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Abstract. We begin an investigation into extending the 7'1 theorem of David
and Journé, and the corresponding optimal cancellation conditions of Stein, to
more general pairs of distinct doubling weights. For example, when 0 < a < n,
and o and w are A, weights satisfying the one-tailed Muckenhoupt conditions,
and K* is a smooth fractional CZ kernel, we show there exists a bounded operator
T : [2(¢) — L*(w) associated with K¢ if and only if there is a positive constant
ke (o, w) so that

/H)c—xo <N

where ||y|| = max|<x<y |yk|, along with a dual inequality. More generally this
holds for measures ¢ and w comparable in the sense of Coifman and Fefferman
that satisfy a fractional A% condition.

These results are deduced from the following theorem of 7'1 type, namely that if o
and w are doubling measures, comparable in the sense of Coifman and Fefferman,
and satisfying one-tailed Muckenhoupt conditions, then 7% : L%(0) > L*(w) if
and only if the dual pair of testing conditions hold, as well as a strong form of the
weak boundedness property,

’ /F (T*1g)dw

where BICT 7« (o, w) is a positive constant called the bilinear cube/indicator testing
constant. The comparability of measures and the bilinear cube/indicator testing
condition can both be dropped if the stronger indicator/cube testing conditions are
assumed.

2

/ K*(x, y)do(y)| deo(x) < ga (o, ©) do(y),
e<|lx=yll <N o=yl <N

forall0 < & < N and xo € R",

< BICTra(0, )/ |0sls|Qslw, forall cubes QO C R,
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This paper includes the content of [Saw2], [Saw3] and [Saw4] from the arXiv.
Given a Calderon—Zygmund kernel K(x,y) in Euclidean space R”, a clas-

sical problem for many decades was to identify optimal cancellation conditions
on K so that there would exist an associated singular integral operator
Tf(x) ~ [ K(x,y)f(y)dy bounded on L*(R"). After a long history, involving con-
tributions by many authors,! this effort culminated in the decisive 71 theorem
of David and Journé [DaJo], in which boundedness of an operator 7 on L*(R")

associated to K was characterized by
T1,T*1 € BMO,

together with a weak boundedness property for some 7 > 0,

’ | rocoweods
0

(1.1) ? -
S \/||¢||oo|Q| + ||¢||Lip,1|Q|‘+'f¢||w||oo|Q| + | wllLipy Q1" 7,

for all ¢, w € Lip n with Supp ¢, Supp ¢ C Q, and all cubes Q C R";

equivalently by two testing conditions taken over indicators of cubes,

/|T1Q(x)|2dx§|Q| and /|T*1Q(x)|2dx§|Q|, all cubes Q c R".
(0] (0]

The optimal cancellation conditions, which in the words of Stein were ‘a rather
direct consequence of” the 71 theorem, were given in [Ste2, Theorem 4, page
306], involving integrals of the kernel over shells—see Theorem 10 below for an

extension to certain more general pairs of doubling weights and cubical shells.

ISee, e.g., [Ste, page 53] for references to the earlier work in this direction.
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An obvious next step is to replace Lebsegue measure with a fixed A, weight w,

<|Q| / w(x)dx )<|Q| / ﬁdx) <1, allcubesQ C R",

and ask when T is bounded on L?(w), i.e., satisfies the one weight norm inequality.
For elliptic Calderén—Zygmund operators 7', this question is easily reduced to
the David Journé theorem using two results from decades ago, namely the 1956
Stein—Weiss interpolation with change of measures theorem [StWe], and the 1974
Coifman and Fefferman extension [CoFe] of the one weight Hilbert transform
inequality of Hunt, Muckenhoupt and Wheeden [HuMuWh], to a large class of
general Calderén—Zygmund operators 7.2

However, for a pair of different measures (o, w), the question is wide open in
general, and we now turn to a brief discussion of the problem of boundedness
of a general Calderén—Zygmund operator 7 from one general L*(c) space to
another L?(w) space. In the case of the Hilbert transform H in dimension one, the
two weight inequality was completely solved in the two part paper [LaSaShUr3];
[Lac], and [Hyt3] where it was shown that H is bounded from L?(¢) to L*(®) if and
only if the testing and one-tailed Muckenhoupt conditions hold, i.e.,

/ |[H(1;0)|?dow < / do and / |[H(1,0)|*do < / dow, allintervals I ¢ R",
1

1
(/ T+ ||x| o a(x)) |1| /dw < 1 andits dual, all intervals I C R",

and for fractional Riesz transforms in higher dimensions, it is known that the two
weight norm inequality with doubling measures is equivalent to the fractional one-
tailed Muckenhoupt and 7'1 cube testing conditions; see [LaWi, Theorem 1.4] and
[SaShUr9, Theorem 2.11]. Here a positive measure u is doubling if

/ d,ug/d,u, all cubes Q C R".
20 o

However, these results rely on certain ‘positivity’ properties of the gradient of
the kernel (which for the Hilbert transform kernel —x is simply E)Lx > 0 for
x #y), something that is not available for general elliptic, or even strongly elliptic,
fractional Calder6n—Zygmund operators.

Our point of departure in this paper is the fact, easily proven below, that for

doubling weights, certain weak analogues of the pivotal conditions of Nazarov,

2Indeed, if T is bounded on L2(w), then by duality it is also bounded on Lz(%), and the Stein—
Weiss interpolation theorem with change of measure shows that 7" is bounded on unweighted L2(R").
Conversely, if 7' is bounded on unweighted L2(R™), the proof in [CoFe] shows that 7' is bounded on
L*(w) using w € Aj.



71 THEOREM FOR COMPARABLE DOUBLING WEIGHTS 209

Treil and Volberg (often referred to now as NTV) [NTV4] are necessary, and
this provides the framework for moving forward.> So we will assume that our
weight pair (o, ) consists of doubling measures, and satisfies at least the classi-
cal A% condition of Muckenhoupt, and often the one-tailed versions A% and A5
in [SaShUr7]. The former condition is a necessary consequence of boundedness
of any elliptic Calderén—Zygmund operator 7', and the latter condition is necessary
if T is strongly elliptic; see [SaShUr7].

Finally, we will at times also require that the doubling measures ¢ and w are
comparable in the sense of Coifman and Fefferman [CoFe], which means that the
measures are mutually absolutely continuous, uniformly at all scales, i.e., there
exist 0 < 5,y < 1 such that
|E]e

E
£l < = —— <y forall Borel subsets E of a cube Q.
19lo 19l

This condition is needed to prove the two weight bilinear Carleson Embedding

Theorem 20 below, and conversely we show that our bilinear theorem implies it.
The point is that if ¢ and @ are doubling and comparable, then a collection of
dyadic cubes J is o-Carleson if and only if F is w-Carleson*—see the next section
for these definitions.

Remark 1. We do not assume in this paper that the weight pair (o, w) satisfies
the very strong energy conditions, something that is only necessary for boundedness
of the Hilbert transform and its perturbations on the real line (see [SaShUr11] and
[Saw]), nor the k-energy dispersed conditions introduced in [SaShUr10], which
only hold for perturbations of Riesz transforms in higher dimensions.

The purpose of this paper is to consider measures ¢ and w in R” that are
e doubling,
e and satisfy the one-tailed Muckenhoupt conditions,

and then:

(1) to characterize the two weight norm inequality, for the class of elliptic a-
fractional singular integral operators in R”, in terms of the A5 conditions and
the Indicator/Cube Testing conditions—and if in addition the measures are
comparable in the sense of Coifman and Fefferman, then in terms of A%, the
Cube Testing conditions, and the Bilinear Indicator/Cube Testing property

3We do not know if the usual pivotal conditions hold for doubling measures that satisfy the Muck-
enhoupt conditions, and we thank Ignacio Uriarte-Tuero for bringing this to our attention by pointing
to an error in a previous version of this paper.

“We thank Alex Tkachman for pointing to an error in the proof of an earlier incorrect version of
Theorem 20, where comparability was needed but not assumed.
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(often referred to now as the BICT property), which plays a role analogous
to the weak boundedness property (1.1) with y = 0 (see Theorem 6 below),

(2) to eliminate the BICT property when the measures are both doubling and
comparable, with each of them satisfying either the A% condition, or the C,
condition of Muckenhoupt for some ¢ > 2 (see [Muc] and [Saw1])’

(a) and furthermore, in the case when the measures are A, weights,6 or,
more generally, C,,, weights or fractional A% measures, to give opti-
mal cancellation conditions on a smooth Calderén—Zygmund kernel in
order that there is an associated bounded operator from L?(c) to L*(w),
extending the smooth part of Theorem 4 in [Ste2, Section 3 of Chapter
VII] (see Theorem 10 below)

(3) andto give a function theoretic consequence, namely that strong type is equiv-
alent to weak type and dual weak type for elliptic operators; see Corollary 7
below. A one weight version of this result, with optimal A, dependence, was
obtained by Pérez, Treil and Volberg [PeTrVo, Theorem 2.1].

1.1 Discussion of methodology. Since the weaker pivotal conditions,
that can be derived from doubling measures, involve Poisson integrals whose tails
have higher powers, we are led naturally to the use of the weighted Alpert wavelets
in [RaSaWi], instead of the traditional Haar wavelets, having correspondingly
higher order vanishing moments. In order to handle the global form associated
with the operator, it suffices to use testing over polynomials times indicators of
cubes. However, as pointed out in [RaSaWi], the weighted Alpert wavelets, unlike
the weighted Haar wavelets, do not behave well with respect to the famous Para-
product/Neighbor/Stopping (often referred to now as P/N/S) form decomposition
of NTV (because the extension of a nonconstant polynomial from one cube to
another is uncontrolled), and so we must divert to an alternate fork in the proof
path using the Parallel Corona, in which independent stopping times are used for
each function in a bilinear form, in order to handle the local form. In the absense of
a P/N/S decomposition, this alternate fork then permits testing over polynomials
times indicators of cubes, coupled with testing a bilinear indicator/cube testing
property BICT, taken over indicators of subsets of cubes on the left, rather than

3In [Ler] Lerner has introduced a strong SC, condition on a weight w which characterizes the related
inequality 17711200 () S IMF 1l 20

%In the case that both o and w are Ao, weights satisfying A, (o, @) < oo, C. Grigoriadis has shown
in arXiv:2009.12091 that the classical pivotal conditions hold, resulting in a 7’1 theorem for nonsmooth
kernels.
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the cubes themselves,

/ T“(lpa)da)‘ < V10|s|10l», Borelsubsets E, F of a cube Q.
E

On the real line, a stronger conjecture is made in [RaSaWi] that the norm inequality
holds if testing over these polynomials times indicators of intervals holds, in the
presence of energy conditions, and that conjecture remains open at this time.

Moreover, in the proof of our theorem, we will need to bound the L*° norm
of L*(u)-projections onto the space of restrictions to Q of polynomials of degree
less than x (which is trivial when x = 1), and for this we use the nondegeneracy
conditions

(1.2) IQllﬂ /Q‘P(XK?QC)Q)‘zdﬂ(x) >c¢> 0,

for all cubes Q and normalized polynomials P of degree less than x, and with u

equal to either measure o, w. Such conditions permit control of off-diagonal terms
by a Calderén—Zygmund stopping time and corona decomposition. We will see
that (1.2) is implied by the doubling property for x, and provided « is large enough,’
doubling is implied by (1.2), providing yet another instance of poor behavior of
weighted Alpert wavelets, as compared to that for weighted Haar wavelets. Thus
doubling conditions on the weights permit a proof of NTV type as in [NTV4],
that both avoids the difficult control of functional energy in [LaSaShUr3] and
[SaShUr7], and Lacey’s deep breakthrough in controlling the stopping form [Lac],
of course at the expense of including bilinear indicator/cube testing.

On the other hand, we are able to replace polynomial testing by the usual
Cube Testing in the setting of doubling weights, and if we make one additional
assumption, namely that the measures satisfy the fractional A% condition, then we
can do away with the BICT property as well. Our approach to these results will
follow the series of papers [Saw2], [Saw3] and [Saw4]:

(1) First we prove that the two weight norm inequality, for a general elliptic
a-fractional Calderén—Zygmund singular integral with comparable doubling
weights, is controlled by the classical A5 condition of Muckenhoupt, the
two dual Polynomial/Cube Testing conditions (referred to now as P/CT), the
Bilinear Indicator/Cube Testing property, and a certain weak boundedness
property—this latter property is then removed using the doubling properties
of the measures together with the A% conditions.

(2) Second, we replace the P/CT conditions in the previous theorem with the
usual Cube Testing condition over indicators of cubes, assuming only that
the one-tailed Muckenhoupt constants A% and AJ'* are both finite.

TThis restriction is removed in Sawyer and Uriarte—Tuero [SaUr].
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(3) Third, we eliminate the BIJCT from each of the previous two theorems if one
of the measures satisfies the fractional A%, condition.

(4) Finally, we use the previous result to extend Stein’s cancellation theorem to
certain pairs of doubling measures satisfying the one-tailed A5 conditions.

Acknowledgement. We thank the referee for a number of corrections and
simplifications of arguments that greatly contribute to the readability of the paper.

2 Two weight T'1 theorems and cancellation conditions
for Calderon-Zygmund operators

Denote by P” the collection of cubes in R” having sides parallel to the coordinate
axes. A positive locally finite Borel measure 4 on R” is said to satisfy the doubling
condition if there is a pair of constants (5, y) € (0, 1)?, called doubling parameters,
such that

2.1 IOl = yIQl,, forall cubes Q € P".

A familiar equivalent reformulation of (2.1) is that there is a positive constant Cyoyp,
called the doubling constant, such that [2Q|,, < Cgouw|Q|, for all cubes Q € P".

2.1 Conditions on measures and kernels. We begin with various con-
ditions on measures and measure pairs, with the fractional A% condition being
new, and the others classical. Then we recall ellipticity conditions for Calderén—
Zygmund kernels.

2.1.1 The A, and C, conditions. The absolutely continuous measure
do(x) = s(x)dx

is said to be an A, weight if there are constants 0 < ¢, # < 1, called A, parameters,
such that

E _|E
IElo < 5 whenever E compact C Q a cube with u <e.

Qo Q]

A useful reformulation given in [CoFe, Theorem III on page 244] is that there is

C > 0 and an A, exponent ¢ > 0 such that

|E|s |E]y¢
2.2) < C{—] whenever E compact C Q a cube.
1Qlo (IQI) P

Recall that there are doubling measures that are mutually singular with respect
to Lebesgue measure; for a nice exposition see, e.g., [GaKiSc], and references
given there.
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Finally an absolutely continuous measure do(x) = s(x)dx is said to be a C,
weight for 1 < p < oo if

L

m = @)} whenever E compact C Q a cube.

2.1.2 Comparability of measures. A generalization of the A, property
to more general pairs (o, w) of doubling measures was also given by Coifman and
Fefferman in [CoFe]: A pair (o, @) of doubling measures is comparable if there
are constants 0 < g, # < 1, called comparability parameters, such that

£ E
|E], < n whenever E compact C Q a cube with |E] e

1Qlo 1Qlo

This condition is easily seen to be symmetric and the reformulation proved in

(2.3)

[CoFe] is that there is C > 0 and a comparability exponent ¢ > 0 such that

(2.4) 1B, _ c(%

19l = MOl

A further reformulation is given in [Saw0, Theorem 3 (ii)] in terms of Car-

&
) whenever E compact C Q a cube.

leson conditions, namely that a pair (o, @) of doubling measures is comparable if
and only if

(2.5) 1Fllcarey < ClliT llcarw), for all grids 7 C D,

where for a positive locally finite Borel measure u, we say that a grid F C D is
u-Carleson if
> Q1. <ClQl,, forallQed,
QeF:0co

and we define the ‘Carleson norm’ [|JF||caruy of JF to be the infimum of such
constants C. We repeat the simple proof here for the sake of completeness.
Suppose (2.4) holds. Given Q € F, let Gi(Q) = UQ/E@;) Q' be the union of the
k™-grandchildren of Q. Since the grid J satisfies a Carleson condition with respect
to w, there are positive constants C, d > 0 such that |Gx(Q)|, < C27%|Q|,, (this
is a well-known consequence of the Carleson condition dating back to a paper of
Carleson). Then we have for Q € F,

o0 o0 G o e
S 10 =Sl < Y |Q|UC(%)
QeF:QcQ k=0 k=0 @
<Y " 101,C(C277) < C|Q|,.
k=0

Conversely, (2.5) implies (2.3) is easy.
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Since comparability of doubling measures is symmetric, (2.5) is equivalent to
its dual

(2.6) I Fllcarey < CllFllcan, forall grids F  D.

This suggests the following extension of comparability to more general pairs of
measures.

Definition 2. A pair (o, ) of positive locally finite Borel measures is said to
be comparable if both (2.5) and (2.6) hold.

Note that the equivalence of (2.5) and (2.6) for pairs of doubling measures
does not carry over to more general pairs of measures, which explains why we
incorporate both conditions (2.5) and (2.6) in the definition of comparability.

2.1.3 The fractional A% condition. In order to introduce the larger class
of measures satisfying the fractional A%, condition, we define a relative a-capacity
Cap,(E; Q) of a compact subset E of a cube Q by

Cap,(E; Q)

= inf{ /h(x)dx :h>0,Supph C 2Q and I,h > (diam2Q)*™" on E}
~ inf{lZQI%_l/ h(x)dx : h > 0,Supph C 2Q and I,h > 1 on E}
20

This relative capacity is closely related to the (a, 1)-capacity as defined, e.g.,
in Adams and Hedberg [AdHe], where numerous properties of capacities are
developed. We now use this relative capacity to define a fractional A%, condition
(different than the A% condition appearing in [SaWh, page 818]).

Definition 3. A locally finite positive Borel measure o is said to be an A%,
measure if

|E]e

12010

< n(Cap,(E; Q)), for all compact subsets E of a cube Q,
for some function # : [0, 1] — [0, 1] with li\n(} n() =0.
t

Note that omitting the factor 2 in |2Q|, above makes the condition more
restrictive in general, but remains equivalent for doubling measures. We let A%
be the class of A, weights, so that statements involving both A, and A% can be
given together. Note the inequalities

c(@)l_% < Cap,(E; Q)< Capy(E;0), 0 <a<f <n
|Q| = poc s = p[)’ ] s 5
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which hold since
(diam 2Q)*"|E|'™7 < (diam2Q)*™"|{I,h > (diam 2Q)*~"}|' 75
< Mol g o / h

implies

Cap,(E; Q) >

(diam2Q)*"|E|'""% _/|E|\'-%
—C(@) ’

n

Wall 12 p e

and since
Lh(x) / ( Ix —yl )“—"dy
(diam2Q)*—" 20 \diam2Q
is decreasing in a. It follows that

A C A% C AP for0 <a < f <n.

2.1.4 The Muckenhoupt conditions.

Definition 4. Let g and w be locally finite positive Borel measures on R”, and
denote by P” the collection of all cubes in R” with sides parallel to the coordinate
axes. For 0 < a < n, the classical a-fractional Muckenhoupt condition for
the weight pair (o, ®) is given by

(2.7) A%(0, w) = sup 'QI'L 'Ql'i’ﬂ < 00,
oep [QI'7 105

and the corresponding one-tailed conditions by

A3 (o, w) = sup PYQ, o) |Q1|Z < 00,
0ecQn Q]
2.8) 0l
A5 (0, w) = sup —7PH(Q, w) < o0,
e |Q 7

where the reproducing Poisson integral P* is given by

o m= /Rn ((|Q|% llelz_le)z)"_“dﬂ(x)'

2.1.5 Ellipticity of kernels. Finally, as in [SaShUr7], an a-fractional
vector Calderon—Zygmund kernel K* = (K}') is said to be elliptic if there is ¢ > 0
such that for each unit vector u € R” there is j satisfying

|K} (x, x + tw)| > ct*™",  forall 7 > 0;
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and K” = (K}") is said to be strongly elliptic if for eachm € {1, —1}", there is a
sequence of coefficients {}L]’-"}f=1 such that
2.9)

J
> K x, x+m)| > ct”", teR

J=1

holds for all unit vectors u in the n-ant
Ve={xeR" :mx; >0forl <i<n}, me{l,—1}".

For example, the vector Riesz transform kernel is strongly elliptic ([SaShUr7]).

2.2 Standard fractional singular integrals, the norm inequality and
testing conditions. Let 0 < a < n and x1,x; € N. We define a standard
(k1 + 0, k3 + 0)-smooth a-fractional Calderéon—-Zygmund kernel K*(x,y) to be a
function

K :R'xR'"—> R
satisfying the following fractional size and smoothness conditions: For x &y, and
with V| denoting gradient in the first variable, and V, denoting gradient in the
second variable,

IViK“ (e, )| < Cezlx —y1*77" 7,

0 S,] < K1,
K K |X—X/| J —K1—h—
(210) |v1Ka(x’y)_lea(x/’y)| < CCZ( ) |x—y|l1 1 ln
lx =yl
x—x1 1
< A
lx—yl = 2

and where the same inequalities hold for the adjoint kernel
K" (x, y) = K*(y, %),

in which x and y are interchanged, and where ) is replaced by «;, and V| by V.

2.2.1 Defining the norm inequality. We now turn to a precise definition
of the weighted norm inequality

(2.11) I Tofll 12wy < Nrallfllze), f € L(0),

where of course L?(o) is the Hilbert space consisting of those functions f : R” — R

Vlloo =1/ [ f0Pdats) < oo,

for which
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and equipped with the usual inner product. A similar definition holds for L*(w).
For a precise definition of (2.11), it is possible to proceed with the notion of associ-
ating operators and kernels through the identity (3.6), and more simply by using the
notion of restricted boundedness introduced by Liaw and Treil in [LiTr, see Theo-
rem 3.4]. However, we choose to follow the approach in [SaShUr9, see page 314].
So we suppose that K is a standard (x| + J, k3 + 0)-smooth a-fractional Calderén—
Zygmund kernel, and we introduce a family {773‘, rJ0<s<rR<oco Of nonnegative func-
tions on [0, co) so that the truncated kernels

K5 r(x,y) = 15 z(Jx — yYDK“(x, y)

are bounded with compact support for fixed x or y, and uniformly satisfy (2.10).
Then the truncated operators

T30 = [ K 0o, x <R,

are pointwise well-defined, and we will refer to the pair (K*, {75 glo<s<r<c0)
as an a-fractional singular integral operator, which we typically denote by 7%,
suppressing the dependence on the truncations. We also consider vector kernels
K* = (K;’) where each K? is as above, often without explicit mention. This
includes, for example, the vector Riesz transform in higher dimensions.

Definition 5. We say that an a-fractional singular integral operator

T* = (K%, {ng,R}0<(5<R<oo)

satisfies the norm inequality (2.11) provided
T3 56 I2@) < Nrel0, D) ll20)s | € LP(0),0 <6 <R < 0.

Independence of Truncations: In the presence of the classical Muckenhoupt
condition Aj, the norm inequality (2.11) is essentially independent of the
choice of truncations used, including nonsmooth truncations as well; see
[LaSaShUr3]. However, in dealing with the Monotonicity Lemma 27 below,
where x'" order Taylor approximations are made on the truncated kernels, it
is necessary to use sufficiently smooth truncations. Similar comments apply
to the Bilinear Indicator/Cube Testing property (2.15) and the Indicator/Cube
Testing conditions (2.14), as well as to the x-cube testing conditions (6.3)
used later in the proof.

The weak type norms IMyeax 7+ (0, @) and NMyeax 7+ (@, o) are the best constants
in the inequalities
I Tof 1l 1200y < Nweak 7e(0, @) ||f | 12(5) and

(2.12) -
”ij f”le(g) < mweakT“-*(wa O-)Hf”Lz(a))‘
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2.3 Cube Testing. The x-cube testing conditions associated with an
a-fractional singular integral operator 7¢ introduced in [RaSaWi] are given by

(T (5, w))* = su / |T¢(1om )| w < 00,
(2.13) ! Qeﬂg'0<|ﬁ|<K|Q|g ™o
(T (@, 0))* = su / [(TH*(AomP)*e < oo,
@ Qefg'0<|/f|<’<|Q|w oMo

X—Co
[4(9)
cube O, and where we interpret the right-hand sides as holding uniformly over all

) for any cube Q and multiindex 8, where co is the center of the

with mf(x) = (

sufficiently smooth truncations of 7*. Equivalently, in the presence of A%, we can
take a single suitable truncation; see Independence of Truncations in Subsubsection
2.2.1 above. We will also use the larger full x-cube testing conditions in which the
integrals over Q are extended to the whole space R":

(FTR (0, w))*> = sup max
r e 0<If<x |Ql,

(FT®). (w,0))> = sup max —/ (T*):(1gm Py\o < oo.
™ oedn 01 <x |Qlo i

/ |T“(1QmQ)| w < 00,

We only use the case ¥ = 1 in the statements of the four theorems in the next
section, and so we will drop the superscript (x) when ¥ = 1, e.g., T« = T(Tl) and
Ty = Ty
T*y (T*)*+
Finally, we define the Indicator/Cube Testing constants by

(T(0, @) = sup

/ |T*(1g0) >0 < oo,

o zcotr 121
(‘If%)* (w,0))> = sup / (T*)*(1gw)|?o < oo,
EcCQe®" |Q|w

which are larger than the x-cube testing conditions.

2.4 Bilinear Indicator/Cube Testing. Here we introduce a variant of
the weak boundedness property of David and Journe in (1.1), but stronger because
we take # = 0 in (1.1)) The Bilinear Indicator/Cube Testing property is
(2.15) BICT (o, ) = sup sup

V : /
—| | T/(1pw
0eP E,Fc V10|s10lw | JF

where the second supremum is taken over all compact sets £ and F contained

< 00,

in a cube Q. Note in particular that the bilinear indicator/cube testing property
BICTr«(0, w) < oo is restricted to considering the same cube Q for each measure o
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and w—in contrast to the weak boundedness property W‘BT(TK,}’Kz) < o0 in (6.4)
below, that takes the supremum of the inner product over pairs of nearby disjoint
cubes Q, Q. However, in the setting of doubling measures, the latter constant
WB‘J’(T"J *2) can be controlled by k™-order testing and the one-tailed Muckenhoupt
condition A% since the cube pairs are disjoint, and hence W‘BT(TKJ’“) is removable.
On the other hand, the former constant BJCJT 7« cannot be controlled in the same
way since the cubes coincide, and we are only able to remove BICT 7. if one of the
measures is an A% or C,, measure.

3 The four main theorems

Here is our general T'1 theorem for doubling measures, first with indicator/cube
testing, then with cube testing and a bilinear indicator/cube testing property when in
the addition the measures are comparable. See Lemma 18 below for the definition
of the doubling exponent, whose only role here is to determine the degree of
smoothness required of the kernel K* below.

Theorem 6. Suppose0 < a <n, andr|,k; € Nand0 <0 < 1. Let T* be an
o-fractional Calderon—Zygmund singular integral operator on R" with a standard
(k1 + 0, Ky + 0)-smooth o-fractional kernel K*. Assume that o and w are doubling
measures on R" with doubling exponents 0, and 6, respectively satisfying

K1 >0+a—n and Ky > 6, +o —n.

Set
T;f =T"(fo)
for any smooth truncation of T*.
Then

B.1)  Np(o, ) < Cy (\/Ag(a, ) + AL, 0) + T (0, ©) + T (o, a)),

and if in addition o and w are comparable doubling measures on R" in the sense
of Coifman and Fefferman, then

Nra(o, ®)
(3.2) < (4400, @) + A4, 0)
+ TTH (O', CO) + {Z(Tu)* (Cl), O') + 'BJG‘TTu (O', CO)) .

where the constant C, , depends also on Cczin (2.10) and the doubling exponents 0,
and 6, and where C, , also depends on the comparability constants in (2.3).
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Now A$ is necessary for boundedness of a strongly elliptic operator as defined
in [SaShUr7]; see also Liaw and Triel [LiTr, Theorem 5.1]. Thus we obtain the
following corollary.

Corollary 7. If, in addition to the hypotheses of Theorem 6, we assume the
operator T is strongly elliptic, then we can reverse the inequalities in both (3.1)
and (3.2), i.e.,

Nye(0, ) & |/ A5(0, ) + AS(0, 0) + T (0, ©) + T/5.. (0, 0),

and if in addition o and w are comparable doubling measures on R" in the sense
of Coifman and Fefferman,

mT“ (0-3 C())

(3.3)
~ \JA4(0,0) + A, 0) + T1u(0, @) + Trey (@, 0) + BICT72(0, ).

In particular, assuming just doubling without comparability of the measures, we
have the equivalence of the strong type inequality (2.11) with both weak type
inequalities (2.12), i.e.,

Nra(o, ©) X Nyeak 7 (0, ©) + Nyeak 70+ (@, T).

Remark 8. As mentioned earlier, for operators with a partial reversal of
energy, it is already known that, for doubling measures, the norm inequalities
are characterized by one-tailed Muckenhoupt conditions and the usual 7'1 testing
conditions taken over indicators of cubes; see [LaWi] and [SaShUr9]. However,
energy reversal fails spectacularly for elliptic operators in general (see [SaShUr4])
and even the weaker energy condition itself fails to be necessary for boundedness
of the fractional Riesz transforms with respect to general measures [Saw].

3.1 Elimination of the BIJCT. The following T'1 theorem provides a Cube
Testing extension of the 71 theorem of David and Journé [DalJo] to a pair of
comparable doubling measures when one of them, hence each of them,® satisfies
the Ao, or more generally the A% condition (and provided the operator is bounded
on unweighted L?(R") when a = 0).

Theorem 9. Suppose 0 < o < n, and k;,k, € Nand 0 < 6 < 1. Let T*
be an a-fractional Calderon—Zygmund singular integral operator on R" with a
standard (x| + 0, ko + 0)-smooth a-fractional kernel K*, and when o. = 0, suppose

8Since if w is comparable to an A%, measure o, then Ilglll: < C(%)" < Cn(Cap,(E; Q))¢ shows
that w € A%_.
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that T° is bounded on unweighted L*(R"). Assume that ¢ and w are comparable
doubling measures on R" that satisfy the one-tailed Muckenhoupt conditions, and
with doubling exponents 0y and 6, respectively satisfying

K1 >0+a—n and Ky > 6, +o —n.
Furthermore, suppose that the measures are Ao, weights or more generally,

either at least one, and hence each, of o, o satisfies the A% condition,

or at least one of o, w is a C, weight, for some g > 2.

Set
T2f = T%(fo)
for any smooth truncation of T”.
Then

G4 Nu(o,0) < C( A0, @) + A%, 0) + T1u(0, ) + Tey (@, 0) ).

where the constant C depends on Ccz in (2.10), and the appropriate doubling,
comparability, A%, and C, constants. If T* is elliptic, and also strongly elliptic if
% < a < n, the inequality can be reversed.

3.2 Optimal cancellation conditions for Calderon—Zygmund kernels.
In the two weight setting of comparable doubling measures, we give an ‘optimal
cancellation’ analogue of the 71 theorem for smooth kernels in the context of
singular integrals as defined in [DaJo] or [Ste2, Section 3 of Chapter VII]. We now
briefly recall that setup.

For 0 < a < n, let T* be a continuous linear map from rapidly decreasing
smooth test functions 8 to tempered distributions in &, to which is associated a
kernel K*(x, y), defined when x # y, that satisfies the inequalities (more restrictive
than those in (2.10) above)

3.5) |6f6;fK“(x, V| < Agpynlx— yl"‘_"_'ﬁ'_lyl, for all multiindices g, y;

such kernels are called smooth a-fractional Calder6n—Zygmund kernels on R".
Here we say that an operator 7 is associated with a kernel K* if, whenever
f € 8 has compact support, the tempered distribution 7%f can be identified, in the
complement of the support, with the function obtained by integration with respect
to the kernel, i.e.,

(3.6) Jvmsfwmwmww,mmewmwm
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The characterization in terms of (3.7) in the next theorem is identical to that in
Stein [Ste2, Theorem 4 on page 306], except that the doubling measures ¢ and w
appear here in place of Legesgue measure in [Ste2], and the Euclidean distance
function is replaced by the maximum distance function ||y|| = max; <x<, |yx|, whose
associated balls are cubes.

Theorem 10. Let0 < a < n. Suppose that o and w are comparable doubling
measures on R" that satisfy the one-tailed Muckenhoupt conditions. Suppose also
that the measure pair (o, w) satisfies the one-tailed conditions in (2.8). Further-
more, suppose that the measures are A, weights or more generally,

either at least one, and hence each, of o, o satisfies the A%, condition,

or at least one of o, w is a C, weight, for some q > 2.

Suppose finally that K*(x,y) is a smooth o-fractional Calderon—Zygmund kernel
on R™. In the case a = 0, we also assume there is T° associated with the kernel K°
that is bounded on unweighted L*(R").

Then there exists a bounded operator T* : L*>(c) — L*(w), that is associated
with the kernel K* in the sense that (3.6) holds, if and only if there is a positive
constant U« (o, ) so that

2

/ K(x, y)do(y)| deo(x) < Age(o, @) do(y),
e<|lx—yll<N [lxo=yll<N

3.7) /||x—x0||<N
forall0 <& < N and xy € R",
along with a similar inequality with constant Ak« (w, o), in which the measures o

and w are interchanged and K%(x, y) is replaced by K**(x, y) = K*(y, x). Moreover,
if such T* has minimal norm, then

(3.8) 1T N r2(0)> 12 (@) S Ak (0, @) + Ager(@, 0) + \/ A3 (o, w) + Aj(w, 0),

with implied constant depending on Ccz in (2.10), and the appropriate dou-
bling, A, comparability, and C, constants. If T* is strongly elliptic, the inequality
can be reversed.

It should be noted that (3.7) is not simply the testing condition for a truncation
of T over subsets of a cube, but instead has the historical form of bounding in
some average sense, integrals of the kernel over annuli (of cubes here rather than
balls). Nevertheless, this theorem is still a rather direct consequence of Theorem 6,
with both doubling and A§ playing key roles. The reader can check that a more
complicated form of Theorem 10 holds that involves bilinear indicator/cube testing
if the A% conditions on a and w are dropped.
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3.3 The restricted weak type theorem with an A% measure. Here
we eliminate the BICT from Theorem 6 when one of the measures satisfies either
the fractional A% condition or the Cy., condition.” Note that we do not assume
comparability of measures here, and so conditions imposed on one measure no
longer transfer automatically to the other measure. Let Tof = T%(fo). We say
that an a-fractional singular integral operator 7% satisfies the restricted weak type
inequality relative to the measure pair (o, @) provided T* : L>!'(¢) — L*>*(w)
where L*>!(¢) and L>*(w) are the Lorentz spaces as defined, e.g., in [StWe2, page
188]. As shown in [StWe, see Theorem 3.13], this is equivalent to

griswictedweak () = sup  sup

Nl
—_— T*(1p)w
0ep E,Fco VIEINFlo | JF ¢

where the second sup is taken over all compact subsets E, F’

< 00,

3.9)

of the cube O, and where 0 < d < R < 0.

Thus we see that the BICT condition (2.15), having |Q|,|0|,, in the denominator,
is implied by the restricted weak type condition (3.9), having the smaller |E|,|F|,
in the denominator. In the presence of the classical Muckenhoupt condition A%,
the restricted weak type inequality in (3.9) is essentially independent of the choice
of truncations used—see [LaSaShUr3].

Remark 11. Inthe special case a = 0, we will make the additional assumption
that 7° is bounded on unweighted L?>(R"). This is done in order to be able to
use the weak type (1, 1) result on Lebesgue measure for maximal truncations of
such operators, that follows from standard Calderén—Zygmund theory as in [Ste2,
Corollary 2 on page 36].

Theorem 12. Let 0 < a < n. Suppose that o and w are locally finite positive
Borel measures on R" such that

either at least one of o, w satisfies the A%, condition,

or at least one of o, w is a C, weight, for some q > 2.
Suppose also that T* is a standard a-fractional Calderon—Zygmund singular inte-
gral in R", and that when o. = 0 the operator T® is bounded on unweighted L*>(R").
Then the two weight restricted weak type inequality for T* relative to the measure

pair (o, @) holds if the classical fractional Muckenhoupt constant A% in (2.7) is
finite. Moreover,

‘BJGTT,X (o" C()) < s:nl;:stricted Wea_k(o_’ a)) 5 \/14—%[’

9Recently, the BICT has also been eliminated from Theorem 6 when the product measure o x ©
has an appropriate reverse doubling exponent. See [SaUr].



224 E. T. SAWYER

and provided T* is elliptic,

BICT74(0, ) ~ NN (5, ) & | [A4(0, w),

where the implied constants depend on the Calderon—Zygmund norm Ccz in (2.10)
and the A% or Cy., parameters of one of the measures.

Remark 13. The proof of the theorem shows a bit more, namely that the
restricted weak type norms of 7% and its maximal trunction operator 77" (see
below) are equivalent under the hypotheses of the theorem, and including the
fractional integral /* (see below) when 0 < a < n.

4 Preliminaries

Here we introduce the x"-order pivotal conditions, recall the weighted Alpert
wavelets from [RaSaWi], and establish some connections with doubling weights.

4.1 Necessity of the """ order Pivotal Condition for doubling weights.
The smaller fractional Poisson integrals P¢(Q, x) used here, in [RaSaWi] and
elsewhere, are given by

Q)"

4.1 P = d 1
(4.1) (O, 1) e W) + Iy — cglye u@, x=1,

and the x™"-order fractional Pivotal Conditions Vr, V3T < oo,k > 1, are

given by
oK l — 104
(V3*)* = sup > PUO,, 190)*10 o,
) oov0, 101e S
' L&,
(V3" = sup —— " "PL(Qr, 19®)’|Qslo,
0000, 1010 &

where the supremum is taken over all subdecompositions of a cube Q € P" into
pairwise disjoint subcubes Q,.

We begin with the elementary derivation of x-order pivotal conditions from
doubling assumptions. From Lemma 19 below, a doubling measure @ with dou-
bling parameters 0 < £,y < 1 as in (2.1) has a ‘doubling exponent’ § > 0 and a
positive constant ¢ depending on f, y that satisfy the condition

270l, > ¢27|0Q|,, foralljeN.
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We can then exploit the doubling exponents € = 6(f3, y) of the doubling measures
o and o in order to derive certain x"-order pivotal conditions V5", V5" < oo.
Indeed, if w has doubling exponent § and ¥ > @ + a — n, we have

)"
d
~/R"\1 (f([) + |x —_ Cll)n+K_a Cl)(x)

= Zf([)a_n / . _;_da)(x)
Jj=1

n2-r (1 + —"‘t,([‘)’l)””‘ o

00
4.3) S |I|%—1 Zz—j(i’HK—a)lzjllw
j—l

- —Jj(n+x— l
Sl ‘221“ D=l

< Cn,lc,a,(ﬁ,y)lllﬁ |I|wa

providedn+x —a —0 > 0, ie., « > 6+ a — n. It follows that if 7-)72, I, is a
subdecomposition of [ into pairwise disjoint cubes /,, and x > € + o — n, then

. | eloll]
ZP“(L, ORIAMS Z(ll VAP AP Z %u o
r=1

S AS Z 1l = AS 1|0,

r=1

which gives
4.4) V3 < CeppAs, k> 0+a—n,

where the constant Cy (s ,) depends on the doubling parameters (5, y) and on «.
Thus the dual x™-order pivotal condition is controlled by AS provided x + n — o
exceeds the doubling exponent of the measure . A similar result holds for V5* if
x + n — a exceeds the doubling exponent of o.

Remark 14. The integers ¥ may have to be taken quite large depending on

the doubling exponent of the doubling measures. In fact, the proof of Lemma 19

)1 log, 1
log, —* and so we need k > o8 I +a — n, where f§
10g2 B 10g2 B

and y are the doubling parameters for the measure. Since Cyoup = i when f = %

shows that we may take 6 =

we can equivalently write ¥ > log, Cyoub + @ — 1, where log, Cyoup can be thought
of as the ‘upper dimension’ of the doubling measure. Indeed, in the case o = 0 and
do(x) = dw(x) = dx on R", we have |fQ| = £"|Q| implies

nlog, p_

10g2 %
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4.2 Weighted Alpert bases for L>(x) and L> control of projections.
The proof of Theorem 6 will require weighted wavelets with higher vanishing
moments in order to accommodate the Poisson integrals with smaller tails. We
now briefly recall the construction of weighted Alpert wavelets in [RaSaWi]. Let u
be a locally finite positive Borel measure on R”, and fix x € N. For Q € P", the
collection of cubes with sides parallel to the coordinate axes, denote by LZQ;k(,u)
the finite-dimensional subspace of L?(u) that consists of linear combinations of
the indicators of the children €(Q) of Q multiplied by polynomials of degree less
than x, and such that the linear combinations have vanishing g-moments on the
cube Q up to order x — 1:

12 () = {f = Z 1opo(x) : /f(x)xﬂdﬂ(x) =0, for0 < |f] < K},
Qee(Q) e

where
pox®= Y agx’
PeZl:|Bl<k—1
is a polynomial in R” of degree | 8| =1 +- - -+ f, less than x. Here xﬂ=xf1x§2- xbe,
Let dp,. = dim L2 «(40) be the dimension of the finite-dimensional linear space
L3, (). Now define

F () ={peZ":|fl<x—1:xeL’(w)}, and
Pl () = Span{x}pegs .

Let AZ;K denote orthogonal projection onto the finite-dimensional subspace
LZQ;K( w0, let EZ;K denote orthogonal projection onto the finite-dimensional subspace

t(0) = Span{1gx” : 0 < || < x},

and let Aﬁ,,;,c denote orthogonal projection onto P, (4) .

The following theorem was proved in [RaSaWi], which establishes the exis-
tence of Alpert wavelets, for L?>(u) in all dimensions, having the three important
properties of orthogonality, telescoping and moment vanishing.

Theorem 15 (Weighted Alpert Bases). Let u be a locally finite positive Borel
measure on R", fix kx € N, and fix a dyadic grid D in R".
(1) Then {A”n;x} U {Ag;x}QeD is a complete set of orthogonal projections in
L2, (w) and

NETN R PN f e L(p),

QeD
<A]§";x‘f’ Ag;xf> = <A¢;K‘f" Ag;xf> =0 for P 7'/ Qa
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where convergence in the first line holds both in Lf@,(,u) norm and pointwise
u-almost everywhere.
(2) Moreover, we have the telescoping identities

4.5) lp > AL =EL, —Eh, forP,QeDwithQGP,
0GIcP

(3) and the moment vanishing conditions
(4.6) / NG fOXPdu(x)=0, forQeD, peZl, 0<|p| <
RVI

We can fix an orthonormal basis {/}}aery,, Of L3, (1) where Tg, . is a
convenient finite index set. Then

{ hg;z}uerg_,,_,( and QeD

is an orthonormal basis for L?(u), with the understanding that we add an orthonor-
mal basis of P%,(w) if it is nontrivial. In particular, we have from the theorem
above that (at least when Pg.(u) = {0})

iz = D 1AL FlFg = D FOI,

QeD QeD

FOPF= > 1y

(ZEFQ,”,K
In the case k = 1, this construction reduces to the familiar Haar wavelets, where
with B/ = E*"' we have the following useful bound:
1

ml )

We will consider below an analogous bound for the Alpert projections ]E;';K

= |Ejfl < ETIfI.
160 1f 1 If

VSl = | (1

when x > 1, that is of the form
4.7) IE} "l S EfIfI,  forall f e Lig(u).

This will require certain energy nondegeneracy conditions to be imposed on g,
which turn out to be essentially equivalent to doubling conditions (thus limiting
our application of Alpert wavelets to doubling measures in this paper).

4.2.1 Doubling and energy nondegeneracy conditions. We will need
the following relation between energy nondegeneracy and doubling conditions. We
say that a polynomial P(y) = > 1Bl <k cﬂyﬂ of degree less than x is normalized if

. 11
}S;JQ}; [P =1, where Qy= ,1} [— o 5)
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Remark 16. Since all norms on a finite-dimensional vector space are equiv-
alent, we have

(4.8) 1Pl 0y = |P(O)| + [ VP =gy, degP <k,

with implicit constants depending only on # and x, and so a compactness argument
shows there is ¢, > 0 such that for every normalized polynomial P of degree less
than «, there is a ball B(y, &,) C Qo on which P is nonvanishing.

Definition 17. Denote by c¢ the center of the cube Q, and by £(Q) its side
length, and for any polynomial P set

P2(y) = P(cg + £(Q)y).

We say that P(x) is Q-normalized if P2 is normalized. Denote by (Tg)mrm the
set of Q-normalized polynomials of degree less than x.

Thus a Q-normalized polynomial has its supremum norm on Q equal to 1.
Recall from (2.1) that a locally finite positive Borel measure ¢ on R” is doubling
if there exist constants 0 < 5, y < 1 such that

4.9) 8Ol = y|Qly, forall cubes Q in R".

Note that sup,.q, [P(V)| = [|1g,PllL(u) for any cube Qo, polynomial P, and dou-
bling measure . The following lemma on doubling measures is well known.

Lemma 18. Let u be a locally finite positive Borel measure on R". Then u
is doubling if and only if there exists a positive constant 0, called the doubling
exponent, such that

|2_kQ|ﬂ > Z_Hlelﬂ, for all cubes Q in R" and k € N.

Proof. Suppose there are 0 < £,y < 1 such that |[fQ|, > y|0Q|, for all
cubes Q in R”. Iteration of this inequality leads to |f/Q| u > 70| «- Now choose
t > 0sothat § < 27" < 2, which then gives

_ ik k k
127401, = 1277 Qls = 187015 = 1810,
k _qk 1 _klog, 1 _
> ylil|gl, = 27100, > 27 g, = 27% ),

with . .
log, -~ log, =
g = L>—2>0.
t log, 7
The converse statement is trivial with £ = % and y =277 = Cl . (|
doub
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The doubling exponent & = log, Cyoup can be thought of as the upper dimension
of u. Here now is the connection between doubling measures and energy degener-
acy. We thank Ignacio Uriarte-Tuero for pointing to a gap in the proof of part (2)
in the first version of this paper.

Lemma 19. Let u be a locally finite positive Borel measure on R".
(1) If u is doubling on R", then for every k € N there exists a positive constant
C, such that

Ol < C}c/ |P(x)|*du(x), for all cubes Q in R",
4.10) [0}

and for all Q-normalized polynomials P of degree less than k.

(2) Conversely, if (4.10) holds for some positive integer k > 2n, then u is
doubling.

Proof. Fix a cube Q and a positive integer k € N. By Remark 16, there is
a positive integer L = L(x) € N with the property that for every Q-normalized
polynomial P of degree less than « on R”, at least one of the dyadic children
K e ¢D(Q) at level L beneath Q satisfies 3K C Q \ Zp, where Zp is the zero set of
the polynomial P. Furthermore, if P is a Q-normalized polynomial of degree less
than «, then P2(y) = P(co + €(Q)y) is normalized and P(x) = PQ();,( %) and so we
have from (4.8) the inequality

o )| = <l (G Z”“’))K:C(%)K’ xe Q.

Moreover, Q C 241K, and hence we have the lower bound

/Q PCOPdox) > & /K (%)”wu) > 2 /K (%)”&ww

- C22_2KL|K|O- 2 C22_2KL2_(L+1)0|2L+1K|0- 2 C;{lng,

Pl = |PO(

where ¢, = ¢?272L27+D0 Thus (4.10) holds with C, = +.

Conversely, assume that (4.10) holds for some x > 2n Momentarily fix a
cube Q. Then the polynomial

n

=111~ (") ]

i=1

is O-normalized of degree less than x, vanishes on the boundary of Q, and is 1 at
the center cp of Q. Now using that 2n < « in (4.10), there is § < 1, sufficiently
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close to 1, and independent of the cube Q, so that

101, < C. / PPdu :CK{ / \PPdu + / |P|2du}
[ O\pQo pO

1
|Q\ﬂQ|u + CxlﬂQl,u < ElQl,u + ClclﬂQl,u

<

N =

Thus we have

101, < 2Cl Oy,

which is (4.9) with y = 5. O

4.2.2 Control of Alpert projections. For n,x € N, let P! denote the
finite-dimensional vector space of real polynomials P(x) on R” with degree less
than x, i.e., P(X) = 3 o< 5 <« cpx” where = (B € Z! and |B] = 31, Bi. Then
denote by P}, the space of restrictions of polynomials in P to the interval /, also
denoted P}, (1) when we wish to emphasize the underlying measure. Now let
{b’};K}_ﬁ.\;l be an orthonormal basis for P}, with the inner product of L*(u). If we
assume that u is doubling, and define the polynomial P; by

1 .
——b} (%),

Pj(x) = —
”b][;K”L}’O(,u)

then P; € (PD)norm is I-normalized, and so part (1) of Lemma 19 shows that

1 / 1 , 2
] - - Bl () dﬂ(x)=/|P-(x)|2d,u(x)%|]| )
||b11;x||%§’c(#) I}Hbll;x”L?c(,u) 3 } ;! "

This then gives (4.7):

N
< U PNl 5o 1 el o

L () Jj=1

N
> A b b)

J=1

N N
. 1 ,
<> (/{vw) 10 S 2 T /Ilfldﬂ =N Ef|f].
=1 j=1 T
We also record the following additional consequence of (4.10):

(4.11) NES 1o S IS,

which follows from

N 2
. . 2
> 2
VEFF ML <§ 1% H,;,C>|) ( max 16,4l ) Ml
- <j<N
]_

IE; " Fllzsecu) =

N
SNY bl = NIES F I -
j=1
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4.3 A two weight bilinear Carleson Embedding Theorem. The clas-
sical Carleson Embedding Theorem [NTV4] states that for any dyadic grid D, and
any sequence {c;};ep of nonnegative numbers indexed by D,

4.12 Y
(4.12) EE%Cl(m ~/If O'> < ”f”Lz(g)

for all nonnegativef € L*(o), if and only if the sequence { ¢;};ep satisfies a Carleson
condition

(4.13) > e <Cll,, forallJeD.
IeD: IcJ

Moreover, C' < C < 4C’. The two weight bilinear analogue of (4.12) is the
inequality

arn Saly [uwe) (g [si) < Wlolsio,

which is equivalent to the pair of Carleson-type conditions,

araj

ara
<CIKlyand Y = < CIKl,
4.15) rievircick o rienircick o

for all cubes K € D.

Indeed, (4.14) is equivalent to

1
i (i )
= 1o \ 1,

which by [NTV] and [LaSaUr2] is equivalent to the pair of testing conditions

J

K

dO'(Y) < Czllg”[}(w):

> i 1,(y)‘ do(y) < C*|K|,, forallcubesK €D,

(416) IeD: ICK

Z I()’)‘ do(y) < C*|K|,, forall cubes K € D.
IeD: IcKl l‘”

However, the Carleson-type conditions in (4.15) are too strong for our purposes
in this paper, and instead, we prove a bilinear extension of the Carleson Embedding
Theorem (related to the Bilinear Imbedding Theorem of Nazarov, Treil and Volberg
in [NTV, page 915]) which uses the more familiar bilinear Carleson condition in
(4.18) below—at the expense of assuming comparability of the measure pair as in
Definition 2 above.
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Given any subset A of the dyadic grid D, we view A as a subtree of D, and
denote by € 4 (A) the set of A-children of A in the tree A, and by C 4(A) the A-corona
of A in the tree A, so that

Cah= |J HeD:ASICA)
A'eC 4 (A)

Theorem 20 (Two weight bilinear Carleson Embedding Theorem, cf. [NTV]).
Suppose o and w are locally finite positive Borel measures on R", and that D is a
dyadic grid.

(1) Suppose further that {a;}jcp is a sequence of nonnegative real numbers in-

dexed by D. Ifin addition o and w are comparable in the sense of Definition 2,
then

1
Za,( sup / fda>< sup / gda))
4.17) keD: ko1 Ko ren: 151 1Llw

IeD
< Clf 2o 181 22

for all nonnegative f € L*(¢) and nonnegative g € L*(w), if and only if the
sequence { a;}jep satisfies the bilinear Carleson condition,

(4.18) > ar < CleWlw, forallJ eD,

IeD: IcJ

where C' < C < C.
(2) The inequality

P <|1|,,/f )(mw/ ”)

e R
|J|6|J|w IeD: IcJ

holds if and only if o and w are comparable in the sense of Definition 2.

(4.19)

Proof. Part (1): The necessity of the bilinear Carleson condition follows
upon setting f = g = 1, in the bilinear inequality, since then for / C J we have

sup

1 1
/ fdo > — / 1,do = 1 and similarly  sup / gdw > 1,
keD: ko1 |Kle Jk [l Ji

Lep: 151 ILlo

which gives

Z ar < Clfllzx gl = CvV V6l o

1eD: IcJ
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For the converse assertion, fix I' > 4, and let A be a collection of I'-Calderén—
Zygmund stopping cubes for f € L?(¢), and let B be a collection of I'-Calderén—
Zygmund stopping cubes for g € L?*(w). Then we have

i [ o= T [
do > T do, A" e €y(A),
A L Al .~ A
1 1

4.20 —/dagF /da, I €Cyu(A),
(*:20 i1, 7 = VAL L A

> 1A, < CrlAl,,

AeA: A/CA

and similarly

1 1
do > F—/ dw, B € ¢x(B),
1Bl /Bfg Blo /5% B

o) i),
— do <T— dow, J e Cx(B),
7 L8 =g /8 5(B)

> IB'lo < CrlBlo.

B'eB: BCB

Now we estimate the left-hand side of (4.17),

1 1
Za,( sup / fa’a)( sup —— / gda))
= \keD: ko1 Kl Jk Lep: o1 Lo JL
1 1
= Z Z Z a,( sup /fda)( sup —/gdw>
K L

g K - L
AcA BeB IeD: 1€, (ANCx (B) KeD: Kol | |a LeD: Lol | |a)

= Fzg%{ 2 "’}<|A1|g /Afd”> (ﬁ/ggdw)

IeD: IeC 4 (ANC 5 (B)

Since (4.18) implies

1€D: 1€ 4 (A)NCx (B) 0 ifANB=0,

3 @ < {C’min{\/lAIalAIw, VIBl;|Blo} ifANBF0,

we conclude that the left-hand side of (4.17) is at most

L2 P ) ()

AeA BeB: BeC 4(A)

1 1
ey Y \/|A|6|A|w<— / fda) (_ / gdw>
BeB AeA: AeCy (B) |A|‘7 A |B|w B

=85 +85.
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By symmetry it suffices to bound the first sum §;. By Cauchy—Schwarz, we
have

s v o)

BeB: BeC 4 (A) Bl

S |B|HJ 3 |B|w(ﬁ / gdw>2.

BeB: BeC 4 (A) BeB: BeC 4(A)

IA

We now invoke the comparability assumption on the measures ¢ and w, which
implies that the grid B is also o-Carleson, hence Y p.g. e, @) 1Bl < ClAls.
Thus we conclude that

et (G )5 (o o)

AeA BeB: BeC 4(A)

cer sl () (5.5l [)

AeA BeEB: BeC 4(A)

< Cllf llzo) 1811 22(0) s

with C depending on C’ and T', upon applying the usual Carleson Embedding
Theorem to both stopping collections A and B. Indeed, we take

1, ifleA
] =
0 ifIdA

in (4.12), and note that { ¢;},;ep satisfies the Carleson condition (4.13) with C' = Cr
by the third line in (4.20), it then follows from (4.12) that

1 2
3 |A|J(W / fda) < Crllf I,

AeA

Similarly, we obtain
l 2
D |B|w(ﬁ / gdw) < Cligl?,.
AcA BeB: BeC4(A) w JB

Part (2): It remains to show that if (4.19) holds, then ¢ and w are comparable
in the sense of Definition 2. So let the dyadic grid F be w-Carleson, and let C, 6 > 0
be such that |G¢(Q)], < C27%|Q|,, for all Q € F. Define

VI, ifled
ar =
"o if1gT
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and note that if {M;}, are the maximal cubes in J that are contained in J, then

Y w=Y Y VmL=YY Y Vi,

IeD: IcJ i=1 IeJ: IcM; i=1 k=0 IEQ(,);)(Mi)
o o o
<2 (227 D Ml (32 D
=1\ k=0 rec® ;) k=0 jec® )
(e} (e} oo
<Y D2 M | Y 2k C2 R M),,
i=1 k=0 k=0

< CY VIMilIMil, < C\ | Y IMilo | Y IMilo < CV oV W o
i=1 i=1 i=1
Thus from (4.19) we obtain
NP |1|w< /f )( /gdco) < Clf iz I8 200
,; i1, 1o Hotse
and then from (4.16) we conclude

> -y Mellley 5 RPN Y

2
IeF: IcK IeF: ICK 15, IeF: ICK 1

5,

1;(» dw(Y) < C*[K|,,

1eF: ICK
for all cubes K € F,

which is ||?||Car(a) < C”?”Car(a))‘ A dual argument giVeS ||?||Car(w) < C”?”Car(a),
and so ¢ and w are comparable in the sense of Definition 2. (|

5 Controlling polynomial testing conditions by 7'1 and A,

Here we show that the familiar 7'1 testing conditions over indicators of cubes imply
the 7p testing conditions over polynomials times indicators of cubes. To highlight
the main idea, we begin with the simpler case of dimension n = 1. We start with
the elementary formula for recovering a linear function, restricted to an interval,
from indicators of intervals:

(5.1) o (=2) = [t o rorany ek
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We conclude that for any locally finite positive Borel measure o, and any operator T’
bounded from L?*(o) to L*(w),

T, ah)(y) =T, bl[r,h)(y)% () = b(Tﬂl[nb))(x) cir
u b—a a b

where 7T, has moved inside the integral since truncations of fractional Calderén—

Zygmund operators have bounded compactly supported kernels. We then use the
testing estimate

ITodiei 720 < BT2)105 D)o

together with Minkowski’s inequality || [ fIl < [ |If]l, to obtain

| 2] R ]
/STT 0 D)l
<STTW 15 )l —STT\// [,,,)d“(y))b
=ssT\//[a,h) ([%) dU()’)=@‘3T\//[u’b)i:Z

< 'S‘IT V |[Cl, b)lo‘a

and hence ST(TI) < ST(TO) = §%7. Similarly, the identity

l[a,b)()’)(Z:Z)z=/ab1[r,b)()’)2(z:r) cﬁﬁa, forally € R,

a’b
HT[ ab)(y)( Z) 12(0) H{

< 2/ HT l[rb)(y)( )}

and hence F < 2F%}. Continuing in this manner we obtain

T, |:1[u,b)(Y) (y

L (o) ’ 12(w)

shows that

) :| L% (w)
< 255 Vla, b)l,,

L*(w) b

TP < kFTEY, forallk > 1,
which when iterated gives

SQ(TK)(O', w) < k!§%r(o, w).
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By a result of Hytonen [Hyt3] (see also [SaShUr12] for the straightforward
extension to fractional singular integrals), the full testing constant §%7(o, @) in
dimension n = 1 is controlled by the usual testing constant ¥7(o, ) and the one-
tailed Muckenhoupt condition A4 . Thus we have proved the following lemma for
the case when 7' = T* is a fractional Calder6én—Zygmund operator in dimension
n=1:

Lemma 21. Suppose that o and w are locally finite positive Borel measures
on R and x € N. If T* is a bounded o-fractional Calderon—Zygmund operator
from L*(0) to L*(w), then we have

T (0, w) < K!Tre(o, W) + CeAl(o, ), x> 1,

where the constant C, depends on the kernel constant Ccz in (2.10), but is inde-
pendent of the operator norm Nr«(o, w).

5.1 The higher dimensional case. The higher dimensional version of
this lemma will include a small multiple of the operator norm 97(o, ®) in place of
the one-tailed Muckenhoupt constant A5 (o, @) on the right-hand side, since we no
longer have available an analogue of Hytonen’s result; see [GrPa]. Nevertheless,
we show below that for doubling measures, the two testing conditions are equivalent
in the presence of one-tailed Muckenhoupt conditions (2.8) in all dimensions, and
so we will be able to prove a T'1 theorem in higher dimensions in certain cases.

Theorem 22. Suppose that o and w are locally finite positive Borel measures
on R, and let k € N. If T is a bounded operator from L*(c) to L*(w), then for
every 0 < ¢ < 1, there is a positive constant C(x, €) such that

3T (0, w) < Clk, £)FZr(0, ) + eNp(o, 0), x> 1,

and where the constants C(k, €) depend only on k and &, and not on the operator
norm Ny (o, ).

Proof. We begin with the following geometric observation, similar to a con-
struction used in the recursive control of the nearby form in [SaShUr12]. Let
R =10, 1) x [0, 1) be a rectangle in R” with 0 < ¢ < 1. Then given 0 < ¢ < 1,
there is a positive integer m € N and a dyadic number * = % with 0 < b < 2",
so that

B
R:EU{UKi};
(5.2) j‘ . , .
E=[0,1)"" x [t*, 1) with |t — "] < ¢,

B < 2nm—n—m+2

>
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and where the K; are pairwise disjoint cubes inside R. To see (5.2) we choose

m € N so that % < ¢ and then let b € N satisfy 2"t — 1 < b < 2™t. Then with
t* =L wehave |t — r*| < 2l

= < &. Now expand t* in binary form,

1
2774 om=1 ’

Then for each k with by = 1 we decompose the rectangle

1 1
t"=bi=+by—+---+by_

1 1 1 1
by=+by—+---+b_1— )

1 1 1
— n—1
Rk=[0,1) X b]§+b21+"'+bk_1F, 3 4 2k—l+?

into 2"~V pairwise disjoint dyadic cubes of side length 5. Then we take the
collection of all such cubes, noting that the number B of such cubes is at most

m—1
Z 2(n—1)k <2. 2(n—1)(m—1) — 2nm—n—m+2
k=1

and label them as {Ki}?:l with B < 2""~"="+2_Finally we note that

B

UK,: U Ry =10, D" ! x [0, ).

i=1 k: br=1

This completes the proof of (5.2). Note that we may arrange to have m = In %
We also have the same result for the complementary rectangle

R=[0,1)"'x[r,1)

by simply reflecting about the plane y, = % and taking r = 1 — ¢. It is in this
complementary form that we will use (5.2).

Again we start by considering the full testing condition FT1 over linear func-
tions, and we begin by estimating

1T, oOyll2), QeP1<)j<n.

In order to reduce notational clutter in appealing to the complementary form of
the geometric observation above, we will suppose, without loss of generality, that
0O =10, 1)"* is the unit cube in R”, and that j = n. Then we have

1
10,1 (Vyn = /0 1[0,1)”‘1><[r,1)(y)dr: forally e R",

and

1 1
Tg(l[o,1)~<y>yn><x>:n< /0 l[o,l)nlx[,,n(y)dr)(x): /0 (Tl e YN
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The norm estimate is complicated by the lack of Hytonen’s result in higher dimen-
sions, and we compensate by using the complementary form of the geometric obser-
vation (5.2), together with a simple probability argument. Let[r, 1) = [7, r*)U [r, 1)
and write

2 2
”TUI[O,I)”"X[r,l)”Lz(w)=/}TU{I[O,I)”"X[VJ*)+1[0,1)”"><[r*,1)}(x)| deo(x)

B
= / Tn—{l[o’])nl x[r,r*) + Z 11(,}()6)

i=1

B
S [0t P + 3 [ 17,15 Pdot)
i=1

2
dw(x)

B
< [ 1Tyt P + BT 3 K
i=1

First, we apply a simple probability argument to the integral over r of the last
integral above by pigeonholing the values taken by r* € { %}ngzm:

1
/ / |To'1[(),1)"*1 X[,.’r»«)(x)lzdw(x)dr
0

1
< Nr(o, a))z/ {/ da}dr
0 [0, 1)"=1 x[r,r*)

b
m

= Ny(o, w)* Z / {/ da}dr
bt [0,1y"= x[r, 57)

O0<b<2m 2m
2 y”
< Ny(o, @) { / dr}da(yl,...,yn>
0.1 Uy,

< Ny(o, w)? edo(y1, ..., Yn)
[0’ 1)’1

= Ny (o, 0?0, 1)"|,,

: b—1 b i1
since % < r <y, < 5 impliesy, —& <y, —

1
ﬁSrSyn-

Combining estimates, and setting R, = [0, 1)"~! x [r, 1) for convenience, we

obtain
1
TU{ / 1R,(y>dr]
0

1
< /O 1T [, )] 20

“ Tn[er(y)yn] ||L2(a)) = ‘

LX(w)

1
< §%1(0, @) / VIR lodr + 0o, )]0, 1],
0
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where

/1 VIR |,dr < \// I[7, b)l,, — \// /{0 . lx[rl)da(y)dr
= \/ /[o,l)n /[O,y”)drda(y)= \/ /[O’I)H Yudo(y).

\// yado(y) < [0, 1)"],,
[0,1"

that the same estimates hold for y; in place of y,, and finally that there are appropriate

Noting that

analogues of these estimates for all cubes Q € P" in place of [0, 1)", we see that
§TV(0, ®) < Co§%(0, ©) + eNy (0, ).

Similarly, for each i < n we can consider the monomial y;y,, and obtain from
the above argument with y; included in the integrand that

” Ta[er(y)yiyn] ||L2(w)

(5.3)
< \/ / | To (L0, 1y- 1 ey YD) 2 deo(x) + FTP N0, 1)),

For the monomial y> we use the identity
) 1
Lo, )y, = /0 Lo 1y 1xn1y(0)2(y, — r)dr, forally e R",

to obtain

175112, )yl 2w)

< \/ / | To (L0, 1y 1 ey DO — D)) deo(x) + FTP N0, 1)),

Then in either case, integrating in r, using the simple probability argument above,
and finally using the appropriate analogues of these estimates for all cubes Q € P"
in place of [0, 1)", we obtain

F37 (0, ®) < C1FTY (0, @) + Nr (0, ).

Continuing in this way, using the identity

!
Lio.1y (0 = /0 1[0,1)~—1><[r,1)()’)()’f1 )’f” N2Pu(n — )P Ndr, forally e R",
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yields the inequality
3T (0, 0) < Cupee13TF (o, 0) + N0, @), K € N.
Iteration then gives

339(a, w)
< eNy(o, w) + Cm,x_lﬁf(f—l)(m )
< eN7(0, ®) + Cop 1 {ENF(0, @) + Cpre 2535 (0, )}

< 8{ 1+ Cm,x—l + Cm,x—l Cm,x—2 +-+ Cm,x—l Cm,K—Z o Cm,()}mT(O', C())
+ {Cm,x—l Cm,K—Z e Cm,x—l Cm,x—2 te COm,}%’(IT(O-a C())
= eA(x, £)N7(o, w) + Bk, £)§%r(0, w),

where the constants A(x, ¢) and B(x, €) are independent of the operator norm
Nr(o, w). Here we have taken m ~ log2 This completes the proof of Theorem
22. O

We have already pointed out in dimension n = 1 the equivalence of full testing
with the usual 1-testing in the presence of one-tailed Muckenhoupt conditions. In
higher dimensions the same is true for at least doubling measures. For this we
use a quantitative expression of the fact that doubling measures don’t charge the
boundaries of cubes [Ste2, see, e.g., 8.6 (b) on page 40].

Lemma 23. Suppose o is a doubling measure on R" and that Q € P". Then
for0 < o0 < 1 we have

1O\ (1 =)Ql, < IQIa

1.1
In 3

Proof. Let § = 27, Denote by ¢ (Q) the set of m™ generation dyadic
children of Q, so that each I € €"(Q) has side length £(I) = 27"£(Q), and define
the collections

B"M(Q)={I e ¢™(Q):1c QandadlNaQ 0},
HM(Q) = {I € ¢"™(Q): 31 c Q and 6(31) N aQ # (}.

Then
O\(1-5)Q=6"(Q) and (1-50=])5%).

k=2
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From the doubling condition we have |3/ |,, < D|I|, for all cubes I, and so

199Dl = > .= D |31|U—D / ( > 131>da

1eHH(Q) 1e5®(Q) 1eHH(Q)

1 1 -
> - ( > 11>da= 58Yls = 5|®< (Q)ls

1e8®(Q)

1
=512\ 1 =)0,

Thus we have

101, = 3 159, = “=

k=2

5)Q|o‘a

which proves the lemma. O

Proposition 24. Suppose that ¢ and w are locally finite positive Borel mea-
sures on R”, and that ¢ is doubling. Then for O < ¢ < 1 there is a positive constant
C(¢) such that

$%r(o, w) < Tr(o, w) + C(e)A5(0, w) + eNr(o, ).

Proof. LetJ > 0 be defined by the equation ¢ = 1L ie., § = e . Then we

write

/ |T,1p|*dew
Rn
2
=/ |T51Q|2da)+/ |T51(1_5)Q+T01Q\(1_5)Q‘ dw
0 R™\Q
2 2
< Tr(o, a))2|QIa+2/ IT:10-s0] dw+2/R 0 | To1o\1-5)0| de

< T7(0, )*|Ql, + C A“(J )0l + 297 (0, ®)|Q\ (1 = Qs

Now invoke Lemma 23 to obtaln

/ 1T, 10’ do < Tr(o, ®)? 19l + C A (0, ®)|Qls + eN7(0, )| Ol

with & = 25, O
ns

In the sequel we will want to combine Theorem 22 and Proposition 24 into the
following single estimate.

Corollary 25. Suppose that o and w are locally finite positive Borel measures
on R", and that o is doubling. Then for k € Nand 0 < ¢ < 1, there is a positive
constant Cy. . such that

39 (0, ®) < Cro[T1(0, ©) + Al(0, )] + Ny (0, ).
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6 Proof of the 7p theorem with BJCT and doubling
weights

We will prove Theorem 6 by adapting the beautiful pivotal argument of Nazarov,
Treil and Volberg in [NTV4], that uses weighted Haar wavelets and random grids,
to a weaker k" -order pivotal condition with Alpert wavelets and the Parallel Corona
decomposition, the latter being used to circumvent difficulties in establishing the
paraproduct decomposition using weighted Alpert wavelets. More precisely, we
will work in the one-grid world, where the Alpert wavelet expansions for f and g
in L?(0) and L?(w) respectively are taken with respect to a common grid D, and
follow the standard NTV argument for 7'1-type theorems already in the literature
(see, e.g., [NTV4], the two-part paper [LaSaShUr3], [Lac], [Hyt3] and [SaShUr7]),
i.e., using NTV random grids D and goodness, but using pivotal conditions when
possible to avoid functional energy, and using the Parallel Corona and x-Cube
Testing and Bilinear Indicator/Cube Testing to avoid paraproduct terms, which
as observed earlier behave poorly with respect to weighted Alpert wavelets of
order greater than 1. But first we extend the scope of the Indicator/Cube Testing
condition and the Bilinear Indicator/Cube Testing property.

6.1 Extending indicators to bounded functions. It was observed in
[LaSaUr1] that the supremum over 1 in the Indicator/Cube testing condition (2.14)
can be replaced with the logically larger supremum over an arbitrary function 2
with |#] < 1. Here we extend the analogue of this observation to hold for the
Bilinear Indicator/Cube Testing constant BICT r«(o, ).

Lemma 26. Let o and w be positive locally finite Borel measures on R", and
let T* be a standard o-fractional singular integral operator on R". Then

1
BICTra(0, w) < sup sup ———— /Tg(l )gw
0eP Iflieim=<1 VIQls|Qlw| Jo of

llgllzoo@) <1

< 4‘8567’1% (O', C())

Proof. Given a cube Q and a bounded function f € L*(o), define
holf1(x) = {% if T¢(1of)(x) #0
0 if T2(1of)(x) =0
=1r, () — 1r_r(x),
where the sets
Filf1={x e Q: T¢1gNH() > 0},
F_[fl={xe Q:T;(1yf)(x) <0},
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both depend on f. Then we have

/ T3 ghedo)

1
sup  Sup —F———
0P |[fllom<1 VIQls|Qlw

llgllzoo@ <1

= sup sup

T:(1 d
0P Ifllioim<t VIQlo |Q|w/| (1of)ldeo

= T“ 10H)h di
Qeﬂg' ufnma)<1 VI10ls |Q|w/ (ool ldeo

= sup sup

O 101 f(Tz’*(l ] — 15 (r))do
Qe ufnmﬂ)q [y |Q|w/ JRTA Tl VT

Sup —————  sup IT "k — 1rp)ldo.

QePr \/IQI [Olo 11000 <1

But now

sup /Qng,’*(lF+[f'] —1p_pldo = /QTg;’*(lﬂ[f] — 1r_yDkolf1do

I llzoe @ <1

where

LI = { TSRS T U — L)) 70
0 if T%* (g, — 1r_ () =0
=1£,1n0) — 1z nO),
where the sets
Edfl={ye Q: Ty "Ar,y — 1r_pD() > 0},
E_[fl={yeQ: T, (g, — 1r_PQ) < 0},

also both depend on f. Thus we have shown that

1
sup  sup /T“(l )gda)‘
Qe |V||Locw<1 V101,10l of
llgllzoo @) =1

< sup sup

V 1 /
CV2ATY
e [fllom<1 VIQls|Qlo Jo 4

— 1 DT " Ar,p — 1r_r))do

1
<4 sup sup ———— /Tg’*(l Ydo| = 4BICT 7« (o, w).
oein Erco VIQII0l | Je " r
The converse inequality
1
BICTe(0, w) < sup sup ———— /T(‘,’(IQf)gdw’
0e? Iflixm=t VIQls|Qlwl Jo

llgllzo @ =1

is trivial.
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6.2 Initial steps. The first step in the proof of Theorem 6 is to expand
an inner product (7¢f, g);2() in weighted Alpert projections A7, f and A%, g
associated with a fixed dyadic grid D:

(6.1) (T2 @2y = Y (T Ao [ A5, 8) 1200
1,JeD

We next wish to reduce the above sumto (I, J) € D x D suchthat! C IpandJ C Jy
where Iy and Jy are large cubes in D, and for this we will use, in a standard way, the
testing conditions over polynomials of degree less than x. This reduced sum is then
decomposed into many separate sums according to the relative sizes of Calderén—
Zygmund stopping cubes, i.e., first into the Parallel Corona decomposition, then
further into Near, Disjoint and Far forms, and then finally according to the locations
and goodness of the intervals / and J. Each of the resulting forms is then controlled
using widely different techniques.

A crucial tool from [RaSaWi] is the estimate for L?(w) norms of Alpert pro-

jections || A7, T"u ||%2 called the Monotonicity Lemma below (see [LaWi] and

()’
also [SaShUr7]), and which is improved by the extra vanishing moments of Alpert

wavelets to the following NTV type estimate,

P(J, u)\2
A% Tl S (F5 5 ) " D0 M= m5 I,
Ifl=x—1

which in turn can then be controlled by a x"-order pivotal condition, weaker than
the usual pivotal condition with x = 1. The telescoping identities (4.5) reduce
sums of consecutive Alpert projections Af‘;x to differences of projections E/, . onto
spaces of polynomials of degree at most ¥ — 1. Since by (4.7), the sup norms of
these latter projections are controlled by Calder6n—Zygmund averages, we are able
to obtain an analogue of the Intertwining Proposition in [SaShUr7], which controls
the Far forms. The Near forms are controlled by the x-Cube Testing conditions
and Bilinear Indicator/Cube Testing property.

Underlying all of this analysis, however, is the powerful tool of Nazarov, Treil
and Volberg introduced in [NTV 1], that restricts wavelet expansions to good cubes,
thus permitting the geometric decay necessary to control off-diagonal terms in the
presence of some appropriate side condition—such as a pivotal or energy condition,
which can be thought of as a proof catalyst.

Before proceeding with the Parallel Corona decomposition and the subsequent
elements of the proof of Theorem 6 in Subsection 6.5 below, we give detailed
analogues of the Monotonicity Lemma and Intertwining Proposition in the setting
of Alpert wavelets.
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6.3 The Monotonicity Lemma. For0 < a < nand m € R, we recall
from (4.1) the m™-order fractional Poisson integral
|1

P*(J, u) = d ,
n = [ Ty = o pyrea )

where P{(J, u) = P*(J, u)is the standard Poisson integral. The following extension
of the Lacey—Wick formulation [LaWi] of the Monotonicity Lemma to weighted
Alpert wavelets is due to Rahm, Sawyer and Wick [RaSaWi]. Since the proof
in [RaSaWi] is given only for dimension n = 1, we include the straightforward
extension to the higher dimensional operators considered here.

Lemma 27 (Monotonicity [RaSaWi]). Let 0 < a < n, and x;,x, € N and
0 < 0 < 1. Suppose that I and J are cubes in R" such that J C 2J C I, and
that u is a signed measure on R" supported outside 1. Finally suppose that T* is
a standard (x| + 6, Ky + 0)-smooth fractional singular integral on R" with kernel
K“(x,y) = K{(x). Then

(6.2) I AL Tl Faey S PE, ) + Wi, 1),

where for a measure v,

2
0P = 3 | KDV 1 A%
|Bl=x
P DN
P, v])? = («;T) 1 = #5112 1

. 2 . 2
where mfy € J satisfies ||1x = mj|* 2,0 = Inf Il = ml*2,0)-

Proof of Lemma27. The proofis an easy adaptation of the one-dimensional
proof in [RaSaWi], which was in turn adapted from the proofs in [LaWi] and
[SaShUr7], but using a x"-order Taylor expansion instead of a first-order expansion
on the kernel (K}/)(x) = K“(x, y). Due to the importance of this lemma, as explained
above, we repeat the short argument.

Let {h};{}aer,,,. be an orthonormal basis of L. (1) consisting of Alpert func-
tions as above. Now we use the (x + d)-smooth Calderén—Zygmund smoothness
estimate (2.10), together with Taylor’s formula

1
K () = Tay(K)(x, ©) + — ,;Z (KHPO(x, o)(x — o)
|Bl=x

Tay(K{)(x, ¢) = Ky (c) + [(x — ©)-VIKJ(c) + - - + [(x — c)-V]"_lK;‘(c),

1
(xk—1)!
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and the vanishing means of the vector of Alpert functions 4%, = {7}, }ser,,,» tO
obtain

<Ta#: h?;xﬁz(w)
- / { / K%(x, y)hﬁ’;x(x)da)(x)}d,u(y) = / (K2, 1) 1200y d it ()
= / (K3 (x) — Tay(K)(x, m}), h7, (X)) 2(@yd e (y)

1
= / <g > (KHPOCx, my)(x — mf), hg’m(x)> du(y)
) |Bl=x L2(w)

(some O(x, mf) € J)

1
> <[/ K! > &DY )(mi)du(y)] (x —m5P, hg;{>

|Bl=x " Bl=x L2 (w)
1
3 <{ /= [ S (KD B, m)) Z(K;s(ﬁ)(m;)} du(y)}

|Bl=x |Bl=x |Bl=r

x (x — mﬁ)ﬂ, h;’;K>
L (w)

Then using that [ (K)‘f‘)(/f)(mf)du (y) is independent of x € J, and that
(e = m5Y 13 ey = O 1) 2w
by moment vanishing of the Alpert wavelets, we can continue with
(T, h;U;K>L2(w)

1
- U x! > (K] )‘ﬁ)(mﬁ)du(y)] ) 2w

" 1Bl=x
1
=Py (/ L%: (PO = 3 (K205 )]

x (x — mj)ﬁ, hﬁ’;x>
L2 (w)

Hence

1

" Bl=x
1
< Pl Z

" 1l=x

Pe s, luD
S CCZ%”

< { / sup (K} P©O) — (K;‘)(ﬁ)(mﬁ)ldlul(y)} e — mj|", |h31,<|>

Oe

LX(w)

lx — m5 "l 21,0
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where in the last line we have used

/ sup |(K7)(0) = (K3 |d 1)

,SCcz/( |/ )f’ dlp|(y)

ly—csl/ |y — eyt
|J*

=Ccz

Thus with I
V)= [®DPeduo,

and noting that the functions {Vf -h$:Yaer,,, are orthonormalina € T’y . for each
S and J, we have
B 2 _ B , 2
|VJ : <xﬁ’ h?;x>L2(w)‘ = Z |<xﬁ’ vy h;);z?ﬁz(w)‘
uer],u,x
— Aw B L2
=l AT ViX 12w
2 2
= V)Pl A% 1720

and hence

2
||A?;;<Ta/‘ ||L2(w)

= |<Taﬂa h?;;c>L2(a))|2

= 3" VPRI A% X122 + o(
|Bl=x

2
) = e

Thus we conclude that

1 2,2 .
I A% T el < C1 D || / KDPNdu®)| | 1| A% 1z
|Bl=rc 1"
P s 11D -
+cz(+f’|T) 1 = 15112200

where

K

2 ”
< (PK(|§||”M))2'

D

1
— [ (KHP(mpdu(y)
= K!/ ’

0

The following Energy Lemma follows from the above Monotonicity Lemma in
a standard way; see, e.g., [SaShUr7]. Given a subset J C D, define the projection
PY =2 yeg Ay and given a cube J € D, define the projection

P = Z AN

JeD:JcJ
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Lemma 28 (Energy Lemma). Fix k > 1. Let J be a cube in D. Let W, be
an L*(w) function supported in J with vanishing w-means up to order less than x,
and let § € D be such that J' C J for every J' € J. Let v be a positive measure
supportedin R"\ yJ with y > 1, and for each J' € J, let dvy = pydv with |py| < 1.
Let T be a standard o-fractional singular integral operator with 0 < o < n. Then
we have

> AT W), AD P
Jed

<G Y QLI AT Wil

J'ed
<c, \/Z O, )2 ¢Z | A% 2,
Jed Jed

Perals V)

P*(J.
Scy< </, v) |J|E

ik IPGxl 12y +

I = 251 20 ) 1P 20

and in particular the ‘energy’ estimate

{T%pv, V) ol
P%(J,v) P* (J,v)
S G (Pl + 2 2 — SN, ) | D AW
|J| " |J| " JcJ Lz(w)
where

Z ACJu’;leJ

JcJ

S YW llz),

L)

and the ‘pivotal’ bound

KT“(pv), Y1) 12| S CPEU IV Vol Wy ll 220

for any function ¢ with |p| < 1.

6.3.1 Comparison of the k™"-order pivotal constant and the usual
pivotal constant. As in [RaSaWi], where the corresponding estimate for k-
order energy constants was obtained, we clearly have the inequality

/1%
re (C(J) + |y — ¢ |)k+n—e

Pi(J, 1,0) = do(y)

/1 k=t |71
= d
/R(é’(f)+ly—cfl) (L) + |y — cy])f+n—e o)
V1

<
T Jr CU) + |y — eghirne

do(y) =P;(J, 1,0),
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for 1 < £ < k, and as a consequence, we obtain the decrease of the pivotal constants
V&K in k:
Vek < V5t forl <€ <k

6.4 The Intertwining Proposition. Here we prove the Intertwining
Proposition of [SaShUr7, Proposition 9.4 on page 123] by appealing to the x™-
order pivotal condition rather than functional energy, and by using instead of the
Indicator/Cube Testing conditions (2.14), the weaker x-Cube Testing conditions
(2.13) similar to those introduced in [RaSaWi]:

T* (6, w))" = sup max / T(1om PP < oo,
(6.3) = ’ QePr 0<Ifl<ri IQIU | T ‘
T (0, 0))" = sup max / (TH*(1gm PP e < oo,
Q& ’ = gepn 01bi<x: [Qls | o)l

with p

B )

mo) = (G5 )
5-(0)

for any cube Q and multiindex f, where cg is the center of the cube Q. (The
factor \/_m the denominator ensures that mg € (‘P Jnorm has supremum norm 1

on Q.) In this way we will avoid using the one-tailed Muckenhoupt conditions,
relying instead on only the simpler classical condition A%, while requiring the x-
Cube Testing condition and a certain weak boundedness property. Later on we will
use the one-tailed Muckenhoupt conditions to both eliminate the weak boundedness
property and reduce x-Cube testing to the usual testing over indicators.

6.4.1 Three NTYV estimates. But first, we recall three estimates of Nazarov,
Treil and Volberg [NTV4], in a form taken from [SaShUr7, Lemmas 7.1 and 7.2
on page 101], where the ‘one-tailed’ Muckenhoupt constants are not needed,
only the classical Muckenhoupt constant A5. The weak boundedness constant
WBT(T"J”‘Z)(U, w) appearing in estimate (6.5) below is

W‘BT(TK,}’KZ)(U, )

1
(6.4) = sup sup == Sup
DeQ 0,0eD Vv |Q|6|Q/|w fg(:P’é' norm

QC3Q'\Q or Q'C30\Q

< 00,

/ T7(1of)gdw
8E(PF nom

where the space (P9)norm Oof Q-normalized polynomials of degree less than x is
defined in Definition 17 above. Note that this notion of weak boundedness, which
unlike the Bilinear Indicator/Cube Testing property, involves only pairs of disjoint
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cubes. Finally, we need the concept of (r, €)-goodness introduced first in [NTV1],
and used later in [NTV3] and [NTV4], and then in virtually every paper on the
subject thereafter.

Definition 29. Let D be a dyadic grid. Givenr € N and 0 < ¢ < 1, called
goodness parameters, acube Q € D issaidto be (r, ¢)-bad if there is a supercube
1 D Q with

o1 = 2°(Q)

that satisfies

dist(Q, al) < 2/n|QI°|1]'~*.

Otherwise Q is said to be (r, ¢)-good. The collection of (r, €)-good cubes in D is
denoted D%, Finally, a function f € L?*(u) is said to be good if

f= 2 DL
[eDeood

It is shown in [NTV1], [NTV3] and [NTV4] for the two-grid world, and in
[HyPeTrVo, Section 4] for the one-grid world, that in order to prove a two weight
testing theorem, it suffices to obtain estimates for good functions, uniformly over
all dyadic grids, provided r € N is chosen large enough depending on the choice
of ¢ satisfying 0 < ¢ < 1. We assume this reduction is in force for an appropriate
& > 0 from now on.

Lemma 30. Suppose T* is a standard fractional singular integral with
0 < a < n, and that all of the cubes I,J € D below are (r, €)-good with goodness
parameters ¢ and r. Fix k|, k, > 1 and a positive integer p > r. Forf € L*(o)
and g € L*(w) we have

> HTUALD: AT 8l
1,JeD
27PN <eJ<e)

63) < (K1) (1c2) (c1,2) a
< (B3 (0, 0) + TF) (@, 0) + WBP " (0, 0) + /A% (0, ©))
X |lf||L2(u) ||g||L2(w)
and
> (TS (AT s AL, 8)ol
1,NH)eD? x D
(6.6) INJ=) and 43 ¢[27°,27]

S A5, D) ll 2o 181l 2wy
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Justification: Using weak boundedness together with the L* control

IE? e S E7IfI

of Alpert expectations given by (4.7), the proof in [SaShUr7] adapts readily
to obtain (6.5), as we sketch below. The proof of (6.6) is virtually identical to
the corresponding proofs in [SaShUr7], and we will not repeat those details
here.

The inequality (6.5) is the only place in the proof where the weak boundedness
constant WBPY!*>) is used, and this constant WBP!* will be eliminated by
exploiting the doubling properties of the measures in the final subsubsection of the
proof. This avoids the more difficult surgery argument that was used to eliminate
a weak boundedness property by Lacey and Wick in [LaWi]. Moreover, surgery
requires the use of two independent families of grids, something we do not have
in this proof.

Sketch of Proof of (6.5). First, following [SaShUr7], which in turn followed
[NTV4], we reduce matters to the case when J C I. Then we break up the
Alpert projections A7, f and A7, g according to expectations over their respective

children:
Al = D ALl = D0 AL NP,
reed) reen)
£Yeg= Y (AFuly= > 1A%, 100Q% .8
Jec) J'e€(J)
where
. o (AL I
AL N oo
and

(A‘(;);Kzg)lj/
(A, lloo”

to further reduce matters to proving that

> Yoo @kl

LJjeD: Jcl  I'e€(),J'e€())
27 <tW)=<t)

Q?/;xgg =

ooH(A;U;Kzg)lJ’ oo|<Tg(P7’;K1f)’ Qﬁu’;ng%"

is dominated by the right-hand side of (6.5). Note that Pj., f € (T£1 Jnorm and
09..,8 € ((sz)norm are L* normalized. Then with N‘J’V(T’f)’m(a, ) denoting the
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constant in parentheses on the right-hand side of (6.5), we continue with

> UTHAL: A58l
1JeD: JCI
27PN =)

< > > AL ol (A1 o

1JeD: Jcl  I'e€(),J'eC(J])
277D <tN<td)

X (TP /) OF,8)ol

< > > AL ol (A1 o

LieD: JcI Ie€(),J eC()
27re<E)<t)

x NIV (6, )/ 11|, |

S NIVE 0, 0)(0, @) [> 1 A FlFaigy | D1 DG, 8172000
IeD JeD

since (4.11) yields both
S AL o SN AL f i
rec)

and

2 2
D AL 2 o S 1T AT, 811720
Jee()

and since the restriction 277€(I) < £(J) < €(I) gives bounded overlap in the sum
overl,J € D with J C I. Now we finish by applying the orthonormality of Alpert
projections, namely

2 2 2 2
Wy = D 1 AT flloy and 118172 = D I A%, 812w .
I1eD JeD

Lemma 31. Suppose T%is a standard fractional singular integral with QO <o <n,
that all of the cubes I,J € D below are (r, £)-good with goodness parameters ¢
andr, that p > r, that f € Lz(a) and g € Lz(a)), that F C D° is o-Carleson, i.e.,

> IFls<IFl,, Fed,
F'eJ: FCF
that there is a numerical sequence {a.5(F)}pecg such that
(6.7) > ag(FY|Fly < If 120y
FeJ
and finally that for each pair of cubes (I, J) € D7 x D?, there is a bounded function
pr.; supported in I \ 2J satisfying

1Brslloo < 1.



254 E. T. SAWYER

Then with k > 1 we have

(6.8) > (T3 (Brilras(F)), A7)0 S VASI 218l -
(FJ))eF xD?
FNJ=0 and £L(J)<2~PE(F)

The proof of (6.8) is again virtually identical to the corresponding proof in
[SaShUr7], and we will not repeat the details here.

We will also need the following Poisson estimate, that is a straightforward
extension of the case m = 1 due to NTV in [NTV4].

Lemma 32. Fixm > 1. Suppose that J C I C K and that
dist(J, I) > 2/nt(J)* €)' ~*.
Then

£(J)\ m—e(n+m—a) .
) P (I, O'IK\I).

(6.9) P, olgy) < (5(1)

Proof. We have

o0
1
P, oxx\) & 2_”"7/ @
' XK\ ; |2kJ|1 QkNNKN\D)

and (257) N (K \ I) # 0 requires
dist(J, K \ I) < c2*¢e()),

for some dimensional constant ¢ > 0. Let kg be the smallest such k. By our
distance assumption we must then have

2/nl(I)Pe)' = < dist(J, al) < 2k e,

or N 1=
2 ko=l < c(m) .

Now let k; be defined by 2k = L) Thep assuming k; > ko (the case k; < kg is

)
TN
similar) we have

Py (J, 0){1(\1)

{ Z Z } |2]‘J|1 /2kJ)m(1<\1) do

k=ko  k=k

gm 1T ( 1 / ) -
< 2 hom - - do | +27kmpe (I o
ST RSN S p(hoxn)

< (%)(l—:‘:)(VHm—a)(%)n aPa “ (1, oxx00) + (f((li) PY(1, TXK\D)

which is the inequality (6.9). (]
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6.4.2 Stopping data. Next we review the notion of stopping data
from [LaSaShUr3].

Definition 33. Suppose we are given a positive constant Cy > 4, a subset J of
the dyadic quasigrid D (called the stopping times), and a corresponding sequence
o5 = {ag(F)}rey of nonnegative numbers a5 (F) > 0 (called the stopping data).
Let (F, <, m5) be the tree structure on JF inherited from D, and for each F € &F
denote by C4(F) = {I € D : w5l = F} the corona associated with F:

Cq(F)={IeD:IcFand!I ¢ F forany F' < F}.

We say the triple (Cy, I, a5) constitutes stopping data for a function f € L}OC(,u)
if

(1) Ef|f| < ag(F)foralll € Crand F € F,

) Yp=r|F'ly < Co|F|, forall F € T,

(3) Xorer a?(F)2|F|;4 SC(%H]CH%z(#),

@) a5(F) < ag(F") whenever F',F ¢ Fwith I’ C F,

) 1| S as PVl < Collfl2 -

Definition 34. If (Cy, J, a5) constitutes stopping data for a function fe L}, (u),

loc
we refer to the othogonal weighted Alpert decomposition

f= Zpgs(ﬂf; P/é:;(F)fE Z Apfs

FeF I1eC 4 (F)

as the corona decomposition of f associated with the stopping times J.

It is often convenient to extend the definition of a5 from J to the entire grid D
by setting

og(I)= sup oag(F).
FeF:FoI

When we wish to emphasize the dependence of a5 on f we will write ag.

Comments on stopping data: Property (1) says that a5 (F) bounds the aver-
ages of f in the corona Cp, and property (2) says that the cubes at the tops
of the coronas satisfy a Carleson condition relative to the weight x. Note
that a standard ‘maximal cube’ argument extends the Carleson condition in
property (2) to the inequality

Z |F'|, < ColAl, for all open sets A C R".
FeF: F'CA
Property (3) is the quasiorthogonality condition that says the sequence of
functions {a5(F)1r}res is in the vector-valued space L*(€?; 1), and prop-
erty (4) says that the control on stopping data is nondecreasing on the stop-
ping tree I . (For the Calderén—Zgumund stopping times above, we have
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the stronger property that a5 (F') > Coas(F) when F’ is an F-child of F,
and this stronger property implies both (2) and (3).) Finally, property (5)
is a consequence of (2) and (3) that says the sequence {ag(F)1r}rcs has
a quasiorthogonal property relative to f with a constant Cj, depending only
on Cj. Indeed, the Carleson condition (2) implies a geometric decay in levels
of the tree &, namely that there are positive constants C; and ¢, depending
on Cy, such that if Qi(?m)(F ) denotes the set of m™ generation children of F
in F,

S Pl < (€27 F],, forallm>0andF €7,
Frec(F):

and the proof of Property (5) follows from this in a standard way; see, e.g.,
[SaShUr7].

Define Alpert corona projections

o — o @ J— w
ey(F) = Z A1;l€| and Pe?;shiﬂ(F) = Z AJ;KZ 5
1eC5(F) JeCyhift(F)

where

CEMYF) = [C5(F) \ NL,(F)1U | N5 (F);
FeF

here N, (E) = {J € D:J C Eand ¢(J) > 27¢(E)}.

Thus the shifted corona Ggr_Shif‘(F ) has the top 7 levels from C4(F) removed, and
includes the first 7 levels from each of its F-children, even if some of them were
initially removed. Keep in mind that we are restricting the Alpert supports of f and
g to good functions so that

o — o [0 — [0
esrf = Z Aly, and Pefgshiﬂ(F)g - Z Ay
[Ee%;"d(l:) Jee%;ndj—shlﬂ(F)

where
CEYN(F) = Cx(F)NDE and  CEOVTN(F) = €5t (F) N DEeed,

Note also that we suppress the integers x| and x, from the notation for the corona

projections P‘é,?(F) and P"é,_shm(F). Finally note that we do not assume that o is
N F

doubling for the next proposition, although the assumptions come close to forcing

this.
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6.4.3 The main Intertwining Proposition. Here now is the Intertwining
Proposition with a proof obtained by adapting the argument in Nazarov, Treil and
Volberg [NTV4] to the argument in [SaShUr7], and using weaker pivotal conditions
with Alpert wavelets. Recall that 0 < ¢ < 1 and r is chosen sufficiently large
depending on ¢. Later, in using the Intertwining Proposition to control the Far
form in Subsubsection 6.6.2 below, we will need to resolve the difference between
the shifted coronas used here and the parallel coronas used there.

Proposition 35 (The Intertwining Proposition). Suppose that Jis o-Carleson,
that (Co, F, ag) constitutes stopping data for f for all f € L?(0), and that

I AL, fllio@) < CagyD), feL*(0),IeD.

Then for good functions f € L*(¢) and g € L*(w), and with x, x; > 1, we have

Z Z <Tg Alef, Pcé);shiﬂ(l:)g>w

FeF I I2F

< (V5" + VAS + TE) N 200 181l 2y -

Proof. We write the left-hand side of the display above as

DD IITEIE SIC DS A;i,ﬂf),gf>w

Fedr. IgF FeJF I: IgF
J— o
= § :<Tng, gF>w’
FeF

where
8F = Paé;shiﬂ(p)g and fr = Z AV
LI2F
Note that gr is supported in F, and that f is the restriction of a polynomial of
degree less than x to F. We next observe that the cubes I occurring in this sum are
linearly and consecutively ordered by inclusion, along with the cubes F’ € JF that
contain F. More precisely, we can write

F=FSFI GRS - GCFGFun G- GFy

where F,, = 7'} F is the m™ ancestor of F in the tree F for all m > 1. We can also
write
F=FoGChLGLSG - SLGhnG - SIk=Fy

where [, = 7r’§3F is the k™ ancestor of F in the tree D for all kK > 1. There is a
(unique) subsequence {km}fle such that

F, =1 1<m<N.

m?>
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Then we have -
Jr) =) A7 ().
=1
Assume now that k,, < k < k,,+1. We denote the 2" — 1 siblings of I by 6(1),
0e 0,ie., {0)}yco = Cp(mpl) \ {I}. There are two cases to consider here:

0 ¢ F and 6) € F.
Suppose first that 8(;) ¢ F. Then 6(l;) € C%

., and using a telescoping sum, we

compute that for
x€0;) C Iyt \ Ik C Frpg1 \ F

we have

[fr (0| =

[E§q f () — E7 f(Ol < EE | If],

> A7 S@)| =
=k

by (4.7).
On the other hand, if (1) € JF, then Ii4; € €  and we have for x € 6(I;) that

Z AI{’ Kl (x)

{=k+1

[fr(x) — A9(1,6) Sy Sl =

|]E1k+1 Klf(x) - ]E;TK;;qf(x)l S_, E;-T*

m+1

f1

by (4.7) again. Now we write

Jr=o0r+yr,

where pr = > Loayy O, f and yr = fr — o3
1<k<00,0: O(I})eF

Z (T3fr 8F)w = Z (T3 oF, 8F)o + Z (Toyr, 8F)o-

FeF FeF FeF

We can apply (6.8) using O(I;) € J to the first sum here to obtain

2
> (Toor grlo| S VAS| D or|  |ID_ er
FeF FeF LX)l peg L (w)

1

< VA [ T ||gF||iz(w)} .
FeF

Turning to the second sum we note that

r(x) = fr(x) — pr(x) = Y _[1 = 150U oqy ()] A7, f)

=1

00 kn
=303 1= 150U Loy (0] A, () = Z i (),

m=1 f=k,n7 1
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where
km
YE@) = Y 11— 150U0))1gu) ()] A7, f(X)
=kp—1
Epef = Epm g ifx €00 and 0p) € T, ki < € < ke,

\ Eotond = By f i3 €0 08 0 T i < €< Ko,

Now we write
o0

Z (TG yr, 8F)o = Z Z (TZvF, 8F)w

FeF m=1 FeJF

o0
= Z Z <Tg1n'g+1F\ngF Wi 8F)w
m=1 FeF

=) > Iu(P),

m=1 FeF

where
(6.10) jm(F) = <Tg(1ﬂ’:;+lF\ﬂ’g,FW?)’ gF>a).

We then note that (4.7) once more gives

1
lwrl < Efr,nﬂ Il < a?(”? F)ln';”F\ngFa

and so

N
lyrl <Y (EF, D1\,

m=0

N
= (E77V|)1F + Z(EZ”S’F”FV‘DIE’?'F\E’;F

m=0
= (EZDIr+ Y (EL ol Dleyrmp
FeF: FCF
as(F)lp+ > ag(@sF )y, mp
FeF: FCF

as(F)lp+ > ag(@gF )y, plp,
FeJF: FCF

IN

forall F € &F.

IN

Now we write

> (TSwr, gr)o =1+1I;

FeF
where [ = Z(Tg‘(lpl//p),gp>w and Il = Z(Tg‘(lpc WE), 8F) -
FeJF FeJF
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Then by x-Cube Testing (6.3), and the fact that w1 is a polynomial on F bounded
in modulus by a5 (F), we have

HTE(wr)s gF)ol < ITEWrL | 2wllgrll 2w < Treas(FVIFI1gr 2w

and then quasi-orthogonality yields

<> KTelryr, gr)ol S T92 Y as(FIVIFlolIgr )l )

FeJF FeF

S TR 20 [ > ||gp||Lz(w)}

FeJF

[SIES

On the other hand, 1z is supported outside F, and each J in the Alpert
support of gr is (r, €)-deeply embedded in F, which we write as J &, . F. So if we
denote by

ME, geep(F) = {maximal good J , F}

the set of maximal intervals that are both good and (r, €)-deeply embedded in F,
then

KeM,e)- deep(F) Ge]v[ﬁ"f? acepF)

where each G € Mﬁf’ 2‘)1 deep(F) is contained in some K € M ¢)- deep(F)-

Thus we can apply the Energy Lemma 28 to obtain from (6.10) that

) AFCIED ) AG)

m=1 FeF m=1 FeF
1
(.] 06;(7["” F)lnx?ll:\”n&wo‘)

MDY —

=1 good
m=1 FeF JeM(r &)- deep(F)

|| =

> AT¢Arewr), gr)o

FeJF

D 1Q2 e P11 IPT 87l 20
|Bl=x

(U, o5 (@G F) L py g p0)

o
+ZZ Z "1+‘> |J|j§

=1 good
m=1 FeF Je M(r €)- deep (F)

X [1x = m 1"l 1200 IPT 8 F Nl 2

= Illg+ 1.
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Then we have that |/I;| is bounded by

0
> sy
m=1 FeF
X { Z PL (.1 m*‘p\;[mFO') ZHQCT shif, Jxﬂ”Zz(w)”P?gF”Lz(w)}
‘IEM(E:‘;()I deep(F) lﬂl_K

6.11) ~ ZZ“?(”W

m=1 FeF

[T

X { Z PK] (J 1 /VH-IF\n.m FO-) Z “Qer shift. J)C ”iz(w)}

good
Je M(:?) deep(F) Iﬁl "

1
2
x{ 3 ||P5“gF||iz(w)}.

good
Je M(:?) deep(F)

We now reindex the last sum in (6.11) above using F* = %' F to rewrite it as

Z Z ag(F7) Z Z { Z PY(J, 1p1\ )

meUFET PEE ) Fed ) I )

6.12) x 3 || Qs (75 )ﬁ]

|Bl=x e

D=

2
L)

1

2
x{ > ||P?gF||iz<w)}.

good
‘]EM(:?) deep(F)

Using (6.9) with m = x and x4 = o, we obtain that for J € MEoS. deep(F) and
1= ng_lF, we have
) 5
()

for some k > m — 1, and hence
t(J) 2k—2e(n+k—a) —
P (J 1p\po)® < (m) Pl (5 F Lty p0)°
F
— (2—k)2x—2£(n+x—a)le(ng—lF’ ln”;‘F\n”&lFo')z-

Now we pigeonhole the intervals J by side length in the sum over

Je My (;‘)i_deep(F ) in the first factor in braces in (6.12) to obtain that it satisfies,
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under the assumptions F’ € €4 (F*) and F € C(SL")(F ",

a 2 w X B2
S moteeo o) L,
TEMEY ey ) =

o
—k\2Kk—2¢ - —1 2
S Y QTOTEORTOPL (2T F Lyt g £0)
k=m—1

D SR 9 - Oy

TEMERS, qeep ) 1A1=K

D=2 (x F)

2

L(w)

oo
< DY QTR OPU AR F L py g £6)° /1o
F \ F

—m— cood
k=m—1 TEME, 1oen(F)

LN=2"*(xn=1F)

—m\2Kk—2e(n+i— -1 2
< (2P el “)le(ng’t E 1o pygn 0) Z Vo

good
Je M(r,e)— deep (F)

so that altogether we have

1

o0 =
2
el <> {§ o (i F )R Qe Ops (g1 ln?‘F\n?;FU)ZIFIw}

FeF > m=1

X Cg,a ”gF ”Lz(w)

1

00
2
5{ Z(z—m)x—a(nﬂc—a) Z ag(n_gtle)Zle (ﬂr;«_lF, ln-’;*'F\;r?;FO-)ZlFlw}
m=1

FeF
x 1> lgrlit,
FeF

1Y 2
SOV W 220 181l 22

since k — e(n + x — a) > 0 implies

[e'S)
Cg’a — Z(z—m)lc—s(nﬂc—a) < 00,

m=1
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and since for each fixed m > 1 we have
m+1 2po m—1 2
> ag(xy FYPL (x5 'F, Lowt pn 70) 1 F Lo

FeF
=Y ag@sF) Y PLF lypmpo) Y |Fle

FeF F”EC}(F/) FEQ:’,;_I(F”)
2 2
<> ag@sF) Y PLEF Leppo)|F
FreF Fre€qs(F)
2 2
= ag(F*Y? > PLE Apg, o) |F |y
F*eF F"EC(;)(F*)
290 K1)2 KIN2 12112
< Y ag(@sF Y (V5 25F 1o < V5 120
FeFd
In term I the expressions || |x — m}'|©! ||i7 (@) AT 1O longer ‘almost orthogonal’
in J, and we must instead exploit the extra decay in the Poisson integral P% 5, due to

the addition of & > 0, along with goodness of the cubes J. This idea was already
used by M. Lacey and B. Wick in [LaWi] in a similar situation, and subsequently
exploited in [SaShUr7]. As a consequence of this decay we will be able to
bound II directly by the xM-order pivotal condition, without having to invoke the
more difficult functional energy condition of [LaSaShUr3] and [SaShUr7]. For the
decay, we follow [SaShUr7] and use the ‘large’ function

D= > ay(F )

F'eF

that dominates || for all F € &, and compute that

5
K+é’(‘] CDO') |J|7
S = [ e O0e)
e 1
|/~ o 1
- D(y)do(y)
tz:o: /71'{;11:\71'{}[7 (dlSt(CJ, (7[ F)C)) |y _ CJ|n+K1—a (y (y
- i ( |F )a" P (. Ly, P
diSt(CJ, (ﬂ%F)‘) % £ ,

and then use the goodness inequality

dist(cy, (%5 F))

\

1 1
> Ef(nng)l—gf(Jf > 52’“—8)5(1'?)1—%(1)8

%

21(1—8)—18(‘])’
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to conclude that

( K+é’(‘] IFLCDO')) < <i2 5(1—¢) Kl(‘] 1 HIF\ﬂ: FCDO'))
- Mk

Mk —
(6.13) =0

’ (J 1 t+1F\ t F(DO-)
< 2~ td'(1—¢) K1 K Ty )
Z ( [J]» )

Now we apply Cauchy—Schwarz to obtain

+(5/(J lFr q)O')
=2, 2 '“Tnl = 5 1" 2 IPF 8 o
FeF JGM(r.e)—deep(F)
1

o(J, 1pc D
< (Z 3 (%) IE: —m,lrﬂnmw))z

FeF JeM(rg:)— deep(F)

x { ) “gF”ZZ}( (w):|
I3 2
= Henergy[E lgrlza, (w):| ;
I 2

and it remains to estimate Ilepergy. From (6.13) and the xM order pivotal condition

=

(ST

we have
P(X (J 1 I+]F\ﬂt FCDO') 2

(e}
—10'(1—¢ KN T : 2
D T D el L

FeF JeMr,s)- deep(F) 1=0

= i y—10' (1) Z Z Z (le , lljl\%r%Fq)a))zuﬁ (WA

=0 GeT FeeltV(G) I €M) deep(F)
o0

<D 2N (G Y S P 6 r0) e
=0 GeF Fe€™D(G) €My deep(F)
o0

S 27N 0 (G)HOVE) + ADIGle S (VE) +ADIF 1 Z20)-
=0 GeF

This completes the proof of the Intertwining Proposition 35. (|

6.4.4 An alternate Intertwining Corollary. We will also need an al-
ternate version of the Intertwining Proposition 35 in which J and [ are at least 7
levels apart, but where the proximity of J and / to F is reversed, namely the cubes J
are close to F but the cubes I are not. We exploit the doubling property of ¢ to
obtain this alternate version as a relatively simple corollary of the Intertwining
Proposition 35.
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Corollary 36 (The alternate Intertwining Corollary). Suppose that o is a
doubling measure, that F is o-Carleson, that (Co, F, ag,) constitutes stopping
data for f for all f € L*(o), and that

I AL, fllicy < Cagyp(), feL*0),1eD.

Let Wr be any subset of C5(F). Then for good functions f € L*(¢) and g € L*(w),
and with k1, k, > 1, we have

SN (TE AL PR, 80| S (VE + VAT + TEDF Nl 20 18]l 2260 -

FeF 1 1229 F

Note that the cubes J in Wg can be close to F, but that the cubes I with 7 ; n%)F
are far from F.

Proof. We will apply the Intertwining Proposition 35 to stopping data
(Co, I, ag¢.r) derived from the 7-grandparents of cubes in J, where

H={zHA:Ae A}

Since o is doubling we conclude that the collection of z-grandparents J{ also
satisfies a o-Carleson condition. In fact, if H = n%)A - n%)B =K, then A C K,
and so if ME? is the collection of maximal cubes A € A for which n%)A Cc K, we
have

S Hle= Y, 1ZPAlL= Y > 1xPAl

HeXH: HCK AcA: n(,BAcK MeMP AeA: ACM
< Cr § E |A|U < CrCCarleson § |M|u
MEM%) AeA: AcM MEM%)

< Cr CCarleson |M|a .

Moreover, from this g-Carleson condition, and the generalized Carleson Embed-
ding Theorem, we obtain the following quasi-orthogonality inequality

1 2
6.14) |H|g( sup / mda) < 1.
Z wen: wou [ H e Ju )

HeXH

Indeed, this follows from interpolating the trivial estimate
A L%(0) > £(H)
for the sublinear operator

AfH) = sup  Eglf]
HeD: HDH
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with the weak type estimate
A: L'(0) - £"°(30),
which in turn follows by applying the Carleson condition to the maximal cubes M

for which Af(M) > A, A > 0. Finally, set

1
agc.r(H) = sup = —— lfldo, H e H,
HeD: HDOH |H |U H

so that the triple (Co, J(, asc,r) constitutes stopping data for the function f L*(0)
in the sense of Definition 33. Now define an Alpert projection g so that

Z P, & = Z Pe, 8-

FeF FeF

Then [|gll;2() < lIgll12() and the Intertwining Proposition 35 yields

S (V5" + /A + TEDN Nl 200 18l 260 -

Z Z <Tg AZKI ﬁ Pg;shiﬂ(l_])?g\>a)

o)
HeX . IzH

Unravelling the definitions shows that this inequality is precisely the conclusion of
the Alternate Intertwining Corollary 36. (]

6.5 The Parallel Corona. Armed with the Monotonicity Lemma and the
Intertwining Proposition from the previous two subsections, we can now give the
proof of Theorem 6, for which it suffices to show that

KTof, &) 12|
(6.15) S (Tre + T + BICT 7w + VS + VS 4\ JAG + 1/ AST)
X W lle2o) 181 22
since by (4.4),
V(ZMCl +V§,K2’* SC":“:KI,(/BI971)’K2,(ﬁ2a72) A3,
forx; >0, +a—nandk, > 6, +a — n.

Note that as above we are abbreviating QE’})) (w, o) with T¥-*.
As a first step, we will prove the weaker inequality

HTofs &) 12()
(6.16) S(FP) + TP+ BICT 1w + VS + V5" 4+ /A + WBPY"))

X Nl 2o 181l 2@y »
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in which we only need the classical Muckenhoupt constant A%, and then replace
Kk-testing with 1-testing, and remove the x"-order weak boundedness constant
WB‘J’(T"J ’KZ)(O', w) all at the price of using the one-tailed constants A5, A5"" instead
of AS.

A crucial result of Nazarov, Treil and Volberg in [NTV1], [NTV3] and [NTV4]
shows that all of the cubes / and J in the sum

<T§f, g>L2(w) = Z <Tg(A7;x1f): A?;ngﬁz(w)
1,JeD

may be assumed (r, €)-good.

6.5.1 The Calderon—Zygmund corona construction. Let x be a lo-
cally finite positive Borel measure on R”. Let J be a collection of Calderén—
Zygmund stopping cubes for f, and let

D =[] esF)
FeJ

be the associated corona decomposition of the dyadic grid D. Then we have

EL|f| > CoEg|fl whenever F', F € F with F' G F,
E['f| < CoEg|f] for I € Co(F).

For a cube I € D let 7l be the D-parent of [ in the grid D, and let 75/ be the
smallest member of F that contains /. For F, F’ € F, we say that F’ is an F-child
of F if ny(xrpF’) = F (it could be that F = 7 F’), and we denote by €4(F) the set
of F-children of F.

For F € J, define the projection P’é?(m onto the linear span of the Alpert
functions { A} iee, aer,,,. DY

7 - Hop H.a H.a
Pe:?(F)f - Z AIV‘f - Z <f’ hl;x >L2(D')hl;x .
IEGQ(F) IGCF,HEFL,LK
The standard properties of these projections are

f=2 Pesaf / Py =0, iz = 2 IPE o 2o

FeF FeF
There is also a y-Carleson condition satisfied by the stopping cubes, namely
> |Flu < ColFl, forallF ed.
F'eF: F'CF

Thus with ag = Ev|f], the triple (Cy, F, o) constitutes stopping data for f in the
sense of [LaSaShUr3], i.e., Definition 33 above.
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Important restriction: In the proof of Theorem 6 we only use the Calderén—
Zygmund corona decomposition, and in this case, property (1) can be im-
proved to

Exlf| & ax(F) forall F € F,

which we assume for the remainder of the proof.
6.6 Form splittings and decompositions. Let (Cy, A, a4) constitute

stopping data for f € L*(o), and let (Cy, B, as) constitute stopping data for
g € L*(w) as in the previous subsubsection. We now organize the bilinear form,

(T2f, 8)0 = <T§’ ( > A > ( > A?"Qg) >w

IeD JeD
= Y (THLLD (DG
IeDand JeD
= > > (THAG s (DG e

(A,B)eAxB IeC 4 (A) and JeC 5 (B)

= > (TiPLwh Pem8&a
(A,B)eAxB

as a sum over the families of Calder6n—Zygmund stopping cubes A and B, and then
decompose this sum by the Parallel Corona decomposition, in which the ‘diagonal
cut’ in the bilinear form is made according to the relative positions of intersecting
coronas, rather than the traditional way of making the ‘diagonal cut’ according to
relative side lengths of cubes. The parallel corona as used here was introduced
in an unpublished manuscript on the arXiv [LaSaShUr4] by Lacey, Sawyer, Shen
and Uriarte-Tuero that proved the Indicator/Interval Testing characterization for
the Hilbert transform, just before Michael Lacey’s breakthrough in controlling the
local form [Lac]. This manuscript was referenced in the survey article [Lac2, see
page 21], and subsequently used in at least [Hyt2], [Tan] and [LaSaShUrWi].
We have

(Tof. 8o

= Z <T§(P‘éA(A)f), Pcé)g(s)g%
(A,B)eAxB

(6.17) ={ >+ > + Y }

(A,B)eNear(AxB) (A,B)eDisjoint(AxB) (A,B)eFar(AxB)

X <T§(P‘éA(A)f), P%)B(B)g>w
= Near(f, g) + Disjoint(f, g) + Far(f, g).



71 THEOREM FOR COMPARABLE DOUBLING WEIGHTS 269

Here, Near(A x B) is the set of pairs (4, B) € A x B such that one of A, B
is contained in the other, and there is no A; € A with B C A; ; A, nor is
there By € B with A € B; & B. The set Disjoint(A x B) is the set of pairs
(A,B) € A x B such that AN B = (). The set Far(A x B) is the complement of
Near(A x B) U Disjoint(A x B) in A x B:

Far(A x B) = (A x B) \ {Near(A x B) U Disjoint(A x B)}.

Note that if (A, B) € Far(A x B), then either B C A’ for some A" € €4(A), or
A C B for some B’ € €5(B).

6.6.1 Disjoint form. By Lemma 30, the disjoint form Disjoint(f, g) is
controlled by the AS condition, the x-cube testing conditions (6.3), and the x-weak
boundedness property (6.4):

(6.18) | Disjoint(f, g)| < (30 + TW* + WBPY" + \/ADIf | 120 1€ | o) -

6.6.2 Far form. Nextwe control the far form

Far(f, g) = Z <T§(P%A(A)f), P‘é,B(B)g>w,
(A,B)cFar(A xB)

which we first decompose into ‘far below’ and ‘far above’ pieces,

Far(f,g)= > (TYPZ, ) Pé,s8&o
(A,B)eFar(A x B)
BCA

+ Z <Tg(P%A(A)f): P‘@B(B)g>w
(A,B)eFar(A x B)
ACB

= Far (f, g) + Far (f, g),
below above

where, as we noted above, if (A, B) € Far(A x B) and B C A, then B is actually
‘far below’ the cube A in the sense that B C A’ for some A’ € € 4(A).

At this point we recall that the Intertwining Proposition 35 was built on the
shifted corona decomposition,

(T3f. 8)w = Z (T3 (P, ) Paégl-shiﬂ(A')gM’
AAeA
in which the shifted A-coronas {G;[Shift(A’)}A/e A are used in place of the parallel
B-coronas { Cy(B)}ges in defining a complete set of projections in L?(w). In fact,
using that
U ex™an={seD:Je Al
AeA: A'GA
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the conclusion of the Intertwining Proposition 35 can be written

| Shift(f, &)| < (V3" + /A + T(TKJ))WHU(U)||g||L2(w),
where Shift(f, g) = Z Z Z (TS DG f D% 8) o

AeA I [gA JeD: JEA

We now wish to apply this estimate to the far below form Farpejow(f, g) in the
parallel corona decomposition, and for this we write

Far (f, g) = > (TE(PE - PEL8)o
(A,B)eFar(AxB): BCA

= Z <Tg(P%A(A)f)’ Z P%)B(B)g>

AeA BeB: (A,B)eFar(A x B) and BCA @
_ a(po
=> <T5(PGA<A>f) > > P€A<A'>meg<3>g>
AeA AeA: A/CABEBOCA(A/ @

= Z Z Z (T3 AT, L PE L annes 38

AeA T 12,4/ BeBNC 4 (A)

=> > 3 (TE DG, o D 8o

AeA T 12,4’ JeC 4 (A"): JCBCA’ for some BeB

If we now replace A’ with A in the last line, then the difference between forms is
given by

bFlar (f, &) — Shift(f, g)
clow

DI > DN IR
JEA

(6-19) AeA];IgA JeC 4 (A):JCBCA for some BeB  JeD

=) ) { > =2 }<T§AZK1ﬁA%K2g>wES—T,

AeA I 12,4 JeW, JeXy,
where
S=3 > > (T AL f.A7,8)e and
AeA . 12,4 JeW,
T=3" 3 D ATi DL f AF8)on
AeA I 12,4 JeXa
and

Wa={JeD: JeCu(A), L) =27 (A),

and J C B C A for some B € B},
Xa={JeD: JeCu(A), L) <277(A),

and there isno B € B withJ ¢ B C A}.
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The sum T can be estimated directly by the Intertwining Proposition 35 using
the Alpert projection

g=) > N

AeA JeC 4 (A): L(J)<27L(A)
and there exists Be B with JCBCA

Indeed, we then have

Y 0= D, A8

JeXa Jeerjrshiﬂ(A)

and so we obtain

7| =

SN S T AL £ %8

AeA I IQA JeXy

oYY AT R £ AGRe

AeAT: IgA JeCrshitt(A)

S (V5 + AS + TN Nl 20 181l 22000
< (V5" + /AG + TEDN 200 181l 20 -

Now we claim that S satisfies
(6.20) ISI S (T + T2 + WBPEL + \ADIf ll20) 18] 2200
To see (6.20), momentarily fix A € A and J € W, and write

D AT B fo DG

I 124
= Y (TEAL Ao+ > (TEAL [ A%08)0
I: Aglcn'%)A I: lgﬂ%)A
= SA,J + S/%,J'
We have

< (T g 4 W'B(P(TKJ’KZ) + VADI N 20 118l 20

D> Sk

AeA JeW,

{n _ A

W=t < 272" < 27, For the remaining sum,

by Lemma 30, since J C I and

Parallel(f, g) = Z Z Sfu = Z <T,§x< Z Af;xlf)a Z A?;ng> >

AeA JeWy AeA I 12”{314 JeWy
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we apply the Alternate Intertwining Corollary 36 to obtain

| Parallel(f, )| S (V5™ + /AZ + TX)f 2o 12l 2 -

Altogether then we have

621) | Far(f, 8)|
S (TR + TE + WBPEE 4 AT+ V5 + V5 ) [l1200) 18l 20

6.6.3 Nearform. Itremainsto controlthe near form Near(f, g) either by the
Indicator/Cube Testing conditions and the classical Muckenhoupt condition A§, or
in the case the measures ¢ and w are comparable, by the x-Cube Testing conditions,
Bilinear Indicator/Cube Testing property, and A5. We first further decompose
Near(f, g) into

Near(f,g>={ DS }<T§<P%A<A)f>, P 8o

(A,B)eNear(AxB) (A,B)eNear(AxB)
BCA ACB

= Near(f, g) + Near(f, g).
below above
To control Nearyejow (f, g) We define projections

Qig = Z P‘é’ﬁ B8
BeB: (A,B)eNear(AxB)
BCA

and observe that, while the Alpert support of Qf need not be contained in the
corona €4 (A), these projections are nevertheless mutually orthogonal in the index
A e A

It is now an easy exercise to use the Indicator/Cube Testing condition (2.14) to
control Nearpejow(f; £),

| Near(f, g)|
below

= Z T7 P&, /s Qi8)ol

AcA
6.22) < STITEPE, 2 1958 2wy S T S anWVIAL Q%S 2w
AeA AeA
1 1
< T ( > aA<A>2|A|U> ( > ||0i;’g||22(w)> S Tlf 2o 18]l e

AeA AeA

by quasi-orthogonality and the fact that the projections Qf are mutually orthogonal
in the index A € A. Note that we have not used comparability of measures here
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since that is only needed for the Bilinear Carleson Embedding Theorem 20. This
will give the first inequality (3.1) in Theorem 6 after we have removed the weak
boundedness constant WB?(T’Z"“)(U, ) in the next subsection.

But we must work harder to obtain control by the Bilinear Indicator/Cube Test-
ing property and x-Cube Testing in the presence of the comparability assumption
on ¢ and w. For this we proceed instead as follows. For fixed A € A write

> (TGP /s Pey 8o
BeB: (A,B)eNear(A xB)
BCA

= Y, ATPPL, i Pem8)o
BG‘BQG‘A(A)

= Z (T5 (P&, ) PC ) Pe,p)8w
B,BeBNC.4(A)

+ Y AT P PE s P8
BeBNCL4(A)

ST D SHETED SEETD SR
B,BeBNC4(A) B,BeBNC4(A) BBeBNC4(A) B,BeBNC,4(A)
BNB'=() B=B' BGB B'&B

X <T§(P%3<3')P%A(Af), P§3(3)8>w

+ Z (T (P, ntyPe ) PCy5)8w
BeBNC.A(A)

=+ 1A+ 1A+ IVA + VA,

where 73A denotes the smallest cube B € B that contains A.'© Then term 74 is
handled immediately by Lemma 6.5 to yield

D I S (VAS + T9(0, 0) + T (0, 0) + WBPE (0, o) If Il 12 18l 2200 -
AeA

The sum }_, 4 [1I*] of terms II* will be handled by the bilinear Carleson Embed-
ding Theorem 20, using the Bilinear Indicator/Cube Testing property

'BJG‘TTM(O', Cl)) < 0

as follows.
Note that for ¢ and @ doubling measures, we have the following two properties,

IP%, 5 Pefll~e S aa(d) and (PG, p8llixe S an(B),

10We thank Ignacio Uriarte-Tuero for pointing out that term V4 was missing from the argument.
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since our coronas are Calderén—Zygmund, and thus if A’ € € 4(A), then

1
[fldo < [fldo < aa(A)
A |6 Jar |[TDA |6 Jrpar ’
and so
IPe,mne ./l S sup ] /lfldU S aa(A).
1€[€ 5 (B)NC.4 (A)]UE 4 (A) 1,

In the first inequality in the above display we have used the telescoping identities
for Alpert wavelets.

We then have, using the Bilinear Indicator/Cube Testing property, that

g
= Z <Tg(P%rB(B)P[éA(A)f)’ P%)B(B)gBM
BeBNCy
Saat) Y an@)|(1o(ewTn ) Fhefs |
~ BeBNE 4(A) ||PeB(B)P%A(A)f”L°C(U) ||P%,B(B)g3”LOQ(U) @
<aad) Y, BICTr(o, w)asB)V|Bl,\/1Blo-
BG‘BQG‘A(A)
Now we use
oq(A) < /[f|da sup /[flda forl € C4(A),
|Als Ja KeD: Kol IKIU

ap(B) S

i),
lgldo < su /lglda) for J € C5(B),
1Bl, Js Len: 1oy 1l

and apply the bilinear Carleson Embedding Theorem 20 with

VT if 1 e Ca4)NB
ar =
"o i1 Ca(A)NB

to conclude that

1
1] < BICT 1 (o, vava( / d)
> (o) > |Blo V18] Ke%l;ligglKla Klfl ’

AeA AeA BeEBNC 4 (A)
X < sup /lglda))
Len: 108 Llw

5 BICT (o, w)|lf||L2(a—)||g||L2(w)-
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Finally, observe that the Carleson condition (4.18) holds here for J € B since the
geometric decay in the w-Carleson condition for B gives

o oa= ), \/|B|,;|B|w:§j > VIBl,IBl,

1eD: Ic] BeB: BCJ m=0 pee (/)
o
<> | > Bl | > IBlo
m=0"\| Be€ () Be€™ ()
o
<> VWIV2 o < Vo o,
m=0

and now the case of general J follows as usual.

Remark 37. This is the only place in the proof where the Bilinear Indica-
tor/Cube Testing property (2.15) is used, and also the only place requiring the
comparability of the measures (through the use of the bilinear Carleson Embed-
ding Theorem 20). It is the Parallel Corona that permits this relatively simple
application of a bilinear testing property.

To handle term /1I* we decompose it into two terms,

= Z <Tg(P%B(3')P%A(A)f), Pcé),B(B)gM
B,B'eBNC4(A)
BGB'CA

+ Z (T3 (P, ) Pe,f)s Pey)8e

BeBNC 4 (A),BeB
B2A

= 11} + 1113,
Then we proceed with

A
mi= % ATiPe,ePeunh) Peum)e
BB eBCA(A)
BGE

= D (P PEw) To (P58
B,B'eBNC 4 (A)

BGB
= > << > P%B(Bnptéﬂmf)vTg’*(PgB<B>8)>‘
BeBNEC 4 (A) B'eBNC4(A) o
BGE

As in our treatment of the Farpeoy form above, we now apply an argument
analogous to that surrounding (6.19), in order to control the sum ", 4 /II{ using
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Lemma 30, and the dual forms of the Intertwining Proposition 35, and the Alternate
Intertwining Corollary 36. This results in the estimate

>t

AeA

< (VAS + T (0, 0) + TP (0, 0) + WBPY (0, ) If | 20 18| 2200 -

For the sum of terms /115, we also apply an argument analogous to that surrounding
(6.19) using Lemma 30 and the dual forms of Proposition 35 and Corollary 36.
This also results in the estimate

Z 1| <

AeA

< (VAS + 350, ©) + T5. (0, 0) + WBPE ™ (0, o) If | 20y 1€l 2000 -

In the same way, for the sum of terms VA, we first write
A o
Vi= Y (PeumanPe, ) To " (PEL 580
BE‘B(‘IG‘A (A)

and then apply once more an argument analogous to that surrounding (6.19) using
Lemma 30 and the dual forms of Proposition 35 and Corollary 36, that results in
the estimate

2 VYT

AeA

(VAS + T8 (0, 0) + T3 (@, 6) + WBPSL (0, @) IIf |l 200181l 120 -

The bound for the sum ), A |IV’2“| is essentially dual to that for >_,_ 4 |[115],
and so altogether, since Ty« < iTa, we have shown that

| Near(;, 9]
A+ i(’c)(a w) + T(’?*(a), o)+ WBfP(KO_"’Q)(a, w) + BICT 1« (o, w)
T T
x |If ”Lz(a)”g”Lz(w)‘

By symmetry, we also have that the form

Nearfg)= > (T3(PE,w): Peyms)o
(A,B)eNear(A xB)
ACB

= Y. PeLwh T (P m®)e

(A,B)eNear(A xB)
ACB

satisfies
| Near(f, g)]|
< (VA + 330, 0) + T8 (0, 0) + WBPE(6, ) + BICT 14(0, )
X Nl 220 1811 22 -
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Combining these estimates completes our control of the near form Near(f, g):

| Near(f, g)I
(6.23) < (VAS + %70, 0) + T (0, 0) + WBPS™ + BICT (0, @)
X |lf||L2(u) ”g”Lz(w)‘

The three inequalities (6.18), (6.21) and (6.23) finish the proof of (6.16), thus
yielding the inequality

(6.24) Nre S Corpropm e
X (z%)+T%)’*+BjGTTa+\/A_‘Z"_;.Vg”fl+'\7§,K2,*+W.B:P(7l%,xz))’

after taking the supremum over f and g in their respective unit balls. It now remains
(r1,52)

only to remove WBP7.** from the right-hand side of (6.24) in order to finish the
proof of Theorem 6.

6.7 Eliminating the weak boundedness property by doubling. Here
we show that the weak boundedness constant WB‘J’(T"J ’KZ)(O', ) can be easily elim-
inated from the right-hand side of (6.16) or (6.24) using the doubling properties of
the measures. We first use Corollary 25 to obtain the inequality

WBPH (6, w)

1
= sup sup ——
DeQ 0.0'eD VIQIs 10w

QC30\Q or 'C30\Q

X sup / T“(IQf)gda) < 0
(6.25) e o) | 10
ge(?g norm (@)
1
< sup sup sup (T5(1gf))*de

DeQ 0,0eD VI10Qls1Q FE@Pg norm(0) 7 Q'
QC3Q\Q or Q'C30\Q

< 3TN0, 0)* < Cp o ZTre(0, ®) + Cr A0, ©) + eNga(0, @),

valid for doubling measures ¢ and w.
Now we plug (6.25) into inequality (6.24) to obtain

Nre S Cror By Bryl Trd) + TY2" + BICT e + (/AT + V5H 4+ V5"7)
+ CK],(ﬁl,yl),lcz,(/)’z,yz)ck,e{ Tra(o, w) + Ag(d, )}
+ CK]:(,BI’J'l)’KZ’(ﬁLJ'Z)ng“(O-: ).

If we now choose ¢ > 0 so small that the term Cy, (5,,y,),x:,(8,,7,)EM7+(0, @) can
be absorbed into the left-hand side, we obtain the desired inequality (6.15). This
completes the proof of both inequalities (3.1) and (3.2) in Theorem 6.
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7 Proof of Theorem 12 on restricted weak type

Here we prove Theorem 12 which, we remind the reader, does not assume compa-
rability of measures. The proof of the theorem is a standard application of an idea
originating four and a half decades ago, namely the 1973 good —A-inequality of
Burkholder [Bur], and specifically the 1974 inequality of R. Coifman and C. Feffer-
man [CoFe], and the related 1974 inequality of B. Muckenhoupt and R. L. Wheeden
[MuWh]. We also introduce an a-fractional analogue A% of the A, condition,
and use it to improve the inequality in [MuWh] when a > 0. We begin by briefly
recalling the inequality of Coifman and Fefferman that relates maximal truncations
of a Calder6n—Zygmund singular integral to the maximal operator M.

7.1 Good-/ inequalities. Given an a-fractional Calder6n—Zygmund op-
erator 7%, define the maximal truncation operator 7} by

n
, xeR",

T =  sup } / o KOt
e<|yl<

O<e<R<o0

for any locally finite positive Borel measure ¢ on R”, and f € L*(¢). Define the
o-fractional Hardy—Littlewood maximal operator M* by
1
M“%(fo)(x) = sup —— / Ifldo, xeR",
0erm xe0 1O 77 Jo

where here we may take the cubes Q in the supremum to be closed.

Let w be an A, weight. Suppose first that @ = 0. Then the Coifman—Fefferman
good —/ inequality in [CoFe, see inequality (7) on page 245] is

lixe Q: T,(fo)(x) > 22 and M(fo)(x) < B}

(7.1)
< CpHx e Q: T,(fo)(x) > A}w,

for all A > 0, where & > 0 is the Ao, exponent in (2.2). The kernels considered
in [CoFe] are convolution kernels with order 1 smoothness and bounded Fourier
transform. However, since we are assuming here that 7 is bounded on unweighted
L*(R™), standard Calderén—Zygmund theory [Ste2, Corollary 2 on page 36] implies
that 7}, is weak type (1, 1) on Lebesgue measure. This estimate is the key to the
proof in [CoFe, see pages 245-246 where the weak type (1, 1) inequality for 7}, is
used], and this proof shows that the kernel of the operator 7 may be taken to be a
standard kernel in the sense used here.

Inthe case 0 < a < n, this good-/ inequality for an A, weight w was extended
in [MuWh] (by essentially the same proof) when 7, and M are replaced by I*
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and M* respectively:
l{x e Q: I(fo)(x) > y4 and M*(fo)(x) < BA}lo

7.2
(7.2) - o(l)ux €Q: I“Uo)x) > Mo
Y

for all 4 > 0, for some f > O chosen sufficiently small. Here the fractional
integral /* is given by

“v(x) = /IR X — y1“"dv(y),

and we will use below the obvious fact that |7 v(x)| < CI*v(x) for dv > 0. (I,

n
> n—a

is a positive operator satisfying the weak type (1 ) inequality on Lebesgue
measure, and this is why there is no need to assume any additional unweighted
boundedness of 7% when a > 0.)
However, it is possible to enlarge the collection of weights that satisfy (7.2)
|E]|

by using a relative a-capacity of E in Q in place of the ratio ol appearing in the

definition of the A, condition. We introduce this next.

7.1.1 A fractional good-/1 inequality. Let D be a dyadic grid on R”.
Suppose that Q is an open subset of R” with compact closure. We define the
Whitney collection Wq, to be the set {Q;}; of maximal dyadic cubes Q; € D
such that 3Q; C Q. The following three properties are then immediate:

(disjoint cover) Q=J;Qjand ;N Q; = lif i #j,
(Whitney condition) 3Q; C Q and 9Q; N Q¢ # () for all j,
(bounded overlap) Zj 1y, < Glq.

Definition 38. Define the Whitney decomposition W;  of the fractional
integral I,f of a positive measure f to be the set whose elements are the Whitney
collections Wq, for the open sets Q; = {x € R" : [,f(x) > 2"}, keZ,ie.,

Wi = {Wa, kez,
which we can identify with { Of},; if Wo, = {O}},;.
The nested property is immediate,
(nested property) Qj/-‘ & inmplies k> ¢,
and the maximum principle is proved in [Saw5]: there is N sufficiently large that

(maximum principle) I (1p-nf)(x) > 21 for x € Q; N Qf_N , allk,j.
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Consider now a positive measure f and the Whitney decomposition of /,f where

Q= {If>2"=]0} forkeZ
J

We claim that if

ENB) = 0N N {lLf > 28 and My f < B2V,
then we have
(7.3) Cap, (EfN(B0f My < p2'™V, 0<p< L.

To see this we note that the cubes Qj’-‘ and Qf-‘_N above satisfy

90 [ ps g,
90k
L(Lypnf)(x) > 2571 forx € OF,

where the first inequality follows from the Whitney condition, and the second
inequality from the maximum principle for fractional integrals. This then shows
that the nonnegative function h = %lelg—Nf satisfies I,h > 1 on E and

ROt [ s (3) et [ s gt
204N 9 ggi-v 2k=1
which proves (7.3).
Using the relative capacity inequality (7.3), we can now prove the good-2
inequality for the pair (,, M,) with respect to an A% measure .

Lemma 39. If o € A%, or v € C, for some q > 2, then there are positive

constants C, & such that

B

(7.4) [Uaf > 72 and Mof < )l < () W > Ao

Proof. The case where w € C, for some g > 2 is in [CeLiPeRi, see Remark 6
on page 13] with an even smaller constant on the right, so we turn to the case
w € A%. It clearly suffices to consider the special cases where 1 = 257N,y = 2N
and 0 < S < 1 for all k € Z and all sufficiently large N € N. Now with

f>2%=J 0}
J
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as above we have, from the A% condition,

[{Lf > 2 and M, f < ﬁzk—an

=% o
j QkCQk N
Qkﬁ{Mf<ﬂ2k Ny#0

<> 120/M,CCap (BN (B); OF )

w

<> CB2"M IO = CuCB2 VY Luf > 2V Mo

where C,, is the bounded overlap constant in the Whitney collection. This completes
the proof of (7.4). ]

7.2 Control of restricted weak type. From such good-1 inequalities
for Ay, A%, and C, weights w, standard arguments in [CoFe], [MuWh], [Saw1]
and [CeLiPeRi] show that ||T/(fo)ll 12w S IM*(fo)ll2) for 0 < a < n and
f € L*(6). We will use a weak type variant of this latter inequality, together with
the equivalence of M} (g, w) and A5 (o, w), to prove the theorem.

Proof of Theorem 12. Since the restricted weak type inequality is self-
dual, we can assume without loss of generality that w is an A%, or Cy,, weight. We
begin by assuming that w € A% and showing that the good-4 inequalities for A%,
weights w imply weak type control, exercising care in absorbing terms. Indeed,
for t > 0, we obtain from (7.1) and (7.4) that

sup A’|{T}'(fo) > Ao
0<i<t

=4 sup 2V|{T*(fo) > 22}

0<i<%

C
<4 sup 2{{{M“(fo) > BA}ln+ EI{T;"(ﬁr) > o)

0<i<%

4
= 22{M*(fo) > A}l +4 sup —4{7F05)>-1Hw
ﬁ 0< 0<i<% ﬂ

4 4C
< —IIM“(fa)II2 oty + - sup AUTEfo) > Ao
/32 Loo(@) ;3 0<i<t ’

Now choose f so that %C = % Provided that sup,_; ., 2204 T} (fo) > A}|w is finite
for each r > 0, we can absorb the final term on the right-hand into the left-hand
side to obtain

I\)\ﬁ

mpﬁHWmﬂ>Mm_ﬂﬂM%me,t>Q

0<A<t
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which gives

8
TS (o) ooy = sUp AU TS (fo) > 2} < FIIM“(fa)IIZz,m(w)-

0<l<oo

Suppose first that o = 0. In order to obtain finiteness of the supremum over
0 < A <t, wetake f € L*(o) wtih |f| < 1 and suppf C B(0, r) with 1 < r < oo
and |B(0, r)|, > 0. Then if x ¢ B(0, 2r), we have |K(x, y)| < Cczr~" and hence

T(o)W) =  sup ‘ / K, y)f0)do(y)
{e<]y|<R}NB(0,r)

O<e<R<o0
2
< Cer(7) 18O, Dl
This shows that

sup izl{Tbv > Ha

0<Ai<t
< £|B(0, 21|, + sup 2Ty > A} \ B(O, 27)],,
0<A<Cczr "|B(0,r)|,
< 21B(0, 2], + sup A2 {ccz(l I) 1B, r)| > /IH

0<Ai<t
= *|B(0, 2)|, + sup A%|B(0, 717w,

0<i<t
3 J— n CCZc‘ :
with y,; = 2/ =%, since

{ccz(l I) 1B, r)| > ,1} (0,2"

Cczc r)
A
where |B(0, r)| = cr".

On the other hand, the A, condition implies that for 4 < 1y = C¢zc, we have
Y1 = 74, =2 so that

|B(O, y,r)|? (yar)*™
B0 o S As(o, w)— < Ay(o, 0)———As(o,
[BO, 7,N|0 S Ax(o w)|B(0, ol = 2(o w)|B(0, 5 2(0, W)

ny Ceze
_ gy
|B(0, 21)|,’
and hence
4n Cczey2 4" 2
RUBO, 7l < 2 HCea ) g,

1B(O,2n)|,  |B(0,2r)|,

Finally we have

sup 22|B(0, y;1)|ew < 1B, y1,)o = 21B(0, 27)] 0,

do<A<t N
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and altogether then

sup A2{Tov > Ao < P21BO, 2P)| 0 + ———=—— + £*|B(0, 27|
0 BO, 29,
which is finite for 0 < t < oo.
Thus we conclude that

mrestrlcted WCd.k(o_ C()) < mwedk(o_ C()) < mwedk(o_ C()) < mwedk(o_’ C()) ~ AQ(O', C()),

where the final equivalence is well known, and can be obtained by averaging over
dyadic grids D the inequality ‘ﬁxvfsk (0, w) < Ay (o, w) for dyadic operators

Df(x) = Qe;ggengll__/lfl 0.

The dyadic inequality is in turn an immediate consequence of the dyadic covering
lemma. Conversely, if 7¢ is elliptic, then A, (0, w) < Miestrictedweak (5 ¢)) (see [LiTr]
and [SaShUr7)).

The same sort of arguments give the analogous inequality when 0 < o < n,

mresmcted WCd.k( o, 6()) < mresmcted Wedk( o, 6()) < m}vgedk( o, C()) < mwedk( o, C())

~ AZ (O-a CO),

and conversely, A} (o, w) S mr;‘stricted veak(g ) if T* is elliptic.

Finally, when w € C»,,, the proof for strong type norms of 7,f and Mf in [Saw1]
is easily adapted to weak type norms, while the proof for strong type norms of /,,f
and M,f in [CeLiPeRi, see Subsubsection 7.2.1 Lemmata on pages 33-35.]—
which follows closely the arguments in [Saw1]—is easily adapted to weak type
norms as was just done above. This completes the proof of Theorem 12. (]

8 Proof of Theorem 9, a 71 theorem

Inequality (3.4) in Theorem 9 follows immediately from Theorems 6 and 12. On
the other hand, if 7“ is strongly elliptic, then

VA0, @) + A0, 0) S Nye(o, @),
by [SaShUr7, Lemma 4.1 on page 92.]. This completes the proof of Theorem 9.

Remark 40. If we drop the assumption that one of the weights is A% or Ca.,,
then inequality (3.4) remains true if we include on the right-hand side the Bilinear
Indicator Cube Testing constant BICT7«(o, w) defined in (2.15) above.
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9 Proof of Theorem 10 on optimal cancellation condi-
tions

Here we follow very closely the treatment in [Ste2, Section 3 of Chapter VII]
to show how Theorem 10 follows from Theorem 9. The argument we follow in
[Ste2, Section 3 of Chapter VII] uses balls instead of cubes, and we thus adapt the
argument to cubes by using the distance function

llyll = max [yl
1<k<n

instead of the Euclidean distance [y| = />, <, |vk|?, which results in minimal
cosmetic changes. Thus the corresponding balls B(x, r) = {y e R" : ||lx — y|| < r}
are familiar cubes with sides parallel to the axes, centered atx with side length 2r. In
order to free up superscripts for other uses, we will drop the fractional superscript o
from both the kernel K* and its associated operator 7*. Finally, we will need the
following result on truncations, which extends the case ¢ = 2 of Proposition 1 in
Stein [Ste2, page 31] to a pair of doubling measures ¢ and w.

9.1 Boundedness of truncations. For ¢ > 0, and a smooth a-fractional
Calder6n—Zygmund kernel K(x, y), define the truncated kernels

Kx,y) ife <|lx—yll
K.(x,y) = _
0 otherwise,

and set
T.(x) = /Kg(x, W »do(y), forxeR"andf e L*(0).

Proposition 41. Suppose that ¢ and w are positive locally finite Borel mea-
sures on R” satisfying the classical A5 condition, and that K(x, y) is a smooth
o-fractional Calderén—Zygmund kernel on R”. Suppose moreover that there is a
bounded operator T : L*(6) = L*(w), i.e.,

IT(o) 2wy < ANy, forallf € L2(o),

associated with the kernel K(x, y) in the sense that (3.6) holds. Then there is a
positive constant A’ such that the truncations 7 satisfy

©.1) ITo(f) 12y < A'lf 120, forallf € L*(c) and & > 0.

Moreover, A’ ~ A + | /AS.
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Proof. The proofis virtually identical to that of Stein in [Ste2, page 31] (which
treated a doubling measure x4 in place of Lebesgue measure dx) upon including
appropriate use of the classical A} (o, w) condition to handle the extension to two
otherwise arbitrary weights, and we now sketch the details.

For each x, the function K,(x, -) is in L?(¢) and so T, is well-defined on L*(o)
by Cauchy—Schwarz. Let T, = T — T, be the ‘near’ part of 7. Fix X € R” and
f € L*(0). All estimates in what follows are independent of ¢, X and f. The crux of
the proof is then to show that there are positive numbers C and 0 < a < % so that

~ 1\~
02 Maga Tl < (A+C(1+ ) VAT) 1@ naf I

where the balls B(X, r) are actually cubes in the new distance function, and we will
often refer to them as cubical balls.

Note that T,(fo)(x) = 0 if Suppf C B(x, &)° and that T,(fo)(x) = T(fo)(x) if
Suppf C B(x, €), so that

lB(E,as)fe(fO-) = lB(i,as)fe(lB(i,(zHl)e)fo-)'
Next we split the right-hand side into two pieces:

9.3) 1c.a0) Te (1B, a3 1)2)f0)
= 13 ae) T (1B, de)fO) + 1Bz ae) Te([1Bx,(a+1)e) — 1Bx,de) [f0),

where we choose 2a < d < 1 — a. In particular, B(X, de) C B(x, ¢) whenever
x € B(X, ag). This gives

lB(X,ae) Te(lB(X,da)fO-) = lB(X,as) T(IB(X,de)fO-)a

and

‘ | lB(X,as) fa?(lB(X,de)fO-) | | L2(w) = ‘ | lB(X,as) T(IB(X,de)fO-) | | L2(w)

< Allgxaef l20) < Al @rnef l2(0)-

To estimate the second term on the right hand side of (9.3), we use a < d and
the association of 7" with K given in (3.6) to obtain

1.0y ) Te (. @s1ye) — Lo Ifo)(X)

K(x, y)f(y)do(y),

/B(x,e)ﬂ{ B(x,(a+1)e)\B(X,de)}

for o-a.e. x € B(X, a¢),
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since the cubical annulus B(X, (a + 1)¢) \ B(X, de¢) is disjoint from the cubical ball
B(X, ag). For y in the above range of integration, we have

de < |Ix—yll < IX—xl[ +llx — yll <ae+|lx—yl,

and using 2a < d, we conclude that || x — y|| > (d — a)e > ae. Thus

C 1 1
|K(x, y)| < @y C(l + 5) B, (a+ De)|’

and so

‘ | lB(E,aH) TH([IB(X,(uH)H) - lB(Yadé‘)]fo-) ‘ |L2(w)

K(x, y)f(y)do(y)

~/B(x,g)ﬁ{B(§,(u+l)g)\B(X,dg)} L2(w)

VIBX, (a+1é)lo FMldo(y)

1
C(1+ _—
( ) |B(x, (a+ De)| B(,(a+1))

< c(1 N l)" VIBG, @@+ Do)loVIBE, @+ Do)l
a |B(x, (a+ 1)e)|

1\n
< C(1+2) /A3 Ol ag o 2o

Plugging our two estimates into (9.3), we obtain (9.2).
As in [Ste2, page 31], we now add up the inequalities in (9.2) for a suitable
collection of cubical balls covering R” to obtain (9.1) with

A=2(1+ é)n(A+C(l + é)"\/A_g)2.

IA

113, @+ e 20

Indeed, we have

| 1o < fj [ igorde

B(X,ae)

< (A + C /A Z IfI*do

B(x,(a+1)¢)
<A+ C,/Ag)zN/ If|*do
RH

provided

UBE,ae)=R" and > 1gu 1) <N
k k

But these two properties are achieved for any N > 2"(1 + %)" — 1 by letting
{ B, 5€)}32, be a maximal pairwise disjoint collection:



T1 THEOREM FOR COMPARABLE DOUBLING WEIGHTS 287

(1) If z € R™\ UkB()_ck, ae), then B(z, 5¢) N [Uy B(#, 5¢)] = () since if there
is w in B(z, §¢) N B, 5¢€), then |z — | < lz—w| + |lw =7 < ae,
contradicting pairwise disjointedness of the collection { B(xX, ﬁe}},‘jﬁl. But
then B(z, ¢) could be included in the collection {BF, 5€)}132,, contradicting
its maximality.

2) Ifze ﬂf:{l B4, (a + 1)¢), then BT, ag) C B(z, 2(a + 1)¢) and so

N+1 N+1
c2(a+ e)" = |B(z, 2a¢)| = | | ) B&, ae)| = Y |BEY, az)|
j=1 j=1
= (N + Dc(ae),
which is a contradiction if N + 1 > 2"(1 + 1), O

9.2 The cancellation theorem. Now we turn to the proof of Theorem 10,
where we follow Stein [Ste2, Section 3 of Chapter VII], but subtracting a higher
order Taylor polynomial to control estimates for doubling measures.

Proof of Theorem 10. Recall the cancellation condition (3.7),

4
O /IIX—XO <N

for all &, N, xo. By the previous proposition, together with the Independence of
Truncations at the end of Subsubsection 2.2.1, the roughly truncated operators
T, n, with kernel K, y(x, y) = K(x, Y)1{z<|x—y|<n}> are bounded from L?(o) to L*(w)

2
/ o K 2)O0) | dotx) < g (o, @) B0, M,
e<|x—yl <

by a multiple of ||T'|| 12(5)—12() Uniformly in 0 < & < N < co. Thus we have the
following Cube Testing condition for 7, y uniformly in0 < & < N < o0, i.e.

2
/ K )1 po. 0 0)do(y)| deo)
e<|lx—yll<N

9.5) /B(xO,N)
< 1T 20y 12 (@) BG0s Mo,

for all cubical balls B(xg, N). However, the inner integrals with respect to ¢ in

(9.4) and (9.5) don’t match up. On the other hand, their difference is an integral

in ¢ supported outside the cubical ball B(xy, N) where w is supported. This fact is

exploited in the following argument of Stein [Ste2, Section 3 of Chapter VII].
We begin by proving the necessity of (3.7) for the norm inequality, i.e.,

2
Ak (0, @) S T 1220y 1200 + AS (0, ).

Set
L) = / K(x, y)do().
e<|lx—yll<N
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First observe that it suffices to show
9.6) / L NCOPdo() < 1T 220 120y BGS Nl
lx—xoll <%

since every cubical ball B(xy, N) of radius N can be covered by a bounded number J
of cubical balls of radius % (2" such cubical balls suffice). Indeed if

J

B(xo, N) < 1) B(x, %)
j=1

then

2
dw(x)

Ax—xo | <N

/ K(x, y)do(y)
e<|lx—yll <N

J

S /
i le—xll <5

J=1

2
dw(x)

/ K(x, y)do(y)
e<|lx—yll<N

J
N
2 2
= Z ||T||L2(g)_>L2(w)‘B(xj: E) ‘U N ||T||L2(g)_>L2(w)|B(x0a N)lo,
J=1

since ¢ is doubling.
As before, define the truncated kernels

K(x,y) ife <|x—yll
K.(x,y) = { £ ot
if not,

and set
T.(x) = /Kg(x, W »do(y), forxeR"andf € L*(0).

By the previous proposition, the operators 7% are uniformly bounded from L?(c)
to L*(w).

Continuing to follow Stein [Ste2, Section 3 of Chapter VII], we compare I, y(x)
with T, (1p,.n))(x). Since

3N N
(B(x, N)\ B(xo, N)} U {B(xo, N) \ B, M)} € B(x, =) \ B(x. 3 ).

provided [|x — x|l < %, and since
15y (x0) = To(1p(ay,m)0)(x)

= / K(x, y)do(y) — / K(x, y)do(y),
B(x,N)\B(x,¢)

B(xo,N)\B(x,£)



71 THEOREM FOR COMPARABLE DOUBLING WEIGHTS 289

it follows that

B
o

B(x, S—N)

1
ENG) = Tl )0 < [ IKCx, Pldo() S 2 [B (x>
B, 0\B,Y) N

when ||x — x| < % Then
/ [, )P der(x)
le—xo |l <&

S /B( " T (g 3 0) ()| 2 deo(x) +/ 1o N () — T (1o 3)) ()| 2deoo(x)

B(xo, %)
N 1 3N\ |2
S S0P 1T 0y 2 B0 Ml + B30, 5 )| B0 57|
3N
SUT N0 1200 + A5 (0 )} B (30, 5-) |

ST ()5 12wy + AG (0, @)}IB(xo, N,
since ¢ is doubling. This proves (9.6), and hence the necessity of (3.7) with
Ak (o, ) ,S ”T”iz(g’)—)Lz(w) +A§(O-a ).

The proof of necessity of the dual condition to (3.7) is similar using that w is
doubling.

Conversely, as in Stein [Ste2, Section 3 of Chapter VII], let K%(x, y) be a smooth
truncation of K given by

Ké(x,y) = n( )K(x s

where #(x) is smooth, vanishes if ||x|| < % and equals 1 if ||x|| > 1. Note that the
kernels K?(x, y) satisfy(3.5) uniformly in ¢ > 0, and can be used as truncations
in defining the weighted norm inequality as in Subsubsection 2.2.1—see Indepen-
dence of Truncations 2.2.1. We will show that the operators 7° corresponding
to K¢ satisfy the x-Cube Testing conditions, also uniformly in ¢ > 0. For this
we begin by controlling the full x-Cube Testing condition for 7% by the following
polynomial variant of (9.4):

/ / Ko, y)—PY
Ix—xoll <N | Je<llx—yll <N 115, 7P Il 0o

©.7) 5’2(0‘ w) do(y),

llxo=yll <N

2
dw(x)

for all polynomials p of degree less than x, all 0 < ¢ < N and xo € R",
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where 913;‘,2(0, w) denotes the smallest constant for which (9.7) holds, and where
x € N.
To see this, fix a positive integer ¥ > n — a, and define

L) = / KO a0,
e<|lx—yll <

If pR-¥0 is a B(xo, R)-normalized polynomial of degree less than x as in Definition 17,
and ||x — xo|| < 2R, and if we denote by Tayf(x) the (x — 1)*-degree Taylor
polynomial of f at x, then

T4 (%" 1p(y, £)0)(X)

= [ K 0 () )
= / K°(x, )2 (y) — Tay ¢5 ()11, 3/ (0) 15,0 () ()
+ ¢ (x) Tay K (x, y)1g0.0) (0)do().
B(x,3R)
The first integral is estimated by
1

X =yl
A _ ylen 15 d < A—|B(x, 3R)|,,
/B(x,3R) Ix =yl ( R ) Bo, R WMda(y) S R"l (x, 3R)|

since we chose k¥ > n — a. On the other hand, the integral

/ Tay K*(x, y)1px,,r)(V)do(y)
B(x.3R)

differs from I, z(x) by

/ (Tay K*(x, y) — K(x, )} Lt 0 (9)do(y),
B(x,3R\B(x,2)

whose modulus is again at most

(=l !
=y L0, (0o (3) S A |BCs, 3R,
/B(x,SR)\B(x,s) y ( R ) B(xo,R)\Y y Rn o

Thus (9.6) implies that

T (g1 )Pdeo(x) S (A + AP (0, 0)}|B(xo, SR

IT%( " 1Bxo. 0y 0)"deo(x) S {A3 + A (0, 0)}|B(xo, SR)|5

B(x0,2R)
S (A5 + 2 (0, @)} [B(xo, R,
since ¢ is doubling. Taking the supremum over cubical balls B(xg, R) yields
FT9 (0, w) < /AS + AL (0, w).

Similarly we have FT) (0, 0) < /A% + A% (w, o).
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At this point we need the following Ql%‘)—variant of Corollary 25: For every
k € Nand 0 < ¢ < 1, there is a positive constant C,. s such that

A0, ®) < Cy sAka(0, ®) + N (0, ),

and where the constants C,. s depend only on x and J, and not on the operator norm
Nr(o, ). The proof of this variant is similar to that of Theorem 22, Proposition 24
and Corollary 25, and is left to the reader. With this variant in hand, we now have

FTX (0, 0) S Crsl\/AZ + Ak (0, )] + Ny (0, ),

for arbitrarily small > 0.

In view of Theorem 9, and absorbing the term 6917 (o, w) for 6 > 0 sufficiently
small, the operator norms of the truncated operators 7% are now bounded uniformly
in € > 0. Thus there is a sequence { g;}72; with

Iim g =0
k— o0

such that the operators 7% converge weakly to a bounded operator 7 from L?(c)
to L?(w). Since the truncated kernels K% (x, y) converge pointwise and dominatedly
to K(x,y), Lebesgue’s Dominated Convergence theorem applies to show that for
x ¢ Supp(fo), and where the doubling measure ¢ has no atoms and the function f
has compact support, we have

T(fo)) = Jim T*(fo)(x) = Jim / K% (e, Y)f ()do ()
- / K, y)f0)do(),

which is the representation (3.6). This completes the proof of Theorem 10. (|

10 Concluding remarks

The problem investigated in this paper is that of fixing a measure pair(o, @), and then
asking for a characterization of the a-fractional Calder6n-Zygmund operators 7¢
that are bounded from L*(o) to L?(ew)—the first solution being the one weight case of
Lebesgue measure with a = 0 in [DaJo]. This problem of fixing a measure pair is in
a sense ‘orthogonal’ to other recent investigations of two weight norm inequalities,
in which one fixes the elliptic operator 7%, and asks for a characterization of the
weight pairs (o, @) for which 7 is bounded.

This latter investigation for a fixed operator is extraordinarily difficult, with
essentially just one Calder6n—Zygmund operator 7% known to have a characteriza-
tion of the weight pairs (o, @), namely the Hilbert transform on the line; see the two
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part paper [LaSaShUr3]; [Lac] and [Hyt3], and also [SaShUr10] for an extension
to gradient elliptic operators on the line. In particular, matters appear to be very
bleak in higher dimensions due to the example in [Saw] which shows that the
energy side condition, used in virtually all attempted characterizations, fails to be
necessary for even the most basic elliptic operators—the stronger pivotal condition
is however shown in [LaLi] to be necessary for boundedness of the g-function, a
Hilbert space valued Calderén—Zygmund operator with a strong gradient positivity
property, and the weight pairs were then characterized in [Lal.i] by a single testing
condition.!!

On the other hand, the problem for a fixed measure pair has proved somewhat
more tractable. However, the techniques required for these results are taken largely
from investigations of the problem where the operator is fixed. In particular, an
adaptation of the ‘pivotal’ argument in [NTV4] to the weighted Alpert wavelets in
[RaSaWi] and a Parallel Corona decomposition from [LLaSaShUr4] are used.

The question of relaxing the side conditions of doubling, comparability of mea-
sures, and A% or C, on the weights remains open, with the main stumbling blocks
being (1) the limitations of weighted Alpert wavelets which require doubling,
and (2) our bilinear Carleson Embedding Theorem which requires comparability
of measures. There is in fact no known example of a a-fractional Calderén—
Zygmund operator for which the 7’1 theorem fails.

For 0 < a < n there ought to be a larger class Cj; of measures that includes
both A% and C,, ¢ > 2, and for which a weighted norm of the fractional integral I,
is controlled by that of the fractional maximal function M,,. One possibility for the
definition of such a class Cj; of measures for0 <a <nand1 <p < o0ois

|E]

o M1gPo < n(CapZ(E)), for all compact subsets E of a cube Q,

for some function # : [0, 1] — [0, 1] with li\n(} n() =0.
t

In the case a = 0, there is the problem analogous to the ‘A, conjecture’ solved
in general in [Hyt], of determining the optimal dependence of the above estimates
on the A, characteristic. In particular, the dependence for the restricted weak
type inequality should follow using the pigeonholing and corona construction
introduced in [LaPeRe] and used in [Hyt].

We end by summarizing the drawbacks in the methodology used here. The T'1
theorem here is proved for general Calderén—Zygmund operators, and thus in the

"I'The testing condition (1.3) in [LaLi] implies the weights share no common point masses, and then
an argument in [LaSaUr1] using the asymmetric A, condition of Stein shows that the A, condition is
implied by the testing condition. Thus (1.3) can be dropped from the statement of Theorem 1.2.
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absence of any special positivity properties of the Calder6n—Zygmund kernels K“.
As a consequence, there is no catalyst available to enable control of the difficult
‘far below’ and ‘stopping’ terms by ‘goodness’ of cubes in the NTV bilinear Haar
decomposition (see, e.g., [NTV4]). In the case of the aforementioned Hilbert
transform, the positivity of the derivative of the convolution kernel % permitted
the derivation of a strong catalyst, namely the energy condition, from the test-
ing and Muckenhoupt conditions (see, e.g., [LaSaShUr3]), and in the case of
Riesz transforms there is a partial reversal energy that yields the energy condi-
tion when the measures are both doubling (see, e.g., [LaWi] and [SaShUr9])).
But the lack of a suitable catalyst for general Calderén—Zygmund operators (see
[SaShUr11] and [Saw] for negative results) limits us to using the weighted Alpert
wavelets in [RaSaWi]. The weighted Alpert wavelets in turn have two defects'?
that limit their use to doubling measures, and to situations that avoid the paraprod-
uct/neighbor/stopping form decomposition of NTV in [NTV4]. This forces us to
use the parallel corona, and ultimately to invoke comparability of measures and
the A% or C,, g > 2, assumption on one of the measures.

11 Reference List of conditions

For the reader’s convenience we assemble here a Reference List of the conditions
on weights and weight pairs arising in this paper in roughly the order of their
appearance.

11.1 Conditions on a single measure.

| dus [ an.
20 o
for all cubes Q C R".

(2) wis an Ay, weight if Ll < c(lEye for all compact subsets E of a cube Q.

(1) p is doubling if

1Qle 10l
(3) oisa C, weight if
|E|s |E]\®
Jen IM1glPdo (IQI)

whenever E compact C Q a cube.
(4) w is an A% measure if
cube Q.

IISII,U < n(Capg(E)), for all compact subsets E of a

12Weighted L? projections fail to satisfy L bounds in general, and the size of an extension of a
nonconstant polynomial is uncontrolled.
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11.2 Conditions on a pair of measures.

(1) (o, w) comparable if Ilglln < 5 whenever E compact C Q a cube with Ilgll < e.

(2) For 0 < a < n, the a-fractional Muckenhoupt conditions for the weight pair

(o, w) are
As(o, ) = sup 12 G o0
Qefpn Q1" 10|
Ao o) = sup P 101,
2(0-3 C()) == Sup T (Q: O-) 1—¢ < OO,
0eQn Q™
o 10l
2" (0, 0) = sup = PHUQ, w) < 00,

QeQr O

. [2k )"‘“
PO, n) = - d .
ew=[ (= )

(3) The x-cube testing conditions for 7% are

(330, w))* = sup

T*(1pm w < 00,
QeiP"0<|ﬁ|<’<|Q|a/ IT5Agmg)l”

(TE’})a)*(a), 0))? = nggg o<|5|<x |Q|w/ [(T%)* (lQmQ)| o < 00,

with mg x) = (Z&f ) for any cube Q and multiindex S, where cg is the center

of the cube Q.
(4) The full x-cube testing conditions for 7% are

(339 (0, w))> = sup max
r P ToT

/ |T“(1QmQ)| w < 00,
FITY . (w,0))* = sup max —/ (T (Apm)|*e < oo.
@ B LTI o)l

(5) The weak boundedness constant is
WBPE) (5, w)

1
= sup sup —_— up
v ogen  VIOLIQNw jepn

norm
\ () / Q
0c30'\Q' or O'C30\Q gE(? Jnorm

< 00,

// T;(1of)gdw

where (P9)pom is the space of Q-normalized polynomials of degree less
than x (Definition 17).

(6) The Bilinear Indicator/Cube Testing property is

1
BICT (0, ) = sup sup ———
0ep E,Fco VIQ|sQlw

/F (o

< 00,
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where the second supremum is taken over all compact sets £ and F contained
in a cube Q.
(7) The x"-order fractional Pivotal Conditions V3E, VT < 00,k > 1, are

LK 1 = 104
(V5 = sup —— Y PXQ,, 190)*|0; o
000, 10ls
oK, * 1 > oL
(V5" = sup —— > PUQ,, 19w)*|Qrls,
000, 19l
£(Q)

PU(Q, 1) = )W_adﬂ(y), k> 1,

r (£(Q) + |y — col

where the supremum is taken over all subdecompositions of a cube Q € P"
into pairwise disjoint subcubes Q,.
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