 1)d/2e−c5(log N)γ/c1 ]).

Thus by (6.14), we obtain

mes(E(I)) ≤ mes
( ⋃

I′∈F1

EI′(I
′)
)

+ NC
1 e−c5(log N)γ/c1

≤ mes
( ⋃

I′∈F1

EI′(I
′)
)

+
1
N1
.

This proves (6.16). �
Now we can prove Theorem 1.3.

Proof of Theorem 1.3. Choose Ns ∼ e(logNs−1)10
(s ≥ 1), where N0 is given

by Lemma 6.1. Then applying Lemmas 6.1 and 6.2 yields a system (I,EI(·))I∈Fs

satisfying, for θ ∈ I ∈ Fs,

(6.19) dist(EI(θ), �̃) ≤ e−c5(logNs)γ/c1 .

Moreover, for any s ≥ 1, one has

mes
( ⋃

I∈Fs

EI(I)
)

≥ mes
( ⋃

I∈Fs−1

EI(I)
)

− 1
Ns

≥ mes(EI0 (I0)) − ∑
s≥1

1
Ns

≥ mes(EI0 (I0))
2

,
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where EI0 , I0 are given by Lemma 6.1. Define


 =
⋂
s≥0

⋃
I∈Fs

EI(I).

Since (6.19), we have

 ⊂ �̃

and
mes(
) ≥ mes(EI0 (I0))

2
.

Thus it suffices to establish some lower bound on mes(EI0 (I0)).
Recall that EI0 (·) is continuous on I0 and |I0| ≥ N−C1

0 . We can write
EI0 (I0) = [E0 + ε,E0 − ε] for some E0 ∈ EI0 (I0) and ε ≥ 0. We need to es-
tablish some concrete lower bound on ε. Choose N0 ≤ M � N0 and apply the
LDT (i.e., Theorem 3.1) at scale M, where M will be specified later. We have

‖GM(E0; θ)‖ ≤ eMγ/2
,

|GM(E0; θ)(n, n
′)| ≤ e− (1−5−γ)ρ

2 |n−n′|γ for |n − n′| ≥ M/10

provided θ is outside a set � ⊂ [0, 1] with mes(�) ≤ e−Mc1 . Paving [−N0,N0]d

with Q ∈ EM , then we have, by Lemma A.2,

(6.20) ‖GN0 (E0; θ)‖ ≤ (10M)deMγ/2 ≤ e2Mγ/2

provided θ is outside a set�1 ⊂ [0, 1] with mes(�1) ≤ (10N0)de−Mc1 . Fix

M ∼ (logN0)
3/(2c1).

Then

(10N0)
de−Mc1

<
N−C1

0

2

and thus ([0, 1] \ �1) ∩ I0 �= ∅. We pick a θ0 ∈ ([0, 1] \ �1) ∩ I0 and a ξ with
‖ξ‖ = 1 so that

|(H̃(θ0) − EI0 (θ0))ξ‖ ≤ e−c5(log N0)γ/c1 .

Note that

(6.21)

‖(H̃N0 (θ0) − E0)ξ‖ = ‖(H̃(θ0) − EI0 (θ0))ξ − (E0 − EI0 (θ0))ξ‖
= ‖(H̃(θ0) − EI0 (θ0))ξ − RZd\[−N0,N0]d H̃(θ0)ξ

− (E0 − EI0 (θ0))ξ‖
≤ 2e−c5(logN0)γ/c1 + ε.
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Recalling (6.20), we have

(6.22) ‖GN0(E0; θ0)‖ ≤ e2(logN0)3γ/(4c1)
.

Combining (6.21) and (6.22) yields

e−2(log N0)3γ/(4c1) ≤ 2e−c5(log N0)γ/c1 + ε

and
ε ≥ 1

2
e−2(logN0)3γ/(4c1)

.

In conclusion, we have shown

mes(�̃) ≥ e−10(logN0)3γ/(4c1)
> 0.

This proves Theorem 1.3. �
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Appendix A

We write G(·) = G(·)(E; θ) for simplicity. Let 1,2 ⊂ Zd with 1 ∩2 = ∅. Let
 = 1 ∪2. If m ∈ 1 and n ∈ , we have

(A.1) G(m, n) = G1 (m, n)χ1(n)−λ ∑
n′∈1,n′′∈2

G1 (m, n
′)Tv(n′, n′′)G(n′′, n).

We first prove a useful perturbation argument (see Lemma A.1 of [Shi19] for a
more general form with γ = 1).

Lemma A.1. Fix ρ̄ > 0. Let  ⊂ Zd satisfy  ∈ EN and let A,B be two
linear operators on C. We assume

‖A−1‖ ≤ eNγ/2
,

|A−1(n, n′)| ≤ e−ρ̄|n−n′ |γ for |n − n′| ≥ N/10.

Suppose that for all n, n′ ∈ ,

|(B − A)(n, n′)| ≤ e−3ρ̄Nγ−ρ̄|n−n′ |γ .
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Then

‖B−1‖ ≤ 2‖A−1‖,
|B−1(n, n′)| ≤ |A−1(n, n′)| + e−ρ̄|n−n′ |γ .

Proof. Obviously, B = A(I +A−1(B−A)).We write P = A−1(B−A). Then by
the assumptions, ‖P‖ ≤ 1/2, which together with the Neumann series argument
implies

‖B−1‖ ≤ ∑
s≥0

2−s‖A−1‖ = 2‖A−1‖.

Observing that for any m, n ∈ ,

|A−1(m, n)| ≤ eNγ/2+ρ̄(N/10)γ−ρ̄|m−n|γ ,

then for m0 = m,ms = n and s ≥ 1, we have

Ps(m, n) =
∑

m1,...,ms−1,n1,...,ns∈

s∏
t=1

A−1(mt−1, nt)(B − A)(nt,mt).

Thus for s ≥ 1 and N � 1, one has

|Ps(m, n)| ≤ (CN)2sdes(Nγ/2−2ρ̄Nγ)−ρ̄|m−n|γ ≤ e−3ρ̄sNγ/2−ρ̄|m−n|γ .

As a result, we obtain

|B−1(n, n′)| ≤ |A−1(n, n′)| +
∑
m∈

∑
s≥1

|Ps(n,m)| · |A−1(m, n′)|

≤ |A−1(n, n′)| +
∑
m∈

∑
s≥1

e−3ρ̄sNγ/2−ρ̄|m−n|γ · |A−1(m, n′)|

≤ |A−1(n, n′)| +
∑

m∈,|m−n′ |≤N/10

∑
s≥1

e−3ρ̄sNγ/2−ρ̄|m−n|γ+Nγ/2

+
∑

m∈,|m−n′ |≥N/10

∑
s≥1

e−3ρ̄sNγ/2−ρ̄|m−n|γe−ρ̄|m−n′ |γ

≤ |A−1(n, n′)| +
∑

m∈,|m−n′ |≤N/10

e−ρ̄Nγ/4+Nγ/2−ρ̄|n−n′ |γ

+
∑

m∈, |m−n′ |>N/10

e−ρ̄Nγ/4−ρ̄|n−n′ |γ

≤ |A−1(n, n′)| + e−ρ̄|n−n′ |γ .
�



GEVREY QUASI-PERIODIC OPERATOR 333

Lemma A.2. Let ρ̄ ∈ (ε, ρ], M1 ≤ N and diam() ≤ 2N + 1. Suppose that

for any n ∈ , there exists some W = W(n) ∈ EM with M0 ≤ M ≤ M1 such that
n ∈ W ⊂ , dist(n,\W) ≥ M/2 and

‖GW‖ ≤ 2eMγ/2
,(A.2)

|GW (n, n′)| ≤ 2e−ρ̄|n−n′ |γ for |n − n′| ≥ M/10.(A.3)

We assume that M0 ≥ M0(ε, γ, d) � 1. Then

‖G‖ ≤ 4(2M1 + 1)deM1
γ/2
.

Proof. We fix n, n′ ∈  and W = W(n) as in the assumptions. Then

|W| ≤ (2M + 1)d.

By (A.2) and (A.3), one has, for all k, k′ ∈ W,

|GW (k, k′)| ≤ 2eMγ/2+ρ̄(M/10)γe−ρ̄|k−k′ |γ .

Applying (A.1) with 1 = W = W(n), one has

(A.4)

|G(n, n′)|
≤ |GW(n, n′)|χW(n′)

+ 2λ
∑
n1∈W

n2∈\W

eMγ/2+ρ̄(M/10)γe−ρ̄|n−n1|γ−ρ|n1−n2|γ |G(n2, n
′)|

≤ |GW(n, n′)|χW(n′)

+ 2λ
∑
n1∈W

n2∈\W

eMγ/2+ρ̄(M/10)γe−ρ̄|n−n2|γ |G(n2, n
′)|

≤ |GW(n, n′)|χW(n′)

+ 2λ(2M + 1)deMγ/2+ρ̄(M/10)γ
∑
n2∈

|n2−n|≥M/2

e−ρ̄|n−n2|γ |G(n2, n
′)|

≤ |GW(n, n′)|χW(n′) + 2λ(2M + 1)deMγ/2−ε(M/10)γ sup
n2∈

|G(n2, n
′)|,

where the third inequality holds since dist(n,\W) ≥ M/2. Summing over n′ ∈ 
in (A.4) and using M0 ≥ M0(ε, γ, d) � 1 yield (since 0 < λ < 1)

sup
n∈

∑
n′∈

|G(n, n′)| ≤ 2(2M1 + 1)deM1
γ/2

+
1
2

sup
n2∈

∑
n′∈

|G(n2, n
′)|.

This lemma then follows from Schur’s test and the self-adjointness of G. �
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Lemma A.3. Let1 ⊂⊂Zd satisfy diam()≤2N +1 and diam(1)≤N
γ
3d .

Let M0 ≥ (logN)2/γ and ρ̄ ∈ [(1 − 5−γ)/10, (1 − 5−γ)ρ]. Suppose that for
any n ∈ \1, there exists some W = W(n) ∈ EM with M0 ≤ M ≤ Nγ/3 such

that n ∈ W ⊂ \1, dist(n,\1\W) ≥ M/2 and

‖GW‖ ≤ eMγ/2
,

|GW(n, n′)| ≤ e−ρ̄|n−n′|γ for |n − n′| ≥ M/10.

Suppose that

(A.5) ‖G‖ ≤ eNγ/2
.

Then

|G(n, n′)| ≤ e
−(ρ̄− C

M
γ/2
0

)|n−n′ |γ
for |n − n′| ≥ N/10,

where C = C(d, ρ, γ) > 0.

Proof. We first assume n ∈  \ 1, n′ ∈ 1 and |n − n′| ≥ Nγ/2. We let
W = W(n) ⊂ \1 satisfy the assumptions as above. Note that for |n−n2| ≥ M/2
and 0 < ρ < (1 − 5−γ)ρ, one has

e−ρ|n−n2|γ+ρ(M/10)γ ≤ e−ρ̄|n−n2|γ .(A.6)

Recall that 0 < λ < 1 and |n − n′| ≥ Nγ/2 > 10Nγ/3 > diam(W). Applying (A.1)
with 1 = W = W(n) yields

(A.7)

|G(n, n′)| ≤ ∑
n1∈W,|n1−n|≤ M

10
n2∈\W

eMγ/2
e−ρ|n1−n2|γ |G(n2, n

′)|

+
∑

n1∈W,|n1−n|≥ M
10

n2∈\W

e−ρ̄|n−n1|γe−ρ|n1−n2|γ |G(n2, n
′)|

≤ ∑
n1∈W,|n1−n|≤ M

10
n2∈\W

eMγ/2
e−ρ|n−n2|γ+ρ(M/10)γ |G(n2, n

′)|

+
∑

n1∈W,|n1−n|≥ M
10

n2∈\W

e−ρ̄|n−n2|γ |G(n2, n
′)|

≤ ∑
n1∈W,|n1−n|≤ M

10
n2∈\W

eMγ/2
e−ρ̄|n−n2|γ |G(n2, n

′)| (by (A.6))

+
∑

n1∈W,|n1−n|≥ M
10

n2∈\W

e−ρ̄|n−n2|γ |G(n2, n
′)|

≤ 2(2N + 1)2d sup
n2∈\W

e
−(ρ̄− C

M
γ/2
0

)|n−n2|γ |G(n2, n
′)|,
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where the last inequality holds because |n − n2| ≥ M/2 and M ≥ M0. Iterat-
ing (A.7) until |n2 −n′| ≤ Nγ/2 (but stopping at most C|n−n′ |γ

Mγ
0

steps), we have, since

|n − n′| ≥ Nγ/2 and M0 ≥ (logN)2/γ,

|G(n, n′)| ≤ (10N)
C|n−n′|γ

M
γ
0 e

−(ρ̄− C

M
γ/2
0

)(|n−n′ |γ−Nγ2/2)
eNγ/2

≤ e
−(ρ̄− C

M
γ/2
0

− C logN

M
γ
0

)|n−n′ |γ+2Nγ/2

(since 0 < ρ < 1)

≤ e
−(ρ̄− C

M
γ/2
0

)|n−n′ |γ+2Nγ/2

.

Recalling (A.5) again, we obtain, for all n ∈  \1, n′ ∈ 1,

|G(n, n′)| ≤ e
−(ρ̄− C

M
γ/2
0

)|n−n′ |γ+3Nγ/2

.

Then by the self-adjointness of G, one has, for n ∈ 1, n′ ∈  \1,

(A.8) |G(n, n′)| ≤ e
−(ρ̄− C

M
γ/2
0

)|n−n′ |γ+3Nγ/2

.

We now assume n, n′ ∈  satisfy |n − n′| ≥ Nγ/2. By diam(1) ≤ N
γ
3d , at least

one of n, n′ must be in  \1. From the above discussions, It suffices to assume
n, n′ ∈  \1. Similar to the proof of (A.7), we have

(A.9) |G(n, n′)| ≤ 2(2N + 1)2d sup
n2∈\W

e
−(ρ̄− C

M
γ/2
0

)|n−n2|γ |G(n2, n
′)|,

where |n − n2| ≥ M/2. Hence iterating (A.9) until n2 ∈ 1 (but stopping at
most C|n−n′ |γ

Mγ
0

steps), we have, for |n − n′| ≥ Nγ/2 (and some n2 ∈ 1),

|G(n, n′)| ≤ (10N)
C|n−n′|γ

M
γ
0 e

−(ρ̄− C

M
γ/2
0

)|n−n2|γ |G(n2, n
′)|

≤ (10N)
C|n−n′|γ

M
γ
0 e

−(ρ̄− C

M
γ/2
0

)|n−n2|γ
e
−(ρ̄− C

M
γ/2
0

)|n2−n′|γ+3Nγ/2

(by (A.8))

≤ e
−(ρ̄− C

M
γ/2
0

)|n−n′ |γ+3Nγ/2

.

Finally, since |n − n′| ≥ N/10, we have Nγ/2

|n−n′ |γ � M−γ/2
0 .

This finishes the proof. �
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