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Abstract. We study metric spaces defined via a conformal weight, or more
generally a measurable Finsler structure, on a domain � ⊂ R

2 that vanishes on
a compact set E ⊂ � and satisfies mild assumptions. Our main question is to
determine when such a space is quasiconformally equivalent to a planar domain.
We give a characterization in terms of the notion of planar sets that are removable
for conformal mappings. We also study the question of when a quasiconformal
mapping can be factored as a 1-quasiconformal mapping precomposed with a
bi-Lipschitz map.
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1 Introduction

1.1 Overview. Let (X, dX) and (Y, dY) be metric spaces with locally finite
Hausdorff 2-measure. A homeomorphism f : X → Y is K-quasiconformal if
there exists K ≥ 1 such that

(1.1) K−1 mod� ≤ mod f� ≤ K mod�

for all path families � in X, where mod� denotes the conformal modulus of�. The
map f is quasiconformal if it is K-quasiconformal for some K ≥ 1. This definition
is generally referred to as the geometric definition of quasiconformal mappings,
and it is one of several possible generalizations of Euclidean quasiconformal maps
to the setting of metric spaces. The definition of modulus, as well as other terms
used in this introduction, is reviewed in Section 2.



QUASICONFORMAL GEOMETRY AND REMOVABLE SETS 121

The quasiconformal uniformization problem asks one to determine which met-
ric spaces can be mapped onto a domain in the Euclidean plane or the 2-sphere by
a mapping that is quasiconformal, according to one of the several definitions. This
problem is based on the classical uniformization theorem, which states that every
simply connected Riemannian 2-manifold is conformally equivalent to either the
Euclidean plane, the 2-sphere, or the hyperbolic plane. Outside the 2-dimensional
Riemannian setting, conformality is a very strong property, and it is natural to re-
quire only quasiconformality. Motivation comes from connections to neighboring
fields such as complex dynamics [BM17] and geometric group theory [Bon06].

In the following, let (X, d) be a metric space homeomorphic to a 2-dimensional
manifold and having locally finite Hausdorff 2-measure. Such a space is referred
to in this paper as a metric surface. By quasiconformal surface, we mean a
metric surface (X, d) that is quasiconformally equivalent to a smooth Riemannian
2-manifold.

The uniformization problem for metric surfaces has been studied recently using
various axiomatic approaches. Rajala has proved that a metric surface X home-
omorphic to R

2 is a quasiconformal surface if and only if it satisfies a condition
called reciprocality (Definition 2.8 below) [Raj17]. Roughly speaking, this con-
dition says that X does not have too many more rectifiable paths, as quantified by
conformalmodulus, than Euclidean space. In this case, as shown in [Rom19], there
exists a quasiconformal map f: X→�⊂R2 that satisfies the modulus inequality

2
π

mod� ≤ mod f� ≤ 4
π

mod�

for all path families� in X. This inequality is sharp, as can be shownby considering
the plane equipped with either the ‖·‖1- or ‖·‖∞-norm. These results are extended
to arbitrary metric surfaces in [Iko22]. A different approachwas taken in a series of
papers of Lytchak and Wenger [LW17], [LW18], [LW20] based on the assumption
that the space satisfies a quadratic isoperimetric inequality.

The goal of the present paper is to understand the uniformization results de-
scribed above in the context of concrete constructions of metric surfaces. We
study a general scheme for constructing surfaces based on specifying a measurable
Finsler structure on a planar domain that vanishes on some subset of the plane. The
natural problem is to decidewhen this construction yields a quasiconformal surface.

We provide an answer by linking the uniformization problem formetric surfaces
to a separate topic in complex analysis: removable sets for classes of holomorphic
functions. There are several notions of removability; see [You15] for a recent
survey. For us, the relevant definition is the following. A compact set E ⊂ R

2 is
removable for conformal mappings if every conformal embedding f : R2 \ E → R̂2
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extends to a conformal mapping f̃ : R̂2 → R̂2, that is, to a Möbius transformation.
Here, R̂2 denotes the extended plane, which can be identified with S

2 via stereo-
graphic projection. There seems to be no standard terminology for sets satisfying
this condition. This is referred to as S-removability in the survey [You15], while
the terms set of absolute area zero and neglible set for extremal distance are also
used. Note that this is different from the notion of conformal removability, which
requires that every homeomorphism of R̂2 that is conformal on the set R̂2 \ E be a
Möbius transformation.

This connection to removable sets is natural in hindsight but does not appear to
have beenmade before. On the other hand, removable sets are inherently connected
to a different type of uniformization problem, namely of multiply connected pla-
nar domains onto some canonical class of domain, typically slit domains or circle
domains. We recall that whether an arbitrary planar domain can be mapped con-
formally onto a circle domain is the well-known Koebe Kreisnormierungsproblem
[HS93]. We hope the present paper will add a new perspective on these vari-
ous topics.

1.2 Motivating examples. A basic observation, made in Example 2.1 in
[Raj17], is that not every metric surface is a quasiconformal surface. A simple
example is the following. Define a length pseudometric dσ onR

2 via the conformal
weight σ = χR2\D. More precisely, we define the σ-length of an absolutely continu-
ous path γ to be �σ(γ) =

∫
γ σ ds, and let dσ(x, y) = inf �σ(γ), the infimum taken over

all absolutely continuous paths γ connecting x and y. If we let X be the quotient
space of R2 formed by collapsing the unit disk to a single point, then dσ induces
a metric on X, denoted by d̃σ, that is locally Euclidean outside the origin. The
space (X, d̃σ), while being homeomorphic to R2, is not quasiconformally equiv-
alent to a planar domain. This is because the family of paths in X that intersect
the collapsed point has positive modulus, while the modulus of the family of paths
intersecting a single point in the Euclidean plane is zero. This example is included
as Example 11.3 in [LW18].

A second example, and the one that comprises Example 2.1 in [Raj17], is a
continuous conformal weight σ that vanishes on a Cantor set E of positive area. In
this case, dσ is a metric on R

2, and the identity map

(R2, ‖ · ‖2) → (R2, dσ)

is a homeomorphism. Nevertheless, the vanishing of the weight increases the con-
formal modulus of path families in (R2, dσ) in a way incompatible with admitting
a quasiconformal parametrization by R2.
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At the other extreme, it is not hard to show that if the analogous construction
is carried out for a set E with Hausdorff dimension smaller than one, then the
resulting space is quasiconformally equivalent to the plane. Indeed, the set E is
then negligible for length and so has no effect on modulus. What happens in the
intermediate situation—when the Hausdorff dimension satisfies 1 ≤ dimH E < 2
or whenH2(E) = 0—is not a priori clear and is one of the motivations of our work.

Similar constructions appear in a number of related contexts. One of these is the
notion of strong A∞-weight introduced by David and Semmes in [DS90]. Such a
weight determines a metric on R

2 that is Ahlfors 2-regular and quasisymmetrically
equivalent to the plane. Conversely, the Jacobian of a quasisymmetric mapping
fromR2 to anAhlfors 2-regularmetric space induces a strongA∞-weight onR2. We
do not define this term here but refer the reader to [Sem96, Def. 1.5]. Such weights
appear naturally when trying to recognize metric spaces that are bi-Lipschitz
embeddable in some Euclidean space. See [DS90, Sem93, Sem96, Laa02, Bis07]
for various contributions to this topic. A separate set of papers [BKR98, BHR01]
studies metrics on the unit disk defined by conformal weights satisfying a Harnack-
type inequality and an area growth condition, and shows that a number of results of
classical complex analysis have natural analogues in this setting. All of the metric
surfaces constructed in these two sets of papers are quasiconformally equivalent to
a planar domain.

In the above examples, when a space fails to be a quasiconformal surface, this
is due to the space “collapsing” on the set E where the weight vanishes. In fact, it
may be the case that this is essentially the only way that a metric surface can fail
to admit a quasiconformal parametrization. This is made precise by the following
question of Rajala and Wenger [Raj20].

Question 1.1. Let (X, d) be a metric space homeomorphic to R
2 with locally

finite Hausdorff 2-measure. Does there exist a domain � ⊂ R2 and a surjective

continuous monotone mapping f : � → X such that f is in the metric Sobolev
space N1,2

loc (�,X) and satisfies the one-sided dilatation condition

g2
f (x) ≤ KJf (x)

for some constant K ≥ 1 and almost every x ∈ �?

Here, gf is the minimal weak upper gradient of f and Jf is the Jacobian of f ;
see Section 2.2. We say that f : � → X is monotone if the preimage of every point
x ∈ X is a connected and compact subset of �.
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1.3 Setting and main results. Let � be a planar domain and E ⊂ � be
a compact set that does not separate�. We consider a measurable seminorm field
N : �× R

2 → [0,∞) that vanishes exactly on the set E and satisfies certain mild
assumptions, namely lower semicontinuity, local boundedness, and having locally
bounded distortion. The seminorm at the point x ∈ � is denoted throughout this
paper by Nx. We think of N as a Finsler structure on R

2, determining a Finsler
metric on R2, although requiring no regularity beyond the previous assumptions.

For conciseness, and since Nx is a norm for all x ∈ � \ E, we use the term
norm field and not seminorm field throughout this paper when referring to N. A
norm field N satisfying the above hypotheses is said to be admissible (Definition
3.1). We define the N-length of an absolutely continuous path γ : I → � by

(1.2) �N(γ) =
∫

I
N ◦ Dγ(t) dt.

In interpreting (1.2), note that the base point of N is understood to be γ(t) even
though this is omitted from the notation. One then obtains a pseudometric dN on�
by setting dN(x, y) = inf �N(γ), the infimum taken over all absolutely continuous
paths γ from x to y contained in �. Let EN denote the collection of equivalence
classes of points in R

2, declaring x to be equivalent to y if dN(x, y) = 0. Then dN

determines a metric on the quotient space R2/EN denoted by d̃N . In Section 3, we
describe this construction in more detail.

We make the following definition.

Definition 1.2. The admissible norm field N is reciprocal if the correspond-
ing space (�/EN, d̃N) is reciprocal (Definition 2.8).

The natural problem is to characterize as best as possible those norm fields N

that are reciprocal. Our first result is the following.

Theorem 1.3. Let � ⊂ R2 be a domain and E ⊂ � a compact set. If E is

removable for conformal mappings, then every admissible norm field

N : �× R
2 → [0,∞)

that vanishes exactly on E is reciprocal.

Recall that our definition of admissibility includes the statement that N is locally
bounded. It turns out that this assumption can be relaxed. In Proposition 4.5, we
show that Theorem 1.3 still holds provided there exists some p > 2 such that the
maximal stretching L(N) is in Lp

loc(�). This generalization follows from Theorem
1.3 by an approximation argument.
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Next, we consider whether some converse to Theorem 1.3 holds. Observe first
that the strongest possible converse to Theorem 1.3 is false: a reciprocal norm
field N may vanish on a set E that is not removable for conformal mappings. As a
simple example, take E ⊂ R

2 to be a snowflake arc and let N = χR2\E‖ · ‖2. Since
H1‖·‖2

(|γ| ∩ E) = 0 for every absolutely continuous path γ, we see that dN actually
coincides with the Euclidean metric. However, it is a consequence of the Riemann
mapping theorem that any compact set that is removable for conformal mappings
is totally disconnected.

On the other hand, if one requires that the norm field N decays fast enough near
E and N is reciprocal, then examples of the type just described are not possible. To
illustrate this, consider two admissible norm fields N1 and N2 that satisfy N1 ≤ N2.
Every path that has finite N2-length also has finite N1-length, while the opposite
may fail to be true for a large family of paths. In this sense, the space generated by
the smaller norm field N1 has more rectifiable paths and the reciprocality condition
is harder to satisfy. This leads to the following partial converse to Theorem 1.3.

Theorem 1.4. Let � ⊂ R2 be a domain and E ⊂ � a compact set that

does not separate �, and let Np(x) = min{1, d‖·‖2(x,E)p}‖ · ‖2. If Np is reciprocal
for some p > max{dimH E − 1, 0}, then the set E is removable for conformal

mappings.

Our method of proof actually yields a stronger conclusion. The relevant prop-
erty of the norm field N = Np, verified in Lemma 5.1 below, is that the quotient
map πN maps E onto a set of zero 1-dimensional Hausdorff measure with respect
to the metric d̃N . Thus, for any reciprocal norm field N such that πN(E) has 1-
dimensional Hausdorff measure zero, the corresponding set E on which N vanishes
is removable for conformal mappings. For example, one can show that, if E is
contained in a continuum F satisfying H1‖·‖2

(F) < ∞, πN(E) has 1-dimensional
Hausdorff measure zero for any admissible norm field N vanishing exactly on E.
For such compact sets, the strongest converse to Theorem 1.3 holds. That is, if any
admissible norm field N vanishing exactly on E is reciprocal, then E is removable
for conformal mappings.

The lower bound for p in Theorem 1.4 is sharp. Consider an arc E ⊂ R
2

that is bi-Lipschitz equivalent to ([0, 1], | · |1/d) for some d ∈ (1, 2). Then E is a
snowflake arc of Hausdorff dimension d. It follows from [Sem96, Theorem 6.3]
that the square of the weight

σd−1(x) = min{1, d‖·‖2(x,E)d−1}
is a strong A∞-weight, as defined in [Sem96, Definition 1.5], and hence the norm
field Nd−1 is reciprocal. However, the arc E is not removable for conformal
mappings.
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Theorems 1.3 and 1.4 show that reciprocal norm fields are almost character-
ized by whether the set on which they vanish is removable for conformal map-
pings. We now mention a few facts about removable sets for conformal mappings
that are known, many of them coming from an influential paper of Ahlfors–
Beurling [AB50]. First, every compact set of positive Hausdorff 2-measure is
non-removable. Second, every compact set of zero Hausdorff 1-measure is re-
movable. More intriguingly, for Cantor sets E ⊂ R × {0} of positive Hausdorff
1-measure, both outcomes are possible. In [AB50], Ahlfors and Beurling give
examples of Cantor sets in R × {0} of positive H1-measure that are removable
for conformal maps, as well as such Cantor sets that are non-removable. A sim-
ilar example in the related context of circle domain uniformization can be found
as Theorem 11.1 of an early version of a paper of Schramm [Sch95]. Next, by
Theorem 10 in [AB50] and Proposition 3.3 in [KKR19], removable sets for con-
formal mappings are metrically removable: for every ε > 0, each pair of points
x, y ∈ R

2 can be connected by a curve disjoint from E \ {x, y} that has length
at most ‖x − y‖2 + ε. See [HH08] and [KKR19] for more on the topic of met-
ric removability. Removable sets for conformal mappings are also examples of
the quasiextremal distance exceptional sets considered in [GM85] and the related
literature. Finally, an equivalent definition can be given by replacing the word
“conformal” with “quasiconformal” in the definition [You15, Prop. 4.7]. Thus
the property of removability is invariant under quasiconformal mappings of the
complementary domain.

This should be comparedwith the notion of removable sets for bounded analytic
functions. The problem of characterizing such sets is known as Painlevé’s problem
and has received considerable attention, with a satisfactory resolution obtained by
Tolsa in [Tol03]. We note here that this is a stronger notion of removability: every
set that is removable for bounded analytic functions is removable for conformal
mappings. See Proposition 4.3 of [You15] for a proof. For example, a removable
set for bounded analytic functions must have Hausdorff dimension at most 1.
Moreover, according to David’s resolution of Vitushkin’s conjecture [Dav98], a
compact set E with finite Hausdorff 1-measure is removable for bounded analytic
functions if and only if it is purely 1-unrectifiable.

Finally, we remark that the notion of uniformly disconnected sets provides
a further class of examples to which these results apply. In [Sem96], Semmes
studies metrics of the form dNp , where Np is as in Theorem 1.4, with the additional
assumption that the setE is uniformly disconnected, meaning that there exists ε > 0
with the property that, for any two distinct points x, y ∈ E, there is no sequence
of points x = x0, x1, . . . , xm = y in E satisfying ‖xj−1 − xj‖2 < ε‖x − y‖2 for
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all j ∈ {1, . . . ,m}. He proves that for such an E and every p > 0, the square
of the weight σp(x) = min{1, d‖·‖2(x,E)p} is a strong A∞-weight and hence the
norm field Np in Theorem 1.4 is reciprocal. Therefore Theorem 1.4 implies
that uniformly disconnected Cantor sets are removable for conformal mappings.
This removability can alternatively be deduced in many ways from the existing
literature. Note in particular that a uniformly disconnected setE can haveHausdorff
dimension arbitrarily close to 2.

1.4 Factorization of quasiconformal mappings. This section is moti-
vated by the following factorization problem. Consider a quasiconformal surface
(X, d) and corresponding isothermal parametrization f : � → X, where � is a
smooth Riemannian surface. Following [Iko22], a quasiconformal homeomor-
phism f :�→X is isothermal if it is distortion-minimizing at almost every point
in a suitable sense. Roughly speaking, the pointwise distortion of f at x is the aspect
ratio of the image of a small ball centered at x. The existence of an isothermal pa-
rametrization for every quasiconformal surface is established in [Iko22, Theorem
6.2]. See Section 2.5 for the precise definition of distortion and Section 7.1 for the
definition of isothermal map. We ask: can one find a metric surface (X̂, d̂) such
that f factors as f = f̂ ◦ P, where f̂ : X̂ → X is 1-quasiconformal and P : � → X̂

is bi-Lipschitz? In other words, can one find a “conformal representative” for the
space X within the class of bi-Lipschitz surfaces?

If the metric is defined by a continuous reciprocal norm field of bounded
distortion, then such a factorization can always be found. Recall that, by the
classical uniformization theorem, for every domain � ⊂ R2 there exists a smooth
Riemannian norm field G = σ‖ · ‖2 on � such that (�, dG) is complete and has
Gaussian curvature 0 or −1. We have the following result.

Proposition 1.5. Let� ⊂ R
2 be a domain and N a reciprocal norm field with

distortion H. If N is continuous outside the set E = {x ∈ � : Nx = 0}, then there

exists a distance d̂ on � such that:
(i) The identity map P : (�, dG) → (�, d̂) satisfies

(1.3) dG(x, y) ≤ d̂(P(x),P(y)) ≤ HdG(x, y)

for all x, y ∈ �.

(ii) The identity map ι̂ : (�, d̂) → (�, dN) is 1-quasiconformal.

If the identity map ι : � → (�, dN) is isothermal, then it has distortion at
most

√
2 [Iko22, Lemma 4.10], and so (1.3) holds with H =

√
2. The example of

the �∞-norm on R2 shows that the value H =
√

2 in (1.3) is sharp for the case of
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general isothermal maps. Since every quasiconformal surface has an isothermal
parametrization, this raises the question of finding conditions on N that guarantee
that the conclusion of Problem 1.5 holds with H =

√
2. In turn, this question is

related to the regularity of the Beltrami coefficient derived from the distance ellipse
field corresponding to N and does not appear to have a straightforward answer. We
briefly address this issue in Section 7.3.

In general, the conclusion of Proposition 1.5 may fail if Nx is discontinuous
outside of E. In the final part of the paper, we present a lengthy construction giving
a negative answer to the above factorization question in general. In fact, we obtain
the stronger conclusion that no quasiconformal map f̂ in such a factorization can
have distortion smaller than that of f .

Theorem 1.6. There is a metric d on R2 such that the identity map

ι : (R2, ‖ · ‖2) → (R2, d)

is an isothermal quasiconformal homeomorphism, but ι does not factor as ι = ι̂◦P,

where (X̂, d̂) is a metric surface, ι̂ : (X̂, d̂) → (R2, d) is quasiconformal with
distortion H(ι̂) <

√
2 and

P : (R2, ‖ · ‖2) → (X̂, d̂)

is bi-Lipschitz.

The identity map ι in our construction has distortion H(ι) =
√

2, so the inequality
H(ι̂) <

√
2 is sharp.

The metric d in Theorem 1.6 is defined via a lower semicontinuous norm field
of the form

Nx =

⎧⎨
⎩cx‖ · ‖1 if x ∈ F,

cx‖ · ‖∞ if x /∈ F,

for some measurable set F ⊂ R
2 and measurable function x �→ cx, where 0≤cx≤1

and cx vanishes at a single point. Note that this fits exactly into the construction
scheme of this paper, and therefore (R2, d) is a quasiconformal surface.

One might initially expect that the metric d̂ on R2 defined by

N̂x =

⎧⎨
⎩‖ · ‖1 if x ∈ F,√

2‖ · ‖∞ if x /∈ F,

with ι̂ and P the identity map on R2, or some variation on this, gives a factorization
satisfying the properties given in Theorem 1.6. Observe that

‖ · ‖2 ≤ N̂ ≤ √
2‖ · ‖2
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everywhere, so the map P in this situation is bi-Lipschitz. However, the map ι̂
may fail to be 1-quasiconformal. The reason for this is that the norm field N̂
corresponding to F is typically not lower semicontinuous, in which case the metric
derivatives of P need not coincide with N̂x almost everywhere. Indeed, we prove
Theorem1.6 by specifying explicitly a setF and coefficients cx forwhich this failure
of 1-quasiconformality occurs for the norm field N̂ defined above, and in fact for
any conformal rescaling of N̂ bi-Lipschitz equivalent to the Euclidean norm field.

The basic idea of our construction is to define a sequence of nested Cantor
sets Ki as the intersection of a collection of squares in the plane. This is done so
that the odd-indexed Cantor sets are formed from squares in the standard (i.e., non-
rotated) alignment, while the even-indexed Cantor sets are formed from squares
aligned diagonally. Next, the norm field on Ki \Ki+1 for odd values of i is defined to
be the supremum norm ‖ · ‖∞, scaled by a constant ci satisfying ci → 0 as i → ∞,
while the norm field for even values of i is defined to be the ‖ ·‖1-norm, also scaled
by a constant c′

i satisfying c′
i → 0 as i → ∞. A consequence of the distortion

inequality for ι̂ is that the metric derivatives of P and ι cannot differ by more than
a fixed amount, up to rescaling. With a suitable choice of constants ci, c′

i, the
alternating arrangement of the Cantor sets Ki then forces the metric derivatives
of P to be arbitrarily small at some points.

Lytchak–Wenger [LW18] and Creutz–Soultanis [CS20] study similar types of
factorizations for minimal disks or solutions to Plateau’s problemwith metric space
target, though without trying to optimize the properties of P in the way that we have
proposed. Here, we simply remark that the map ι in our example is also an energy-
minimizing map (for the Reshetnyak energy) in the sense of these papers on each
closed disk. We refer the reader to the above papers for definitions of these terms.

1.5 Outline. Our paper is organized as follows. Section 2 gives an overview
of basic results and notation related to metric Sobolev spaces, quasiconformal
mappings, and removable sets. In Section 3, we give a detailed overview of
the construction of metric spaces from a prescribed norm field under suitable
assumptions. In Section 4, we prove the first of the main results, Theorem 1.3,
stating that an admissible norm field is reciprocal if it vanishes exactly on a set
that is removable for conformal mappings. In Section 5, we prove the partial
converse, Theorem 1.4. Section 6 gives a pair of examples of spaces constructed
from conformal weights that each vanish on a linear Cantor set of positive length,
one of which is reciprocal and one of which is not. This can be viewed as the
borderline case. Finally, Section 7 gives the proof of Proposition 1.5 as well as the
construction for Theorem 1.6.
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2 Preliminaries

2.1 Notation. In this paper, we frequently consider severalmetrics in close
proximity to one another. For this reason, we will consistently use subscripts to
denote the metric being referred to. Let (X, d) be a metric space. The open ball
centered at a point x ∈ X of radius r > 0 with respect to the metric d is denoted
by Bd(x, r).

The Euclidean metric is denoted by ‖·‖2. Thus, for example, we write B‖·‖2(x, r)
for an open ball with respect to this metric, and ds‖·‖2 for the Euclidean length
element.

We recall the definition of Hausdorff measure. Let (X, d) be a metric space. For
all p ≥ 0, the p-dimensional Hausdorff measure, or Hausdorff p-measure,
is defined by

H
p
X(A) = sup

δ>0
inf

{
α(p)
2p

∞∑
i=1

(diamAi)
p : A ⊂

∞⋃
i=1

Ai, diamAi < δ

}

for all sets A ⊂ X, where α(p) = π
p
2 (�( p

2 + 1))−1. The constant α(p) is chosen so
that Hn

Rn coincides with the Lebesgue measure Ln for all positive integers.
If the space X is understood but not the metric d, then we use the notation H

p
d

instead of Hp
X . The Hausdorff dimension of a set E ⊂ X is the infimal value of p

for which H
p
X(E) = 0 and is denoted by dimHd E. For the basics of Hausdorff

measure, see for example [AT04, Chapter 2].
Unless otherwise noted, in this paper a metric surface (X, d) is always equipped

with the Hausdorff 2-measure generated by the metric d. For example, the phrase
“almost every” refers to the Hausdorff 2-measure. Similarly, an interval in R is
equipped with the Lebesgue measure L1.

A path is a continuous function from an interval into a metric space. A path
in X will typically be denoted by γ. The image of γ is denoted by |γ|. The length
of a path γ : [a, b] → X is defined as

�d(γ) = sup
n∑

j=1

d(γ(ti−1), γ(ti)),
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the supremum taken over all finite sequences a = t0 ≤ t1 ≤ · · · ≤ tn = b. A path is
rectifiable if it has finite length. A path is locally rectifiable if its restriction to
any compact subinterval is rectifiable.

The metric speed of a path γ : [a, b] → X at the point t ∈ [a, b] is defined as

vγ(t) = lim
h→0

d(γ(t + h), γ(t))
h

whenever this limit exists. If γ is rectifiable, its metric speed exists at L1-almost
every t ∈ [a, b]; see Theorem 2.1 of [Dud07].

A rectifiable path γ: [a, b]→X is absolutely continuous if for all a≤s≤ t≤b,

d(γ(t), γ(s)) ≤
∫ t

s
vγ(u) dL1(u)

with vγ ∈ L1([a, b]) and L1 the Lebesgue measure on the real line. Equivalently, γ
is absolutely continuous if it maps sets of L1-measure zero to sets of H1

X-measure
zero in its image; see Section 3 of [Dud07].

A path γ̃ : [c, d] → X is a reparametrization of γ if there exists a map
ψ : [a, b] → [c, d] that is surjective, non-decreasing, and continuous such that
γ = γ̃ ◦ψ. If ψ is absolutely continuous, we say that γ̃ is an absolutely continuous
reparametrization of γ. Note that this is different from γ̃ itself being an absolutely
continuous path.

Every rectifiable path γ has a reparametrization γ̃ : [0, �d(γ)] → X such that
the metric speed of γ̃ equals one L1-almost everywhere. In this case, we write
γs = γ̃, and refer to γs as the unit speed parametrization of γ. See Chapter 5
of [HKST15] for details.

If γ is rectifiable, the unit speed parametrization γs is 1-Lipschitz and hence
absolutely continuous [HKST15, Proposition 5.1.8].

Let γ be a rectifiable path. Then the path integral of a Borel function

ρ : X → [0,∞]

over γ is

(2.1)
∫
γ
ρ ds =

∫ �d(γ)

0
ρ ◦ γs dL1,

where L1 is the Lebesgue measure on the real line.
If γ is absolutely continuous and γ̃ is an absolutely continuous reparametrization

of γ, the chain rule for metric speeds [Dud07, Theorem 3.16 and Remark 3.4]
states that

vγ = (vγ̃ ◦ψ) · ψ′ ∈ L1([c, d]),
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where the right-hand side is understood to be zero whenever the derivative ψ′ = 0
(even if vγ̃ ◦ ψ is not defined or is infinite at such a point).

Moreover, for absolutely continuous γ, the unit speed parametrization γs is an
absolutely continuous reparametrization of γ. Therefore (2.1) can be restated for
absolutely continuous γ : [a, b] → X as follows:

∫
γ
ρ ds =

∫ b

a
(ρ ◦ γ) · vγ dL1.

Given a Borel set A ⊂ X, the length of a path γ : [a, b] → X in A is defined as∫
X
χA(x)#(γ−1(x)) dH1

X(x),

where #(γ−1(x)) is the counting measure of γ−1(x). This formula makes sense for
paths that are not necessarily rectifiable; see Theorem 2.10.13 [Fed69]. If γ is
rectifiable, the number coincides with the path integral of χA over γ.

2.2 Metric Sobolev spaces. In this section, we give an overview of the
theory of Sobolev spaces in the metric space setting. We refer the reader to the
book [HKST15] for a comprehensive introduction to this topic. Throughout this
section, assume that (X, dX) and (Y, dY) are metric surfaces.

The conformal modulus provides a basic way of measuring the size of a family
of paths. It is a conformal invariant in the Euclidean case, which accounts for both
its nomenclature and its usefulness. Let � be a family of paths in X. A Borel
function ρ : X → [0,∞] is admissible for � if the path integral

∫
γ ρ ds ≥ 1 for all

locally rectifiable paths γ ∈ �. The conformal modulus, or simply modulus,
of � is

mod� = inf
∫

X
ρ2 dH2

X,

where the infimum is taken over all admissible functions ρ for �.
If ρ is admissible for a path family �′ ⊂ � such that � \ �′ has modulus zero,

then ρ is said to be weakly admissible for �. If a property holds for every path
γ ∈ � except in a subfamily of modulus zero, then this property is said to hold on
almost every path in �. If mod� < ∞, then there exists a weakly admissible
Borel function ρ ∈ L2(X) such that

mod� =
∫

X
ρ2 dH2

X.

Such a ρ is called a minimizer of �. Such a minimizer is unique H2
X-almost

everywhere.
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Let f : (X, dX) → (Y, dY) be a mapping between metric surfaces X and Y . A
function g : X → [0,∞] is an upper gradient of f if

dY (f (x), f (y)) ≤
∫
γ
g ds

for every rectifiable path γ : [0, 1] → X connecting x to y. The function g is a
weak upper gradient of f if the same holds for almost every rectifiable path.

The weak upper gradient g ∈ L2
loc(X) is minimal if it satisfies g ≤ g̃ almost

everywhere for all weak upper gradients g̃ ∈ L2
loc(X) of f . If f has a weak upper

gradient g ∈ L2
loc(X), then f has a minimal weak upper gradient, which we denote

by gf . The existence of gf follows from the fact that the weak upper gradients
of f form a lattice. This also implies that gf is unique up to measure zero; see
[HKST15, Section 6] and [Wil12, Section 3] for details. In general, gf is only a
weak upper gradient.

Proposition 6.3.3 of [HKST15] and countable subadditivity of modulus (see
also Lemmas 3.2 and 3.3 of [Wil12]) establish that a Borel functionρ : X → [0,∞]
belonging to L2

loc(X) is a weak upper gradient of f if and only if for almost every
absolutely continuous path γ : [a, b] → X, the composition f ◦ γ is an absolutely
continuous path for which the metric speeds vf◦γ and vγ satisfy

(2.2) vf◦γ ≤ (ρ ◦ γ) · vγ
L1-almost everywhere on [a, b]. Since ρ ∈ L2

loc(X) the right-hand side of (2.2) is
integrable on its domain for almost every γ.

Let Z be a metric space such that H2
dZ

(Z) < ∞. Choose a point y ∈ Y , and
let dy = dY(·, y). The space L2(Z,Y) is defined as the set of measurable mappings
f : Z → Y such that dy ◦ f is in L2(Z). One can check that this definition is
independent of the choice of y.

We define L2
loc(X,Y) to consist of those measurable mappings f : X → Y for

which, for all x ∈ X, there is an open set U ⊂ X containing x such that f |U is
in L2(U,Y).

The metric Sobolev space N1,2
loc (X,Y) consists of those mappings f : X → Y

in L2
loc(X,Y) that have a minimal weak upper gradient gf ∈ L2

loc(X).
For openU ⊂ X withH2

X(U) < ∞, we say that f ∈N1,2(U,Y) if f |U ∈N1,2
loc (U,Y)

in such a way that gf |U ∈ L2(U) and for some y ∈ Y ,

fy(x) = dy ◦ f |U ∈ L2(U).

Next we define the Jacobian of f for continuous f : X → Y . The pullback
measure f ∗H2

Y is defined for Borel sets A ⊂ X by the formula

f ∗H2
Y (A) =

∫
Y
#(A ∩ f−1(y)) dH2

Y,
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where #(A∩f−1(y)) is the multiplicity function of f relative to A. The measure f ∗H2
Y

can be defined equivalently using a suitable Carathéodory construction; see [Fed69,
2.10.10]. In fact, f ∗H2

Y is a Borel regular outer measure.
If the pullback measure f ∗H2

Y is locally finite, the measure has a Lebesgue
decomposition f ∗H2

Y = JfH
2
X+μ⊥, whereμ⊥ andH2

X are singular [Bog07, Sections
3.1–3.2, Volume I]. The density Jf is called the Jacobian of f . The local finiteness
of f ∗H2

Y and H2
X imply that Jf is locally integrable.

2.3 Seminorms. We introduce the terminology and notation we use for
seminorms. Recall that a seminorm S on R

2 is a function S : R2 → [0,∞)
satisfying the following conditions for all v,w ∈ R2 and λ ∈ R:

(i) (absolute homogeneity) S(λv) = |λ|S(v) whenever λ ∈ R and v ∈ R
2;

(ii) (triangle inequality) S(v +w) ≤ S(v) + S(w).
The seminorm S is a norm if it has the additional property that S(v) = 0 only if
v = 0. The maximal stretching of S is

(2.3) L(S) = sup{S(v) : ‖v ‖2 ≤ 1}.
The minimal stretching of S is

(2.4) ω(S) = inf{S(v) : ‖v ‖2 ≥ 1}.
The Jacobian of the seminorm S is

J2(S) =
π

L2({v : S(v) ≤ 1}) .
Observe that J2(S) = 0 in the case that S is only a seminorm. The distortion of S is

(2.5) H(S) =
L(S)
ω(S)

if ω(S) > 0 and H(S) = ∞ otherwise. The latter case occurs if S is a non-zero
seminorm that is not a norm. The outer dilatation and inner dilatation of S
are defined by, respectively,

KO(S) =
L(S)2

J2(S)
, KI(S) =

J2(S)
ω(S)2

if J2(S) > 0,

and
KO(S) = KI(S) = ∞ otherwise.

The maximal dilatation of S is

K(S) = max{KO(S),KI(S)}.
Observe that KO(S) ≥ 1 and KI(S) ≥ 1.
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The seminorm S induces a pseudometric dS on R
2 by the formula

dS(x, y) = S(x − y).

The identity map ιS : (R2, ‖ · ‖2) → (R2, dS) has the constant function L(S) as its
minimal weak upper gradient and J2(S) as its Jacobian. Its inverse ι−1

S has the
constant function ω(S)−1 as its minimal weak upper gradient.

The following lemma gives a relationship between the maximal dilatation and
distortion.

Lemma 2.1. The distortion H(S) and maximal dilatation K(S) of S satisfy
H(S) ≤ K(S) ≤ H(S)2.

Proof. Ifω(S) = 0, then H(S) = K(S) = ∞. Otherwise, H(S) and K(S) are both
finite. Observe the relationship H(S)2 = KO(S)KI(S) ≤ K(S)2. On the other hand,
the relationships KO(S) ≥ 1 and KI(S) ≥ 1 imply respectively that H(S)2 ≥ KI(S)
and H(S)2 ≥ KO(S). We conclude that H(S)2 ≥ K(S). �

2.4 Metric derivatives of Lipschitz mappings. Throughout this sec-
tion, we let � denote a domain in R

2 and (X, d) denote a metric space. We refer to
Section 2.3 for basic terminology about seminorms.

Definition 2.2. Let f : (�, ‖ · ‖2) → (X, d) be a Lipschitz map. For all x ∈ �
and v ∈ R

2, the metric derivative of f at x in the direction v is

(2.6) Nf,x(v) = lim sup
t→0+

d(f (x), f (x + tv))
t

.

A result by Ivanov [Iva08] states the following. Similar results are proved in
[Kir94, DCP90, DCP91, DCP95].

Theorem 2.3. Let f : (�, ‖ · ‖2) → (X, d) be a Lipschitz map. There exists a

Borel set N0 ⊂ � of zero Lebesgue measure such that, for all x ∈ � \ N0 and all
v ∈ R2, the limit superior in (2.6) is an actual limit, and v �→ Nf,x(v) is a seminorm

for every x ∈ R
2 \ N0.

As a consequence of Theorem 2.3, the metric derivative of a Lipschitz map
defines a seminorm field on �.

Proposition 2.4. Let f : � → X be a Lipschitz function and Nf its metric
derivative. Themaximal stretching x �→ L(Nf (x)) is a minimal weak upper gradient

of f , and f satisfies the change of variables formula

(2.7)
∫
�
ρ(z)J2(Nf,z) dL2(z) =

∫
X

∫
f −1(x)

ρ(y)dH0(y) dH2
d(x)

for all Borel functions ρ : � → [0,∞].
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Proof. Theorem 2.3 implies that the metric derivative, as defined in Defi-
nition 2.2, coincides with the metric derivative of Kirchheim [Kir94] L2-almost
everywhere in�. Thus the change of variables formula (2.7) follows from [Kir94,
Corollary 8]. The statement that L(Nf ) is a minimal weak upper gradient of f is
proved in [LW17, Section 4]. �

The metric differential can be used to compute the metric speed of an absolutely
continuous path.

Lemma 2.5. If γ : [a, b] → � is an absolutely continuous path, then for

almost every t ∈ [a, b], the metric speed vf◦γ(t) of f ◦ γ exists and satisfies

vf◦γ(t) = Nf ◦Dγ(t),

where Dγ(t) is the derivative of γ at t.

Proof. It follows from [Iva08, Proposition 2.7] that �d(f ◦ γ) = �Nf (γ) for
every Lipschitz path γ : [a, b] → R

2. Since every absolutely continuous path
has a Lipschitz parametrization, the same result holds for absolutely continuous
paths γ : [a, b] → R2. The lemma now follows from the Lebesgue differentiation
theorem. �

2.5 Quasiconformal mappings. Recall the geometric definition of qua-
siconformal mapping given in (1.1). A result of Williams states that this geometric
definition is equivalent to an analytic definition based on metric Sobolev spaces.
We state the two-dimensional case of this result, or rather a generalization to the
case of continuous monotone maps. Recall that a mapping f : X → Y is monotone
if the preimage of every point y ∈ Y is a connected and compact subset of X.

Theorem 2.6 (cf. [Wil12]). Let X and Y be metric surfaces with locally finite

Hausdorff 2-measure. Let f : X → Y be continuous and monotone, and suppose
that the pullback measure f ∗H2

Y is locally finite. The following are equivalent for

the same constant K ≥ 1:
(i) mod� ≤ K mod f� for all path families � in X.

(ii) f ∈ N1,2
loc (X,Y) and satisfies

g2
f (x) ≤ KJf (x)

for H2
X-almost every x ∈ X.

Theorem 2.6 can be established using the original proof in [Wil12] with slight
modifications which deal with the multiplicity of f . This is omitted here. A similar
result can be found as Proposition 3.5 of [LW20].
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The outer dilatation of f is the smallest constantK ≥ 1 forwhich the modulus
inequality mod� ≤ K mod f� holds for all � in X. The inner dilatation of f is
the smallest constant K ≥ 1 for which mod f� ≤ K mod� holds for all � in X.
These are denoted respectively by KO(f ) and KI(f ). Thus a quasiconformal map is
a homeomorphism with finite outer and inner dilatation.

Definition 2.7. The pointwise distortion of a quasiconformal homeomor-
phism f : X → Y at x ∈ X is

Hf (x) =

⎧⎨
⎩gf (x)gf −1(f (x)) if gf (x), gf −1(f (x)) ∈ (0,∞),

1 otherwise.
.

Aquasiconformal homeomorphism f satisfies condition (ii) in Theorem2.6, and
its inverse f−1 satisfies an analogous condition. It follows that the map x �→ Hf (x)
is H2

X-a.e. independent of the representatives of gf and gf −1 . The smallest H ≥ 1
for which Hf (x) ≤ H for H2

X-a.e. x ∈ X is called the distortion of f . In particular,

H ≤ √
KO(f )KI(f ).

Consider now a quasiconformal map f : � ⊂ R
2 → X that is also Lipschitz.

Then the equalities

gf (x) = L(Nf,x) and gf −1 ◦ f (x) = (ω(Nf,x))
−1

hold for L2-almost every x ∈ � [Iko22, Lemmas 4.4 and 4.7]. Consequently, we
have the equality

Hf (x) = H(Nf,x)

for L2-almost every x ∈ �.
In general, a quasiconformal map f : � ⊂ R

2 → X must satisfy Lusin’s
Condition (N−1): for every Borel set E ⊂ � of positive Lebesgue measure, f (E)
has positive Hausdorff 2-measure. This is essentially proved in Remark 8.3 or
Section 17 of [Raj17]. On the other hand, f need not satisfy Lusin’s Condition
(N): for every Borel set E ⊂ � of zero Lebesgue measure, f (E) has zero Hausdorff
2-measure. An example of this is given as Proposition 17.1 of [Raj17].

A uniformization theorem for quasiconformal mappings was proved by Rajala
based on the notion of reciprocality [Raj17]. Let X be a metric surface. For
a set G ⊂ X and disjoint sets F1,F2 ⊂ G, let �(F1,F2;G) denote the family
of paths whose images are contained in G that start from F1 and end in F2. A
quadrilateral is a set Q homeomorphic to [0, 1]2 with boundary consisting of
four nonoverlapping boundary arcs, labelled ξ1, ξ2, ξ3, ξ4 in cyclic order.
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Definition 2.8. A metric surface X is reciprocal if there exists a constant
κ ≥ 1 such that

(2.8) κ−1 ≤ mod�(ξ1, ξ3;Q) mod�(ξ2, ξ4;Q) ≤ κ

for every quadrilateral Q ⊂ X, and

(2.9) lim
r→0+

mod�(B(x, r),X \ B(x,R);B(x,R)) = 0

for all x ∈ X and R > 0 such that X \ B(x,R) �= ∅.
We say that a reciprocal surface is κ-reciprocal, if (2.8) holds for the constant κ.

Note that, for all metric surfaces, the left inequality in (2.8) is satisfied for a
universal constant κ̃ > 0 [RR19].

Theorem 1.4 in [Raj17] states that a metric surface X homeomorphic to R
2 is

reciprocal if and only if there exists a quasiconformal homeomorphism onto the
disk or the Euclidean plane. This result is extended to arbitrary metric surfaces in
[Iko22]. More precisely, Theorem 1.2 in [Iko22] implies that a metric surface X is
locally reciprocal (that is, every point in X has a neighborhood that is reciprocal) if
and only if X is quasiconformally equivalent to a smooth Riemannian 2-manifold.
In fact, Theorem 1.3 in [Iko22] proves that such an X is (π/2)-quasiconformal
equivalent to a Riemannian surface. In particular, a metric surface that is locally
reciprocal is also globally reciprocal.

2.6 Removable sets for conformal mappings. We collect some back-
ground on removable sets for conformal mappings. Recall from the introduc-
tion that the compact set E ⊂ R2 is removable for conformal mappings if
every conformal embedding f : R2 \ E → R̂

2 extends to a conformal mapping
F : R̂2 → R̂2. Thus f is the restriction of a Möbius transformation.

This notion exists under several names, including sets of absolute area zero
and negligible sets for extremal distance. This nomenclature reflects the following
characterization.

Proposition 2.9. Let E ⊂ R2 be compact. The following are equivalent.

(i) E is removable for conformal mappings.

(ii) E has absolute area zero: for every conformal embedding f : R2 \ E → R̂
2,

the complementary set R̂2 \ f (R2 \ E) has Lebesgue measure zero.

(iii) E is negligible for modulus: for every domain � ⊂ R
2 and pair of disjoint

compact sets F,G ⊂ � \ E, mod�(F,G;�) = mod�(F,G;� \ E).
(iv) Any quasiconformal embedding f : R2 \ E → R̂

2 has an extension to a
quasiconformal mapping F : R̂2 → R̂2.

(v) For any open set U ⊂ R
2, every quasiconformal mapping on U \ E extends

quasiconformally to the whole open set U.
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The equivalence of (i), (ii) and (iii) is proved in [AB50]. The equivalence
of (i) and (iv) is a consequence of the measurable Riemann mapping theorem.
See Proposition 4.7 in [You15] for a proof. The equivalence of (i) and (v) can
also be found in [You15] as Proposition 4.6. We see from (iv) and (v) that
removability for conformal mappings is a local property and a quasiconformal
invariant. If E contains a nontrivial connected component E0, then there is a non-
Möbius conformal map f : R2 \ E0 → R2 such that R2 \ f (R2 \ E0) is the closed
unit disk. Thus Property (ii) implies that a removable set for conformal mappings
is totally disconnected.

Property (iii) in Proposition 2.9 indicates the connection between quasiconfor-
mal uniformization and removable sets. Observe that for each triple F, G, and �,
�(F,G;� \ E) is a subset of �(F,G;�) and thus satisfies

mod�(F,G;� \ E) ≤ mod�(F,G;�).

In contrast, the metric space constructions in our paper collapse a domain at the
set E and hence increase the modulus of a path family, up to a factor related to
the dilatation bound of the norm field. Thus Theorem 1.3 and Theorem 1.4 can
be summarized roughly by saying that removing the set E does not decrease the
modulus of any path family if and only if collapsing the plane at E does not increase
the modulus of any path family.

3 Constructing a metric from a norm field

In this section, we give a description of the metric spaces considered in this paper
and develop their basic properties. These spaces are constructed from measurable
Finsler structures satisfying additional assumptions. The precise definition is given
in Section 3.1.

There is a vast literature on Riemannian and Finsler geometry, typically re-
quiring smoothness or at least continuity of the Finsler structure. The idea of
constructing metrics from Finsler structures with less regularity has been consid-
ered by various previous authors, and so the material in this section is more-or-less
standard. In Section 3.2, we include a brief comparison with the existing literature.

We consider here seminorm fields N such that either Nx is a norm or Nx = 0
for all x ∈ �. Recall from the introduction that, slightly abusing terminology, we
use the term norm field to refer to an object of this type. Since a vector v ∈ R2

often comes with an implicit basepoint x, we will sometimes write N(v) in place
of Nx(v), such as in the expression N ◦ Dγ.
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3.1 Definition of the metric. Let � ⊂ R
2 be a domain.

Definition 3.1. A normfield N : �×R
2 → [0,∞) is admissible if it satisfies

the following:

(i) (lower semicontinuous) For all vectors v ∈ R
2 and points x ∈ �, we have

Nx(v) ≤ lim infy→x Ny(v).
(ii) (locally bounded) For all x ∈ �, there is a neighborhood U of x and M > 0

such that L(Ny) ≤ M for all y ∈ U.
(iii) (locally bounded distortion) For all x ∈ �, there is a neighborhood U of x

and H > 0 such that L(Ny) ≤ Hω(Ny)) for all y ∈ U.
(iv) (nonseparating) The set E = {x ∈ � : Nx = 0} is compact and � \ E is

connected.

An immediate consequence of having locally bounded distortion is that
Nx(v) = 0 for some v ∈ R2 \ {0} if and only if Nx is identically zero.

We use the norm field N to measure the length of an absolutely continuous path
γ : [a, b] → � in the following way. We define the N-length of γ to be

�N(γ) =
∫ b

a
N ◦ Dγ(t) dt,

where Dγ : [a, b] → �× R
2 is a Borel representative of the differential of γ.

Definition 3.2. Let N be an admissible seminorm field and x, y ∈ �. The
N-distance between x and y is defined as

dN(x, y) = inf �N(γ),

where the infimum is taken over absolutely continuous paths γ joining x to y in �.

The function dN is locally finite and satisfies the triangle inequality, but it may
happen that dN(x, y) = 0 for distinct points x, y ∈ �. Thus, in general, dN is only
a pseudodistance. Let EN be the partition of � into equivalence classes of points,
where x, y ∈ � belong to the same equivalence class if dN(x, y) = 0. This yields
the quotient space�/EN and the natural quotient map πN : � → �/EN . The space
�/EN comes equipped with the metric that is the pushforward of dN under πN ,
which we denote by d̃N .

A consequence of the local boundedness of N is that the quotient map πN is
locally Lipschitz. In particular, the results described in Section 2.4 apply to the
map πN .
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3.2 Remarks on definition of admissible norm fields. We offer a few
remarks about Definition 3.1 and give a comparison to the previous literature.

The lower semicontinuity assumption guarantees that the metric tangents
of �/EN coincide with N almost everywhere. This implies, for example, that two
conformally equivalent norm fields generate metrics that are 1-quasiconformally
equivalent. In general, the metric tangents are not so well-behaved. For example,
let F ⊂ [0, 1] be a Cantor set of positive linear measure, and let E = F × F ⊂ R2.
The norm field N defined by

Nx =

⎧⎨
⎩2‖ · ‖∞ if x ∈ E,

‖ · ‖1 if x /∈ E,

generates the same metric as the norm field ‖ · ‖1, despite the fact that they differ
on a positive measure set. Indeed, the inequality ‖x − y‖1 ≤ dN(x, y) is immediate
for all x, y ∈ R

2, since ‖ · ‖1 ≤ 2‖ · ‖∞. On the other hand, for all x, y ∈ R
2 \ E,

there is an �1-geodesic from x to y lying in R
2 \ E. Thus dN(x, y) ≤ ‖x − y‖1 for

such x, y. Since E has empty interior, we obtain the inequality dN(x, y) ≤ ‖x − y‖1

for all x, y ∈ R
2. The lower semicontinuity assumption allows us to avoid this type

of behaviour; see Lemma 3.6 below.
The fact that E = {x ∈ � : Nx = 0} is non-separating guarantees that the quotient

space is homeomorphic to � (Corollary 3.9). For example, if E is the Euclidean
unit circle and N = χR2\E‖ · ‖2, the resulting quotient space is not a 2-manifold.

Now we discuss some of the related literature on non-smooth Finsler metrics.
Perhaps the first investigations into this topic were carried out by Busemann–
Mayer in [BM41]. Beginning in the 1940’s, the Russian school led by Alexandrov
developed a theory of surfaces of bounded curvature, also now known as Alexan-
drov surfaces, as a generalization of two-dimensional Riemannian geometry. See
[AZ67] and [Res93] for an overview.

Finsler metrics on Lipschitz manifolds were systematically studied by De
Cecco–Palmieri in the series of papers [DCP88, DCP90, DCP91, DCP95]. Note
that they take a different approach to defining the distance dN from a norm field N.
The idea is to make the distance more robust by making the definition insensitive
to changes in N on a set of measure zero. In particular, the norm field N need only
be defined on a full measure subset. This is achieved as follows. For a set F ⊂ R

2

of measure zero, let �F be the family of absolutely continuous paths that inter-
sect F in a set of length zero. Then one defines the metric dN,F as in Definition 3.2
but restricting to paths in �F. Next one defines DN(x, y) = sup dN,F(x, y), the
supremum taken over all measure zero sets F. This is called the intrinsic distance
in [DCP95, GPP06] and essential metric in [AHPCS18] and further investigated
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in [CS20]. Observe that if N is continuous, then the essential metric coincides with
the metric considered in this paper. However, we do not take this approach, since
the norm fields we have in mind typically vanish on a set of measure zero, and we
prefer the additional flexibility of only requiring N to be lower semicontinuous.

3.3 Properties of length. In the remainder of this section, we establish
properties of admissible norm fields and their corresponding metric. Our first
lemma states that the property of lower semicontinuity of N in each direction v can
be promoted to lower semicontinuity at a point in all directions uniformly.

Lemma 3.3. Let N be an admissible norm field and x ∈ �. For every ε > 0,

there exists r > 0 such that

Ny(v) ≥ (1 − ε)Nx(v).

for all y ∈ B(x, r) and v ∈ R2.

Proof. If Nx is the zero seminorm, then the conclusion follows immediately.
Thus we may assume that Nx is a norm. By the positive homogeneity of N,
we need only consider vectors v ∈ S

1. Let ε > 0 and let δ = εω(Nx), so that
Nx(v) − δ ≥ (1 − ε)Nx(v) for all v ∈ R2. Thus it suffices to show that there exists
a radius r > 0 such that

Ny(v) ≥ Nx(v) − δ

for all y ∈ B(x, r) and v ∈ S
1.

Assume to the contrary that no such r exists. Then there exist sequences
(yn) ⊂ � and (vn) ⊂ S1 for which

(3.1) Nyn(vn) < Nx(vn) − δ

for all n ∈ N. By passing to a subsequence, we have that vn converges to some
vector v ∈ S1.

Let M > 0 be such that L(Ny) ≤ M for all y in a neighborhood of x. Then for
every sufficiently large n ∈ N,

Nx(vn) − M‖v − vn‖2 ≤ Nx(v)

and
Nyn(v) ≤ Nyn(vn) + M‖v − vn‖2.

Moreover, the lower semicontinuity of N implies that

Nx(v) − δ

2
≤ Nyn(v)
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for all sufficiently large n ∈ N. Combining these inequalities yields

Nx(vn) −
(
2M‖v − vn‖2 +

δ

2

)
≤ Nyn(vn).

Let n be sufficiently large so that ‖v − vn‖2 < δ(4M)−1. Then the preceding
inequality contradicts (3.1), and the result follows. �

The next lemma shows that the metric dN is locally well-behaved outside of the
set E.

Lemma 3.4. Let N be an admissible norm field. For all x ∈ � \ E, there

exists r > 0 such that B(x, r) ⊂ � \ E and the quotient map πN is bi-Lipschitz in
the neighborhood B(x, r).

Proof. We let σ(x) = ω(Nx) denote the minimal stretching of N. Lemma 3.3
implies that σ is lower semicontinuous. Also σ(x) = 0 if and only if Nx is not a
norm.

Let x ∈ � \ E. Let R > 0 be such that the closed ball B(x,R) is contained in
� \ E and satisfies σ(z) ≥ σ(x)/2 for all z ∈ B(x,R). Such an R > 0 exists by the
lower semicontinuity of the map z �→ σ(z). Moreover, the local boundedness of N
implies that there exists M > 0 such that the maximal stretching L(Nz) is bounded
from above by M for all z ∈ B(x,R). We conclude that

σ(x)
2

‖v‖2 ≤ Nz(v) ≤ M‖v‖2

for all z ∈ B(x,R) and all v ∈ R2.
Let r = R/2. We claim that

σ(x)‖y − z‖2

4
≤ dN(y, z) ≤ M‖y − z‖2

for all y, z ∈ B(x, r). Clearly, the line segment from y to z has N-length at most
M‖y−z‖2. For the lower bound, consider an arbitrary absolutely continuous path γ
from y to z. If |γ| ⊂ B(x,R), then we have the lower bound �N(γ) ≥ σ(x)‖y−z‖2/2.
If |γ| is not contained in B(x,R), then its length is at least

σ(x)(R − r) =
σ(x)R

2
≥ σ(x)‖y − z‖2

4
.

Since our path is arbitrary, we obtain dN(y, z) ≥ σ(x)‖y − z‖2/4. We conclude that
dN is bi-Lipschitz equivalent to the Euclidean distance on B(x, r). �

Lemma 3.5. For L2-almost every x ∈ �, the metric derivative NπN of πN at x

satisfies
NπN ,x ≤ Nx.



144 T. IKONEN AND M. ROMNEY

Moreover, for every x ∈ �,

Nx ≤ NπN ,x .

In particular, the metric derivative NπN equals N L2-almost everywhere in x ∈ �.

Proof. First, we show that the upper bound NπN ,x ≤ Nx holds L2-almost
everywhere in �. Consider a fixed v ∈ R2 \ {0}. The local boundedness of N

implies that the function x �→ Nx(v) is locally integrable. Consider a rectangle
R ⊂ � with one side parallel to v. There is a family of parallel line segments
γt : [0, h0] → R, γt(s) = xt + vs, that foliate R. Observe that for all t and s,
Dγt(s) = v. The definition of dN implies that

NπN ,γt(s)(v) ≤ lim sup
h→0+

1
h

∫
[s,s+h]

Nγt(a)(v) dL1(a).

According to Lebesgue’s differentiation theorem, the lim sup on the right-hand
side equals Nγt(s)(v) for L1-almost every s ∈ [0, h0]. Fubini’s theorem implies that

NπN ,x(v) ≤ Nx(v)

holds L2-almost everywhere in R. Since R is arbitrary, the same conclusion holds
for almost every point in �. The first inequality follows.

Next, we show that the inequality Nx ≤ NπN ,x holds for all x ∈ �. In the case
that x ∈ E, the conclusion is immediate since then Nx = 0. We consider now the
case that x ∈ � \ E. Let v ∈ R

2 \ {0} and let ε > 0.
Let r > 0 be such that the conclusions of Lemma 3.3 and Lemma 3.4 hold for

the point x and the given value of ε. In particular, Lemma 3.4 implies that there
exists α ≥ 1 such that

α−1dN(y, z) ≤ ‖y − z‖2 ≤ αdN(y, z)

for all y, z ∈ B(x, r). Moreover, the local boundedness of N implies that there exists
M > 0 such that the maximal stretching L(Ny) ≤ M for all y ∈ B(x, r). Let

t0 =
1

‖v ‖2

r
2α

min
{1
α
,

1
εM

}
.

For all t ∈ (0, t0), consider an absolutely continuous path γt : [0, 1] → � joining x

to x + tv that satisfies

(3.2)
∫ 1

0
N ◦ Dγt dL

1 ≤ dN(x, x + tv) + εtNx(v).

The right-hand side of (3.2) is bounded above by αt‖v‖2 + εMt‖v‖2 < r/α. In
particular, this implies that

(3.3) |γt| ⊂ B‖·‖(x, r).
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Next, observe that

(3.4) tNx(v) = Nx(tv) ≤ M‖tv‖2 ≤ αMdN(x, x + tv).

Applying now the conclusion of Lemma 3.3 along γt, which is allowed due to (3.3),
we have

(3.5) (1 − ε)Nx(Dγt(s)) ≤ N ◦ Dγt(s),

for almost every s ∈ [0, 1]. Note that the norm field N on the left-hand side has a
fixed basepoint.

Since straight line segments are geodesics with respect to the norm Nx, by
integrating both sides of (3.5) and applying (3.2) and (3.4), we obtain

(3.6) (1 − ε)Nx(tv) ≤ (1 + εαM)dN(x, x + tv).

We divide both sides of (3.6) by t and let t → 0. We have

(1 − ε)Nx(v) ≤ (1 + εαM) lim inf
t→0

dN(x, x + tv)
t

.

The lim inf on the right-hand side is bounded from above by the metric derivative
NπN ,x(v). The result follows by letting ε → 0. �

Lemma 3.6. For every Borel function ρ : �/EN → [0,∞], we have the

change of variables formula∫
�
(ρ ◦ πN) · J2(N) dL2 =

∫
�/EN

ρ dH2
˜dN
.

Proof. It follows from Lemma 3.5 that the metric derivative of πN equals N

L2-almost everywhere. The change of variables formula Proposition 2.4 implies
that H2

˜dN
(πN(E)) = 0. The fact that πN is injective in the complement of E implies

that the multiplicity term from Proposition 2.4 can be omitted. �

Lemma 3.7. For every absolutely continuous path γ in�, �N(γ) = �dN (πN ◦γ).
In particular, the equality

(3.7) vπN◦γ = N ◦ Dγ

holds almost everywhere in the domain of γ.

Proof. An immediate consequence of the definitions is that �
˜dN

(πN◦γ) ≤ �N(γ)
for every absolutely continuous γ in �. For the other direction, let L denote the
NπN -length of γ:

L =
∫

I
NπN ◦Dγ(t) dL1(t).
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Since N(x) ≤ NπN (x) for all x ∈ � by Lemma 3.5, we see that �N(γ) ≤ L. By
Lemma 2.5, the equality L = �

˜dN
(πN ◦γ) holds for all absolutely continuous γ. The

equality �N(γ) = �
˜dN

(πN ◦ γ) now follows. The metric speed identity (3.7) follows
from the Lebesgue differentiation theorem. �

As a consequence of the previous lemma, whenever γ : I → � is an absolutely
continuous path, we have the integral formula∫

πN◦γ
ρ dsN =

∫
I
(ρ ◦ πN)(N ◦ Dγ) dL1

for all Borel measurable functions ρ : �/EN → [0,∞].

3.4 The quotient map.

Proposition 3.8. The quotient map πN : � → �/EN is locally Lipschitz,

locally bi-Lipschitz in the complement of E, and its restriction to� \E is injective.
Moreover, the map πN is closed and, for all x ∈ πN(E), the preimage π−1

N (x) is

a connected and compact subset of E.

Proof. We already proved in Lemma 3.4 thatπN is locally bi-Lipschitz outside
of E. Moreover, since N is locally bounded, πN is locally Lipschitz at all points
in �.

Next, let x ∈ � \ E and U ⊂ � \ E be a neighborhood of x such that πN|U
is bi-Lipschitz. The bi-Lipschitz property implies that dN(x, y) > 0 for all y ∈ U
distinct from x. Next, let r > 0 be small enough so that B‖·‖(x, r) ⊂ U, and let

c = inf{dN(x, y) : y ∈ S‖·‖(x, r)} > 0.

If y ∈ � \ U, then any path from x to y must intersect S‖·‖(x, r), which
gives dN(x, y) ≥ c > 0. We conclude that πN is injective in the complement of E.

Next, we prove thatπ−1
N (x̃) is a connected, compact subset ofE for all x̃ ∈ πN(E).

Let x ∈ π−1
N (x̃) and let K be the component of E containing x.

Let γ be a closed Jordan path in � \ E that separates K and the boundary
of ∂�. See [Why64, Section III.3] for the existence of such a path γ. Let U be the
complementary component of |γ| containing K and c = inf{dN(x, z) : z ∈ � \ U}.
The image |γ| has a small neighborhood V compactly contained in � \ E. Every
path joining the point x to � \ U must pass through V . The lower semicontinuity
of N implies that N ≥ α‖ · ‖2 in V for some α > 0 and hence that c > 0.

Let y ∈ π−1
N (x̃). Let (γn) be a sequence of Lipschitz paths joining x to y

satisfying
�N(γn) ≤ 2−nc
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for all n ∈ N. Observe that the image of each path γn is contained in U. Moreover,
for every zn ∈ |γn|, we have that dN(x, zn) ≤ 2−nc. This implies that a subsequence
of the sets (|γn|) converges with respect to the Hausdorff distance to a connected
subset C of π−1

N (x̃) ∩ U. This is a consequence of general properties of Hausdorff
convergence in metric spaces; see Proposition 4.4.14 and Theorems 4.4.15 and
4.4.17 in [AT04]. Observe that, for a given point z ∈ � \ K, the Jordan path γ
above can be chosen so that z ∈ � \ U. Therefore, the limit continuum C does
not contain z. It follows that C is a subset of K. Since y ∈ π−1

N (x̃) is arbitrary, we
conclude that π−1

N (x̃) is a connected subset of K. Note that it is not necessarily the
case that K = π−1

N (x̃).
The final step is to show that πN is closed. Let F ⊂ � be a closed set and let x̃

be a limit point of πN(F). Since π−1
N (x̃) is a singleton or contained in a component

of E, there is a Jordan domain U ⊂ � such that ∂U is contained in � \ E and
separates π−1

N (x̃) and ∂�. Arguing as in the first part of the proof, we deduce that
there is a constant c > 0 such that dN(π−1

N (x̃), z) ≥ c for all z ∈ �\U. This implies
that x̃ is a limit point of πN(F ∩ U). Let (x̃j) be a sequence in πN(F ∩ U) with
limit x̃. Let (yj) be a sequence in F ∩ U such that πN(yj) = x̃j. The compactness
of U implies that there is a subsequence (yjk) that converges to a point y ∈ F.
Since πN|U is Lipschitz, it follows that (xjk) converges to πN(y), and moreover that
x̃ = πN(y). We conclude that x̃ ∈ πN(F), and hence that πN(F) is closed. �

Corollary 3.9. The space �/EN is homeomorphic to �.

Proof. By Proposition 3.8, πN is a closed and monotone map. Thus each
element of the decomposition EN is a planar continuum. Since the components
of E are non-separating, so are the elements ofEN . It follows now from the classical
theorem of Moore that �/EN is homeomorphic to �. See, for instance, Theorem
25.1 in [Dav86]. �

Next we study the analytic properties of πN . A consequence of Proposition 2.4
and Lemma 3.5 is that x �→ L(Nx) is a minimal weak upper gradient of πN . The
following lemma identifies the minimal weak upper gradient of the inverse of πN .

Lemma 3.10. If U ⊂ � is an open set such that πN|U is injective and its

inverse h is an element of N1,2
loc (πN(U),R2), the function

g =
( 1
ω(N)

χU\E
)

◦ h

is a minimal weak upper gradient of h.

We use the convention 1
0 · 0 = 0 in Lemma 3.10.
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Proof. Weshow that the function g as in the claim is aweak upper gradient of h.
First, the change of variables formula Lemma 3.6 implies that H2

˜dN
(πN(E)) = 0.

Therefore the paths that have positive d̃N-length on πN(E) have zero modulus.
Moreover, since h is an element of N1,2

loc (πN(U),R2), h maps almost every absolutely
continuous path in πN(U) to an absolutely continuous path in U. Thus it suffices
to check the upper gradient inequality for a path γ̃ : [0, 1] → πN(U) that intersects
πN(E) in a set of d̃N-length zero and along which h is absolutely continuous.

Let γ̃ : [0, 1] → πN(U) be such a path, and let x = γ̃(0) and y = γ̃(1). Let
γ = h ◦ γ̃. Note that the absolute continuity of h along γ̃ implies that γ intersects E

in a set of Euclidean length zero. Therefore, by reparametrizing, we can assume
that the set J = γ−1(� \ E) has full length in [0, 1].

By Lemma 2.5, the metric speed identity vγ̃ = N ◦ Dγ holds L1-almost every-
where for γ. Also, for almost every t ∈ [0, 1] \ γ−1(E),

(3.8) vγ(t) = ‖Dγ(t)‖2 ≤ 1
ω(Nγ(t))

N ◦ Dγ(t) =
1

ω(Nγ(t))
vγ̃(t),

where ω(Nγ(t)) is the minimal stretching of N at γ(t). Since γ−1(E) has zero
measure, we conclude from (3.8) that for almost every t ∈ [0, 1],

(3.9) vγ(t) ≤
(χU\E
ω(N)

◦ γ(t)
)

· vγ̃(t).
The right-hand side in (3.9) equals g ◦ (πN ◦ γ(t))vγ̃(t). Therefore, integrating both
sides of (3.9) implies that

‖h(x) − h(y)‖2 ≤
∫
γ̃
g ds

˜dN
.

The local L2-integrability of g follows from the fact that N has locally bounded
distortion (Lemma 2.1) and the change of variables formula (Lemma 3.6).

We are left to check that g is a minimal weak upper gradient. Let ρ∈L2
loc(πN(U))

be a weak upper gradient of h. We want to show that g(x) ≤ ρ(x) for H2
dN

-almost
every x ∈ πN(U). The set πN(E) is negligible, so it is sufficient to check this in the
complement of πN(E). As h is locally bi-Lipschitz in the complement of πN(E), it
suffices to check that

(3.10) g ◦ πN(x) = sup
v∈S1

1
Nx(v)

≤ ρ ◦ πN(x)

L2-almost every x ∈ U \ E.
Consider a square R ⊂ U \ E with center point x0 ∈ U and the accompanying

foliation given by
γt(s) = x0 + sv + tw,

where v,w ∈ R2 are orthogonal vectors and s, t ∈ [−1, 1].
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The metric speed identity vπN◦γ = N ◦ Dγ implies that

vγt (s) = ‖v‖2 ≤ ρ ◦ (πN ◦ γt(s)) · Nγt(s)(v)

holds almost everywhere along the domain of γt for almost every t. Fubini’s
theorem implies that

‖v‖2 ≤ ρ ◦ πN(x) · Nx(v)

holds for L2-almost every x ∈ R. Equivalently,

1 ≤ ρ ◦ πN(x) · Nx

( v

‖v‖2

)

for L2-almost every x ∈ R. We can cover U \E by squares whose sides are parallel
to v and w, so we deduce that

(3.11)
1

Nx( v
‖v‖2

)
≤ ρ ◦ πN(x)

for L2-almost every x ∈ U \ E.
Let D be a countable dense subset of S1. We have shown that, for L2-almost

every x ∈ U \ E, (3.11) holds for every v ∈ D. Consequently, (3.10) holds for
L2-almost every x ∈ U \ E. �

3.5 Local quasiconformality. Let U be a subdomain of � such that
U ⊂ � is compact. Since the norm field N has locally bounded distortion, there
exists K(U) < ∞ such that

L(N)2 ≤ K(U)J2(N)

for the maximal stretching L(N) and the Jacobian J2(N). Recall that L(N) is a weak
upper gradient of πN , J2(N) is the Jacobian of πN , and that the pullback measure
π∗

NH
2
˜dN

is locally finite. Thus Theorem 2.6 implies the following.

Proposition 3.11. For every path family � in U, we have that

mod� ≤ K(U) modπN�.

If (�/EN, d̃N) is reciprocal, then it admits some quasiconformal parametrization
from a domain in Euclidean space. We show here that the map πN itself is a
quasiconformal parametrization, at least locally.

Proposition 3.12. The metric surface (�/EN, d̃N) is reciprocal if and only if
πN is a homeomorphism that is locally quasiconformal.
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Here, a map ψ : X → Y is locally quasiconformal if every point x ∈ X has a
neighborhood U such that the restriction of ψ to U is K-quasiconformal for some
K ≥ 1, where K is allowed to depend on x.

Proof. If πN is a locally quasiconformal homeomorphism, every point in
Y = (�/EN, d̃N) has a neighborhood that is reciprocal. By Theorem 1.2 of [Iko22],
this implies that Y is reciprocal.

Conversely, suppose that Y is reciprocal. It suffices to fix an arbitrary quadri-
lateral Q ⊂ � with E ∩ ∂Q = ∅ and check that πN |int(Q) is quasiconformal.

The reciprocality of Y implies the existence of a homeomorphism

f : πN(Q) → D

that is π
2 -quasiconformal in πN(Q). Set V = int(Q) and h = f ◦ πN |V .

We claim that h is a homeomorphism. The mapping h satisfies the assumptions
of Theorem 2.6 and condition (i) in this theorem. Let y ∈ D and C = h−1(y), and
fix a non-trivial continuum C′ ⊂ D\{y}. The set C is connected and compact. The
modulus of the family of paths joining y to C′ is zero, since planar domains satisfy
(2.9). Hence condition (i) in Theorem 2.6 implies that the modulus of the family
of paths joining C to h−1(C′) is zero. Since h−1(C′) is a non-trivial continuum,
this happens only when C is a singleton; see for example [Raj17, Proposition 3.5].
Therefore h is injective. Consequently, h is a homeomorphism between planar
domains satisfying condition (i) from Theorem 2.6. According to the theory of
planar quasiconformal mappings, this suffices to show that h is a quasiconformal
homeomorphism; see [Väi71, Theorem 34.3] or [AIM09, Section 3]. �

Remark 3.13. Proposition 3.12 gives two simple criteria for (�/EN, d̃N) to
fail to be reciprocal. First, if L2(E) > 0, then πN is not locally quasiconformal
since Lusin’s Condition (N−1) is violated. Second, if πN is not injective, then
(�/EN, d̃N) is not reciprocal.

4 Removable implies reciprocal

The objective of this section is to prove Theorem 1.3. An outline of the proof is as
follows. First, we give a pair of reductions, Lemmas 4.1 and 4.2, showing that it
suffices to consider only the case of admissible norm fields of the form N = σ‖ · ‖2

defined on all ofR2 for some bounded function σ : R2 → [0,∞). Next, Proposition
4.3 gives a criterion for the mapping πN in our situation to be quasiconformal: it
suffices to show that πN preserves the modulus of the path families �(ξ1, ξ3;R) and
�(ξ2, ξ4;R) for a single rectangle R containing E with boundary edges ξ1, ξ2, ξ3, ξ4.
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We complete the proof by verifying the modulus condition of Proposition 4.3.
This part is an application of the classical theorem of uniformization onto slit
domains. This argument is based on the proof of Theorem 9 in [AB50]. In Section
4.3, we extend Theorem 1.3 by relaxing the assumption that L(N) ∈ L∞

loc(�) to the
assumption that L(N) ∈ Lp

loc(�) for some p ∈ (2,∞).

Lemma 4.1. An admissible norm field N on � is reciprocal if and only if the

norm field N̂ = ω(N)‖ · ‖2 induced by the minimal stretching ω(N) is reciprocal.

Proof. It follows immediately from Lemma 3.3 that N̂ is admissible for any
admissible norm field N. By Proposition 3.12, it suffices to show that the metrics
generated by N and N̂ are locally quasiconformally equivalent. Observe first that
it follows directly from the definition that N̂ ≤ N. Since N has locally bounded
distortion, every point has a neighborhood U such that Nx ≤ HN̂x for some H > 0
and every x ∈ U. These facts imply that the corresponding distances are locally
bi-Lipschitz equivalent. �

For the following lemma, fix a subdomain �′ ⊂ � that contains E and is
compactly contained in�. Let K = �′. Given an admissible norm field N = σ‖·‖2,
there exists α > 0 such that σ < α everywhere on K. We define

(4.1) N̂ = (σχK + αχR2\K)‖ · ‖2.

The choice of α implies that N̂ is admissible on R2 vanishing exactly on E. Also,
N̂ coincides with N in �′.

Lemma 4.2. The norm field N = σ‖ · ‖2 is reciprocal in � if and only if the

extension N̂ defined by (4.1) is reciprocal in R
2. Moreover, in either one of these

cases the quotient maps π
̂N and πN are 1-quasiconformal homeomorphisms.

Proof. First of all, since N and N̂ are equal in �′, there exists a homeomor-
phism

f : πN(�′) → π
̂N(�′)

for which π
̂N = πN ◦ f on �′. In fact, the map f is a local isometry and hence

1-quasiconformal.

Since the restrictions of πN and π
̂N to the complement of E are locally bi-

Lipschitz, we deduce that they are locally quasiconformal if and only if their
restrictions to �′ are locally quasiconformal. These two conditions are equivalent
for the maps since f is quasiconformal. We conclude from Proposition 3.12 that N
is reciprocal if and only if N̂ is reciprocal.
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We are left to check that if πN is locally quasiconformal, then it is actually 1-
quasiconformal. Combining Theorem 2.6 with the local quasiconformality of πN ,
we conclude that h = π−1

N has the Sobolev regularity required for Lemma 3.10.
Therefore,

ρ =
(1
σ
χ�\E

)
◦ h

is a minimal weak upper gradient of h. Lemma 3.6 implies that the Jacobian Jh

equals (σ−2χ�\E)◦hH2
˜dN

-almost everywhere. Therefore, condition (ii) in Theorem
2.6 holds with K = 1. Consequently, KI(π) ≤ 1. The outer dilatation bound for πN

follows from Proposition 3.11. We conclude that πN is 1-quasiconformal. The
1-quasiconformality of π

̂N is argued in a similar manner. �

4.1 Acriterion for quasiconformality. Weconsider an admissible norm
field N = σ‖·‖2 defined on a domain� ⊂ R2 vanishing exactly on a non-separating
compact set E ⊂ �.

We consider a quadrilateral Q ⊂ � whose boundary ∂Q does not intersect the
set E. Let (ξ1, ξ2, ξ3, ξ4) be a decomposition of ∂Q into four nonoverlapping arcs
labelled in counterclockwise order.

Since ∂Q does not intersect E, πN|∂Q is a homeomorphism onto its image
(Proposition 3.8). As a consequence of Corollary 3.9, the image πNQ is a Jordan
domain with boundary πN∂Q consisting of the arcs (πNξ1, πNξ2, πNξ3, πNξ4).

We fix some notation for the following proof. Let

�1 = �(ξ1, ξ3;Q) and �̃1 = �(πNξ1, πNξ3;πNQ);

�2 = �(ξ2, ξ4;Q) and �̃2 = �(πNξ1, πNξ3;πNQ).

We defined �(F1,F2;G) in Section 2.5. Observe that πN�1 ⊂ �̃1 and πN�2 ⊂ �̃2.

Proposition 4.3. Let N = σ‖ · ‖2 be admissible. If mod�1 = mod �̃1 and

mod�2 = mod �̃2, then the restriction of πN to Q is a homeomorphism and 1-
quasiconformal.

Proof. Proposition 3.11 and the special form of N imply that KO(πN) = 1,
so we only need to check that πN|Q is injective and that its inverse has its outer
dilatation bounded above by 1.

It was proved in [RR19] that there exists a continuous function

ũ1 : πNQ → [0, 1]

in the Sobolev space N1,2(πNQ) whose minimal weak upper gradient ρ̃1 is a mini-
mizer for mod �̃1. The function ũ1 satisfies the boundary conditions ũ1(πNξ1) = 0
and ũ1(πNξ3) = 1.
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Consider u1 = ũ1 ◦ πN . Since N = σ‖ · ‖2 and πN has bounded outer dilatation,
it is readily verified that ρ1 = (ρ̃1 ◦ πN)σ ∈ L2(Q) is a weak upper gradient of u1

with L2-norm mod �̃1 = mod�1. Therefore u1 ∈ N1,2(Q).
A consequence of Weyl’s lemma [AIM09, A.6.10] and continuity of u1 is that u1

is harmonic in the interior ofQ; it minimizes the Dirichlet energy among continuous
Sobolev maps u : Q → [0, 1] with boundary values u(ξ1) = 0 and u(ξ3) = 1.

We repeat the above argument for the path families �2 and �̃2. Let u2 and ũ2

denote the corresponding functions, where u2(ξ2) = 0 and u2(ξ4) = 1.
Let M = mod�1. A consequence of the Riemann mapping theorem is that Mu2

is a harmonic conjugate of u1 and the restriction of f = (u1,Mu2) to the interior
of Q is conformal. The map extends as a homeomorphism to the boundary ∂Q.

Let f̃ = (ũ1,Mũ2). Then f = f̃ ◦ πN by construction. Since f is bijective, this
implies that the restriction of πN to Q is a homeomorphism.

Since ∂Q does not intersect E, there is a Jordan neighborhood U ⊃ Q such that
πN|U is a homeomorphism and U ∩ E = Q ∩ E (Proposition 3.8). Let h denote the
inverse of πN |U.

We claim that h ∈ N1,2
loc (πN(U),U). Since πN is locally bi-Lipschitz in

the complement of E and E ∩ U ⊂ int(Q), it suffices to verify that h|V is an
element of N1,2

loc (V,U), where V = πN(int(Q)). This regularity follows readily since
the restriction of f to the interior of Q is locally bi-Lipschitz, f̃ is an element
of N1,2(πNQ, [0, 1]× [0,M]), and h = f−1 ◦ f̃ in V . Now the outer dilatation bound
KO(h)≤1 follows from Lemma 3.10 and the change of variables formula for πN .�

Remark 4.4. Given an admissible norm field N = σ‖ · ‖2, the equalities
mod�1 = mod �̃1 and mod�2 = mod �̃2 in Proposition 4.3 hold if and only if

(4.2) mod �̃1 mod �̃2 ≤ 1.

Furthermore, if (4.2) holds, Proposition 4.3 implies that a 1-quasiconformal home-
omorphism ϕ : πN(Q) → D exists. Conversely, if such a homeomorphism ϕ exists,
the inequality (4.2) follows.

Proposition 4.3 is related to a question posed by Rajala in [Raj17]. Rajala asks
whether the reciprocal upper bound (2.8) implies that points have zero modulus in
the sense of (2.9). Proposition 4.3 verifies this for admissible normfields N = σ‖·‖2

satisfying the sharp upper bound (4.2).

4.2 Proof of Theorem 1.3. Let E ⊂ R2 be removable for conformal
mappings. We want to prove that for any domain� ⊃ E and admissible norm field

N : �× R
2 → [0,∞)

vanishing exactly on E, the quotient space (�/EN, d̃N) is reciprocal.
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As shown in Lemma 4.1 and Lemma 4.2, we only need to consider the case
where � = R

2 and N = σ‖ · ‖2.
Let R = [a, b] × [c, d] be a rectangle whose interior contains E. Let

ξ1 = {a}×[c, d], ξ2 = [a, b]×{c}, ξ3 = {b}×[c, d], and ξ4 = [a, b]×{d}.

Let �1 = �(ξ1, ξ3;R) and �2 = �(ξ2, ξ4;R).
Let �̃1 denote the family of paths joining πNξ1 to πNξ3 in πNR and �̃2 the

family of paths joining πNξ2 to πNξ4 in πNR. We claim that mod �̃1 = mod�1 and
mod �̃2 = mod�2. Proposition 4.3 then implies that πN is 1-quasiconformal in the
interior of R. Since R is an arbitrary rectangle containing E, it then follows that πN

is globally 1-quasiconformal.
Observe that the inequalities mod �̃1 ≥ mod�1 and mod �̃2 ≥ mod�2 hold in

general by Proposition 3.11. Thus we only need to verify the opposite inequalities.
A standard fact is that there is a sequence of finitely connected domains

�k ⊂ R
2 \ E

such that �k ⊂ �k+1 for all k ∈ N, each component of ∂�k is a closed analytic
Jordan path, and

⋃∞
k=1�k = R

2 \ E. We assume without loss of generality that
∂R ⊂ �1.

For each n ∈ N, there exists a conformal embedding ϕn : �n → R
2 normalized

as

ϕn(z) = z +
a1,n

z
+

a2,n

z2 + · · ·
near ∞ such that the real part of a1,n is the smallest among all conformal embed-
dings ψ : �n → R

2 of the form

(4.3) ψ(z) = z +
a1

z
+

a2

z2
+ · · · .

See for example Section V.2 of [Gol69].
For each n ∈ N, the minimizer ϕn is unique and its image is a domain Un ⊂ R2

whose complement consists of finitely many line segments parallel to the vertical
axis.

For each n ∈ N, the minimality of the real part of a1,n implies that

0 ≥ Re(a1,k) ≥ Re(a1,n)

for each k ≥ n. Hence the mappings ϕk|�n : �n → R2, k ≥ n, form a normal
family. See the proof of Theorem 1 of [Gol69, Section V.2] for details. A diagonal
argument then implies that (ϕn)∞n=1 is a normal family. Thus every subsequence
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of (ϕn)∞n=1 has a further subsequence converging uniformly on compact sets to a
conformal map f : R2 \ E → R

2 satisfying the normalization (4.3) around ∞. By
the removability of E, the map extends to a Möbius transformation, and thus (4.3)
implies that f (z) = z for all z ∈ R

2. Hence the sequence (ϕn)∞n=1 itself must converge
to the identity map uniformly on compact sets in R2 \ E.

Let Qn denote the quadrilateral bounded by the Jordan curve ϕn(∂R). The
quadrilaterals Qn converge to R with respect to Hausdorff distance as n → ∞.
Let π1 and π2 denote projection onto the x-axis and y-axis, respectively, and let

an = supπ1(ϕn(ξ1)), bn = infπ1(ϕn(ξ3)),

cn = infπ2(ϕn(ξ2)) dn = supπ2(ϕn(ξ4)).

Let Rn = [an, bn] × [cn, dn] and Ên = R2 \ ϕn(�n). Observe that Ên consists of
finitely many vertical slits. Moreover, the sets Ên converge to E in the Hausdorff
distance as n → ∞.

There exists n0 such that for all n ≥ n0, the slits Ên are contained in the interior
of Rn, and 0 < bn − an and 0 < dn − cn. Fix such an n. We claim that

(4.4) mod �̃1 ≤ dn − cn

bn − an
.

Consider the function ρn : R2/EN → [0,∞] defined as zero in the complement of
πN(�n), and otherwise by

ρn =
(( χRn\̂En

bn − an
◦ ϕn

)
· J−1/2

ϕn

σ

)
◦ (πN|�n)

−1.

We claim that ρn is admissible for �̃1. Let γ ∈ �̃1 be locally rectifiable with respect
to d̃N .

We consider the restriction of γ to the set I = γ−1(πNϕ
−1
n (Rn \ Ên)). We have∫

γ
ρn ds

˜dN
≥

∫
I
(ρn ◦ γ) · vγ dL1.

The function θ = ϕn ◦ (πN|�n+1)
−1 ◦ γ|I is well-defined and satisfies∫

I
(ρn ◦ γ) · vγ dL1 =

∫
I

( χRn\̂En

bn − an
◦ θ

)
· vθ dL1.

Since Ên consists of finitely many vertical slits, we conclude using the area formula
for paths and the projection onto the x-axis that∫

I

( χRn\̂En

bn − an
◦ θ

)
· vθ dL1 ≥ 1

bn − an
L1(|π1 ◦ θ|) ≥ 1.
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Therefore ∫
γ
ρn ds

˜dN
≥ 1,

and we conclude that ρn is admissible. The change of variables formulas for πN

and ϕn yield that ∫
R2/EN

ρ2
n dH2

˜dN
=

dn − cn

bn − an
.

This verifies (4.4). Finally, observe that dn − cn → d − c and bn − an → b − a
as n → ∞. This shows that

mod �̃1 ≤ d − c
b − a

= mod�1.

A similar argument, using conformalmappings onto horizontal slit domains, shows
that mod �̃2 ≤ mod�2. This completes the proof.

4.3 An extension of Theorem 1.3 to integrable norm fields. In this
section, we extend Theorem 1.3 to the case of lower semicontinuous norm fields N
with locally bounded distortion such that L(N) ∈ Lp

loc(�) for some p ∈ (2,∞).
We assume that N vanishes exactly on a compact set E ⊂ � that is removable for
conformal mappings.

For this section,we allow the possibility forNx to be infinite at some points x∈�.
To say this more precisely, in the definition of seminorm in Section 2.3, we consider
a seminorm to be a function S : R2 → [0,∞] satisfying the same assumptions listed
there, following the convention that 0 · ∞ = 0. An admissible norm field is now a
function N : �× R2 → [0,∞] satisfying the conditions of Definition 3.1, except
that local boundedness of N is now replaced by the assumption that L(N) ∈ Lp

loc(�).
Observe that the local boundedness of the distortion then implies that if Nx(v) = ∞
for some v ∈ R

2 \ {0}, then Nx must have the form

Nx(v) =

⎧⎨
⎩∞ if v �= 0,

0 if v = 0.

In particular, ω(Nx) = L(Nx) = ∞. Note also that the minimal stretching ω(N) is
lower semicontinuous, and that Lemma 3.3 remains true for x ∈ �withω(Nx)<∞.

We define the pseudodistance dN exactly as in Definition 3.2. Then for every
x, y ∈ � and any absolutely continuous path γ : [0, 1] → � joining x to y,

(4.5) dN(x, y) ≤
∫ 1

0
(N ◦ Dγ) dL1 ≤

∫
γ
L(N) ds‖·‖2.

Given z ∈ �, for each x ∈ � we let uz(x) = inf
∫
γ L(N) ds, the infimum taken

over all absolutely continuous paths joining z to x in �. Then x �→ uz(x) defines a



QUASICONFORMAL GEOMETRY AND REMOVABLE SETS 157

locally Hölder continuous function [HKST15, Theorems9.3.1, 9.2.14] havingL(N)
as a locally Lp-integrable upper gradient. The Hölder exponent depends only
on p, and the local Hölder constant depends only on the local Lp-norm of L(N).
Moreover, (4.5) yields that

(4.6) dN(x, y) ≤ sup
z∈�

|uz(x) − uz(y)|.

As before, we identify the two points x, y ∈ � if dN(x, y) = 0 and let X denote the
corresponding quotient space. Let π : � → X denote the associated quotient map.
The quotient distance dX on X is defined as follows: for every x, y ∈ X, we set

dX(x, y) = dN(π−1(x), π−1(y)),

observing that this is independent of the choice of element in π−1(x) and π−1(y)
and hence well-defined. The inequality (4.6) implies that π is locally Hölder
continuous with L(N) as its locally Lp-integrable upper gradient. In particular,
π ∈ N1,p

loc (�,X).
We are now ready for the main result of this section. We recall that N is assumed

to vanish on a compact set E removable for conformal mappings.

Proposition 4.5. The metric space X has locally finite Hausdorff 2-measure,

and the quotient map π is a locally quasiconformal homeomorphism. In particu-
lar, X is a quasiconformal surface.

Proof. We first prove that π is a homeomorphism. To this end, let σ(z) = ω(Nz)
and N̂z = σ(z)‖ · ‖2 for every z ∈ �. For each k ∈ N, we define the function
σk : � → [0,∞) by

σk(z) = min{σ(z), k}.
Each function σk is bounded and lower semicontinuous in �, and σk(z) = 0 if and
only if σ(z) = 0. For every z ∈ �, the sequence (σk(z))∞k=1 is non-decreasing and
converges to σ(z).

Let Nk = σk‖ · ‖2 and dk = dNk . Since Nk is bounded and lower semicon-
tinuous, Theorem 1.3 implies that πk : � → (�, dk) defined by πk(z) = z is a
1-quasiconformal homeomorphism. Since Nk ≤ ω(N)‖ · ‖2 ≤ N everywhere, we
see that

dk(πk(x), πk(y)) ≤ dX(π(x), π(y))

for all x, y ∈ �. Since πk is a homeomorphism, we see that π is injective. Now the
mapψk : X → (�, dk) definedbyψk = πk◦π−1 is 1-Lipschitz, henceπ−1 = π−1

k ◦ψk

is continuous. Therefore π is a homeomorphism.
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Recall that N has locally bounded distortion. From this and the fact that, for
every x ∈ X, π−1(BX(x, r)) is compact for sufficiently small r > 0, we see that the
induced distances dN and d

̂N are locally bi-Lipschitz equivalent. We assume from
this point onwards, without loss of generality, that N = N̂ = σ‖ · ‖2.

Let �0 denote the family of paths along which σ = L(N) fails to be integrable.
Since σ ∈ Lp

loc(�) ⊂ L2
loc(�), the family �0 has zero modulus. The inequality

dX ≥ dk and Lemma 3.7 imply that for any absolutely continuous path θ in �

�dX (π ◦ θ) ≥ lim
k→∞ �dk(ψk ◦ θ) = lim

k→∞ �Nk(θ) = �N(θ),

where the latter equality follows from monotone convergence. If θ �∈ �0, we have
�N(θ) <∞ and the definition of dX implies �dX (π ◦ θ) ≤ �N(θ). So

�dX (π ◦ θ) = �N(θ).

Since the equality �dX (π ◦ θ) = �N(θ) holds outside the negligible family �0, the
norm field N is the approximate metric differential of πN ; see [LW18, Sections 3.3
and 3.4]. Consequently, L(N) = σ is a minimal weak upper gradient of πN and
J2(N) = σ2 the Jacobian of πN . Since we also have that π ∈ N1,p

loc (�,X) for p > 2, it
satisfies Lusin’sCondition (N) [Vod00, Theorem7.1]. Therefore, for each compact
set K ⊂ �,

H2
X(π(K)) =

∫
K
σ2 dL2 < ∞.

We conclude that X has locally finite Hausdorff 2-measure. An application of
Theorem 2.6 yields that KO(π) = 1.

The proof is complete after we verify KO(π−1) = 1. Since πk is 1-quasicon-
formal for every k, it suffices to verify KO(ψk) = 1 for some k. To this end, we fix
an arbitrary k ∈ N and recall that ψk is 1-Lipschitz.

Since πk is a quasiconformal homeomorphism, it satisfies Lusin’s Condi-
tion (N−1). This implies that the map π−1 satisfies Lusin’s Condition (N). As
a consequence, the Jacobian of ψk coincides with ρ2

k for ρk = ((σk/σ)χ�\E) ◦ π−1.
Since ψk is Lipschitz, we have ψk ∈ N1,2

loc (X, (�, dk)). We claim that any
minimal weak upper gradient of ψk coincides with ρk almost everywhere in X. If
we verify this, then KO(ψk) = 1 follows from Theorem 2.6.

Consider an absolutely continuous path γ : [0, 1] → X with |γ| ⊂ X \ π(E).
Thenψk ◦γ is absolutely continuous, and since dk and ‖·‖2 are locally bi-Lipschitz
equivalent in a neighborhood of the image of θ = π−1

k ◦ ψk ◦ γ, the path θ is
absolutely continuous with respect to ‖ · ‖2. Then, by monotone convergence and
Lemma 3.7 applied to each dn,

�N(θ) = lim
n→∞ �Nn(θ) = lim

n→∞ �dn(ψn ◦ γ).
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Since every ψn is 1-Lipschitz,

lim
n→∞ �dn(ψn ◦ γ) ≤ �dX (γ).

Therefore �N(θ) ≤ �dX (γ) < ∞, and, by the construction of dX, �dX (γ) ≤ �N(θ).
Since �N(θ) = �dX (γ) holds for every subpath of γ, we see that

vγ = N ◦ Dθ = (σ ◦ θ) · vθ and vψk◦γ = (σk ◦ θ) · vθ
almost everywhere in the domain of γ. We conclude from this that

(4.7) vψk◦γ = (ρk ◦ γ) · vγ
almost everywherewith respect to the length measure of γ. If �̃0 denotes the family
of absolutely continuous paths in X that have positive length on the set π(E), then
H2

X(π(E)) = 0 implies mod �̃0 = 0. The equality (4.7) remains valid for every
absolutely continuous path γ �∈ �̃0. Indeed, for any such path γ : [a, b] → X, the
set γ−1(π(E)) is a compact set having vγL1-measure zero. This observation and
the fact that (4.7) holds on compact intervals contained in [a, b] \ γ−1(π(E)) yield
the validity of (4.7). Since (4.7) is valid for every γ outside a negligible family, ρk

is a minimal weak upper gradient of ψk. �

Remark 4.6. The norm field N = σ‖ · ‖2 defined by the weight

σ(x) = ‖x‖−1
2 (1 − log ‖x‖2)

−1 ∈ L2(D)

induces a complete hyperbolic metric on the punctured disk of radius e. In par-
ticular, the origin is at infinite distance from any other point. Consequently, the
assumption p > 2 in Proposition 4.5 cannot be relaxed to p = 2.

5 Reciprocal implies removable

This section is dedicated to a proof of Theorem 1.4. Recall that we consider a
compact set E ⊂ � for which � \ E is connected, together with the norm field N

defined by Nx = min{1, d‖·‖2(E, x)
p}‖ · ‖2 for some p > max{dimH E − 1, 0}.

The norm field N induces a decomposition EN of �, a metric d̃N on �/EN , and a
quotient map π : � → (�/EN, d̃N), as described in Section 3.

5.1 Decay of the norm field near E. The following lemma states that
if N decays to zero sufficently fast near E, then each component of E collapses to
a point under the quotient map πN .
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Lemma 5.1. Let

Nx = min{1, d‖·‖2(x,E)p}‖ · ‖2.

For all p > max{dimH E − 1, 0}, H1
˜dN

(πN(E)) = 0. Consequently, the preimage of

every x ∈ πN(E) is a connected component of E.

Proof. Let p > dimH E − 1 and let ε > 0. By the definition of Hausdorff
dimension, there exists δ > 0 and a countable collection of sets A = {Aj} such that

E ⊂ ⋃
j

Aj, diam‖·‖2 Aj ≤ δ for all j,

and ∑
j

(diam‖·‖2 Aj)
p+1 < ε.

Without loss of generality, wemay assume thatAj∩E �=∅ for all j. Letdj =diam‖·‖2Aj.
Thus Aj ⊂ B‖·‖2 (y, dj) for some y ∈ E. By integrating N over the straight-line path
from y to a point z ∈ Aj, it follows that

dN(y, z) ≤
∫ dj

0
tp dt =

dp+1
j

p + 1
.

Thus
diamdN Aj ≤ 2(p + 1)−1dp+1

j < 2(p + 1)−1δp+1,

and
∑

j diamdN Aj < 2(p + 1)−1ε. This is sufficient to show that H1
˜dN

(πN(E)) = 0.

Next, let x ∈ πN(E). Proposition 3.8 implies that π−1
N (x) is a subset of a

connected component F of E. Since πN(F) is a connected, compact subset of
πN(E), we have that

diamπN(F) ≤ H1
˜dN

(πN(F)) ≤ H1
˜dN

(πN(E)) = 0.

Hence πN(F) = x and we must have F = π−1
N (x). �

5.2 Proof of Theorem 1.4. We first observe that if (�/EN, d̃N) is recipro-
cal, then the space formed by taking the same set E and the same definition for N,
but applied to all points x ∈ R

2, is also reciprocal. Thus the choice of domain �
is not relevant for the proof, and we assume for the remainder of the section that
� = R2.

We prove the contrapositive: if E is not removable for conformal mappings,
then (R2/EN, d̃N) is not reciprocal.
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Let E ⊂ R
2 be a set that is not removable for conformal mappings. As

a consequence of Proposition 2.9, there is a compact set Ê ⊂ R
2 of positive

Lebesgue measure and a conformal map f : R2 \ Ê → R
2 \ E whose extension

to R̂
2 \ Ê fixes ∞. Let N̂ = χ

R2\̂E‖ · ‖2 and let π̂ : R2 → (R2/E
̂N, d̃̂N) be the

associated quotient map. Observe that N̂ is an admissible norm field vanishing on
the set Ê.

The following lemma states that f extends to a mapping of the respective
quotient spaces. For brevity, let Ŷ = R2/E

̂N and Y = R2/EN .

Lemma 5.2. The map f : R2 \ Ê → R
2 \ E induces a continuous monotone

map f̂ : Ŷ → Y. That is, there is a monotone map f̂ : Ŷ → Y satisfying

f̂ ◦ π̂(x) = πN ◦ f (x)

for all x ∈ R2 \ Ê.

Proof. Let y ∈ Ŷ , and let F̂ denote its preimage under π̂. If F̂ = {x} for some
point x /∈ Ê, then we set f̂ (y) = πN ◦ f (x).

Otherwise, F̂ is a subset of some component Â of Ê. For all m ∈ N, let γ̂m be a
Jordan path with image contained in B‖·‖2(Â, 1/m) \ Ê that separates Â and infinity.
The curve |γ̂m| is the boundary of a closed region Âm containing Â. We assume
without loss of generality that |γ̂m+1| ⊂ Âm for all m.

By assumption, γm = f ◦ γ̂m is a Jordan loop whose image bounds a compactly
contained domain Am. Let A =

⋂
m Am. It is immediate that A is nonempty and

compact. The intersection is also connected; see for example Section 28 of [Wil70].
This implies that A is a connected component of E. Therefore πN(A) is a point by
Lemma 5.1. We define f̂ (y) = πN(A).

We now check that f̂ is continuous. Let y ∈ Ŷ and let (yn) be a sequence in Ŷ
converging to y. Let F̂n = π̂−1(yn). In the case that F̂ = {x} for some x /∈ Ê, the
continuity is obvious. Otherwise, we proceed as follows. For each fixed m ∈ N,
Fn ⊂ Âm for sufficiently large n. This implies that f̂ (yn) ⊂ πN(Am). Therefore
the accumulation points of f̂ (yn) are in the intersection of πN(Am). Since the
intersection equals πN(A), the sequence f̂ (yn) converges to πN(A) = f̂ (y). The
continuity follows.

By construction, the preimage of a point in R
2/E under π̂ ◦ f̂ is either a single-

point set or a component of Ê. We conclude that f̂ is monotone. �
Let R = [a, b]×[c, d] ⊂ R

2 be a rectangle whose interior contains Ê. Let�1 de-
note the family of paths γt : [a, b] → R2, where t ∈ [c, d], defined by γt(s) = (s, t).
Thus �1 is a foliation of R by horizontal paths. Let �2 denote the corresponding
foliation of R by vertical paths.
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Next, let Q be the Jordan domain bounded by f (∂R), and let ξ1, ξ2, ξ3, ξ4 denote,
respectively, the image of the left, bottom, right, and top side of R. Let �̃1 denote
the family of paths joining πNξ1 to πNξ3 in πNQ and �̃2 the family of paths joining
πNξ2 to πNξ4.

By Lemma 4.2, it suffices to show that Y is not 1-reciprocal. Thus the proof is
complete after we verify the inequalities

(5.1) 1 < mod π̂�1 mod π̂�2

and

(5.2) mod π̂�1 mod π̂�2 ≤ mod �̃1 mod �̃2.

Define the function P : R2 → [0,∞] by

P(x) =

⎧⎨
⎩L(Nf (x))‖Dxf‖ if x �∈ Ê,

0 if x ∈ Ê.

Since N is a weighted Euclidean norm and f is conformal in the complement
of Ê, it follows that N ◦ Dxf (v) = P(x)‖v‖2 for all v ∈ R2 and all x ∈ R2 \ Ê.

We consider the function

P̂ : R2/Ê → [0,∞]

defined by taking P̂(x) = P(π̂−1(x)). Observe that P̂ is well-defined since π̂ is
injective outside of Ê. Loosely speaking, P̂ is a weak upper gradient of f̂ .

Let ρ : f̂ (R̂) → [0,∞] be an admissible function for �̃1, and let ρ̂ = (ρ ◦ f̂ )P̂.
We first observe that

(5.3)
∫
̂R
ρ̂2 dH2

̂d
=
∫
̂f (̂R)
ρ2 dH2

˜dN
.

Indeed, the integrals are left unchangedby the removal ofπN(E) and π̂(Ê) fromboth
sides. With this reduction, the identity (5.3) follows from the Jacobian identities
Jf ≡ ‖Df‖2, Jπ̂ = χR2\E, and JπN = L2(N).

Next, we claim that ρ̂ is weakly admissible for π̂�1. Let γ̂t denote the image
under π̂ of the horizontal path γt in the quotient space R2/Ê. Lemma 3.7 implies
that

(5.4) v
̂f◦γ̂t

(s) = N ◦ Df ◦ Dγt(s) = (P̂ ◦ γ̂t(s)) · vγ̂t(s)

for L1-almost every s ∈ [a, b] \ γ−1
t (Ê) and that the total variation of γ̂t in π̂Ê

is zero. Similarly, since H1
˜dN

(πN(E)) = 0 by Lemma 5.1, the area formula
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[Fed69, Theorem 2.10.13] for paths implies that the total variation of f̂ ◦γ̂t in πN(E)
is zero. We conclude that f̂ ◦ γ̂t is absolutely continuous as long as the right-hand
side of (5.4) is integrable.

Observe that (5.3) holds with the characteristic function χ
̂f ̂R in place of ρ and P̂

in place of ρ̂. Then an application of Fubini’s theorem implies that the function
in the right-hand side of (5.4) is integrable for L1-almost every t. For such t, we
conclude from (5.4) that

1 ≤
∫
̂f◦γ̂t

ρ ds =
∫
γ̂t

ρ̂ ds.

Therefore ρ̂ is weakly admissible for π̂�1, and the equality (5.3) implies that

mod π̂�1 ≤ mod �̃1.

A similar argument applied to the path family π̂�2 gives mod π̂�2 ≤ mod �̃2. The
inequality (5.2) now follows.

To conclude the proof, we prove (5.1). Let ρ be admissible for π̂�1. Then for
all t ∈ [c, d], we have 1 ≤ ∫ d

c ρ ◦ π̂χ
R2\̂E(s, t) dt. Applying Fubini’s theorem and

Hölder’s inequality gives

d − c ≤
∫

R
ρ ◦ π̂χ

R2\̂E dL2 ≤
(∫

R
ρ ◦ π̂2χ

R2\̂E dL2
)1/2

L2(R \ Ê)1/2.

After rearranging and taking the infimum over admissible ρ, we find that

(d − c)2/L2(R \ Ê) ≤ mod π̂�1.

The analogous argument gives (b − a)2/L2(R \ Ê) ≤ mod π̂�2. Thus

1 <
(b − a)2(d − c)2

L2(R \ Ê)2
≤ mod π̂�1 mod π̂�2.

This establishes (5.1) and completes the proof.

6 Linear Cantor sets: two examples

We call a Cantor set E ⊂ R×{0} a linearCantor set. As remarked in Section 1.3,
a norm field vanishing on a linear Cantor set E of positive length may or may not be
reciprocal. For completeness, we include here two explicit examples to illustrate
both of these cases. Recall from the discussion following the statement of Theorem
1.4 that a compact setE ⊂ [0, 1]×{0} is removable for conformalmappings if there
exists an admissible norm field N vanishing on E that is reciprocal. Such a set E
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is necessarily a linear Cantor set by Proposition 3.12. Conversely, if there exists
an admissible norm field vanishing on a linear Cantor set E that is not reciprocal,
then E is not removable for conformal mappings. Versions of these examples are
already present in [AB50, Sections 6–7]. A closely related construction, and the
one that we directly based Example 6.1 on, is found in Section 11 of an early
version of the paper [Sch95].

Example 6.1. We construct a lower semicontinuous weight σ : R2 → [0,∞]
that vanishes on a Cantor set E ⊂ [0, 1] × {0} of positive length such that the
space (R2, dσ) is not reciprocal. The idea is to make E sufficiently large so that the
modulus of the path family joining (0, 0) to (0, 1) in (R2, dσ) is positive.

Identify [0, 1] with the set [0, 1] × {0} ⊂ R
2. Let a1 = 1/2, and now define

inductively sequences (aj), (bj) by the rules bj = aj/ exp(4j) and

aj+1 = (aj − bj)/2.

Let I1 be an open interval centered at t1 = 1/2 of length 2b1. Define next open
intervals Ij inductively as follows. Assume that we have a collection of disjoint
open intervals I1, . . . , Ij−1. From the complement [0, 1]\⋃j−1

k=1 Ik, choose any closed
interval Jj of largest length. Let tj be the midpoint of Jj, and let Ij be the open
interval centered at tj of length 2bj. We record the observation that

d‖·‖2(tj, {0, 1}) = min{tj, 1 − tj} ≥ aj.

Let E = [0, 1] \ ⋃
j Ij, and let σ = χR2\E. This yields a corresponding metric dσ

onR2. Note that the metric dσ agreeswith the Euclidean metric locally outside of E.
Thus the Hausdorff 2-measure relative to dσ coincides with Lebesgue 2-measure.
Also, observe that the Lebesgue 1-measure of [0, 1] \ E is at most

∑∞
j=1 2bj < 1.

Consider now an interval Ij. For all t ∈ (tj − aj, tj − bj), let γj,t be the path
that connects t to 2tj − t along the upper semicircle of the circle centered at tj
with radius tj − t. Let �j be the family of all such paths γj,t. Observe that �j

is a full-modulus subfamily of the family of paths in the upper half-plane H that
separate the sets B‖·‖2 ((tj, 0), bj) and H \ B‖·‖2 ((tj, 0), aj).

Since the metric speed of γ ∈ �j with respect to Euclidean distance and with
respect to dσ coincide almost everywhere along γ, the modulus of �j with respect
to the metric dσ equals the Euclidean modulus: modπσ�j = log(aj/bj)/π. See for
example [Hei01, Lemma 7.18].

We claim that the metric dσ violates the reciprocality condition (2.9). Let
F1 = {(0, 0)} and F2 = {(1, 0)} and let � = �(F1,F2;R2). Recall the notation
�(F1,F2;G) defined in Section 2.5.
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Observe that � is a subfamily of �(F1,R
2 \ D;R2), which is majorized by the

annular path families �(B‖·‖2(0, ε),R
2 \ D;R2) for all ε > 0. In particular,

modπσ�(B‖·‖2(0, ε),R
2 \ D;R2) ≥ modπσ�

for all ε > 0. Thus it is sufficient to show that modπσ� > 0.
Let ρ be an admissible function for � for the metric dσ. For each j ∈ N, let

mj = inf{∫γ ρ dsσ : γ ∈ �j}. If mj > 0, this implies that ρ/mj is admissible for the
path family �j, and thus that

(6.1)
∫
R2

ρ2

m2
j

dH2
σ ≥ mod�j =

log(aj/bj)
π

.

For each j ∈ N, let γj be a path in �j such that
∫
γj
ρ dsσ ≤ max{2mj, 2−j−1}. For

each i ∈ N, we define ηi : [0, 1] → R2 by

ηi(t) = (t, θi(t)),

where θi(t) = sup1≤j≤i π2(|γj| ∩ ({t} × R)). Here, π2 denotes projection onto the
vertical axis and the supremum over the empty set is meant to be zero. Observe
that ηi ∈ �.

Let θ(t) = limi→∞ θi(t), and observe for every t ∈ (0, 1) \ E, θ(t) > 0 since for
each j the projection of |γj| to the x-axis covers the interval Ij. We set η(t) = (t, θ(t))
for 0 ≤ t ≤ 1, and note that

�σ(η) ≤ lim inf
i→∞ �σ(ηi) ≤

∞∑
j=1

�‖·‖2(γj) ≤
∞∑
j=1

πaj ≤ π.

Consequently, η is dσ-rectifiable, and

1 ≤
∫
η
ρ dsσ ≤

∞∑
j=1

∫
γj

ρ dsσ ≤
∞∑
j=1

max{2mj, 2
−j−1}.

From the identity
∑∞

j=1 1/2j = 1, it follows that mj ≥ 1/(2j+1) for some j ∈ N. This
together with (6.1) gives

1
2j+1

≤ mj ≤
( π

log(aj/bj)

)1/2
(∫

R2
ρ2 dH2

‖·‖2

)1/2

=
(π

4j

)1/2
(∫

R2
ρ2 dH2

‖·‖2

)1/2

.

This yields the lower bound

1
4π

≤
∫
R2
ρ2 dH2

‖·‖2
.

We conclude that (R2, dσ) is not reciprocal.
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Example 6.2. We construct a lower semicontinuous weight σ : R2 → [0,∞]
that vanishes on a Cantor set E ⊂ [0, 1]×{0} of positive length such that the space
(R2, dσ) is reciprocal.

Consider the quadrilateral Q = [0, 1] × [−1, 1]. Let � be the family of paths
in Q connecting the left and right edges of Q.

Fix for the time being a value t ∈ (0, 1/2). Let

I = [t, 1 − t] × {0} ⊂ (0, 1) × {0}
andσ1 = χR2\I , noting thatσ1 vanishes on the set I. LetE1 denote the decomposition
of R2 corresponding to I. The weight σ1 determines a metric d̃σ1 on R2/E1 that is
not reciprocal. Let πσ1 denote the associated quotient map. The metric d̃σ1 , like
all other metrics in this example, agrees with the Euclidean metric locally outside
of πσ1 (I), and the Hausdorff 2-measure relative to the metric d̃σ1 coincides with
Lebesgue measure.

Let ρ̃ be an admissible function forπσ1�with respect to the metric d̃σ1 satisfying∫
R2/E1

ρ̃2 dH2
˜dσ1

≤ 2 modπσ1�.

Since the function
g̃ =

χ[0,t)×[−1,1] + χ(1−t,1]×[−1,1]

2t
is admissible for πσ1�, it follows that

(6.2)
∫
R2/E1

ρ̃2 dH2
˜dσ1

≤ 2
∫
R2/E1

g̃2 dH2
˜dσ1

=
2
t
.

Let ρ = χQ + ρ̃ ◦ πσ1 .
For all n ∈ N and i ∈ {1, . . . , n}, let ϕn

i denote the similarity mapping of R2

taking I to the interval [(i − 1 + t)/n, (i − t)/n]. Explicitly,

ϕn
i (x) = x/n + ((i − 1)/n, 0).

Let In =
⋃n

i=1 ϕ
n
i (I) and let En denote the corresponding decomposition of R2. Let

σn = χR2\In , and d̃σn the resulting metric on R
2/En.

Let ρn
i = ρ ◦ (ϕn

i )
−1. Define now the function ρn : Q → [0,∞] by

ρn(x) =

⎧⎨
⎩ρ

n
i (x) if x ∈ ϕn

i ((0, 1) × [−1, 1]) for some i ∈ {1, . . . , n},
1 otherwise.

For all x ∈ πσn(Q), we define ρ̃n(x) = ρn(π−1
σn

(x)). We claim that ρ̃n is admissible
for πσn� with respect to the metric d̃σn .
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Consider an arbitrary path γ ∈ πσn�. For each i ∈ {1, . . . , n}, let

Qn
i = [(i − 1)/n, i/n] × [−1, 1],

and let γn
i be a subpath of γ that traverses Qn

i horizontally. It suffices to show that∫
γn

i

ρnσn ds‖·‖2 ≥ 1/n.

If γn
i does not intersect In, then this is clear since ρn

i ≥ 1 on Qn
i \ In. If γn

i is
contained in ϕn

i (Q), then this is also immediate by the admissibility of ρ̃. Finally,
if γn

i intersects both In and Qn
i \ϕn

i (Q), then γn
i must travel a vertical distance of 1/n,

and again the conclusion follows. We conclude that ρn is admissible for � with
respect to the metric dσn .

Next, we have the upper bound

(6.3)
∫

Q
ρ2

n dL2 ≤
∫

Q
1 dL2 +

n∑
i=1

∫
Qn

i

(ρn
i )

2 dL2 ≤ 2 +
‖ρ‖2

L2(Q)

n
.

Observe that 2 = mod�. Thus, by taking n to be sufficiently large, the modulus
of πσn� with respect to d̃σn becomes arbitrarily close to the Euclidean modulus.

We can now define the Cantor set E as follows. For a given t ∈ (0, 1/2) and
n ∈ N, let I(t), In(t) and σn(t) denote respectively the sets I and In and the weight σn

constructed above. For all j ∈ N, let tj = 2−j−2, observing that L1(I(tj)) = 1 − 2tj.
Let σ̃j = σnj(tj). By choosing nj sufficiently large, we can guarantee that

L1(Inj(tj) ∩ Inj−1(tj−1)) ≥ (1 − 4tj)L
1(Inj−1(tj−1))

and that modπσ̃j� ≤ 2 + 1/j by applying (6.2) and (6.3). Inductively choosing nj

in this manner, we have

L1
( j⋂

i=1

Ini(ti)
)

≥
j∏

i=1

(1 − 4ti) =
j∏

i=1

(1 − 2−i).

Let E =
⋂∞

j=1 Inj(tj) and let σ = χR2\E, yielding the metric dσ on R2. Then

L1(E) =
∞∏
j=1

(1 − 2−j) > 0.

Moreover, σ ≥ σ̃j for all j ∈ N. This fact, combined with Theorem 2.6, yields
that 2 ≤ modπσ� ≤ modπσ̃j� for all j∈N. We conclude that modπσ�=2=mod�.

Let �∗ denote the family of paths connecting the bottom and top edges of Q.
It is clear that the function ρ∗ = (1/2)χπσQ is admissible for πσ�∗ with respect to
the metric d̃σ. Thus modπσ�∗ = 1/2 = mod�∗. By Proposition 4.3, this suffices
to show that d̃σ is reciprocal.
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7 Factoring quasiconformal mappings

The goal of this section is to prove Proposition 1.5 and Theorem 1.6. To prepare
for this, we first give in Section 7.1 an overview of isothermal quasiconformal
mappings. See [Iko22] for a more complete treatment. Section 7.2 gives the proof
of Proposition 1.5. This is followed by a discussion in Section 7.3 of the problem
of optimizing the distortion constant in 1.5. Finally, in Section 7.4, we prove
Theorem 1.6.

7.1 Isothermal parametrizations. Let X be a quasiconformal surface.
By Theorem 6.2 in [Iko22], there exists a complete Riemannian surface Y of
constant curvature and a quasiconformal map

ψ : Y → X

with minimal pointwise distortion at almost every point: for every other Rieman-
nian surface Z and quasiconformal map ϕ : Z → X, the inequality

(7.1) (gψ · (gψ−1 ◦ψ)) ◦ (ψ−1 ◦ ϕ) ≤ gϕ · (gϕ−1 ◦ ϕ)
holds H2

Z-almost everywhere on Z. Recall that gψ and gψ−1 refer to the minimal
weak upper gradients of ψ and ψ−1, respectively. In this case, we say that (Y, ψ)
is an isothermal parametrization of X. By Theorem 6.2 and Lemma 4.10 of
[Iko22], any isothermal parametrization ψ is quasiconformal with outer dilatation
KO(ψ) at most 4/π and inner dilatation KI(ψ) at most π/2. Also, the pointwise
distortion of ψ is bounded from above by

√
2 H2

Y -almost everywhere.
We elaborate on the meaning of (7.1) in the case when X = (R2, dN) for some

norm N. Then we can take Y = R
2 and ψ to be a linear map

ψ : R2 → (R2, dN)

such that gψ = L(N ◦ ψ) and gψ−1 = ω(N ◦ ψ)−1. Recall that L and ω denote,
respectively, the maximal and minimal stretching, defined in (2.3) and (2.4).

The inequality (7.1) implies that, for all other linear maps ϕ : R2 → (R2,N),
we have

(7.2)
L(N ◦ψ)
ω(N ◦ψ)

≤ L(N ◦ ϕ)
ω(N ◦ ϕ) .

In terms of the distortion of a norm defined in (2.5), the inequality (7.2) implies
that N ◦ ψ has the smallest possible distortion among such pairs ψ and ϕ. This
can be phrased in terms of the Banach–Mazur distance in convex geometry; see
[Rom19] and [Iko22, Section 4].



QUASICONFORMAL GEOMETRY AND REMOVABLE SETS 169

An isothermal parametrization of a quasiconformal surface is essentially unique.
This is also part of the content of Theorem 6.2 of [Iko22], partially quoted here.

Theorem 7.1 ([Iko22]). Let ψ : Y → X be an isothermal parametrization
of X, and ϕ : Z → X a quasiconformal map from a Riemannian surface Z onto X.

Then ϕ is isothermal if and only if ψ−1 ◦ ϕ is a conformal diffeomorphism.

Let N be an admissible reciprocal norm field onR
2 that vanishes on the compact

set E ⊂ R2. The following lemma is a consequence of Theorem 4.12 of [Iko22].

Lemma 7.2. The identity map ι : R2 → (R2, dN) is isothermal if and only if

(7.3)
L(Nx)
ω(Nx)

≤ L(Nx ◦ ϕ)
ω(Nx ◦ ϕ)

for all ϕ ∈ GL2, for L2-almost every x ∈ R2.

Observe that (7.3) is satisfied by the norm Nx = ‖ · ‖∞, and more generally by
any norm Nx whose unit ball is a square [TJ89, Proposition 37.6]. Thus Lemma
7.2 has the following corollary.

Corollary 7.3. Suppose that N is reciprocal and that the unit ball of Nx is a

square for L2-almost every x ∈ R
2. Then the identity map ι : R2 → (R2, dN) is

isothermal.

7.2 Proof of Proposition 1.5. Recall that we are assuming that N is a
reciprocal norm field such that πN : � → (�, dN) is isothermal, and that N is
continuous outside the set E = {x ∈ � : Nx = 0}.

Let G be a complete Riemannian norm field on � of constant Gaussian cur-
vature −1 or 0, which exists by the classical uniformization theorem. This norm
field is of the form G = σ‖ · ‖2 for some smooth positive function σ. Consider the
norm field

M = χ�\E
σ

ω(N)
N + χEG.

The function 1/ω(N) is continuous in � \ E due to the continuity of N outside E.
The distortion bound on N implies that M is a lower semicontinuous norm field
satisfying G ≤ M ≤ HG everywhere.

Let d̂ = dM denote the distance induced by M. Then

dG ≤ d̂ ≤ HdG,

so the identity map P = πM : (�, dG) → (�, d̂) satisfies (1.3) and in particular is
H-bi-Lipschitz. Lemma 3.5 states that the metric differential of P coincides with M
L2-almost everywhere.
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The proof is complete after we show that ι̂ = πN ◦ P−1 is 1-quasiconformal.
Recall that the metric derivatives of πN and P coincide with N and M, respectively.
The 1-quasiconformality is equivalent to proving that for L2-almost every x ∈ �,
the distortion of the identity map from (R2,Mx) to (R2,Nx) equals one L2-almost
everywhere [Iko22, Corollary 5.3].

Observe that, by the change of variables formula Lemma 3.6 and the Lusin’s
Condition (N−1) of πN , the set E has zeroL2-measure, so we only need to check the
pointwise distortion in the complement of E. Here the claim is immediate, since
Mz = σ(z)Nz/ω(Nz) for every z ∈ � \ E. We conclude that ι̂ is 1-quasiconformal.

7.3 Remarks on optimal distortion. We discuss the question of when
the optimal constant H =

√
2 in (1.3) in Proposition 1.5 can be achieved. We

recall that any planar quasiconformal mapping f : � → �̂ is a solution of the
Beltrami equation fz = μfz, where μ : � → C is a measurable function satisfying
‖μ‖∞ < 1. Conversely, the measurable Riemann mapping theorem provides a
homeomorphic solution to the Beltrami equation for any such μ. The function μ
is called the Beltrami coefficient. Geometrically, the choice of a Beltrami
coefficient corresponds to the choice of a measurable ellipse field on � modulo
rescaling of the ellipses. See Chapter 5 of [AIM09] for an overview of the topic.

Given a reciprocal norm field N̂ on a domain �̂ ⊂ R
2, one obtains an ellipse

field on �̂ by associating to each norm N̂x its distance ellipse, that is, the unique
ellipse E ⊂ B

̂Nx
(0, 1) having minimal λ ≥ 1 such that B

̂Nx
(0, 1) ⊂ λE. This in turn

gives a Beltrami coefficientμ
̂N corresponding to N̂. We refer the reader to [Iko22,

Section 4] for more details.

This choice of ellipse field also determines an underlying Riemannian struc-
ture on the metric space (�̂, d

̂N). A consequence of the classical slit domain
uniformization theorem [AS60, Section III.4] and [Iko22, Theorem 1.3] is the
existence of a domain� ⊂ R

2 and a locally quasiconformal map ψ : � → �̂ such
that f̂ = π

̂N ◦ ψ is isothermal. Consider the distance d(x, y) = d
̂N(f̂ (x), f̂ (y)) on �

and the norm field N = N̂ ◦ Dψ. Then the identity map ι : � → (�, d) is isother-
mal and the metric differential of ι exists and equals N L2-almost everywhere.
If the norm field N obtained in this manner is continuous and non-zero outside
E = ψ−1({x ∈ �̂ : N̂x = 0}), then Proposition 1.5 now holds with constant H =

√
2

for the space (�, d) and hence the original space (�̂, d
̂N) as well.

The question of when the norm field N is continuous, in turn, depends upon
the regularity of the map ψ. In fact, if ψ is C1-smooth in � and N̂ is continuous,
then N is continuous and non-zero outside E. Since the map ψ arises as a solution
to the Beltrami equation, this leads to the question of regularity of solutions to the
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Beltrami equation. Indeed, if we consider a domain U compactly contained in �̂,
the restriction of ψ−1 to U solves the Beltrami equation induced by μ

̂N |U. The
C1-smoothness of ψ in U is known to hold, for example, when μ

̂N |U is C1-smooth,
locally Hölder continuous [AIM09, Theorem 15.0.7] or in W1,p

loc (U) for a large
enough p > 1 depending on the L∞-norm of μ

̂N |U [BCO19, Proposition 4].

Solutions of the Beltrami equation for μ
̂N , even when N̂ is a continuous Rie-

mannian norm field, need not always be C1-smooth. In the following, we use
complex notation z = z1 + iz2 to denote the point (z1, z2) ∈ R

2 and z = z1 − iz2

to denote the complex conjugate of z. See Section 2.4 of [AIM09] for a brief
overview of complex notation. The following example is based on Section 15.1 of
[AIM09]. Let

μ(z) =
z

z(1 + log ‖z‖2
2)

and consider the continuous Riemannian norm field N̂ on �̂ = B‖·‖2 (0, e
−1/2)

defined by N̂z(v) = ‖v + μ(z)v ‖2. Then μ(z) = μ
̂Nz
, where μ

̂Nz
is the Beltrami co-

efficient corresponding to the N̂ as described earlier in this remark. Even though N̂
is continuous, every solution for the Beltrami equation forμ

̂Nz
= μ(z) has a discon-

tinuous derivative at the origin. This is seen by considering the particular solution
g(z) = −z log ‖z‖2

2 and noticing that the differential Dg is discontinuous at the
origin. It is enough to check this property for g since, by the Stoı̈low factorization
theorem [AIM09, Theorem 5.5.1], every other quasiconformal solution is of the
form � ◦ g for some conformal diffeomorphism�.

For more general norm fields, we have the additional complexity thatμ
̂N can be

smooth even though N̂ is not. For example, consider the continuous norm field N̂
defined by N̂z(v) = ‖ei‖z‖2v ‖∞. Since the supremum norm is not C1-smooth
in R

2 \ {0}, we see that N̂ is not C1-smooth, for example by considering the
basepoint z = π/4 and the vector v = 1, even though μ

̂N = 0. The identity μ
̂N = 0

follows from Corollary 7.3.

7.4 Proof of Theorem 1.6. In this section, we present the construction
used to prove Theorem 1.6, namely of a quasiconformal surface whose isothermal
parametrization cannot be factored as a bi-Lipschitz mapping postcomposed with
a quasiconformal mapping of smaller distortion. We begin by introducing the
notation and parameters involved in Section 7.4.1. We develop various properties
of this construction in the following subsections, culminating with the proof of
Theorem 1.6 in Section 7.4.6.
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7.4.1 Notation. Let us introduce the notation used in our construction. Our
first task is to construct a sequence of nested Cantor sets, denoted by K1,K2, . . .

and satisfying K1 ⊃ K2 ⊃ · · · . There are two intermediate steps used to obtain the
sets Ki. First, we define sets Ej

i for all i, j ∈ N, j ≥ i, to serve as base collections
of squares from which the Cantor sets are taken. Each set Ej

i is the union of a
collection of congruent closed squares Qj

i(k, l) that covers almost all of [0, 1]2.
The main feature of our construction is that the squares Qj

i(k, l) have the standard
non-rotated alignment for odd values of i, while the square Qj

i(k, l) are aligned
diagonally for even values of i.

In the second intermediate step, we define inductively

Fj
i = Ej

i ∩ Fj
i−1 ∩ Fj−1

i ∩ [0, 1]2

for all i, j ∈ N, j ≥ i, with the convention that

Fj
0 = Fi−1

i = [0, 1]2

for all i, j. By taking Fi =
⋂

j F
j
i , we obtain a collection of nested Cantor sets.

However, to obtain Theorem 1.6, we need the further property that the intersection
of the Cantor sets is small. For this reason, we later define Ki to be a subset of Fi

with the property that diamKi → 0 as i → ∞.
In the following, let I = J = [0, 1] and let Q = I × J = [0, 1]2. We identify I

with the set [0, 1]×{0} and J with the set {0}× [0, 1]. Let π1 denote the standard
projection map fromR

2 onto the first coordinate axis, and let π2 denote the standard
projection map from R2 onto the second coordinate axis.

As mentioned above, the even-numbered Cantor sets are formed from squares
that are rotated by π/4 from the standard alignment. Let Q∗ denote the square with
vertices (1/2,−1/2), (3/2, 1/2), (1/2, 3/2), and (−1/2, 1/2). Let

I∗ = J∗ = [0,
√

2].

We also identify I∗ with the set [0,
√

2]×{0} and J∗ with the set {0}× [0,
√

2]. Let
ϕ : R2 → R

2 be the orientation-preserving isometry that maps [0,
√

2]2 onto Q∗

and satisfies ϕ(0, 0) = (1/2,−1/2). Explicitly,

ϕ(x, y) = (1/2,−1/2) +
1√
2
(x − y, x + y).

Thus ϕ(I∗ × J∗) = Q∗. Next, let π∗
1 denote the projection map from Q∗ onto ϕ(I∗),

and let π∗
2 denote the projection map from Q∗ onto ϕ(J∗). Explicitly,

π∗
1(x, y) = ϕ(π1(ϕ

−1(x, y)), 0) and π∗
2(x, y) = ϕ(0, π2(ϕ

−1(x, y))).
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The definition of the sets Ej
i involves three sets of parameters: εji > 0, Nj

i ∈ N,
and aj

i ∈ N. A short explanation of these parameters is the following. The first
parameter εji gives an upper bound on the proportion of area lost when passing
from one step of the construction to the next. The second parameter Nj

i gives the
number of subdivisions of the initial interval I or I∗ that are made when forming
the squares that comprise Ej

i. The final parameter aj
i corresponds to the side length

of these squares. The precise relation is that the side length of a square in Ej
i

is (1 − 2(aj
i)

−1)/Nj
i for i odd and

√
2(1 − 2(aj

i)
−1)/Nj

i for i even.

7.4.2 Constructing the sets Ej
i. For two pairs of indices (i, j) and (i′, j′),

we say that (i, j) � (i′, j′) if j < j′ or if j = j′ and i ≤ i′. The relation � gives an
ordering on the set of indices (i, j). We consider the sets Ej

i as being traversed in
this order. We also write (i, j) ≺ (i′, j′) if j < j′ or if j = j′ and i < i′. Recall that here
and throughout this proof we consider only those indices i, j ∈ N for which j ≥ i.
This ordering is illustrated in Figure 1.

E1
1 → E2

1 E3
1 · · ·

↓ ↗ ↓
E2

2 E3
2 · · ·

↓
E3

3 · · ·
. . .

Figure 1. The sets Ej
i as ordered by �.

We first choose the parameters εji > 0 so that they satisfy
∏

i,j(1 − ε
j
i) ≥ 1/2.

The factors in the product are traversed according to the ordering on {(i, j)} just
defined.

The sets Ej
i are defined for all i, j ∈ N satisfying j ≥ i in the following way.

Assume for the moment that we have made suitable choices of Nj
i , a

j
i ∈ N. In the

case that i is odd, we divide I into Nj
i equal subintervals Ij

i(k) = [(k − 1)/Nj
i , k/N

j
i ]

and J into Nj
i equal subintervals Jj

i(l) = [(l − 1)/Nj
i , l/N

j
i ]. If i is even, we divide I∗

into Nj
i equal subintervals Ij

i (k) = [
√

2(k − 1)/Nj
i ,
√

2k/Nj
i ] and J∗ into Nj

i equal
subintervals Jj

i(l) = [
√

2(l − 1)/Nj
i ,
√

2l/Nj
i ]. This yields a collection of squares

Ij
i(k) × Jj

i(l), where k, l ∈ {1, . . . ,Nj
i}. If i is odd, let Qj

i(k, l) be the square of side
length (1 − 2(aj

i)
−1)/Nj

i with the same center and alignment as Ij
i(k) × Jj

i(l). If i is
even, define Qj

i(k, l) to be the square of side length
√

2(1 − 2(aj
i)

−1)/Nj
i with the

same center and alignment as ϕ(Ij
i(k) × Jj

i(l)). In this case, the square Qj
i(k, l) is
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contained in Q∗ and is aligned diagonally. Let

Ej
i =

⋃
k,l

Qj
i(k, l).

The square Qj
i(k, l), for i odd, is given explicitly by

[(
k − 1 +

1

aj
i

) 1

Nj
i

,
(
k − 1

aj
i

) 1

Nj
i

]
×

[(
l − 1 +

1

aj
i

) 1

Nj
i

,
(
l − 1

aj
i

) 1

Nj
i

]
.

Let v j
i (k, l, 1), v j

i (k, l, 2), v j
i (k, l, 3), v j

i (k, l, 4) denote the four vertices of Qj
i(k, l),

traversed counterclockwise from the bottom left. Let wj
i(k, l) denote the center

point of Qj
i(k, l).

Similarly, the square Qj
i(k, l), for i even, is the image under ϕ of the square

(7.4)
[(

k − 1 +
1

aj
i

)√2

Nj
i

,
(
k − 1

aj
i

)√2

Nj
i

]
×

[(
l − 1 +

1

aj
i

)√2

Nj
i

,
(
l − 1

aj
i

)√2

Nj
i

]
.

Let v j
i (k, l, 1), v j

i (k, l, 2), v j
i (k, l, 3), v j

i (k, l, 4) denote the four vertices of Qj
i(k, l),

where v j
i (k, l, 1) is the image under ϕ of the bottom left vertex of the square in

(7.4) and the rest are labelled in counterclockwise order. Let wj
i(k, l) denote the

center point of Qj
i(k, l).

The values of Nj
i and aj

i are chosen inductively using the ordering �. Let N1
1 = 2

and choose a1
1 ∈ N so that L2(E1

1) ≥ 1− ε11. For the inductive step, assume that we
have chosen Nj′

i′ and aj′
i′ for some pair (i′, j′), and that

L2
( ⋂

(i′′,j′′)�(i′,j′)
Ej′′

i′′

)
≥ ∏

(i′′,j′′)�(i′,j′)
(1 − ε

j′′
i′′).

Let (i, j) denote the pair immediately succeeding (i′, j′).
Define now Nj

i = 2aj′
i′N

j′
i′ . We then choose aj

i so that

L2
( ⋂

(i′′,j′′)�(i,j)

Ej′′
i′′

)
≥ ∏

(i′′,j′′)�(i,j)

(1 − ε
j′′
i′′).

This can be done because Ej
i can be made to have arbitrarily large area in Q or Q∗,

respectively, by making aj
i sufficiently large.

We make the following observation. Fix (i, j) and consider a squareQj
i(k, l). For

all (i′, j′) such that (i, j) ≺ (i′, j′) and m, n ∈ {1, . . . ,Nj′
i′ }, the square Ij′

i′ (m) × Jj′
i′ (n),

if i′ is odd, or ϕ(Ij′
i′ (m) × Jj′

i′ (n)), if i′ is even, is either entirely contained in Qj
i(k, l),

has interior disjoint from Qj
i(k, l), or intersects Qj

i(k, l) in a triangle whose vertices
are three of the vertices of Ij′

i′ (m) × Jj′
i′ (n).
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We also observe a uniformity to how the squares are distributed. For each
i, j, k, l, we divide the square Qj

i(k, l) into four triangles whose vertices are two
adjacent vertices of Qj

i(k, l) and the midpoint of Qj
i(k, l). Denote these by Tj

i (k, l, 1),
Tj

i (k, l, 2), Tj
i (k, l, 3), Tj

i (k, l, 4), where Tj
i (k, l,m) contains the edge

[v j
i (k, l,m), v j

i (k, l,m + 1)],

taking v j
i (k, l, 5) = v j

i (k, l, 1).

Lemma 7.4. Let i, j, i′, j′ ∈ N, where (i, j) ≺ (i′, j′). For all k, l ∈ {1, . . . ,Nj
i }

and m ∈ {1, . . . , 4} satisfying Tj
i (k, l,m) ⊂ Q, the sets Tj

i (k, l,m) ∩ Ej′
i′ are all

congruent.

Proof. This proof depends on the property that 2aj
iN

j
i divides Nj′

i′ . As a result,
squares at different levels of the construction intersect nicely. We consider the case
when i is odd.

First, suppose that i′ is also odd. For each m ∈ {1, . . . , 4}, consider the edge
ej
i(k, l,m) as defined above. We have

π1(v
j

i (k, l, 1)) = π1(v
j

i (k, l, 4)) = k1(k, l)/N
j′
i′

and
π1(v

j
i (k, l, 3)) = π1(v

j
i (k, l, 2)) = k3(k, l)/N

j′
i′ ,

where

k1(k, l) =
(aj

ik − aj
i + 1)Nj′

i′

aj
iN

j
i

and k3(k, l) =
(aj

ik − 1)Nj′
i′

aj
iN

j
i

.

Similarly, we have

π2(v
j

i (k, l, 2)) = π2(v
j

i (k, l, 1)) = k2(k, l)/N
j′
i′

and
π4(v

j
i (k, l, 3)) = π4(v

j
i (k, l, 4)) = k4(k, l)/N

j′
i′ ,

where

k2(k, l) =
(aj

il − aj
i + 1)Nj′

i′

aj
iN

j
i

and k4(k, l) =
(aj

il − 1)Nj′
i′

aj
iN

j
i

.

Observe that ki(k, l) ∈ N for all i ∈ {1, . . . , 4}. We have then

Qj
i(k, l) = [k1(k, l)/N

j′
i′ , k3(k, l)/N

j′
i′ ] × [k2(k, l)/N

j′
i′ , k4(k, l)/N

j′
i′ ].

We conclude from this that the intersection Qj
i(k, l) ∩ Ej′

i′ is precisely the union of
the squares

{Qj′
i′(k

′, l′) : k2(k, l) + 1 ≤ k′ ≤ k4(k, l), k1(k, l) + 1 ≤ l′ ≤ k3(k, l)}.
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We also observe that

|k3(k, l) − k1(k, l)| = |k4(k, l) − k2(k, l)| =
(aj

i − 2)Nj′
i′

aj
iN

j
i

.

Thus the sets Qj
i(k, l)∩Ej′

i′ are congruent for all k, l ∈ {1, . . . ,Nj
i}. Moreover, notice

that each set Qj
i(k, l)∩Ej′

i′ is invariant under rotations by π/4 about the center point
w

j
i(k, l). We conclude from this that the sets Tj

i (k, l,m) ∩ Ej′
i′ are all congruent.

Next, suppose that i′ is even. Consider now a triangle Tj
i (k, l,m). The two

shorter edges of Tj
i (k, l,m) are the edges of a rectangle Rj

i(k, l,m) of side length√
2(aj

i − 2)/(aj
iN

j
i ). To keep the exposition more manageable, we write out the

argument only for Tj
i (k, l, 1). We compute

ϕ−1(v j
i (k, l, 1)) =

( (aj
ik + aj

il − 2aj
i + 2)

√
2

2aj
iN

j
i

,− (−aj
ik + aj

il + aj
iN

j
i )
√

2

2aj
iN

j
i

)
,

ϕ−1(v j
i (k, l, 2)) =

( (aj
ik + aj

il − aj
i)
√

2

2aj
iN

j
i

,
(−aj

ik + aj
il − aj

i + 2 + aj
iN

j
i )
√

2

2aj
iN

j
i

)
.

Comparing this with (7.4) and using the property that 2aj
iN

j
i divides Nj′

i′ , we
have

ϕ−1(Rj
i(k, l,m)) =

[k1(k, l)
√

2

Nj′
i′

,
k3(k, l)

√
2

Nj′
i′

]
×

[k2(k, l)
√

2

Nj′
i′

,
k4(k, l)

√
2

Nj′
i′

]

for some k1(k, l), . . . , k4(k, l) ∈ N satisfying

|k3(k, l) − k1(k, l)| = |k4(k, l) − k2(k, l)| =
(aj

i − 2)Nj′
i′

2aj
iN

j
i

.

The intersection Rj
i(k, l, 1) ∩ Ej′

i′ is the union of the squares

{Qj′
i′(k

′, l′) : k2(k, l) + 1 ≤ k′ ≤ k4(k, l), k1(k, l) + 1 ≤ l′ ≤ k3(k, l)}.
Thus the sets Rj

i(k, l, 1)∩Ej′
i′ are all congruent, and by symmetry it follows that the

sets Tj
i (k, l, 1) ∩ Ej′

i′ are all congruent as well.
The case when i is even is similar, and its proof is omitted. �

7.4.3 Constructing the Cantor sets. For all i, j, letFj
0 = Q andFi−1

i = Q.
Define now

Fj
i = Ej

i ∩ Fj
i−1 ∩ Fj−1

i

for all j ≥ i. Observe that
⋂

(i′′,j′′)�(i,j) E
j′′
i′′ ⊂ Fj

i , so we have L2(Fj
i) ≥ 1/2 for all i, j.

Next, let Fi =
⋂

j≥i F
j
i .
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Let K0 = R
2. For each i ≥ 1, pick inductively a square Qi = Qi

i(ji, ki) with the
property that Qi ⊂ Qi−1. Let

Ki = Fi ∩ Qi.

From Lemma 7.4, it follows that L2(Ki) = L2(Fi)/(Ni
i)

2. Moreover, we have that
diamKi → 0 as i → 0, and in particular that

⋂
i Fi is a single point set.

7.4.4 Dense networks of paths. The following portion of the argument
relates to having a “dense network of paths” at every stage.

We define the following subset of Ki. If i is even, let

Hi = Ki ∩ π−1
2 (I \ π2(Ki+1)).

If i is odd, let

Hi = Ki ∩ (π∗
2)

−1(I∗ \ π∗
2(Ki+1)).

For example, in Figure 2 representing the casewhere i is odd, a point x ∈ Ki∩Qj
i(k, l)

belongs to Hi if the line t �→ x + (t, t) does not intersect any of the gray boxes.

1
Nj

i

1
aj

iN
j
i

(
1 − 2

aj
i

)
1
Nj

i

Figure 2. A square Qj
i(k, l) ⊂ Ej

i for i odd and the intersection Qj
i(k, l) ∩ Ej

i+1,
shaded gray. The large outer square is Ij

i(k) × Jj
i(l).

Lemma 7.5. For every point x ∈ Ki+1 and r > 0, the set Hi ∩ B‖·‖2 (x, r) has
positive L2-measure.
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Proof. In the first case, we assume that i is even, and hence that i + 1 is odd.
Let x ∈ Ki+1 and r > 0. Consider a square Qj

i+1(k, l) containing x for some j
sufficiently large so that Qj

i+1(k, l) ⊂ B(x, r/3) and such that Qj
i+1(k, l) ⊂ Qi+1.

Pick a horizontal edge S of Qj
i+1(k, l) whose interior is contained in int(Qi+1).

Consider now the set Ej+1
i . Subdivide S into (aj

i+1 −2)Nj+1
i /(aj

i+1N
j
i+1) congruent

subintervals. Each subinterval is the diagonal of a square ϕ(Ij+1
i (k′)× Jj+1

i (l′)), with
corresponding square Qj+1

i (k′, l′) ⊂ Ej+1
i . From such a square Qj+1

i (k′, l′), we may
extract a triangle Tj+1

i (k′, l′,m′), as defined prior to the statement of Lemma 7.4,
whose interior does not intersect Ej

i+1. Observe further that Tj+1
i (k′, l′,m′) ⊂ Qi, so

that
Tj+1

i (k′, l′,m′) ∩ Fi = Tj+1
i (k′, l′,m′) ∩ Ki.

As a consequence of Lemma 7.4, we have that

L2(Tj+1
i (k′, l′,m′) ∩ Fi) =

L2(Fi)

4(Nj+1
i )2

.

Moreover, Tj+1
i (k′, l′,m′) lies in the neighborhood of Qj

i+1(k, l) of radius

1/Nj+1
i ≤ diamQj

i+1(k, l) < 2r/3,

so Tj+1
i (k′, l′,m′) ⊂ B‖·‖2 (x, r). Also, we have that

int(Tj+1
i (k′, l′,m′)) ∩ Fi ⊂ Hi.

This verifies the claim.
The case that i is even and i + 1 is odd is similar, and we omit the details. �

Lemma 7.6. Let x ∈ π1(Ki) be a Lebesgue density point of π1(Ki), where
i ∈ N is odd. Let δ > 0, and let t0 > 0 be such that

L1(π1(Ki) ∩ (x, x + t))
t

≥ 1 − δ

for all t ∈ (0, t0). Then for all y ∈ π1(Ki) satisfying |y − x| < 2δt,

L1(π1(Ki) ∩ (y, y + t))
t

≥ 1 − 2δ.

The same result holds with π2 instead of π1. If i is even, the corresponding result

holds for π∗
1 and π∗

2, identifying I∗ and J∗ with the interval [0,
√

2].

Proof. The first claim follows from the relationship

L1(π1(Ki) ∩ (y, y + t)) ≥ L1(π1(Ki) ∩ (x, x + t)) − |x − y|.
The other claims follow from a similar inequality. �
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7.4.5 Defining the metric on R
2. Define a norm field N on R

2 by the
formula

Nx =

⎧⎨
⎩2−i/2‖ · ‖1 if x ∈ Ki \ Ki+1, i even,

2−(i−1)/2‖ · ‖∞ if x ∈ Ki \ Ki+1, i odd.

The norm field N is admissible in the sense of Definition 3.1, in particular being
lower semicontinuous, and induces a metric d on R

2 as described in Section 3.
Observe that N vanishes at a single point. Theorem 1.3 and Corollary 7.3 imply
the following.

Proposition 7.7. The identity map ι : (R2, ‖ · ‖2) → (R2, d) is an isothermal

quasiconformal mapping.

7.4.6 Proof of Theorem 1.6. We suppose to the contrary that there is a
metric space (X̂, d̂) such that a factorization ι = ι̂◦P as in the statement of Theorem
1.6 exists, that is, that P is bi-Lipschitz and that ι̂ has distortion H(ι̂) <

√
2. Since ι

is Lipschitz, it follows that ι̂ is also Lipschitz.
By considering the metric d̂(P(x),P(y)) on R

2, we assume without loss of
generality that X̂ = R

2 and that ι̂ and P are each the identity map on R
2. Let N̂

denote the metric derivative of the map P : (R2, ‖·‖2) → (R2, d̂); cf. Definition 2.2.
By assumption, the identity map

ι̂ : (R2, d̂) → (R2, d)

is quasiconformal with H(ι̂) <
√

2. Moreover, since P is Lipschitz, there ex-
ists C > 0 such that N̂x ≤ C‖ · ‖1 for every x ∈ R

2. Let v = (1, 0) and
w = (1/

√
2, 1/

√
2), and let a = H(ι̂)/

√
2 < 1. It suffices to show that, for

all i ≥ 0 and almost every x ∈ Ki \ Ki+1,

(7.5)
N̂x(w) ≤ Cai if i is even,

N̂x(v) ≤ Cai if i is odd.

This provides a contradiction. Indeed, given that P is bi-Lipschitz, N̂x(w) and N̂x(v)
are bounded from below for all x ∈ R

2 by some constant C′ > 0.
Observe that, when i is even, Nx(w) =

√
2Nx(v) for all x ∈ Ki \ Ki+1. Similarly,

when i is odd, Nx(v) =
√

2Nx(w). It follows from Theorem 5.2 of [Iko22] that
the pointwise distortion of ι̂ coincides with the distortion of the identity map from
(R2, N̂x) to (R2,Nx) for almost every x ∈ R

2. As a consequence, for almost
every x ∈ Ki \ Ki+1,

(7.6)
N̂x(v) ≤ aN̂x(w) if i is even,
N̂x(w) ≤ aN̂x(v) if i is odd.
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We verify (7.5) by induction on i. The claim is immediate for i = 0, recalling
that K0 = R

2. For the inductive step, fix i ≥ 1 and assume that (7.5) holds for
almost every x ∈ R

2 \ Ki. We show that (7.5) holds for almost every x ∈ Ki \ Ki+1.
Let Ni−1 denote the set of points in Ki−1 \Ki for which (7.5) or (7.6) fails. We split
into two cases based upon on whether i is odd or even. The idea is the same in
each, but the bookkeeping requires separate statements.

Case 1. Assume that i is odd. By the inductive hypothesis, we have

N̂x(v) ≤ aN̂x(w) ≤ Cai

for every x ∈ (Ki−1 \ Ki) \ Ni−1, where Ni−1 has L2-measure zero. We claim
that N̂x(v) ≤ Cai for almost every x ∈ Ki \ Ki+1. Assume to the contrary that
there exists a set G ⊂ Ki \ Ki+1 of positive measure and a constant b > 0 such
that N̂x(v) ≥ (C + b)ai for all x ∈ G.

For all t ∈ [0, 1], let γt : I → R
2 be the path defined by γt(s) = (s, t). According

to Lemma 2.5, for every path γt and every subinterval I ′ ⊂ I,

�
̂d(γt|I′ ) =

∫
I′

N̂γt(s)(v) dL1.

Consider now the interval [s0, s0 + h] for some s0 ∈ (0, 1) and h ∈ (0, 1 − s0).
Differentiating, we have for L2-almost every (s0, t) ∈ G that

lim
h→0

d̂(γt(s0), γt(s0 + h))
h

= lim
h→0

�
̂d(γt|[s0,s0+h])

h
≥ (C + b)ai.

In particular, for almost every x ∈ G, there exists r0 > 0 such that

(7.7) d̂(x, x + rv) ≥ (C + b/2)air

for all r ∈ (0, r0).
On the other hand, consider now a point x ∈ G such that π∗

1(x) is a Lebesgue
density point of π∗

1(Ki−1) and π∗
2(x) is a Lebesgue density point of π∗

2(Ki−1). Note
that by Fubini’s theorem, L2-almost every point in G has this property. Let δ > 0
and let t0 = t0(δ) be such that the hypothesis in Lemma 7.6 is satisfied for both the
point π∗

1(x) and the point π∗
2(x).

For all ε > 0, let H(x, ε) be the set comprising those points y ∈ Hi−1∩B‖·‖2 (x, ε)
for which

H1
‖·‖2

(Ni−1 ∩ π−1
2 (π2(y))) = 0.

Recall that the set Hi−1 is defined in Section 7.4.4. By Lemma 7.5, the set
Hi−1 ∩ B‖·‖2 (x, ε) has positive L2-measure. Since Ni−1 has L2-measure zero, an
application of Fubini’s theorem shows that H(x, ε) is a full measure subset of
Hi−1 ∩ B‖·‖2(x, ε). Let r ∈ (0, t0) and ε ∈ (0, 2δr).
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Consider a point y ∈ H(x, ε). Let γy : [0, r] → R
2 be the path defined by

γy(s) = y + sv. Lemma 2.5 implies that

�
̂d(γy) =

∫
[0,r]

N̂γy(s)(v) dL1(s),

and the definition of H(x, ε) implies that

(7.8) N̂z(v) ≤ Cai

for H1‖·‖2
-almost every z ∈ Ki−1 ∩ |γy|.

Next, we estimate the H1‖·‖2
-measure of Ki−1 ∩ |γy|. To this end, observe that

the path γ1
y : [0, r] → R, γ1

y(s) = y + sw/
√

2, intersects Ki−1 in a set congruent
to π∗

1(Ki−1) ∩ π∗
1(|γ1

y|). Similarly, the path γ2
y : [0, r] → R, γ2

y(s) = y + sw/
√

2,
wherew = (1/

√
2,−1/

√
2), intersectsKi−1 in a set congruent toπ∗

2(Ki−1)∩π∗
2(|γ2

y|).
Since |π∗

m(y) − π∗
m(x)| < 2δr, Lemma 7.6 gives, for m ∈ {1, 2},

(7.9)
H1‖·‖2

(Ki−1 ∩ |γm
y |)

r/
√

2
≥ 1 − 2δ.

We combine this with the following observation: for any measurable sets
E1,E2 ⊂ [0, r] satisfying |Ej| ≥ (1 − εj)r for some εj ∈ (0, 1), j ∈ {1, 2}, the
diagonal path γ : [0, r] → [0, r]2 defined by γ(s) = (s, s) intersects E1 × E2 in a
set of length at least

√
2(1 − ε1 − ε2)r. Since Ki−1 is constructed as a product set

relative to which γy is a diagonal path, we conclude from (7.9) that

(7.10)
H1‖·‖2

(Ki−1 ∩ |γy|)
r

≥ 1 − 4δ.

Using (7.8) and the fact that N̂z(v) ≤ C for all z ∈ R2, the inequality (7.10) gives

d̂(y, y + rv) ≤ (1 − 4δ)Cair + 4δCr.

Next, by making the initial choice of δ sufficiently small, we have

d̂(y, y + rv) ≤ (1 + δ)Cair.

From this and the relationship d̂ ≤ Cd‖·‖1 ≤ √
2Cd‖·‖2 , it follows that

d̂(x, x + rv) ≤ 2
√

2Cε + (1 + δ)Cair.

Since ε ∈ (0, 2δr) is arbitrary, we obtain

d̂(x, x + rv) ≤ (1 + δ)Cair.

Since this estimate holds for L2-almost every x ∈ G, this contradicts our earlier
statement (7.7) when δ is sufficiently small. We conclude that N̂x(v) ≤ Cai for
almost every x ∈ Ki \ Ki+1.
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Case 2. We now consider the case that i is even. The idea is the same as in
the first case, but now everything is rotated by π/4. By the inductive hypothesis,
we have that N̂x(w) ≤ aN̂x(v) ≤ Cai for every x ∈ (Ki−1 \ Ki) \ Ni−1. We claim
that N̂x(w) ≤ Cai for almost every x ∈ Ki \ Ki+1. Assume to the contrary that
there exists a set G ⊂ Ki \ Ki+1 of positive measure and a constant b > 0 such
that N̂x(w) ≥ (C + b)ai for all x ∈ G.

For all t ∈ J∗, let γt : I∗ → R2 be the path defined by γt(s) = ϕ(s, t). Consider
as before the interval [s0, s0 + h] for some s0 ∈ (0,

√
2) and h ∈ (0,

√
2 − s0).

Differentiating, we have that

lim
h→0

�
̂d(γt|[s0,s0+h])

h
≥ (C + b)ai.

In particular, for L2-almost every x ∈ G, there exists r0 > 0 such that

(7.11) d̂(x, x + rw) ≥ (C + b/2)air

for all r ∈ (0, r0).
On the other hand, consider a point x ∈ G such that π1(x) is a Lebesgue density

point of π1(Ki−1) and π2(x) is a Lebesgue density point of π2(Ki−1). Let δ > 0 and
let t0 = t0(δ) be the corresponding value in Lemma 7.6. For all ε > 0, define the
set H(x, ε) as the set of points y ∈ Hi−1 ∩ B‖·‖2 (x, ε) for which

H1
‖·‖2

(Ni−1 ∩ (π∗
2)

−1(π∗
2(y))) = 0.

As before, H(x, ε) is a full measure subset of Hi−1 ∩ B‖·‖2(x, ε). Let r ∈ (0, t0) and
ε ∈ (0, 2δr).

For all y ∈ H(x, ε), define the path γy : [0, r] → R
2 by γy(s) = y + sw. Recall

from Lemma 2.5 that
�
̂d(γy) =

∫
[0,r]

N̂γy(s)(w) dL1.

Moreover, N̂z(w) ≤ Cai for H1‖·‖2
-almost every z ∈ Ki−1 ∩ |γy|. Arguing as in the

first case, we obtain the inequality

d̂(y, y + rw) ≤ (1 − 4δ)Cair + 2δCr.

Next, by taking δ sufficiently small, we then have d̂(y, y + rw) ≤ (1 + δ)Cair.
As before, since ε ∈ (0, 2δr) is arbitrary,

d̂(x, x + rw) ≤ (1 + δ)Cair,

which contradicts (7.11) for sufficiently small δ > 0. We conclude that

N̂x(w) ≤ Cai

for almost every x ∈ Ki \ Ki+1.
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