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Abstract. We investigate global solvability, in the framework of smooth
functions and Schwartz distributions, of certain sums of squares of vector fields
defined on a product of compact Riemannian manifolds T × G, where G is further
assumed to be a Lie group. As in a recent article due to the authors, our analysis
is carried out in terms of a system of left-invariant vector fields on G naturally
associated with the operator under study, a simpler object which nevertheless
conveys enough information about the original operator so as to fully encode its
solvability. As a welcome side effect of the tools developed for our main purpose,
we easily prove a general result on propagation of regularity for such operators.

1 Introduction

In this work we present some results concerning the global solvability of linear
differential operators on compact manifolds. Inspired by previous investigations of
similar questions on tori [15], our main result here characterizes global solvability
for a class of sums of squares of vector fields in a product manifold T ×G, where T

will be assumed a Riemannian manifold and G a Lie group, both compact, con-
nected and oriented. More precisely, we consider operators of the following sort:

(1.1) P =̇ �T −
N∑
�=1

( m∑
j=1

a�j(t)Xj + W�

)2

where �T is the Laplace–Beltrami operator associated with the underlying metric
on T (acting on functions); a�j are smooth, real-valued functions onT; W� are skew-
symmetric real vector fields in T; and X1, . . . ,Xm ∈ g is a basis of left-invariant
vector fields in G (as usual g denotes the Lie algebra of G, and corresponds to the
space of real vector fields with constant coefficients when G is the m-dimensional
torus Tm).
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The present article is thus a natural continuation of [2], in which the authors
classified the global hypoellipticity of P in T × G in terms of the global hypoellip-
ticity of a system of left-invariant vector fields L in G. Namely, an L ∈ g belongs
to L if and only if there are � ∈ {1, . . . ,N} and t ∈ T such that

L =
m∑
j=1

a�j(t)Xj.

Here, the connection between global properties of the operator with variable co-
efficients P on T × G with those of the system of vector fields with “constant
coefficients” L on G—a somewhat simpler object—is further explored. Our The-
orem 5.1 relates their global solvability properties, and generalizes previous re-
sults [15, Theorem 1.1] in which the global solvability of

P =̇ −
n∑

k=1

∂2
tk −

( m∑
j=1

aj(t)∂xj

)2

is fully characterized on Tn
t × Tm

x by means of Diophantine conditions. The
relationship between Petronilho’s conditions and ours is made explicit in Section 6,
where we specialize our discussion to the commutative case.

It should be pointed out that in order to attain all the equivalences in Theorem5.1
we require L to satisfy an extra, technical condition (5.1), which already appeared
in [2]: roughly speaking, it says that the linear span of L can be decomposed
into some commutative “blocks” in a precise manner. While such a property
automatically holds on a torus, it is still flexible enough in the non-commutative
setting so as to allow us to exhibit a myriad of positive examples. The necessity of
this assumption, either here or in [2], is still an open problem though.

Although Definition 3.1 brings in three different notions of global solvability,
Theorem 5.1 ensures that they are all equivalent for our P. We go further and give
one more: a weakened version of global hypoellipticity (“modulo kerP”) which
we call, in a non-standard fashion, almost global hypoellipticity—(AGH) for
short; see Definition 3.4. The idea of quotienting out the kernel of P is very natural
and not entirely new, and seems to date back in some form or another at least to the
works of Hörmander on operators of simple real characteristics. We then take the
opportunity to develop this notion and its relations to global solvability in a much
broader context.

It is proverbial that global hypoellipticity of a LPDO Q on a compact mani-
fold M implies global solvability of its transpose tQ (see [18] for the classical local
analogue). But there are examples in the literature that show classes of operators
whose global hypoellipticity imply their own global solvability, e.g., for certain
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vector fields on a torus [10, Corollary 3.1] [16, Theorem 3.1], and when there
exists a suitable elliptic operator that commutes with Q [6, Theorem 13], to name
a few. Here, by using the notion of almost global hypoellipticity, we prove in The-
orem 3.5 that in particular this fact holds true in general, i.e., that every globally
hypoelliptic operator in M is globally solvable (meaning here that it has closed
range in C ∞(M)). Actually, the operator Q does not even need to be a differen-
tial one, as only mild continuity properties are required in that proof. Of course
the converse is false in general since there are globally solvable operators whose
kernel in D ′(M) is infinite dimensional (which cannot happen if the said kernel is
contained in a fixed Sobolev space), for instance P =̇ Dt + Dx in T

2—precisely the
phenomenon that almost global hypoellipticity aims to accommodate. Therefore,
this result shows another big difference when dealing with global notions instead
of local ones, since the Kannai operator [11] is locally hypoelliptic operator yet
not locally solvable.

While the general converse to Theorem 3.5 is false (Example 3.6), in Corol-
lary 3.7 we devise a partial one assuming an extra hypothesis about density in the
kernel of the transpose operator. Since our operator P (1.1) satisfies this additional
hypothesis, we were able to prove that its global solvability is in fact equivalent
to its almost global hypoellipticity. Another fascinating aspect of this notion in
connection with our main line of investigation is that although a non-Abelian
compact Lie group cannot carry real left-invariant vector fields which are globally
hypoelliptic [5] (in sharp contrast with the situation one finds in the torus [4]), one
does not have to dig too deep into the non-commutative realm to find left-invariant
vector fields that are (AGH) (Example 3.13).

As a second application of the theoretical framework developed here and in [2],
we easily prove a result (Theorem 7.1) on propagation of regularity for (1.1) in the
same vein as [8, Theorem 1], but much more general—it does not even require the
technical assumption (5.1).

This work is divided as follows. In Section 2 we introduce the machinery and
notation that will be used throughout the paper, eventually referring the reader to [2]
for more details. Our abstract results are proved in Section 3, and in Section 3.1 we
discuss some results about almost global hypoellipticity of systems of vectorfields,
with particular emphasis on left-invariant vector fields on Lie groups. Sections 4
and 5 are then devoted to address the characterization of the global solvability of P,
and a wide class of examples is obtained through the results presented in Section 6,
where we translate the previous ones into Diophantine conditions on the torus. We
end this paper with a result about propagation of regularity in Section 7.
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2 Preliminaries

Let M be a compact, connected, oriented smooth manifold, for simplicity carrying
a Riemannian metric: its underlying volume form dVM allows us to regard D ′(M),
the space of Schwartz distributions on M, as the topological dual of C ∞(M). We
denote by�M the Laplace–Beltrami operator associated with our metric, by σ(�M)
its spectrum and by EM

λ the eigenspace associated with λ ∈ σ(�M). We then define
the Fourier projection map FM

λ : D ′(M) → EM
λ as follows: given f ∈ D ′(M) take

FM
λ (f ) as the unique element in EM

λ satisfying

〈FM
λ (f ), φ〉L2(M) = 〈f, φ̄〉, ∀φ ∈ EM

λ .

One can then characterize smooth functions and distributions in terms of the decay
of their projections:

Proposition 2.1. For a sequence a = (a(λ))λ∈σ(�M) where a(λ) ∈ EM
λ for all

λ ∈ σ(�M) the following characterizations hold:

(1) a = FM(f ) for some f ∈ C ∞(M) if and only if for every s > 0 there exists

C > 0 such that

‖a(λ)‖L2(M) ≤ C(1 + λ)−s, ∀λ ∈ σ(�M).

(2) a = FM(f ) for some f ∈ D ′(M) if and only if there exist C, s > 0 such that

‖a(λ)‖L2(M) ≤ C(1 + λ)s, ∀λ ∈ σ(�M).

For more details see, e.g., [1]. We also recall how the standard topologies
on C ∞(M) and D ′(M) may be given in terms of a suitable scale of Sobolev spaces

H k(M) =̇ {f ∈ L2(M) ; (I +�M)kf ∈ L2(M)}, k ∈ Z+.

Each H k(M) carries a natural Banach space topology with norm

(2.1) ‖f‖H k(M) =̇ ‖(I +�M)kf‖L2(M),

which turns the inclusion H k+1(M) ↪→ H k(M) into a compact map: the topology
of C ∞(M) is then precisely the locally convex projective limit topology induced by
the family {H k(M)}k∈Z+, and by further defining H −k(M) as the dual of H k(M)
for every k ∈ Z+ one can prove that the strong dual topology on D ′(M) = C ∞(M)′

coincides with the injective limit topology induced by {H −k(M)}k∈Z+—and this
will always be the topology we shall endow D ′(M) with. In particular, C ∞(M)
and D ′(M) are a FS and a DFS space, respectively, each one the strong dual of the
other [13].
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2.1 Partial Fourier expansions. Following [2, Section 2], given T,G

two compact, connected and oriented Riemannian manifolds, whose dimensions
will be denoted by n =̇ dimT and m =̇ dimG, one may appeal to the product
structure of M =̇ T × G (always endowed with the product metric) to give a
finer description of the constructions above. The proposition below summarizes
the main properties we will be implicitly using. On time, if f is a function or
distribution on G we will also regard it as an object defined on M which does
not depend on the first variable (and analogously for distributions on T) without
further notice; when clarity demands we will explicitly write it as 1T ⊗ f where 1T

stands for the constant function on T . Along the same lines a differential operator P
defined on either factor will be understood as an operator on M, lifted in the obvious
fashion.

Proposition 2.2.
(1) �M = �T +�G as differential operators on T × G.
(2) For each μ ∈ σ(�T) and λ ∈ σ(�G) let

• {ψμi ; 1 ≤ i ≤ dT
μ} be a basis for ET

μ, orthonormal w.r.t. the L2(T) inner
product, and

• {φλj ; 1 ≤ j ≤ dG
λ } be a basis for EG

λ , orthonormal w.r.t. the L2(G) inner
product.

Then the set

S =̇ {ψμi ⊗ φλj ; 1 ≤ i ≤ dT
μ, 1 ≤ j ≤ dG

λ , μ ∈ σ(�T), λ ∈ σ(�G)}
is a Hilbert basis for L2(T × G).

(3) Everyα ∈ σ(�M) is of the form α = μ+λ for someμ ∈ σ(�T) and λ ∈ σ(�G).
(4) If for each α ∈ R+ we define the set

P(α) =̇ {(μ, λ) ∈ σ(�T) × σ(�G) ; μ + λ = α}
(which is finite), then the eigenspace of �M associated with α ∈ σ(�M) is

precisely
EM
α =

⊕
(μ,λ)∈P(α)

ET
μ ⊗ EG

λ

and an orthonormal basis for this space w.r.t. the L2(T × G) inner product is

{ψμi ⊗ φλj ; 1 ≤ i ≤ dT
μ, 1 ≤ j ≤ dG

λ , (μ, λ) ∈ P(α)}.
Still following [2], we can consider “partial” Fourier expansions in T × G.

If f ∈ D ′(T × G) and λ ∈ σ(�G) then FG
λ (f ) ∈ D ′(T;EG

λ ) ∼= D ′(T) ⊗ EG
λ is char-

acterized by the following property: given any orthonormal basis {φλ1, . . . , φλdG
λ
}
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of EG
λ we can write

FG
λ (f ) =

dG
λ∑

i=1

FG
λ (f )i ⊗ φλi ,

where FG
λ (f )i ∈ D ′(T) is defined by

〈FG
λ (f )i, ψ〉 =̇ 〈f, ψ⊗ φλi 〉, ∀ψ ∈ C ∞(T).

The “total” Fourier projection of f can then be recovered from the partial ones as

(2.2) FM
α (f ) =

∑
μ+λ=α

FT
μF

G
λ (f ), α ∈ σ(�M),

thanks to Proposition 2.2—actually, any f ∈ D ′(T × G) can be written in terms of
the orthonormal basis S as

(2.3) f =
∑

α∈σ(�M)

∑
μ+λ=α

dT
μ∑

j=1

dG
λ∑

i=1

〈f, ψμj ⊗ φλi 〉ψμj ⊗ φλi

with convergence in D ′(T × G) (resp. in C ∞(T × G), provided f is smooth).
Appealing to Weyl’s asymptotic estimates [3, p. 155] and Proposition 2.2 one then
translates Proposition 2.1 as follows:

Corollary 2.3. A formal series

∑
α∈σ(�M)

∑
μ+λ=α

dT
μ∑

j=1

dG
λ∑

i=1

fμλij ψ
μ
j ⊗ φλi , fμλij ∈ C,

represents, in the sense of (2.3):
(1) an f ∈ C ∞(T × G) if and only if for every s > 0 there exists C > 0 such that

|fμλij | ≤ C(1 + μ + λ)−s, ∀i, j, μ, λ;

(2) an f ∈ D ′(T × G) if and only if there exist C, s > 0 such that

|fμλij | ≤ C(1 + μ + λ)s, ∀i, j, μ, λ.

In both cases, the series (2.3) converges in the appropriate topology.

The digression above leads one to consider families of “mixed Sobolev norms”
on T × G, namely

‖f‖H j,k(T×G) =̇ ‖(1 +�T)j(1 +�G)kf‖L2(T×G)
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where j, k ∈ Z+, which behave better with respect to the partial Fourier projections
while being equivalent, as far as the topology of C ∞(T ×G) is concerned, to those
determined by �M (2.1). To see that, recall that for every j, k ∈ Z+ we have for f a
smooth function

‖(1 +�M)kf‖2
L2(T×G) =

∑
α∈σ(�M)

(1 + α)2k‖FM
α (f )‖2

L2(T×G)

and

(2.4) ‖(1+�T)j(1+�G)kf‖2
L2(T×G) =

∑
α∈σ(�M)

∑
μ+λ=α

(1+μ)2j(1+λ)2k‖FT
μF

G
λ (f )‖2

L2(T×G)

where μ ∈ σ(�T), λ ∈ σ(�G). Using the positivity of the eigenvalues and that the
terms in the finite sum (2.2) are orthogonal in L2(T × G) we conclude that

(2.5) ‖f‖H k(T×G) ≤ ‖f‖H k,k(T×G), ‖f‖H j,k(T×G) ≤ ‖f‖H j+k(T×G), ∀j, k ∈ Z+.

The next result characterizes those distributions on T ×G which do not depend
on one of the factors.

Lemma 2.4. Let f ∈ D ′(T × G). Then f does not depend on T if and only
if �T f = 0.

Proof. One direction is clear: if f = 1T ⊗ g for some g ∈ D ′(G), then
�Tf = (�T1T ) ⊗ g = 0. For the converse, suppose that �Tf = 0 and write f as
in (2.3): we have the equality

0 = �Tf =
∑

α∈σ(�M)

∑
μ+λ=α

dT
μ∑

j=1

dG
λ∑

i=1

μ〈f, ψμj ⊗ φλi 〉ψμj ⊗ φλi

and the uniqueness of the expansion in Fourier series yields

〈f, ψμj ⊗ φλi 〉 = 0, ∀μ �= 0, λ ∈ σ(�G)

thus implying that the remaining terms in (2.3) are precisely

f =
∑

λ∈σ(�G)

dG
λ∑

i=1

〈f, 1T ⊗ φλi 〉1T ⊗ φλi .

It follows immediately from Corollary 2.3 that

g =̇
∑

λ∈σ(�G)

dG
λ∑

i=1

〈f, 1T ⊗ φλi 〉φλi ∈ D ′(G)

and clearly f equals 1T ⊗ g. �
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2.2 Spectral clusters. By a spectral cluster on M we mean a
familyA =̇ (Aλ)λ∈σ(�M) such thatAλ is a linear subspace of EM

λ for each λ ∈ σ(�M).
Each spectral cluster A determines an orthogonal cluster A⊥ =̇ (A⊥

λ )λ∈σ(�M)

w.r.t. the L2(M) inner product on EM
λ . We define D ′

A(M) as the space of
all f ∈ D ′(M) such that FM

λ (f ) ∈ Aλ for every λ ∈ σ(�M) and we also define
C ∞
A (M) =̇ C ∞(M) ∩ D ′

A(M).
When M is a product T × G and A is a spectral cluster on G we use the direct

sum decomposition EG
λ = Aλ ⊕ A⊥

λ for each λ ∈ σ(�G) to obtain

C ∞(T;EG
λ ) = C ∞(T) ⊗ EG

λ = (C ∞(T) ⊗ Aλ) ⊕ (C ∞(T) ⊗ A⊥
λ )

=̇ C ∞(T;Aλ) ⊕ C ∞(T;A⊥
λ )

in which the summands are orthogonal in L2(T × G) thanks to Fubini’s Theorem.
We then define

C ∞
A (T × G) =̇ {f ∈ C ∞(T × G) ; FG

λ (f ) ∈ C ∞(T;Aλ), ∀λ ∈ σ(�G)}
which is a closed subspace of C ∞(T × G). By the same token

D ′(T;EG
λ ) = (D ′(T) ⊗ Aλ) ⊕ (D ′(T) ⊗ A⊥

λ ) =̇ D ′(T;Aλ) ⊕ D ′(T;A⊥
λ )

hence giving way to the definition

D ′
A(T × G) =̇ {f ∈ D ′(T × G) ; FG

λ (f ) ∈ D ′(T;Aλ), ∀λ ∈ σ(�G)}
which is closed in D ′(T ×G). In fact, if for each λ ∈ σ(�G) we fix {χλ1, . . . , χλcλ} an
orthonormal basis for Aλ and {ϕλcλ+1, . . . , ϕ

λ
dG
λ

} an orthonormal basis forA⊥
λ (where

cλ =̇ dimAλ), then for any f ∈ D ′(T × G) we may write

FG
λ (f ) =

cλ∑
i=1

FG
λ (f )i ⊗ χλi +

dG
λ∑

i=cλ+1

FG
λ (f )i ⊗ ϕλi ,

so f ∈ D ′
A(T × G) if and only if FG

λ (f )i = 0 for every i ∈ {cλ + 1, . . . , dG
λ }. By

using the natural projection

πA,λ : D ′(T;EG
λ ) −→ D ′(T;Aλ)

we can define the Fourier projection on Aλ by

FG,A
λ =̇ πA,λ ◦ FG

λ : D ′(T × G) −→ D ′(T;Aλ)

which is clearly written, in terms of the adapted orthonormal bases above, as

(2.6) FG,A
λ (f ) =

cλ∑
i=1

FG
λ (f )i ⊗ χλi , f ∈ D ′(T × G).
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Proposition 2.5. IfA=(Aλ)λ∈σ(�G) is a spectral cluster onGand f∈D ′(T × G),
then

(2.7) πA(f ) =̇
∑

α∈σ(�M)

∑
μ+λ=α

dT
μ∑

j=1

cλ∑
i=1

〈f, ψμj ⊗ χλi 〉ψμj ⊗ χλi

belongs to D ′(T × G) and satisfies

FG
λ (πA(f )) = FG,A

λ (f ), ∀λ ∈ σ(�G).

In particular, πA(f ) ∈ D ′
A(T × G). Moreover, if f ∈ C ∞(T × G), then we have

πA(f ) ∈ C ∞
A (T × G).

Proof. It follows essentially by comparing terms in the formal Fourier se-
ries (2.7) and (2.3), the latter suitably adapted to A,A⊥, while taking into ac-
count (2.6): one sees at once that (2.7) is exactly the full “total” Fourier series of f

with many terms removed, hence questions of convergence are easily decided by
means of Corollary 2.3. �

Therefore, we have a well-defined linear map πA : D ′(T × G) → D ′
A(T × G)

and it easily follows that

f = πA(f ) + πA⊥(f ), ∀f ∈ D ′(T × G)

since FG
λ (f ) = FG,A

λ (f ) +FG,A⊥
λ (f ) for every λ ∈ σ(�G). Notice that f ∈ D ′

A(T ×G)
if and only if πA(f ) = f , or, equivalently, πA⊥(f ) = 0.

2.3 Invariant clusters on T ×G. In this brief section we discuss a notion
of a spectral cluster A =̇ (Aλ)λ∈σ(�G) on G being invariant under the action of a
LPDO P on M = T × G, and how such a property can be used to study issues of
regularity of P.

We say that A is invariant under P if P
(
D ′

A(T × G)
) ⊂ D ′

A(T × G) and
P
(
D ′

A⊥(T × G)
) ⊂ D ′

A⊥(T × G). This is equivalent to saying that P ◦πA = πA ◦ P

and P ◦ πA⊥ = πA⊥ ◦ P as one easily checks. We introduce the following refined
notion of regularity of P; standard global hypoellipticity of P in T × G—(GH) for
short—corresponds to the full cluster (EG

λ )λ∈σ(�G) in the definition below.

Definition 2.6. We say that P is (GH)A if

∀ u ∈ D ′
A(T × G), Pu ∈ C ∞(T × G) =⇒ u ∈ C ∞

A (T × G).

The following easy result, which will not be used elsewhere, illustrates the
relationship between these two concepts.

Proposition 2.7. Suppose that A is invariant under P. Then P is (GH) in
T × G if and only if P is both (GH)A and (GH)A⊥ .
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3 Global solvability: general results

We start this section by discussing a few notions of global solvability of operators
in a general setting: given a compact, connected, oriented Riemannian manifold M,
let us consider P : D ′(M) → D ′(M) a continuous linear operator that maps C ∞(M)
into itself; consequently, P : C ∞(M) → C ∞(M) is also continuous by the Closed
Graph Theorem. Its transpose tP enjoys the same property by reflexivity.

Let us introduce the notions of solvability that will be considered in this work.

Definition 3.1. We say that P is:
(1) globally solvable in C ∞ if for every f ∈ C ∞(M) satisfying

(3.1) 〈v, f 〉 = 0 for every v ∈ D ′(M) such that tPv = 0

there exists u ∈ C ∞(M) such that Pu = f ;
(2) globally solvable in D ′ if for every f ∈ D ′(M) satisfying

(3.2) 〈f, v〉 = 0 for every v ∈ C ∞(M) such that tPv = 0

there exists u ∈ D ′(M) such that Pu = f ;
(3) weakly globally solvable if for every f ∈ C ∞(M) satisfying (3.2) there

exists u ∈ D ′(M) such that Pu = f .

It is easy to check the necessity of the compatibility conditions (3.1) and (3.2)
for the existence of solutions. These definitions are not standard as in many works
“global solvability” refers to what we call weak global solvability here. The reason
behind this terminology is that the latter condition holds automatically if (2) is true,
yet its relationship with (1) is more delicate since for a smooth f the compatibility
conditions (3.1) certainly imply (3.2) but the converse is not true in general. We
explore this in Proposition 3.7 under additional assumptions.

It is common knowledge in this business that when dealing with weak global
solvability one may expect to find a necessary a priori inequality for it, whose
formulation requires us to consider the space

(3.3) E =̇
{

f ∈ C ∞(M) ;
∫

M
fv dVM = 0, ∀v ∈ C ∞(M), tPv = 0

}
of all f ∈ C ∞(M) satisfying the compatibility condition (3.2). Its proof is an
adaptation of [9, Lemma 6.1.2] and will be omitted.

Lemma 3.2. If P is weakly globally solvable then there are k1, k2 ∈ Z+ and
C > 0 such that

(3.4)
∣∣∣∣
∫

M
fg dVM

∣∣∣∣ ≤ C‖f‖H k1 (M)‖ tPg‖H k2 (M)

for every f ∈ E and g ∈ C ∞(M).
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We now recall an application of the Homomorphism Theorem for Fréchet–
Montel spaces. If we define

A1 =̇ P : C ∞(M) −→ C ∞(M), A2 =̇ P : D ′(M) −→ D ′(M)

then

f ∈ C ∞(M) satisfies (3.1) ⇐⇒ f ∈ ker(tA1)
o,

f ∈ D ′(M) satisfies (3.2) ⇐⇒ f ∈ ker(tA2)
o,

hence

P is globally solvable in C ∞ ⇐⇒ ran(A1) = ker(tA1)
o ⇐⇒ A1 has closed range,

P is globally solvable in D ′ ⇐⇒ ran(A2) = ker(tA2)
o ⇐⇒ A2 has closed range.

Our next proposition is then an immediate consequence of [14, p. 18], keeping in
mind that C ∞(M) is a Montel space.

Proposition 3.3. The following properties are equivalent:

(1) P : C ∞(M) → C ∞(M) has closed range.
(2) tP : D ′(M) → D ′(M) has closed range.

(3) P is globally solvable in C ∞.

(4) tP is globally solvable in D ′.
In particular, global solvability in C ∞ and in D ′ are equivalent if P = tP.

Next we deduce a general sufficient condition for closedness of the range of
P : C ∞(M) → C ∞(M) inspired by the notion of global hypoellipticity.

Definition 3.4. We say that P is:
(1) globally hypoelliptic in M—(GH) for short—if

∀u ∈ D ′(M), Pu ∈ C ∞(M) =⇒ u ∈ C ∞(M);

(2) almost globally hypoelliptic in M—(AGH) for short—if

(3.5) ∀u ∈ D ′(M), Pu ∈ C ∞(M) =⇒ ∃v ∈ C ∞(M) such that Pv = Pu.

It is clear that

P is (GH) in M ⇐⇒ P is (AGH) in M and ker{P : D ′(M)−→D ′(M)}⊂C ∞(M)

thus justifying the nomenclature. The reader should not get too excited about this
analogy, however, as in extreme cases an operator may well be (AGH) for trivial
reasons while failing to be globally hypoelliptic by far (take the zero operator, for
instance). Yet, the former property alone is enough to ensure global solvability.
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Theorem 3.5. If P is (AGH) in M then P : C ∞(M) → C ∞(M) has closed

range. In particular, if P is (GH) in M then it is globally solvable in C ∞.

Proof. We denote

K =̇ ker{P : C ∞(M) −→ C ∞(M)}, K =̇ ker{P : D ′(M) −→ D ′(M)}
which are closed subspaces of their respective ambient spaces by continuity. In
particular, K2 =̇ K ∩ L2(M) is closed in L2(M) and therefore we may write
L2(M) = K2 ⊕ K⊥

2 where K⊥
2 denotes the L2-orthogonal space to K2. Since K

is closed in C ∞(M) we have that C ∞(M)/K is a Fréchet space: its topology is
given by the seminorms {qj}j∈Z+ defined by

qj([u]) =̇ inf{‖v‖H j(M) ; v ∈ C ∞(M), u − v ∈ K}, u ∈ C ∞(M), j ∈ Z+.

The map

(3.6) [u] ∈ C ∞(M)/K �−→ Pu ∈ C ∞(M)

is then well-defined, continuous and injective, and we have a continuous injection
C ∞(M)/K ↪→ K⊥

2 given by [u] �→ π(u) where π : L2(M) → K⊥
2 denotes the

orthogonal projection. Indeed, given u, v ∈ C ∞(M) we have that

[u] = [v] ⇐⇒ u − v ∈ K ⊂ K2 ⇐⇒ π(u − v) = 0 ⇐⇒ π(u) = π(v).

In particular, π(u) = 0 implies [u] = [0], hence the injectivity. As for continuity,
notice that for every v ∈ C ∞(M) such that u − v ∈ K we have that

‖π(u)‖L2(M) = ‖π(v)‖L2(M) ≤ ‖v‖L2(M) = ‖v‖H 0(M)

so taking the infimum on the right-hand side yields ‖π(u)‖L2(M) ≤ q0([u]) for every
u ∈ C ∞(M).

Now consider the continuous linear map between Fréchet spaces

γ : C ∞(M)/K −→ K⊥
2 × C ∞(M)

[u] �−→ (π(u),Pu)

which is clearly injective.We claim that its range (which is simply the graph of (3.6),
regarded as a subset of K⊥

2 ×C ∞(M)) is closed. Indeed, let {uν}ν∈N ⊂ C ∞(M) and
(u, f ) ∈ K⊥

2 × C ∞(M) be such that

π(uν) → u in L2(M) and Puν → f in C ∞(M).

Since uν−π(uν) ∈ K2 we have thatPuν = P(π(uν)) → Pu in D ′(M); yet, Puν → f in
D ′(M) hencePu = f ∈ C ∞(M). By (3.5) there exists v ∈ C ∞(M) such thatPv = Pu,
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and thus v−u ∈ K2 as both u and v belong to L2(M). Since v = (v−u) +u we have
by uniqueness in the direct sum decomposition that π(v) = u, that is, u is precisely
the image of [v] under the injection C ∞(M)/K ↪→ K⊥

2 : in that sense, (u, f ) belongs
to Y =̇ ran(γ).

Therefore Y is itself a Fréchet space, and the inverse γ−1 : Y → C ∞(M)/K
is continuous by the Open Mapping Theorem. The latter property can then be
quantified as follows: for each j ∈ Z+ there exist C > 0 and k ∈ Z+ such that

(3.7) qj([u]) ≤ C(‖π(u)‖L2(M) + ‖Pu‖H k(M)), ∀u ∈ C ∞(M).

We claim that there exists a constant C′ > 0 such that

(3.8) qj([u]) ≤ C′‖Pu‖H k(M), ∀u ∈ C ∞(M).

There is no loss of generality in assuming that j ≥ 1 since q0([u]) ≤ q1([u]) for
every u ∈ C ∞(M). So if there were no such constant C′, then for each ν ∈ N there
would be uν ∈ C ∞(M) such that

qj([uν]) > ν‖Puν‖H k(M)

and we may assume that qj([uν]) = 1. It follows that

Puν → 0

in H k(M), and also that for each ν∈N there exists vν∈C ∞(M) such that uν − vν∈K
and ‖vν‖H j(M) ≤ 2 (by definition of qj). Thus the sequence {vν}ν∈N is bounded
in H j(M), and since the inclusion map H j(M) ↪→ L2(M) is compact we conclude
that this sequence has a subsequence {vν′ }ν′∈N which converges there, say, to
some v ∈ L2(M). In particular, Puν′ = Pvν′ → Pv in D ′(M); but also Puν′ → 0
in D ′(M), hence v ∈ K2. By continuity of π we have that π(vν′) → π(v) = 0
in L2(M), i.e., ‖π(vν′)‖L2(M) → 0, and since uν− vν ∈ K we have that π(uν) = π(vν)
so ‖π(uν′)‖L2(M) → 0 too. Plugging everything back into (3.7) yields

1 ≤ C(‖π(uν′)‖L2(M) + ‖Puν′‖H k(M)) → 0 as ν′ → ∞
leading to a contradiction. Since the range of P : C ∞(M) → C ∞(M) is exactly the
range of (3.6), whose closedness in C ∞(M) follows clearly from (3.8), our proof
is complete. �

The converse of Theorem 3.5 is false in general, as the next simple example
shows. Yet, we have a useful partial converse, assuming an additional hypothesis
on tP—which will be satisfied by our classes of operators in the next sections –
that we prove in the sequence.
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Example 3.6. On M =̇ S1 consider the smooth function defined by

a(x) =̇ 1 − eix,

which we regard as a zero order differential operator P. Since a has a single zero,
which is of order 1, it is easily seen that the only distributions in ker tP = kerP are
multiples of the Dirac mass concentrated at x = 0, hence a smooth f satisfies (3.1)
if and only if f (0) = 0; on the other hand, (3.2) imposes no constraints.

For f ∈ C ∞(S1) vanishing at x = 0 by elementary calculus we may find a
smooth u such that au = f , i.e., P is globally solvable in C ∞. Nevertheless, no
smooth v can satisfy av = 1 (as the left-hand side will always vanish at 0) but
it is classical that one can find a distribution v with such a property, hence P is
not (AGH) in S1. Similar arguments ensure that the vector field X =̇ a(x)Dx on S1

is globally solvable in C ∞, but not (AGH) there.

Proposition 3.7. If the kernel of tP : C ∞(M) → C ∞(M) is dense in the

kernel of tP : D ′(M) → D ′(M), then for f ∈ C ∞(M) condition (3.2) implies
condition (3.1). If, moreover, P : C ∞(M) → C ∞(M) has closed range then P

is (AGH) in M and weakly globally solvable.

Proof. Take f ∈ C ∞(M) satisfying (3.2). By hypothesis, any v ∈ D ′(M)
annihilated by tP may be approximated in D ′(M) by a net {vα}α∈A in

ker{tP : C ∞(M) → C ∞(M)},
and we thus have

〈v, f 〉 = lim
α
〈vα, f 〉 = lim

α
〈f, vα〉 = 0

hence (3.1) holds.
Moreover, let u ∈ D ′(M) be such that f =̇ Pu ∈ C ∞(M). Then f satisfies (3.2),

hence also (3.1) by the previous arguments. If we further assume that

ran{P : C ∞(M) → C ∞(M)}
is closed then f belongs there, so there exists v ∈ C ∞(M) such that Pv = f , and
therefore P is (AGH) in M. The conclusion that P is also weakly globally solvable
under such assumptions follows from a similar argument. �

We can then restate our main conclusion as follows.

Corollary 3.8. If the kernel of tP : C ∞(M) → C ∞(M) is dense in the kernel

of tP : D ′(M) → D ′(M) then the following are equivalent:
(1) P is globally solvable in C ∞(M).
(2) tP is globally solvable in D ′(M).
(3) P is (AGH) in M.
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3.1 Almost globally hypoelliptic systems of vector fields. Given a
family L of smooth, real vector fields on M we define

kerL =̇ {u ∈ D ′(M) ; Lu = 0, ∀ L ∈ L}.

Definition 3.9. We say that L is almost globally hypoelliptic in M—
(AGH) for short—if for every u ∈ D ′(M) we have

Lu ∈ C ∞(M), ∀ L ∈ L =⇒ ∃ v ∈ C ∞(M) such that u − v ∈ kerL.

Lemma 3.10. The following are equivalent:

(1) L is (AGH) in M.
(2) spanR L is (AGH) in M.

(3) LieL, the Lie algebra generated by L, is (AGH) in M.

Proof. Given L ⊂ L′ two families of vector fields on M such that

kerL = kerL′,

it is immediate to check that if L is (AGH) in M then so is L′. Now, since
L ⊂ spanRL ⊂ LieL we have that ker LieL ⊂ ker spanR L ⊂ kerL, but the latter
inclusions are equalities since

LieL = spanR
⋃
ν∈N

{[X1, [· · · [Xν−1,Xν] · · · ]] ; Xj ∈ L, 1 ≤ j ≤ ν}

hence a distribution annihilated by every vector in L is clearly annihilated by those
in LieL. We conclude that (1) ⇒ (2) ⇒ (3).

If u ∈ D ′(M) is such that Lu ∈ C ∞(M) for every L ∈ L, then also L′u ∈ C ∞(M)
for every L′ ∈ LieL, again due to the characterization of LieL above; assuming (3)
we conclude that there exists v ∈ C ∞(M) such that u − v ∈ kerLieL = kerL,
so (1) holds too. �

Now we turn our attention to the case when M is a compact Lie group G,
which we will always endow with a Riemannian metric that is ad-invariant, i.e.,
it is left-invariant and the inner product induced on the Lie algebra g turns the
linear endomorphism Y ∈ g �→ [X,Y] ∈ g into a skew-symmetric map for every
X ∈ g: the main advantage of this assumption is to make every element of g into
a skew-symmetric operator w.r.t. the L2(G) inner product; and these vector fields,
moreover, commute with the associated Laplace–Beltrami operator �G. Metrics
with this property always exist [12, Proposition 4.24].
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Given L =̇ {L1, . . . ,Lr} a finite family of left-invariant vector fields on G, we
proceed to show a few equivalent characterizations for its almost global hypoellip-
ticity in G. First, it is clear that if we define the vector-valued differential operator
DL : C ∞(G) → C ∞(G)r by

DL =̇ (L1, . . . ,Lr)

thenL is (AGH) in G if and only if the same property holds forDL (with the obvious
meaning). By results in [1] the latter is equivalent to DL : C ∞(G) → C ∞(G)r

having closed range, which is further characterized by the existence of constants
C, ρ > 0 such that

(3.9)

( r∑
j=1

‖Ljφ‖2
L2(G)

) 1
2 ≥ C(1 + λ)−ρ‖φ‖L2(G),

∀φ ∈ EG
λ ∩ (kerL)⊥, ∀λ ∈ σ(�G).

Now to L we may also associate a sublaplacian

�L =̇ −
r∑

j=1

L2
j

which is a second-order scalar LPDO on G, and also left-invariant: by the very
same results in [1], �L is (AGH) in G if and only if �L : C ∞(G) → C ∞(G) has
closed range, also equivalent to the inequality

‖�Lφ‖L2(G) ≥ C(1 + λ)−ρ‖φ‖L2(G), ∀φ ∈ EG
λ ∩ (ker�L)⊥, ∀λ ∈ σ(�G)

for some constants C, ρ > 0. Notice however that while it is certainly true that
kerL ⊂ ker�L we also have

〈�Lu, u〉L2(G) = −
r∑

j=1

〈L2
j u, u〉L2(G) =

r∑
j=1

‖Lju‖2
L2(G), u ∈ C ∞(G),

ensuring that kerL ∩ C ∞(G) = ker�L ∩ C ∞(G) and leading to the validity of the
reverse inclusion by a density argument.

Also, it is certain that if Lju∈C ∞(G) for every j∈{1, . . . , r} then�Lu∈C ∞(G),
hence by the previous observation regarding the kernels we have that

�L is (AGH) in G =⇒ L is (AGH) in G.

Conversely, if L is (AGH) in G then there exist C, ρ > 0 such that, for every
λ ∈ σ(�G) and every φ ∈ EG

λ ∩ (kerL)⊥ = EG
λ ∩ (ker�L)⊥,

‖φ‖L2(G)‖�Lφ‖L2(G) ≥ 〈�Lφ, φ〉L2(G) =
r∑

j=1

‖Ljφ‖2
L2(G) ≥ C2(1 + λ)−2ρ‖φ‖2

L2(G)
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hence
‖�Lφ‖L2(G) ≥ C2(1 + λ)−2ρ‖φ‖L2(G),

that is, �L is (AGH) in G: these considerations are summarized in the next
statement.

Proposition 3.11. For L =̇ {L1, . . . ,Lr} ⊂ g the following properties are
equivalent:

(1) L is (AGH) in G.
(2) DL : C ∞(G) → C ∞(G)r has closed range.

(3) DL is (AGH) in G.
(4) �L : C ∞(G) → C ∞(G) has closed range.

(5) �L is (AGH) in G.

For an arbitrary L ⊂ g, if L0 =̇ {L1, . . . ,Lr} and L1 =̇ {L′
1, . . . ,L

′
r} are two

bases of spanR L ⊂ g it follows from Lemma 3.10 that L0 is (AGH) in G if and
only if the same property holds for L1. Now, by Proposition 3.11, Li is (AGH)
in G if and only if the associated operator DLi : C ∞(G) → C ∞(G)r has closed
range. This remark motivates the following:

Definition 3.12. Let L be an arbitrary system of left-invariant vector fields
in G. We say that L is globally solvable in C ∞ if there exists a basis
L0 =̇ {L1, . . . ,Lr} of spanRL such that the associated operator

DL0 : C ∞(G) −→ C ∞(G)r

has closed range.

While it is well known that tori may carry real, left-invariant vector fields
which are globally hypoelliptic [4], the circumstances are not so favorable for
non-Abelian compact Lie groups G [5]; actually, no commutative subalgebra of
g enjoys that property [2, Corollary 8.9]. As for almost global hypoellipticity,
the situation is radically different as the next simple example shows; the reader is
referred to, e.g., [17, Chapter 11] for omitted details and computations.

Example 3.13 (An (AGH) vector field on SU(2)). On the special unitary
group G = SU(2), the real left-invariant vector field X corresponding to the matrix

1
2

(
i 0
0 −i

)
∈ su(2)

(hence X = −i∂0, where ∂0 is the so-called neutral operator of SU(2)) enjoys
the following property. For each λ ∈ σ(�G) there exists an orthonormal basis
of EG

λ (w.r.t. a suitable ad-invariant metric)

χλ1, . . . , χ
λ
cλ , ϕ

λ
cλ+1, . . . , ϕ

λ
dG
λ
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(with cλ ≥ 1 for λ �= 0) formed by eigenvectors of X [17, Proposition 11.9.2]:

Xχλj = 0, j ∈ {1, . . . , cλ},
Xϕλj = γλj ϕ

λ
j , j ∈ {cλ + 1, . . . , dG

λ },
with |γλj | ≥ 1/2 for every j ∈ {cλ +1, . . . , dG

λ }. In particular, for φ ∈ EG
λ ∩ (kerX)⊥

we have

Xφ =
dG
λ∑

j=cλ+1

〈φ, ϕλj 〉L2(G)γ
λ
j ϕ
λ
j

=⇒ ‖Xφ‖2
L2(G) =

dG
λ∑

j=cλ+1

|〈φ, ϕλj 〉L2(G)|2|γλj |2 ≥ 1
4
‖φ‖2

L2(G)

from which it follows that an inequality like (3.9) holds for X, which is then (AGH)
in G. Notice that χλ1, . . . , χ

λ
cλ ∈ kerX and cλ ≥ 1 for every λ ∈ σ(�G), hence the

kernel of X is infinite dimensional: in particular, X is not (GH) in G.

4 Sums of squares of tube type

Let T,G be two compact manifolds as in Section 2.1. Here, however, we shall
assume that G is a Lie group (whose Lie algebra we still denote by g), and while
we impose no extra condition on the Riemannian metric on T the one on G will be
assumed ad-invariant. On time, we will assume by simplicity that both T and G
have total measure equal to 1.

As in [2] we will consider differential operators on M = T × G of the form

(4.1) P =̇ �T −
N∑
�=1

( m∑
j=1

a�j(t)Xj + W�

)2

where X1, . . . ,Xm ∈ g form a basis of left-invariant vector fields in G,
a�j ∈ C ∞(T;R) and W� are skew-symmetric real vector fields in T . In order
to shorten the notation let a1, . . . , aN : T → g be smooth applications defined by

a�(t) =̇
m∑
j=1

a�j(t)Xj, t ∈ T,

which we will denote by a�(t,X) when we want to stress their interpretation as
differential operators on T × G. We will denote by L the system of vector fields
on G defined as follows:

(4.2) L =̇
N⋃
�=1

ran a� ⊂ g
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where a left-invariant vector field L belongs to ran a� if and only if there exists
t ∈ T such that L = a�(t). For each � ∈ {1, . . . ,N} we also set

(4.3) L� =̇ spanR ran a� ⊂ g.

Recall that by restriction to functions on T × G that do not depend on the second
variable, P induces an elliptic operator in T (see [2, Section 4])

P̃ =̇ �T −
N∑
�=1

W2
�(4.4)

and thanks to [2, Corollary 4.2] we know that if u ∈ D ′(T × G) is such that
Pu ∈ C ∞(T × G) the ellipticity of P̃ implies that FG

λ (u) ∈ C ∞(T;EG
λ ) for every

λ ∈ σ(�G).
The first step to characterize the global solvability of P is to describe ker tP. In

our case, the operator P is self-adjoint therefore ker tP = kerP. For the next result
we also recall that since P commutes with �G it also commutes with the partial
Fourier projections FG

λ [2, Proposition 2.11]. Here and below φλ1, . . . , φ
λ
dG
λ

will

denote any orthonormal basis of EG
λ .

Proposition 4.1. For P as in (4.1), a distribution u ∈ D ′(T × G) belongs to

kerP if and only if u does not depend on T and u ∈ ker a�(t) for every t ∈ T and
� ∈ {1, . . . ,N}.

Proof. It is immediate from its definition (4.1) that P annihilates any dis-
tribution that does not depend on T and belongs to ker a�(t) for every t ∈ T

and � ∈ {1, . . . ,N}. Conversely, if Pu = 0 we have that FG
λ (u) ∈ C ∞(T;EG

λ ) for
every λ ∈ σ(�G), and it follows from [2, Lemma 3.1] that

(4.5)

〈PFG
λ (u),FG

λ (u)〉L2(T×G)

= 〈�TF
G
λ (u),FG

λ (u)〉L2(T×G) +
N∑
�=1

‖Y�F
G
λ (u)‖2

L2(T×G)

equals zero, where

(4.6) Y� =̇ a�(t,X) + W�, � ∈ {1, . . . ,N}.
Notice that all the terms in the right-hand side of (4.5) are non-negative, hence
equal to zero. If we write

FG
λ (u) =

dG
λ∑

i=1

FG
λ (u)i ⊗ φλi , FG

λ (u)i ∈ C ∞(T),
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then

(4.7) 〈�TF
G
λ (u),FG

λ (u)〉L2(T×G) =
dG
λ∑

i=1

‖dTF
G
λ (u)i‖2

L2(T)

is also zero. Since T is connected it follows that FG
λ (u)i is constant for every

i ∈ {1, . . . , dG
λ } hence �Tu = 0, that is, u does not depend on T—see Lemma 2.4.

In particular, W�u = 0 for every � ∈ {1, . . . ,N} so it easily follows from (4.5) that

0 =
N∑
�=1

‖Y�F
G
λ (u)‖2

L2(T×G) =
N∑
�=1

‖a�(t,X)FG
λ (u)‖2

L2(T×G)

i.e., FG
λ (u) ∈ EG

λ is such that a�(t)FG
λ (u) = 0 for every λ ∈ σ(�G) and every t ∈ T ,

from where our conclusion follows. �

4.1 The cluster associated with P. Motivated by Proposition 4.1 we
start this section studying the set of distributions on G which are annihilated by
a�(t) ∈ g for every t ∈ T , where � ∈ {1, . . . ,N} is fixed: we may rewrite our
conclusion as

kerP = {1T ⊗ v ; v ∈ D ′(G), v ∈ ker a�(t) ∀t ∈ T, � ∈ {1, . . . ,N}}.

From here on we denote m� =̇ dimL� and fix L�1, . . . ,L
�
m� a basis of L� (4.3): it

allows us to write

(4.8) a�(t) =
m�∑
p=1

α�p(t)L
�
p,

where α�1, . . . , α�m� are R-linearly independent elements of C ∞(T;R). Making
use of the notation introduced in Section 3.1 we have

Lemma 4.2. Given � ∈ {1, . . . ,N} we have the following equality of sets:

⋂
t∈T

ker a�(t) = ker(ran a�) = kerL� =
m�⋂
p=1

kerL�p.

Proof. The first identity follows by definition; the second one, since every
vector field in L� is a linear combination of elements in rana� while containing the
latter; and the third one follows by similar arguments. �
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We will consider A = (Aλ)λ∈σ(�G) the spectral cluster on G given by

(4.9) Aλ =̇ EG
λ ∩

( N⋂
�=1

ker(ran a�)
)
, λ ∈ σ(�G).

The main reason to introduce it is that now we may rewrite the conclusions of
Proposition 4.1 and Lemma 4.2 as

ker{P : C ∞(T × G) −→ C ∞(T × G)} = {1T ⊗ v ; v ∈ C ∞
A (G)},

ker{P : D ′(T × G) −→ D ′(T × G)} = {1T ⊗ v ; v ∈ D ′
A(G)}.

It follows that our operator P satisfies the hypothesis of Proposition 3.7 and Corol-
lary 3.8:

Proposition 4.3. The kernel of P : C ∞(T ×G) → C ∞(T ×G) is dense in the
kernel of P : D ′(T × G) → D ′(T × G).

Proof. Any u ∈ D ′(T × G) such that Pu = 0 is of the form u = 1T ⊗ v for
some v ∈ D ′

A(G). The latter can be written as

v =
∑

λ∈σ(�G)

FG
λ (v), FG

λ (v) ∈ Aλ,

with convergence in D ′(G), hence

vν =̇
∑

λ∈σ(�G)
λ≤ν

FG
λ (v)

defines a sequence {vν}ν∈N ⊂ C ∞
A (G) such that vν → v in D ′(G). Therefore

uν =̇ 1T ⊗ vν ∈ C ∞(T × G)

is annihilated by P and converges to u in D ′(T × G). �

Whenever it helps in the computations below we shall employ orthonormal
bases adapted to A: for each λ ∈ σ(�G) we will denote by χλ1, . . . , χ

λ
cλ an or-

thonormal basis of Aλ and by ϕλcλ+1, . . . , ϕ
λ
dG
λ

an orthonormal basis of A⊥
λ . Then we

have the following:

Proposition 4.4. The cluster A defined above is invariant under the action
of P.
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Proof. Rewriting P using (4.8), one checks that its action on a tensor product
is given by the formula

(4.10)

P(ψ⊗ φ) = (P̃ψ) ⊗ φ−
N∑
�=1

( m�∑
p,p′=1

(α�p′α�pψ) ⊗ (L�p′L�pφ)

+
m�∑
p=1

((2α�pW� + W�α�p)ψ) ⊗ (L�pφ)
)

where P̃ was defined in (4.4). Let us prove that D ′
A(T × G) is invariant by P: if

u ∈ D ′
A(T × G) then

FG
λ (u) =

cλ∑
i=1

FG
λ (u)i ⊗ χλi

where FG
λ (u)i ∈ D ′(T) is uniquely determined. Using that χλi ∈ ker L�p for every

i ∈ {1, . . . , cλ}, p ∈ {1, . . . ,m�} and � ∈ {1, . . . ,N} thanks to Lemma 4.2, and
making use of (4.10) as well as the fact that P commutes with FG

λ [2, Proposi-
tion 2.11] we have

FG
λ (Pu) = PFG

λ (u) =
cλ∑
i=1

P(FG
λ (u)i ⊗ χλi ) =

cλ∑
i=1

(P̃[FG
λ (u)i]) ⊗ χλi ∈ D ′(T;Aλ).

Thus we have proved that P(D ′
A(T × G)) ⊂ D ′

A(T × G) (see Remark 4.5 below).

In order to prove the invariance of D ′
A⊥(T × G) we take u there and, as before,

we have to prove that

FG
λ (Pu) = PFG

λ (u) ∈ D ′(T;A⊥
λ ), ∀λ ∈ σ(�G).

To do so, recall that every X ∈ g is skew-symmetric w.r.t. the L2(G) inner product,
hence given ϕ ∈ A⊥

λ we have

〈L�pϕ, χ〉L2(G) = −〈ϕ,L�pχ〉L2(G) = 0, ∀χ ∈ Aλ,

i.e., L�pϕ ∈ A⊥
λ for every p ∈ {1, . . . ,m�} and � ∈ {1, . . . ,N}. Therefore, writing

FG
λ (u) =

dG
λ∑

i=cλ+1

FG
λ (u)i ⊗ ϕλi
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we obtain from (4.10) the following expression for PFG
λ (u):

PFG
λ (u) =

dG
λ∑

i=cλ+1

(P̃[FG
λ (u)i]) ⊗ ϕλi

−
dG
λ∑

i=cλ+1

N∑
�=1

( m�∑
p,p′=1

(α�p′α�pF
G
λ (u)i) ⊗ (L�p′L�pϕ

λ
i )

+
m�∑
p=1

((2α�pW� + W�α�p)F
G
λ (u)i) ⊗ (L�pϕ

λ
i )
)

which certainly belongs to D ′(T;A⊥
λ ) = D ′(T) ⊗ A⊥

λ thanks to our previous
argument. �

Remark 4.5. Now we take advantage of the last proof to obtain an equality
that will be important for us afterwards:

(4.11) Pu = P̃u, ∀u ∈ D ′
A(T × G).

Indeed, for every λ ∈ σ(�G) we have that

FG
λ (Pu) =

cλ∑
i=1

(P̃[FG
λ (u)i]) ⊗ χλi = P̃FG

λ (u) = FG
λ (P̃u).

5 A characterization of the global solvability of P

Our main result concerns the differential operator P defined by (4.1) on T × G. In
order to proceed we shall make use of the following additional hypothesis:

(5.1)
for each � ∈ {1, . . . ,N},

a�(t1) and a�(t2) commute as vector fields in G, for any t1, t2 ∈ T.

Also, recall that by L we denote the system of vector fields defined in (4.2). Here
is our statement.

Theorem 5.1. Let P be as in (4.1) and assume property (5.1). The following
are equivalent:

(1) P is globally solvable in C ∞;
(2) P is globally solvable in D ′;
(3) P is weakly globally solvable;
(4) P is (AGH) in T × G;

(5) L is (AGH) in G;
(6) L is globally solvable in C ∞.
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Note that Proposition 3.3 yields equivalence between (1) and (2), which in turn
imply (3). Thanks to Corollary 3.8 and Proposition 4.3, we have that (1) and (4)
are equivalent, while Proposition 3.11 shows the equivalence between (5) and (6):
the only implications left to prove are (3) ⇒ (5) and (5) ⇒ (4), to which we turn
our attention in the next couple of sections.

Necessity of L to be (AGH) for weak global solvability of P. Recall
that A stands for the spectral cluster given by (4.9).

Proposition 5.2. If P is weakly globally solvable then L is (AGH) in G.

Proof. First notice that since

{L�p ; p ∈ {1, . . . ,m�}, � ∈ {1, . . . ,N}}

generates spanR L, Lemma 3.10 says that it is enough to check that the former
is (AGH). We then proceed to check almost global hypoellipticity of this system,
which is characterized—see (3.9) and Lemma 4.2—by the existence of constants
C, ρ > 0 such that

(5.2)
( N∑
�=1

m�∑
p=1

‖L�pφ‖2
L2(G)

) 1
2 ≥ C(1 + λ)−ρ‖φ‖L2(G), ∀φ ∈ A⊥

λ , λ ∈ σ(�G).

In order to do so we start with some preliminary computations. Let φ ∈ EG
λ for

some λ ∈ σ(�G). Then

P(1T ⊗ φ) = −
N∑
�=1

Y2
�(1T ⊗ φ)

where Y� is given by (4.6). Explicitly,

Y2
�(1T ⊗ φ) =

m�∑
p,p′=1

(α�p′α�p) ⊗ (L�p′L�pφ) +
m�∑
p=1

(W�α�p) ⊗ L�pφ.

Let us compute their mixed Sobolev norms: for j, k ∈ Z+, since �G commutes
with each L�p we have that

(I +�T)j(I +�G)kY2
�(1T ⊗ φ)

= (1 + λ)k
{ m�∑

p,p′=1

[(I+�T)
j(α�p′α�p)] ⊗ (L�p′L�pφ) +

m�∑
p=1

[(I+�T)
j(W�α�p)] ⊗ L�pφ

}
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from where one easily infers that

‖Y2
�(1T ⊗ φ)‖H j,k(T×G)

≤ (1 + λ)k
( m�∑

p,p′=1

‖α�p′α�p‖H j(T)‖L�p′L�pφ‖L2(G) +
m�∑
p=1

‖W�α�p‖H j(T)‖L�pφ‖L2(G)

)

≤ C�(1 + λ)k+
1
2

m�∑
p=1

( m�∑
p′=1

‖α�p′α�p‖H j(T) + ‖W�α�p‖H j(T)

)
‖L�pφ‖L2(G)

thanks to a simple application of [2, Lemma 6.6]: the constant C� > 0 depends
only on L�1, . . . ,L

�
m� . Therefore

(5.3)

‖P(1T ⊗ φ)‖H j,k(T×G) ≤
N∑
�=1

‖Y2
�(1T ⊗ φ)‖H j,k(T×G)

≤ C(1 + λ)k+
1
2

( N∑
�=1

m�∑
p=1

‖L�pφ‖2
L2(G)

) 1
2

where C > 0 depends on j, the vector fields Y� and several dimensional constants,
but not on k, λ or φ.

By Lemma 3.2 there are j, k ∈ Z+ and C′ > 0 with the property that (recall
that P in (4.1) equals its own transpose)

(5.4)

∣∣∣∣
∫

T×G
fg dV

∣∣∣∣ ≤ C′‖f‖H j(T×G)‖Pg‖H k(T×G),

for every g ∈ C ∞(T×G) and every f ∈ E, see (3.3). Now if, for a given λ ∈ σ(�G),
we take φ ∈ A⊥

λ , then for a smooth v ∈ kerP we use Proposition 4.1 to obtain
χ ∈ Aλ such that FG

λ (v) = 1T ⊗ χ, and thus

〈1T ⊗ φ, v〉L2(T×G) = 〈1T ⊗ φ,FG
λ (v)〉L2(T×G) = 〈1T ⊗ φ, 1T ⊗ χ〉L2(T×G)

= 〈φ, χ〉L2(G) = 0,

that is, f =̇ 1T ⊗ φ̄ ∈ E. Taking g =̇ 1T ⊗ φ in (5.4) together with (5.3) yields

‖φ‖2
L2(G) ≤ C′‖1T ⊗ φ̄‖H j(T×G)‖P(1T ⊗ φ)‖H k(T×G)

≤ C′‖1T ⊗ φ‖H j,j(T×G)‖P(1T ⊗ φ)‖H k,k(T×G)

≤ C′(1 + λ)j‖φ‖L2(G)C(1 + λ)k+
1
2

( N∑
�=1

m�∑
p=1

‖L�pφ‖2
L2(G)

) 1
2

(where we used (2.4)–(2.5) in the second inequality) which proves (5.2). �
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Sufficiency of L to be (AGH) for almost global hypoellipticity of P.
The proof of this part will be done in several steps. We first observe that almost
global hypoellipticity of L yields an a priori inequality.

Theorem 5.3. If L is (AGH), then there exist C, ρ > 0 such that

‖Pψ‖L2(T×G) ≥ C(1 + λ)−ρ‖ψ‖L2(T×G)

for every ψ ∈ C ∞(T;A⊥
λ ) and every λ ∈ σ(�G).

Proof. Under our hypothesis (5.1), for each � ∈ {1, . . . ,N} the set L� (4.3)
is an Abelian subalgebra of g, with basis L�1, . . . ,L

�
m� . Given λ ∈ σ(�G), these

vector fields act as a family of commuting, skew-symmetric—hence normal—
linear endomorphisms of EG

λ ; all of them are zero on Aλ (by definition) and
preserve A⊥

λ (as we have seen in the proof of Proposition 4.4). We can then
simultaneously diagonalize them on EG

λ as follows: we select

• χλ,�1 , . . . , χλ,�cλ an orthonormal basis of Aλ (where cλ =̇ dimAλ could be even
zero) and

• ϕλ,�cλ+1, . . . , ϕ
λ,�
dG
λ

an orthonormal basis of A⊥
λ that are common eigenvectors

to L�1, . . . ,L
�
m� .

Their eigenvalues are purely imaginary, i.e.,

L�pϕ
λ,�
i =

√−1γλ,�i,p ϕ
λ,�
i , γλ,�i,p ∈ R, p ∈ {1, . . . ,m�}, i ∈ {cλ + 1, . . . , dG

λ }

and also satisfy γλ,�i,p = O(
√
λ) [2, Lemma 6.6]. The proof then proceeds exactly as

in [2, Proposition 6.5], but focusing the estimates exclusively on A⊥
λ , and making

use of estimate (5.2) in place of [2, eqn. (6.7)]. �

Remark 5.4. Theorem 5.3 is the only place where property (5.1) is used in
our arguments.

For our next proposition we need to combine two estimates on the Fourier
projections of a distribution to conclude its smoothness. First we recall [2, Corol-
lary 2.10], whose statement we transcribe below.

Proposition 5.5. If f ∈ D ′(T × G) is such that

(1) for every s > 0 there exists C > 0 such that

‖FG
λ (f )‖L2(T×G) ≤ C(1 + λ)−s, ∀λ ∈ σ(�G)

holds and
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(2) for every s′ > 0 there exist C′ > 0 and θ ∈ (0, 1) such that

‖FT
μF

G
λ (f )‖L2(T×G) ≤ C′(1 + μ + λ)−s′

, ∀(μ, λ) ∈ �θ,

where

(5.5) �θ =̇ {(μ, λ) ∈ σ(�T) × σ(�G) ; (1 + λ) ≤ (1 + μ)θ},
then f ∈ C ∞(T × G).

Proposition 5.6. If L is (AGH) in G then P is (GH)A⊥ .

Proof. Let us consider u ∈ D ′
A⊥(T × G) such that Pu ∈ C ∞

A⊥(T × G). Since
Pu ∈ C ∞(T×G) and P̃ is elliptic we have, thanks to [2, Corollary 4.2], thatFG

λ (u) is
smooth—hence actually belongs to C ∞(T;A⊥

λ )—for every λ ∈ σ(�G). Moreover,
from [2, Corollary 4.4] we have that for every s > 0 there are Cs > 0 and θ ∈ (0, 1)
such that

‖FT
μF

G
λ (u)‖L2(T×G) ≤ Cs(1 + μ + λ)−s

for every (μ, λ) ∈ �θ. It follows from Theorem 5.3 applied to ψ = FG
λ (u) that

‖FG
λ (u)‖L2(T×G) ≤ C−1(1 + λ)ρ‖FG

λ (Pu)‖L2(T×G).

Now [2, Corollary 2.9] ensures that for every s > 0 there exists C′
s > 0 such that

‖FG
λ (Pu)‖L2(T×G) ≤ C′

s(1 + λ)−s−ρ

for every λ ∈ σ(�G) and therefore

‖FG
λ (u)‖L2(T×G) ≤ C−1C′

s(1 + λ)−s.

It follows from Proposition 5.5 that u is smooth. �
Before we can finally conclude the proof of Theorem 5.1 let us recall an

application of a classical result on elliptic operators. Consider an elliptic LPDO Q

of order m0 ≥ 1 on T . It is well known (see, e.g., [19, Theorem 6.29]) that given
k ∈ Z+ there exists C > 0 such that

(5.6) ‖v‖H k+m0 (T) ≤ C(‖Qv‖H k(T) + ‖v‖H k(T)), ∀v ∈ H k+m0 (T).

We can obtain a more precise inequality in the L2-orthogonal of L2(T)∩kerQ—the
latter is a closed subspace of L2(T). The proof is standard.

Lemma 5.7. Given k ∈ Z+ there exists C > 0 such that

(5.7) ‖v‖H k+m0 (T) ≤ C‖Qv‖H k(T), ∀v ∈ (L2(T) ∩ kerQ)⊥ ∩ H k+m0 (T).
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Theorem 5.8. If P is (GH)A⊥ then P is (AGH) in T × G.

Proof. Consider u ∈ D ′(T × G) such that f =̇ Pu ∈ C ∞(T × G): by Proposi-
tion 4.4 we are allowed to write

PπA(u) = πA(f ) ∈ C ∞
A (T × G), PπA⊥(u) = πA⊥(f ) ∈ C ∞

A⊥(T × G)

so by assumption we have πA⊥(u) ∈ C ∞
A⊥(T × G), thus reducing our problem to

finding v ∈ C ∞(T × G) such that Pv = PπA(u) = πA(f ).
Expanding the partial Fourier coefficients of u in terms of orthonormal bases

adapted to A,A⊥ as we did in Section 4.1 we have

FG
λ (u) =

cλ∑
i=1

FG
λ (u)i ⊗ χλi +

dG
λ∑

i=cλ+1

FG
λ (u)i ⊗ ϕλi = FG,A

λ (u) + FG,A⊥
λ (u),

and recalling that P = P̃ on D ′
A(T × G) (see (4.11)) we have that

cλ∑
i=1

(P̃FG
λ (u)i) ⊗ χλi = P̃FG,A

λ (u) = PFG,A
λ (u) = FG,A

λ (f ) =
cλ∑
i=1

FG
λ (f )i ⊗ χλi ,

from which we obtain, by uniqueness of the coefficients, that

P̃FG
λ (u)i = FG

λ (f )i ∈ C ∞(T), ∀i ∈ {1, . . . , cλ}.

Since P̃ is elliptic it follows that FG
λ (u)i ∈ C ∞(T) for every i ∈ {1, . . . , cλ}. Also,

ker P̃ is closed in L2(T), thus inducing a decomposition into the orthogonal direct
sum

FG
λ (u)i = wλi + v λi , where wλi ∈ ker P̃ and v λi ∈ (ker P̃)⊥

where v λi is smooth and satisfies

P̃v λi = FG
λ (f )i, ∀i ∈ {1, . . . , cλ}.

We claim that

v =̇
∑

α∈σ(�M)

∑
μ+λ=α

dT
μ∑

j=1

cλ∑
i=1

〈v λi , ψμj 〉L2(T)ψ
μ
j ⊗ χλi

(
=

∑
λ∈σ(�G)

cλ∑
i=1

v λi ⊗ χλi

)

converges in C ∞(T × G), in which case we certainly have v ∈ C ∞
A (T × G) hence

FG
λ (Pv) = P̃FG

λ (v) = P̃
cλ∑
i=1

v λi ⊗ χλi =
cλ∑
i=1

FG
λ (f )i ⊗ χλi = FG

λ (πA(f ))
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for every λ ∈ σ(�G), and therefore Pv = πA(f )—thus concluding our proof. In
order to prove the claim, we will appeal to Corollary 2.3: thanks to Lemma 5.7,
for each k ∈ Z+ there exists Ck > 0 such that

‖v λi ‖H k+2(T) ≤ Ck‖FG
λ (f )i‖H k(T), ∀i ∈ {1, . . . , cλ}, λ ∈ σ(�G)

where

‖v λi ‖2
H k+2(T) =

∑
μ∈σ(�T )

(1 + μ)2k+4

dT
μ∑

j=1

|〈v λi , ψμj 〉L2(T)|2

and

‖FG
λ (f )i‖2

H k(T) =
∑

μ∈σ(�T )

(1 + μ)2k

dT
μ∑

j=1

|〈FG
λ (f )i, ψ

μ
j 〉L2(T)|2

=
∑

μ∈σ(�T )

(1 + μ)2k

dT
μ∑

j=1

|〈f, ψμj ⊗ χλi 〉L2(T×G)|2

and since f is smooth we have by Corollary 2.3 that there exists C′
k > 0 such that

|〈f, ψμj ⊗ χλi 〉L2(T×G)| ≤ C′
k(1 + μ + λ)−2k−n, ∀i, j, μ, λ

hence

‖FG
λ (f )i‖2

H k(T) ≤ (C′
k)

2(1 + λ)−2k
∑

μ∈σ(�T )

dT
μ(1 + μ)−2n ≤ (C′′

k )
2(1 + λ)−2k

thanks to Weyl’s asymptotic formula. Therefore

|〈v λi , ψμj 〉L2(T)| ≤ (1 + μ)−k−2‖v λi ‖H k+2(T) ≤ CkC
′′
k (1 + μ)−k−2(1 + λ)−k

≤ CkC
′′
k (1 + μ + λ)−k

for every i, j, μ, λ, so by Corollary 2.3 we conclude that v ∈ C ∞(T × G). �

6 Example: characterization of globally solvable oper-
ators on the torus

Notwithstanding the applicability of our results to general compact Lie groups, on
which one may hope to find many families of (AGH) vector fields satisfying the
hypotheses of Theorem 5.1 (even single ones, as we have seen in Example 3.13),
the special case G = T

m is of particular interest. While in this case hypothesis (5.1)
is clearly superfluous, historically this kind of problem is studied on tori: in the
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work [15], which inspired the questions we investigated in the present paper, the
author analyzes global solvability of the following differential operator defined
in T

n
t × T

m
x

P = −
n∑

k=1

∂2
tk −

( m∑
j=1

aj(t)∂xj

)2

where a1, . . . , am ∈ C ∞(Tn;R), and then characterizes that property in terms of
Diophantine conditions.

Let us consider the more general operator

(6.1) P =̇ �T −
N∑
�=1

( m∑
j=1

a�j(t)∂xj + W�

)2

defined in T × Tm where T will remain a compact Riemannian manifold enjoying
our usual assumptions. We recall that σ(�Tm) = {n2 ; n ∈ Z+} and an orthonormal
basis for ETm

n2 is given by the exponentials x ∈ Tm �→ eixξ ∈ C for ξ ∈ Zm

with |ξ|2 = n2.
Below, for each � ∈ {1, . . . ,N} we will assume for simplicity that

m� =̇ dimL� ∈ {1, . . . ,m − 1}.
The extreme cases m� = 0 and m� = m—which correspond, as we will see, to all
the coefficients a�1, . . . , a�m being zero, or linearly independent, respectively—are
treated analogously provided one interprets the notation carefully. A basis for L�
is given by

L�p =̇ ∂x
j�p

+
d�∑

q=1

λ�qp∂xi�q
, p ∈ {1, . . . ,m�},

where the coefficients λ�qp ∈ R are obtained as follows: let a�j�1, . . . , a�j�m�
be a basis

of spanR{a�1, . . . , a�m} and write, for the remaining indices

1 ≤ i�1 < · · · < i�d� ≤ m,

where d� =̇ m − m�,

a�i�q =
m�∑
p=1

λ�qpa�j�p, q ∈ {1, . . . , d�}.

Our spectral cluster (4.9) adapted to P is then given by

An2 = ETm

n2 ∩
( N⋂
�=1

m�⋂
p=1

ker L�p
)
, n ∈ Z+.
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On time, recall that for ξ = (ξ1, . . . , ξm) ∈ Z
m we have that

(6.2) L�pe
ixξ = i

(
ξj�p +

d�∑
q=1

λ�qpξi�q

)
eixξ, ∀� ∈ {1, . . . ,N}, p ∈ {1, . . . ,m�}

which in turn naturally leads one to consider the following set that will be important
for us:

� =̇
{
ξ = (ξ1, . . . , ξm) ∈ Z

m ; ξj�p +
d�∑
q=1

λ�qpξi�q = 0,

∀� ∈ {1, . . . ,N}, p ∈ {1, . . . ,m�}
}
.

A simple computation shows that for n ∈ Z+ we have

An2 = spanC{eixξ ; |ξ| = n and ξ ∈ �},
A⊥

n2 = spanC{eixξ ; |ξ| = n and ξ /∈ �}.
The almost global hypoellipticity ofL in G is characterized by (5.2), a condition

that, in the torus, may be expressed in terms of traditional Diophantine inequalities.
The proof relies on standard computations.

Proposition 6.1. Inequality (5.2) is equivalent to the existence of C, ρ > 0
such that

(6.3)
( N∑
�=1

m�∑
p=1

∣∣ξj�p +
d�∑
q=1

λ�qpξi�q
∣∣2) 1

2 ≥ C(1 + |ξ|2)−ρ, ∀ξ ∈ Z
m \ �.

In particular, Theorem 5.1 generalizes condition (III)2 in [15, Theorem 1.1]—
so, together with the results in [2], we have given a complete characterization of
global solvability of the more general operator P in (6.1), much in the same lines
as in Petronilho’s work.

7 Propagation of regularity

In this final section we take advantage of the machinery developed so far to prove a
result on propagation of regularity for P given by (4.1). We will continue to assume
that G is a Lie group and T is a smooth manifold enjoying the properties stated at
the beginning of Section 2.1, and also carrying Riemannian metrics satisfying the
assumptions in Section 4. We stress that hypothesis (5.1) is not required here.

Recall that P̃ = �T −∑N
�=1 W2

� is an elliptic operator in T so [2, Corollary 4.2]
ensures thatFG

λ (u) ∈ C ∞(T;EG
λ ) when u ∈ D ′(T×G) is such that Pu ∈ C ∞(T×G).

In this section we shall consider the following type of “local condition” in T:
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There is an open subset U ⊂ T such that for every ρ ∈ R we can find
Cρ > 0 such that

(7.1) ‖FG
λ (u)‖L2(U×G) ≤ Cρ(1 + λ)−ρ, ∀λ ∈ σ(�G).

In order to prove our main result of this section we need an inequality that is a
consequence of [2, Proposition 6.2] (a convenient replacement of [7, eqn. (2.10)]
for arbitrary compact Riemannian manifolds): given a non-empty open set U ⊂ T ,
there exists C > 0 such that

(7.2) ‖ψ‖2
L2(T) ≤ C(‖ψ‖2

L2(U) + ‖dTψ‖2
L2(T)), ∀ψ ∈ C ∞(T).

Now we can state and prove our main result of this section.

Theorem 7.1. If u ∈ D ′(T × G) satisfies Pu ∈ C ∞(T × G) and there exists a
non-empty open set U ⊂ T on which condition (7.1) holds, then u ∈ C ∞(T × G).

Proof. By [2, Corollary 4.4] for every s > 0 there are Cs > 0 and θ ∈ (0, 1)
such that

(7.3) ‖FT
μF

G
λ (u)‖L2(T×G) ≤ Cs(1 + μ + λ)−s

for every (μ, λ) ∈ �θ, where�θ is given by (5.5). It follows from (4.5), (4.7) and
the Cauchy–Schwarz inequality that

(7.4)
dG
λ∑

j=1

‖dT[FG
λ (u)i]‖2

L2(T) ≤ ‖FG
λ (Pu)‖L2(T×G)‖FG

λ (u)‖L2(T×G).

By (7.2) applied to ψ = FG
λ (u)i we have

‖FG
λ (u)i‖2

L2(T) ≤ C(‖FG
λ (u)i‖2

L2(U) + ‖dT[FG
λ (u)i]‖2

L2(T)),

hence summing both sides over i and also using (7.4) yields

(7.5) ‖FG
λ (u)‖2

L2(T×G) ≤ C(‖FG
λ (u)‖2

L2(U×G) + ‖FG
λ (Pu)‖L2(T×G)‖FG

λ (u)‖L2(T×G)).

Indeed, recall that T and G have total measure equal to 1 and the following equality
for an arbitrary open set V ⊂ T:

‖FG
λ (u)‖2

L2(V×G) =
∥∥∥∥

dG
λ∑

i=1

FG
λ (u)i ⊗ φλi

∥∥∥∥
2

L2(V×G)
=

dG
λ∑

i=1

‖FG
λ (u)i‖2

L2(V).
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Now we use (7.1) and (7.5) to conclude that for every ρ ∈ Rwe can find Cρ > 0
such that

‖FG
λ (u)‖2

L2(T×G)

≤ C2
ρ(1 + λ)−2ρ + C‖FG

λ (Pu)‖L2(T×G)‖FG
λ (u)‖L2(T×G)

≤ C2
ρ(1 + λ)−2ρ +

C2

2
‖FG

λ (Pu)‖2
L2(T×G) +

1
2
‖FG

λ (u)‖2
L2(T×G), ∀λ ∈ σ(�G).

Since Pu ∈ C ∞(T × G) we may use [2, Corollary 2.9] to infer a similar decay in
the second term above and conclude that given ρ > 0, there exists C′

ρ > 0 such
that

(7.6) ‖FG
λ (u)‖L2(T×G) ≤ C′

ρ(1 + λ)−ρ, ∀λ ∈ σ(�G)

and now (7.3) and (7.6) allow us to apply Proposition 5.5 and conclude that
u ∈ C ∞(T × G). �
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[9] L. Hörmander, Linear Partial Differential Operators, Springer, New York, 1969.

[10] J. Hounie, Globally hypoelliptic and globally solvable first-order evolution equations, Trans.
Amer. Math. Soc. 252 (1979), 233–248.

[11] Y. Kannai, An unsolvable hypoelliptic differential operator, Israel J. Math. 9 (1971), 306–315.

[12] A. W. Knapp, Lie Groups Beyond an Introduction, Birkhäuser, Boston, MA, 1996.
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