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Abstract. Let G be any Carnot group. We prove that if a convolution
type singular integral associated with a 1-dimensional Calderón–Zygmund kernel
is L2-bounded on horizontal lines, with uniform bounds, then it is bounded in
Lp, p ∈ (1,∞), on any compact C1,α, α ∈ (0, 1], regular curve in G.

1 Introduction

In this paper we will study the boundedness of convolution type Singular Integral
Operators (SIOs) on smooth, 1-dimensional subsets of arbitrary Carnot groups.
We will consider SIOs formally given by

Tf (p) =
∫

K(q−1p)f (q) dμ(q),

whereK is a 1-dimensional Calderón–Zygmund (CZ) kernel andμ is the restriction
of the Hausdorff 1-measure H1 to a smooth, regular curve in a Carnot group G.
In an effort to keep the introduction concise and rather informal, we will defer all
definitions to Section 2.

The study of SIOs on lower dimensional subsets of Euclidean space has been a
highlight of the interface between harmonic analysis and geometricmeasure theory;
see, e.g., [2, 11, 13, 15, 26, 29]. Advances in the area have partly been motivated by
the importance of lower dimensional SIOs in complex analysis, potential theory,
and PDE. For example, certain singular integrals, such as the Cauchy and Riesz
transforms, play crucial roles in the study of removability for bounded analytic or
Lipschitz harmonic functions; see, e.g., [30, 33].

Singular integrals in Carnot groups, defined with respect to the corresponding
Haar measure, have been studied extensively since the early 70’s; see, e.g., [32, 20].
However, SIOs on lower dimensional subsets of sub-Riemannian spaces were first
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considered relatively recently in [7] and further studied in [3, 4, 5, 8, 17, 18]. Anal-
ogously to the Euclidean case, some of these investigations have been motivated by
the emergence of lower dimensional singular integrals in the study of removability
for Lipschitz harmonic functions in Carnot groups [3, 6, 8]. In such a setting,
harmonic functions are solutions to sub-Laplacian equations. For an extensive
account on sub-Laplacians, see [1].

Research programs into SIOs on lower dimensional subsets of Euclidean spaces
exhibit a common characteristic: all of the studied kernels are odd. Indeed, for
a SIO to make sense on lines and other “nice” 1-dimensional Euclidean objects,
one employs cancellation properties of the kernel; see, e.g., [32, Propositions 1
and 2, p. 289]. Surprisingly, the situation is very different in Carnot groups. More
specifically, it was shown in [4, 5] that, in any Carnot group, there exist non-
negative and symmetric kernels (which we will call vertical Riesz kernels) that
define L2 bounded operators on all 1-regular curves. See Example 18 for more
details.

Fässler and Orponen [18], in a significant recent contribution, proved that C∞,
−1-homogeneous and horizontally antisymmetric kernels (see Remark 16) define
convolution type SIOs which are bounded in Lp, p ∈ (1,∞), for any regular curve
in the first Heisenberg group. Recall that the first Heisenberg group is the simplest
non-abelian example of a Carnot group. Although this result applies to a very
broad class of kernels, it does not apply to the vertical Riesz kernels mentioned
above. Aiming for a framework that will also encompass these examples, Fässler
and Orponen ask in [18, Question 1] if any smooth, −1-homogeneous CZ kernel
in the Heisenberg group which is also uniformly L2 bounded on horizontal lines
(see Definition 14) is necessarily L2 bounded on regular curves. Theorem 1 below
gives a partial answer to their question if the curve is further assumed to be C1,α

regular. Moreover, our result holds in any arbitrary Carnot group, and we do not
need to assume −1-homogeneity and C∞ smoothness for the kernels.

Theorem 1. Let α ∈ (0, 1] and suppose that � is a C1,α regular curve in

a Carnot group G. Then any convolution type singular integral operator with a
1-dimensional CZ kernel which is L2 bounded on horizontal lines with uniform

bounds, is Lp(H1|E)-bounded for any 1-regular set E ⊂ � and any p ∈ (1,∞).

Moreover, the conclusion of Theorem 1 applies to any 1-regular measure μ
whose support is contained in �. An interesting aspect of Theorem 1 is that it
reduces the problemof determining Lp(H1|�)-boundednessof a Carnot convolution
type SIO to a problem of Euclidean 1-dimensional SIOs. Indeed, the restriction
of a Carnot 1-dimensional CZ kernel (as in Definition 10) to a horizontal line
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essentially induces a Euclidean SIO of convolution type associated with a standard
1-dimensional CZ kernel. See the proof of Proposition 17 for more details. This
phenomenon was first observed in [3]. However, the reduction in that paper was
to 3-dimensional Euclidean kernels acting on 2-dimensional planes, while, in our
case, the problem is reduced to the action of 1-dimensional kernels on lines.

The proof of Theorem 1 is performed using the “good lambda method” and an
application of the T1 theorem in homogeneous spaces. In order to verify the T1
testing conditions (on the corresponding Christ cubes) we employ a Littlewood–
Paley decomposition of the operator as in [3, 4, 5]. We stress that a key ingredient
in our proof involves horizontal approximation of smooth curves. It is known from
Pansu’sTheorem [31] that Lipschitz curves in Carnot groups arewell approximated
by their horizontal tangent lines. We will show in Proposition 21 (which is inspired
by Monti’s work in [27]) that, if a Lipschitz curve is further assumed to be C1,α,
then this approximation by horizontal tangents is quantitatively strong. This was
essential in our application of the T1 theorem.

The paper is organized as follows. In Section 2, we discuss (and introduce
basic properties of) Carnot groups, curves in Carnot groups, and singular integral
operators. Moreover, we include two examples of families of kernels which satisfy
the assumptions of Theorem 1. In Section 3 we include some essential tools for the
proof of Theorem 1. In particular, we prove Proposition 21. Section 4 is devoted
to the proof of Theorem 1.

Throughout the article, we will write a � b if a ≤ Cb for some constant C > 0
which depends only on the group structure of G, the curve �, and the kernel K.

Acknowledgements. We thank Katrin Fässler and Tuomas Orponen for
several helpful comments regarding the good λ method.

2 Preliminaries

2.1 Carnot groups. A connected, simply connected Lie group G is called
a step-s Carnot group if the associated Lie algebra g is stratified in the following
sense:

g = V1 ⊕ · · · ⊕ Vs, [V1,Vi] = Vi+1 for i = 1, . . . , s − 1, [V1,Vs] = {0}

where V1, . . . ,Vs are non-zero subspaces of the Lie algebra. We now define a
special tangent subbundle h of the tangent bundle TG. Let h0 = V1. We then use
left translation to pushforward V1 to every other point, that is hg = (Lg)∗(h0) where
Lg(x) = gx is the left-translation map. We call h the horizontal subbundle.
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Choose a basis {X1, . . . ,XN} of g adapted to the stratification in the following
sense:

{X∑i−1
j=1 (dimVj)+1, . . . ,X∑i

j=1(dimVj)
} is a basis of Vi for each i ∈ {1, . . . , s}.

Since the first layer is arguably the most important layer in any Carnot group,
for simplicity we will set n := dimV1. For any x ∈ G, we can uniquely
write x = exp(x1X1 + · · · + xNXN) for some (x1, . . . , xN) ∈ R

N via the exponen-
tial map exp : g → G. Thus we may identify G with RN using the relationship
x ↔ (x1, . . . , xN). Note that, under this identification, we have p−1 = −p for any
p ∈ G. Denote by | · | the Euclidean norm in G = RN (depending on the above
choice of basis). For a general discussion of Carnot groups, see [1].

There is a natural family of automorphisms known as dilations on G. Each
coordinate j satisfies

dimV1 + · · · + dimVdj−1 < j ≤ dimV1 + · · · + dimVdj

for some dj ≤ s, and we call dj the degree of the coordinate j. We thus define for
any t > 0 the dilation

δt(x) = (tx1, t
d2x2, . . . , t

dN xN).

It follows that {δt}t>0 is a one parameter family of automorphisms, i.e., δu ◦δt = δut.
Note that if p = (p1, . . . , ps) ∈ G where pi ∈ RdimVi , then for any t > 0

δt(p) = (tp1, t
2p2, . . . , t

sps).

Moreover, we define the horizontal projection π̃ : G → G by

π̃(p1, . . . , ps) = (p1, 0, . . . , 0)

where pi ∈ RdimVi for i = 1, . . . , s. In some instances we will denote q ∈ G as
(q1, q2) where q1 ∈ R

n and q2 ∈ R
N−n, in particular, we will write q = (q1,0 ) for

0 = (0, . . . , 0) ∈ RN−n.
Since the Lie algebra is nilpotent, we may explicitly compute the group oper-

ation using the famous Baker–Campbell–Hausdorff formula (see [16]). We will
collect some useful properties of the group law here (see [1, Proposition 2.2.22]).

Proposition 2. We may write the group law as xy = x + y + Q(x, y) for some

polynomial Q = (Q1, . . . ,QN) where
(1) Q1 = · · · = Qn = 0;

(2) for n < i ≤ N, the polynomial Qi(x, y) is a sum of terms each of which
contains a factor of the form (xjy� − x�yj) for some 1 ≤ �, j < i;
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(3) Qi is homogeneous of degree di with respect to dilations (i.e., for all x, y ∈ G,

tdiQi(x, y) = Qi(δt(x), δt(y))).
(4) If the coordinate xi has degree di ≥ 2, then Qi(x, y) depends only on the

coordinate of x and y which have degree strictly less than di.

There are many choices of metric space structure for a Lie group G. How-
ever, any left-invariant, homogeneous metric d (i.e., any metric which satisfies
d(px, py) = d(x, y) and d(δt(x), δt(y)) = td(x, y)) is bi-Lipschitz equivalent to any
other left-invariant, homogeneous metric d′ in the following sense: there is a
constant C ≥ 1 such that

C−1d′(x, y) ≤ d(x, y) ≤ Cd′(x, y) for any x, y ∈ G.

The following implies that the topologies of (RN, | · |) and (G, d) are equal for any
choice of left-invariant, homogeneousmetric d. See, for example, Proposition 5.1.6
from [1].

Proposition 3. Suppose G has step s, and let A ⊂ G be compact. Then there
is a constant D ≥ 1 such that

D−1|x − y| ≤ d(x, y) ≤ D|x − y|1/s for all x, y ∈ A.

One particularly useful left-invariant, homogeneousmetric is defined as follows.
Define the norm ‖ · ‖ on G as

‖x‖ := max
j=1,...,N

{λj|xj|1/dj}

where the constants λj > 0 are chosen (based on the group structure) so that ‖ · ‖
satisfies the triangle inequality and λ1 = · · · = λn = 1. (Such a choice can always
be made; see [22].) Define d∞(x, y) = ‖y−1x‖ for any x, y ∈ G. One may easily
check that d∞ is indeed left-invariant and homogeneous.

2.2 Curves inCarnot groups. Supposeα∈ (0, 1]. A function f : [a, b]→R

is of class C1,α if the derivative of f exists and is α-Hölder continuous on [a, b].
(Differentiation at the endpoints is understood in terms of left- and right-hand
limits.) That is, for some Cα ≥ 1,

|f ′(x) − f ′(y)| ≤ Cα|x − y|α for all x, y ∈ [a, b].

A mapping γ : [a, b] → RN is of class C1,α if each coordinate of γ is of class C1,α.
We will say that a set � is a (Lipschitz) curve if it is equal to the image of
a Lipschitz map γ : [a, b] → G. Frequently, Lipschitz curves are also called
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horizontal curves because if γ : [a, b] → G is Lipschitz then γ′(t) ∈ h for
a.e. t ∈ [a, b]; see [31]. We say that a horizontal curve � = γ([a, b]) is C1,α if γ
is a C1,α mapping into the ambient Euclidean space R

N with a C1,α arc length
parameterization (with respect to the metric on G).

Definition 4. We say that a Radon measureμ onG is 1-regular if there exists
some constant C ≥ 1:

(2.1) C−1r ≤ μ(B(p, r)) ≤ Cr for any p ∈ G, 0 < r ≤ diam(supp μ).

We will denote by reg (μ) the smallest constant C ≥ 1 such that (2.1) holds. If
only the second inequality in (2.1) holds, μ is called upper 1-regular.

Moreover, a closed set E ⊂ G will be called 1-regular, if H1|E (the restriction
of the 1-dimensional Hausdorff measure on E) is 1-regular. Analogously, we also
define upper 1-regular sets.

Definition 5. A set � ⊂ G is a C1,α regular curve if it is a horizontal
C1,α-curve whose image is a 1-regular set.

Remark 6. The claim that the arc length parameterization of� is C1,α is more
restrictive than necessary. It is an exercise in calculus to show that, if γ : [a, b] → G

is any C1,α, Lipschitz curve and |γ′| > 0, then the arc length parameterization of γ
must be C1,α as well.

Remark 7. Due to the stratified structure of the Carnot group, we do not need
to assume that γ is C1,α in every coordinate. Indeed, we need only to assume that
the first n coordinates (which are the coordinates in the first layer of G) are C1,α,
and smoothness of the remaining coordinates would follow. This is a much more
intrinsic assumption in the Carnot setting. However, we will assume full regularity
of the curve for simplicity.

The following lemma is a fundamental fact in Carnot groups. It states that the
Pansu derivative of a Lipschitz curve lies solely in the first layer almost everywhere.
By Proposition 3, every Lipschitz curve in G is also Lipschitz as a curve in R

N . In
particular, such curves are classically differentiable almost everywhere.

Lemma 8. If γ : [0, 1] → G is Lipschitz then

lim
s↘0

δ1/s(γ(t)
−1γ(t + s)) = (γ′

1(t), . . . , γ
′
n(t), 0, . . . , 0) for a.e. t ∈ [0, 1].

For a proof, see [27, Lemma 2.1.4]. Note that the cited lemma uses the
terminology hi in place of γ′

i where h is the vector of canonical coordinates of the
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Lipschitz curve γ with respect to the basis of g. However, in a Carnot group, we
may always choose a basis so that hi = γ′

i a.e. for i = 1, . . . , n. See, for example,
Corollary 1.3.19 and Remark 1.4.5 in [1].

Lemma 8 tells us that the tangents to Lipschitz curves are (left translates of)
lines which vanish outside of the horizontal layer. This inspires the following
definition.

Definition 9. A set L ⊂ G is a horizontal line if

L = {(sx1, . . . , sxn, 0, . . . , 0) : s ∈ R}.
Note that left translates of horizontal lines remain lines only in step 2 Carnot

groups; in Carnot groups of higher step they are polynomial curves!

2.3 Singular integral operators. For the remainder of the paper, suppose
that d is any left-invariant, homogeneous metric on G.

Definition 10. A continuous function K : G \ {0} → R is a 1-dimensional
Calderón–Zygmund (CZ) kernel if there exist constants B > 0 and β ∈ (0, 1],
such that K satisfies the growth condition

(2.2) |K(p)| ≤ B
d(p, 0)

and the Hölder continuity condition

(2.3) |K(q−1p1) − K(q−1p2)| + |K(p−1
1 q) − K(p−1

2 q)| ≤ B
d(p1, p2)β

d(p1, q)1+β

for any p ∈ G \ {0}, and any p1, p2, q ∈ G with d(p1, p2) ≤ d(p1, q)/2.

Fix a 1-dimensional CZ kernel K : G \ {0} → R and an upper 1-regular
measure μ (recall Definition 4). Define for any ε > 0 the truncated SIO Tμ,ε
associated with K as

Tμ,εf (p) =
∫

d(p,q)>ε
K(q−1p)f (q) dμ(q) for any f ∈ Lp(μ), 1 < p < ∞,

and define the maximal SIO T∗ associated with K as

(2.4) Tμ,∗f (p) = sup
ε>0

|Tμ,εf (p)| for any f ∈ Lp(μ), 1 < p <∞.

Definition 11. If K : G\{0} → R is a 1-dimensional CZ kernel, 1 < p <∞,
and μ is an upper 1-regular measure, we say that the singular integral operator Tμ
associated with K is bounded on Lp(μ) if the operators f �→ Tμ,εf are bounded
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on Lp(μ) uniformly for all ε > 0 (i.e., the constants are independent of the choice
of ε). We also denote

‖Tμ‖Lp(μ)→Lp(μ) = sup{C > 0 : ‖Tμ,εf‖Lp(μ) ≤ C‖f‖Lp(μ) for f ∈ Lp(μ), ε > 0}.
In other words, Tμ is bounded on Lp(μ) if and only if ‖Tμ‖Lp(μ)→Lp(μ) <∞.

The following remark asserts that convolution type SIOs acting on upper 1-
regular sets are invariant under left translations.

Remark 12. Suppose that K is a 1-dimensional CZ kernel, E ⊂ G is upper
1-regular and x ∈ G. Then, for any p ∈ (1,∞),

‖TH1|E‖Lp(H1|E)→Lp(H1|E) = ‖TH1|xE‖Lp(H1|xE)→Lp(H1|xE).

This follows because T is a convolution type SIO and H1 is left invariant on G.
Indeed, let f ∈ Lp(H1|xE) and ε > 0. Let also z = xz′ where z′ ∈ E. Then, after
changing variables

TH1|xE,εf (z) =
∫

B(z,ε)c∩xE
K(q−1z)f (q)dH1(q)

=
∫

B(z′,ε)c∩E
K(y−1z′)f (xy)dH1(y) = TH1|E,εg(z′),

where g : E → R is defined as g(y) = f (xy). Then since the left invariance of H1

implies that ‖f‖Lp(H1|xE) = ‖g‖Lp(H1|E), our claim follows.

In order to eventually apply the T1 theorem for homogeneous metric spaces,
we must introduce the adjoint operator T̃μ.

Definition 13. If K : G \ {0} → R is a 1-dimensional CZ kernel, define the
adjoint kernel K̃ as K̃(p) = K(p−1) for all p ∈ G.

Note that∫
(Tμ,εf )g dμ =

∫ (∫
d(p,q)>ε

K(q−1p)f (q) dμ(q)
)
g(p) dμ(p)

=
∫ (∫

d(q,p)>ε
K̃(p−1q)g(p) dμ(p)

)
f (q) dμ(q) =

∫
(T̃μ,εg)f dμ.

That is, K̃ is the kernel of the adjoint T̃μ,ε of Tμ,ε. Note that K̃ will also satisfy the
conditions (2.2) and (2.3) whenever K is itself a 1-dimensional CZ kernel.

Definition 14. Given a kernel K : G \ {0} → R with |K(p)| � d(p, 0)−1,
we say that it is uniformly bounded on horizontal lines (or UBHL) if the
SIO associated to K is bounded on L2(H1|L) for any horizontal line L in G (with
constants independent of the choice of L).
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A function ψ : G → R is G-radial if there is a function f : [0,∞) → R so
that ψ(p) = f (d(p, 0)) for every p ∈ G. Given a G-radial function ψ, we write

ψr(p) := (ψ ◦ δ1/r)(p) for all r > 0, p ∈ G.

Definition 15. A kernel K : G \ {0} → R satisfies the annular bounded-
ness condition if, for every G-radial, C∞ function ψ : G → R satisfying

χB(0,1/2) ≤ ψ ≤ χB(0,2),

there is a constant A ≥ 1 (possibly depending on ψ) such that

(2.5)

∣∣∣∣
∫

L
[ψR(p) −ψr(p)]K(p) dH1(p)

∣∣∣∣ ≤ A for all 0 < r < R

where L is any horizontal line.

It follows from Proposition 2 (1) that d(x, y) = |x − y| for any x, y ∈ L, so,
here, H1 may be the Hausdorff 1-measure associated with either the Euclidean or
Carnot metric. We remark that annular boundedness was first introduced in [3] for
3-dimensional kernels and vertical planes in the Heisenberg group.

Remark 16. A kernel K is said to be antisymmetric if K(p−1) = −K(p) for
any p ∈ G \ {0}, and we say that K is horizontally antisymmetric if

K(−p1, p2, . . . , ps) = −K(p1, . . . , ps)

for pi ∈ R
dimVi, i = 1, . . . , s,. It is easy to check that any antisymmetric or

horizontally antisymmetric kernel necessarily satisfies the annular boundedness
condition.

In the following proposition we will prove that annular boundedness is equiva-
lent to UBHL.

Proposition 17. Let K be a 1-dimensional CZ kernel. Then K is UBHL if and

only if it satisfies the annular boundedness condition.

Proof. If K is UBHL, then arguing exactly as in the proof of [3, Lemma 2.9]
we get that the annular boundedness condition is satisfied. Indeed, the metric d is
equal to the Euclidean metric along any horizontal line L, and the group operation
restricted in any horizontal line is simply Euclidean addition.

Now assume that K satisfies the annular boundedness condition. Fix some
horizontal line L and let μ = H1|L. As noted after Definition 15, we can take H1

to be the Euclidean Hausdorff measure (or simply the 1-dimensional Lebesgue
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measure). By the preceding observations if p ∈ L then d(p,0 ) = |p|, where | · |
denotes the Euclidean norm. We will show that there exists some constant C
depending only on B and A such that, for any 0 < r < R < ∞,

(2.6)
∣∣∣∣
∫

r<|p|<R
K(p)dμ(p)

∣∣∣∣ ≤ C.

Indeed, for p ∈ L let ηr,R(p) = ψR(p) − ψr(p) = ψ(p/R) − ψ(p/r) where ψ is
as in the definition of annular boundedness. Note that ηr,R(p) = 0 if |p| > 2R or
|p| < r/2. We then write

∣∣∣∣
∫

r<|p|<R
K(p)dμ(p) −

∫
L
ηr,R(p)K(p)dμ(p)

∣∣∣∣
≤

∫
r/2<|p|<2r

|K(p)|dμ(p) +
∫

R/2<|p|<2R
|K(p)|dμ(p)

+

∣∣∣∣
∫

2r<|p|<R/2
K(p)(1 − ηr,R(p))dμ(p)

∣∣∣∣
:= I1 + I2 + I3.

If 2r ≥ R/2 then trivially I3 = 0. By the size estimate (2.2) of K, we have
I1 + I2 ≤ 8B. On the other hand, if 2r < |p| < R/2, then nr,R(p) = 1. Hence, I3 = 0
and we obtain (2.6) with C = 8B+A. Note that K restricted to L is a 1-dimensional
Euclidean kernel, indeed if

L = {(sx1, . . . , sxn, 0, . . . , 0) : s ∈ R}
then we can identify any p = (sx1, . . . , sxn,0 ) ∈ L with s and define the kernel
K̃(s) := K(sx1, . . . , sxn,0 ). Now the result follows from [21, Theorem 5.4.1] upon
noticing that K̃ satisfies properties [21, (5.4.1)–(5.4.3)]. See also [21, pp. 374–5].

2.3.1 Examples. We now present two families of 1-dimensional CZ ker-
nels which satisfy the annular boundedness conditions, and hence Theorem 1 may
be applied to these kernels. In the following examples we will also assume that
the left-invariant, homogeneous metric d has been chosen so that p �→ d(p, 0) is of
class C1 on G \ {0}. (Such a choice can always be made.)

Example 18. The vertical G-Riesz kernels are defined by

Vn(p) =
d(NH(p), 0)n

d(p, 0)n+1 , p ∈ G \ {0}, n ∈ N,

where NH(p) = π̃(p)−1p is the non-horizontal part of p. The vertical G-Riesz
kernels are 1-dimensionalCZ kernels. Indeed, notefirst that the size condition (2.2)
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is satisfied because d(NH(p), 0) � d(p, 0). Moreover, we have that Vn(p) is −1-
homogeneous (i.e., Vn(δr(p)) = r−1Vn(p) for r > 0 and p ∈ G\{0}) and of class C1

on G \ {0}. Hence, from [20, Proposition 1.7] we infer that

(2.7) |Vn(qp)−Vn(q)|�d(p, 0)d(q, 0)−2 and |Vn(pq)−Vn(q)|�d(p, 0)d(q, 0)−2

for d(p, 0) ≤ 2−1d(q, 0). Although the second inequality cannot be deduced
directly from [20, Proposition 1.7], we obtain it by using the smoothness of the
map p �→ pq and arguing exactly as in [20, Proposition 1.7]. Now (2.7) easily
implies the Hölder condition (2.3); see also [4, Lemma 2.7]. Moreover, since
the kernels Vn vanish on horizontal lines they satisfy the annular boundedness
condition.

The kernels Vn, were first considered in [4] in the first Heisenberg group. It was
shown there that, if � is a 1-regular curve, then the kernel V8 defines a SIO which
is L2(H1|�)-bounded. This result was generalized to arbitrary Carnot groups in [5]
for symmetrizations of V2s2 , where s is the step of the group. Conversely, it was
also proved in [4] that, if E is a 1-regular subset of the Heisenberg group and V2

defines a SIO which is L2(H1|E)-bounded, then E is contained in a 1-regular curve.
These were the first non-Euclidean examples of kernels with such properties. In
addition, unlike in the Euclidean case where all known kernels with such properties
are antisymmetric, the kernels Vn are non-negative and are symmetric (for Carnot
groups of step 2) or can by symmetrized (as in [5]).

Example 19. The 1-dimensional quasi G-Riesz kernel is defined by

�(p) =
( p1

d(p, 0)2
,

p2

d(p, 0)3
, . . . ,

ps

d(p, 0)s+1

)
,

where p = (p1, . . . , ps) ∈ G \ {0} for pi ∈ RdimVi , i = 1, . . . , s. Note that the
kernel � is −1-homogeneous. Hence, arguing as in Example 18, we can see
that the coordinates of the quasi G-Riesz kernel are 1-dimensional CZ kernels.
Moreover,� is antisymmetric, so recalling Remark 16, it also satisfies the annular
boundedness condition.

The kernel �, which is modeled after the Euclidean Riesz kernels, was in-
troduced in [7] for the Heisenberg groups H

n. It was proved there that, if μ is
an m-regular measure for m ∈ N ∩ [1, 2n + 1] and the SIO associated with the m-
dimensional analogue of� is bounded in L2(μ), then supp(μ) can be approximated
at μ-almost every point and at arbitrary small scales by homogeneous subgroups.
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3 Tools for the proof of Theorem 1

In this section we will state and prove the two important propositions which will be
necessary in the proof of the main theorem. The first is an application of Lemma 8
to prove a change of variables formula for integrals along rectifiable curves in G.

Proposition 20. Suppose γ : [a, b] → G is Lipschitz. Write

γ(t) = (γ1(t), γ2(t)) ∈ R
n × R

N−n and G = γ([a, b]).

Then for every η ∈ L1(H1|G), we have
∫

G
η dH1|G =

∫ b

a
η(γ(t))|γ′

1(t)| dt.

Proof. Define the speed |γ̇| of γ as

|γ̇|(t) := lim
s→0

d(γ(t + s), γ(t))
|s| = lim

s→0
d(δ1/|s|(γ(t)−1γ(t + s)), 0)

for every t ∈ [a, b] for which this limit exists. In particular, Lemma 8 and
Proposition 2 (1) give

|γ̇|(t) = lim
s↘0

d(δ1/|s|(γ(t)−1γ(t + s)), 0) = d((γ′
1(t), 0),0) = |γ′

1(t)|
for a.e. t ∈ [a, b].

Let I ⊂ [a, b] be any open interval. According to [23, Theorem 3.6] then, we have

H1(γ(I)) = �(γ|I) =
∫

I
|γ̇|(t) dt =

∫
I
|γ′

1(t)| dt.

Using standard approximation arguments of L1 functions by characteristic func-
tions χ|γ(I), we have proven the proposition. �

As seen in Lemma 8, Pansu’sTheorem implies that a Lipschitz curve inG is well
approximated by its horizontal tangent lines. According to the next proposition, if
such a Lipschitz curve is further assumed to be C1,α, then this approximation by
horizontal tangents is quantitatively strong.

Proposition 21. Suppose γ : [0, 1] → RN is of class C1,α and is Lipschitz

in G. Write γ = (γ1, . . . , γN), fix t0 ∈ [0, 1], and set

L(t) := γ(t0) ∗ ((t − t0)γ
′
1(t0), . . . , (t − t0)γ

′
n(t0), 0, . . . , 0) for t ∈ R.

Then

(3.1) d(γ(t),L(t)) � |t − t0|1+ α
s for all t ∈ [0, 1].

(The constant in this bound necessarily depends on the choice of γ.)
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Proof. Since the metric d is invariant under left translation, we may as-
sume without loss of generality that γ(t0) = 0. Also, by the symmetry in the
arguments below, we may assume t0 = 0. We write the group operation in G as
xy = x+y+Q(x, y) for a polynomial Q with the properties outlined in Proposition 2.

Since d(γ(t),L(t)) � d∞(γ(t),L(t)) = ‖L(t)−1γ(t)‖, it suffices to establish for
every t ∈ [0, 1] the bounds

(3.2) |γi(t) − tγ′
i(0)| � t1+α ≤ t1+ α

s

when 1 ≤ i ≤ n and

(3.3) |γi(t) + Qi(L(t)−1, γ(t))| � tdi+α ≤ tdi(1+ α
s )

when n < i ≤ N where di ≤ s is the degree of the ith coordinate. Indeed, this
follows from the definitions of L(t) and the norm ‖ · ‖.

Fix t ∈ [0, 1]. Fix 1 ≤ i ≤ n. The Hölder continuity of γ′ gives

|γi(t) − tγ′
i(0)| ≤

∫ t

0
|γ′

i(s) − γ′
i(0)| ds �

∫ t

0
sα ds ≤ t1+α

which proves (3.2).
Now fix n < i ≤ N. Following the example of Monti in [27], write

h = (γ′
1, . . . , γ

′
n, 0, . . . , 0). (Note that, by definition, γ′(0) = h(0) since γ(0) = 0.)

We will first establish a bound in (3.3) for |γi(t)|. Suppose by way of induction
that we have shown

|γj(s) − sdjγ′
j(0)| = |γj(s) − sdjhj(0)| � sdj+α

for every j < i and s ∈ [0, 1].
As in equation (1.7.83) and the proof of Lemma 2.1.4 in [27], we can write

γ′
i(s) =

n∑
j=1

γ′
j(s)

∂Qi(γ(s), y)
∂yj

∣∣∣∣
y=0

= Q̄i(γ(s), h(s))

for every s ∈ [0, 1] where Q̄i(x, y) is the finite sum of the monomials in Qi in
which y appears linearly. Note that Qi(x, y) depends only on x� and y� with
� < i (see Proposition 2 (4)). Since it follows from Proposition 2 (3) that Q̄i is
homogeneous of degree di, and since δ1/s(h(s)) = h(s)/s, we may conclude that

s1−diγ′
i(s) = s1−diQ̄i(γ(s), h(s)) = Q̄i(δ1/s(γ(s)), h(s)).

Moreover, Proposition 2 (2) implies that Qi(x, y) is a sum of terms each of
which contains a factor of the form (xjy� − x�yj) for some 1 ≤ j, � < i. That is, we
can write each such term as

p(x, y)(xjy� − x�yj)
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where p(x, y) is some polynomial. Since y appears linearly in the monomials of Q̄i,
we may conclude that Q̄i is also a finite sum of terms of the form

p̄(x)(xjy� − x�yj)

for some 1 ≤ j, � < i where p̄(x) is a polynomial. In particular, this implies that
s1−diγ′

i(s) is a finite sum of terms each of which possesses

s−djγj(s)h�(s) − s−d�γ�(s)hj(s)

as a factor for some 1 ≤ j, � < i. By the induction hypothesis and the continuity
of γ′ on [0, 1], each such term may therefore be bounded by a constant multiple of

|s−djγj(s)h�(s) − s−d�γ�(s)hj(s)|
≤ s−dj |γj(s) − sdjhj(0)||h�(s)| + s−d�|γ�(s) − sd�h�(0)||hj(s)|

+ |hj(0)h�(s) − h�(0)hj(s)|
� sα.

Indeed, the bound on the last term follows from the Hölder continuity of γ′ since

|γ′
j(0)γ′

�(s) − γ′
�(0)γ′

j(s)| ≤ |γ′
j(0)||γ′

�(s) − γ′
�(0)| + |γ′

�(0)||γ′
j(0) − γ′

j(s)| � sα.

We therefore have

t−di |γi(t)| ≤ 1
t

∫ t

0
|s1−diγ′

i(s)| ds =
1
t

∫ t

0
|Q̄i(δ1/s(γ(s)), h(s))| ds � 1

t

∫ t

0
sα ds ≤ tα

for any t ∈ [0, 1]. This completes the induction step, and thus

(3.4) |γi(t) − tdihi(0)| = |γi(t)| � tdi+α

for all n < i ≤ N and t ∈ [0, 1].
Wewill nowestablish a bound for |Qi(L(t)−1,γ(t))|. Recall fromProposition2(3)

that
t−diQi(L(t)−1, γ(t)) = Qi(δ1/t(L(t)−1), δ1/t(γ(t))).

As discussed above, we may write the polynomial Qi(δ1/t(L(t)−1), δ1/t(γ(t))) as a
sum of terms each of which contains a factor of the form

t−d�γ�(t)γ
′
j(0) − t−djγj(t)γ

′
�(0)

for some 1 ≤ j, � < i (noting that γm(k)(0) = 0 when k > n). Therefore, we
may appeal to the inequalities proven above to bound each summed term in the
polynomial by a constant multiple of

|t−d�γ�(t)γ
′
j(0) − t−djγj(t)γ

′
�(0)| ≤ t−dj |γj(t) − tdjγ′

j(0)||t−d�γ�(t)|
+ t−d� |γ�(t) − td�γ′

�(0)||t−djγj(t)| � t2α ≤ tα.
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In other words, we have

|Qi(L(t)−1, γ(t))| � tdi+α.

This together with (3.4) verifies (3.3) and completes the proof of the proposition.�

4 Proof of Theorem 1

Before starting the proof of Theorem 1 we need an auxiliary lemma. As usual
we define the centered Hardy–Littlewood maximal function Mμ associated with a
Radon measure μ on G, by

(4.1) Mμf (x) = sup
r>0

1
μ(B(x, r))

∫
B(x,r)

|f (y)|dμ(y), f ∈ L1
loc(μ).

It is well known, see, e.g., [24, Theorem 3.5.6], that if μ is doubling, then for all
p ∈ (1,∞] there exist constants cp, only depending on p and the regularity constant
of μ, such that ‖Mμf‖p ≤ cp‖f‖p for f ∈ Lp(μ).

Lemma 22. Let K : G \ {0} → R be a continuous function satisfying (2.2).
Let also μ be a 1-regular, measure with regularity constant CR, such that

supp(μ) = A ∪ B, where B is bounded and dist(A,B) ≥ diam(B). Let μ1 = μ|A and
μ2 = μ|B. If

(4.2) ‖Tμ1‖L2(μ1)→L2(μ1) ≤ C1 < ∞ and ‖Tμ2‖L2(μ2)→L2(μ2) ≤ C2 <∞,

then
‖Tμ‖L2(μ)→L2(μ) ≤ C(C1,C2,CR,K) < ∞.

Proof. Let f ∈ L2(μ) and ε > 0. Then

‖Tμ,ε‖2
L2(μ) =

∫
A
|Tμ,εf (x)|2dμ(x) +

∫
B
|Tμ,εf (x)|2dμ(x) := I1 + I2.

We first treat I1:

I1 =
∫

A

∣∣∣∣
∫

B(x,ε)c
K(y−1x)f (y)dμ(y)

∣∣∣∣
2

dμ(x)

�
∫

A

∣∣∣∣
∫

B(x,ε)c∩A
K(y−1x)f (y)dμ(y)

∣∣∣∣
2

dμ(x)

+
∫

A

∣∣∣∣
∫

B(x,ε)c∩B
K(y−1x)f (y)dμ(y)

∣∣∣∣
2

dμ(x)

(4.2)≤ C1‖f‖2
L2(μ) +

∫
A

∣∣∣∣
∫

B(x,ε)c∩B
K(y−1x)f (y)dμ(y)

∣∣∣∣
2

dμ(x)

:= C1‖f‖2
L2(μ) + I12.

(4.3)
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Let

g(x) =
∫

B(x,ε)c∩B
K(y−1x)f (y)dμ(y).

Then for x ∈ A, by our assumption d(x,B) ≥ d(A,B) ≥ diam(B). Therefore,

(4.4)
|g(x)|

(2.2)
�

∫
B
d(x, y)−1|f (y)|dμ(y)

≤ 1
d(x,B)

∫
B(x,2d(x,B))

|f (y)|dμ(y) � Mμf (x).

Thus, by the L2(μ)-boundedness of Mμ,

(4.5) I12 �
∫

A
Mμf (x)

2dμ(x) � ‖f‖2
L2(μ)

and I1
(4.3)∧(4.5)

� ‖f‖2
L2(μ).

We now estimate I2 as in (4.3),

I2
(4.2)≤ C2‖f‖2

L2(μ) +
∫

B

∣∣∣∣
∫

B(x,ε)c∩A
K(y−1x)f (y)dμ(y)

∣∣∣∣
2

dμ(x)

:= C2‖f‖2
L2(μ) + I22.

(4.6)

Let

h(x) =
∫

B(x,ε)c∩A
K(y−1x)f (y)dμ(y).

For x ∈ B, we have by Cauchy-Schwartz,

|h(x)|2 ≤
(∫

B(x,ε)c∩A
|K(y−1x)|2dμ(y)

)(∫
|f (y)|2dμ(y)

)

(2.2)
�

(∫
{y:d(x,y)>diam(B)}

d(x, y)−2dμ(y)
)
‖f‖2

L2(μ)

� diam(B)−1‖f‖2
L2(μ),

(4.7)

where in the last inequality we split the integral on annuli, as in [33, Lemma 2.11].
Therefore, since μ is 1-regular and B is bounded,

(4.8) I22

(4.7)
�

∫
B
diam(B)−1‖f‖2

L2(μ)dμ(x) � ‖f‖2
L2(μ).

Hence I1
(4.6)∧(4.8)

� ‖f‖2
L2(μ). The proof is complete. �
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Proof of Theorem 1. Suppose� is a C1,α regular curve, and γ : [0, 1] → G

is its C1,α arc length parameterization. Write CR := reg (H1|�). We may assume
without loss of generality that the arc length of� is 1, and moreover, by Remark 12,
we can also assume that γ(0) = 0. It follows from [24, Proposition 5.1.8] and the
proof of Proposition 20 that γ is 1-Lipschitz and |γ′| ≥ |γ′

1| = 1. Thus, since γ
is C1, there is some 0 < δ < 1

5 so that

|t2 − t1||γ′(t1)| − |γ(t2) − γ(t1)| < 1
2 |t2 − t1|

for any |t2 − t1| < δ in [0, 1], and hence

(4.9)
|t2 − t1| ≤ 2|γ(t2) − γ(t2)| ≤ Dd(γ(t2),γ(t1))

for t1, t2 ∈ [0, 1], |t1 − t2| < δ

where D/2 > 1 is the constant given by Proposition 3 depending only on G and
diam(�).

Let K : G \ {0} → R be a 1-dimensional CZ kernel satisfying the UBHL
condition, and denote by TH1|� the SIO associated with K. Arguing as in [3,
Lemma 3.1] it suffices to prove that TH1|� is Lp(H1|�)-bounded. We will do so by
using an appropriate “good λ method”.

For the next proposition we define� to be the set of all Radon measures ν on G

which satisfy (2.1) and diam(supp(ν)) = ∞.

Proposition 23. Let ν ∈ � and suppose that there exist constants 0 < θ < 1,
C ≥ 1 and Cp > 0, p ∈ (1,∞), such that for every B = B(x, r) with x ∈ supp(ν)
and r > 0, there is a compact set G ⊂ B ∩ supp(ν) and a Radon measure σ ∈ �
such that

(1) reg (σ) ≤ C,
(2) ν(G) ≥ θν(B),
(3) ν(A ∩ G) ≤ σ(A) for all A ⊂ G,
(4) ‖Tσ,∗f‖Lp(σ) ≤ Cp‖f‖Lp(σ) for all 1 < p <∞.

Then there exist constants

Ap = Ap(Cp,C, reg (ν),K, θ), p ∈ (1,∞),

such that

‖Tν,∗f‖Lp(ν) ≤ Ap‖f‖Lp(ν).
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Proposition 23 follows from [13, Proposition 3.2, p. 60]. While the setting
in [13, Proposition 3.2, p. 60] is Euclidean, its proof can be applied in our case
with only minor modifications. In particular, David uses the Besicovitch covering
theorem in the proof of [13, Lemma 2.2], but one can do away with this issue
by applying the 5r-covering lemma. This modification (along with several other
subtler ones which do not arise in our setting) has been treated in detail in [18,
Theorem6.3] where the authors extend [13, Proposition 3.2, p. 60] to metric spaces
and generalized CZ kernels.

Note that the hypothesis of Proposition 23 requires the support of the measure ν
to have infinite diameter, but the support of H1|� is compact. We rectify this issue
with the following construction. Choose any unit vector v0 ∈ R

n and consider the
horizontal ray

�0 = {(sv0,0 ) : s ∈ [3,∞)} ⊂ R
n × {0 }.

Note that d(�0, �) > 1 = H1(�).We set

�̃ = � ∪ �0,

and we let ν = H1|�̃. Note that ν ∈ �, and reg (ν) only depends on CR, which is
the regularity constant of �.

Let us see how to choose a “nice” set G inside any ball centered on �̃. Fix x ∈ �̃
and r > 0, and set B = B(x, r). In the following, θ := δ(2DC2

R(1 + d(�0, �))−1.
Case 1. x ∈ �0 and r > 0
Set G = B ∩ �0 so that ν(G) ≥ r. If r ≥ ν(�), then

ν(B) = ν(B ∩ �̃) ≤ ν(�) + ν(B ∩ �0) ≤ r + 2r ≤ 3ν(G).

If r < ν(�), then B ∩ � = ∅, so ν(B) = ν(B ∩ �̃) = ν(B ∩ �0) = ν(G).
Case 2. x ∈ � and r ≥ 2(1 + d(�0, �))
Note that B((x0,0 ), r

2 ) ⊂ B since ν(�) = 1. Choosing

G = B
(
(x0,0 ),

r
2

)
∩ �0 ⊂ B

gives ν(G) = r
2 . Thus

ν(B) ≤ ν(�) + ν(B ∩ �0) ≤ r
2 + 2r = 5ν(G).

Case 3. x ∈ � and r < 2(1 + d(�0, �))
Choose a, b ∈ [0, 1] so that γ(a) = x and

|b − a| =
δr

2CR(1 + d(�0, �))
< δ.
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(Without loss of generality, we may assume that a < b.) Set G := γ([a, b]). Note
first that d(γ(t), γ(a)) ≤ |b − a| < r for all t ∈ [a, b], so G ⊂ B. Moreover, the
bound (4.9) and the regularity of � give

ν(G) ≥ d(γ(a), γ(b)) ≥ 1
D

|b − a| =
δr

2DCR(1 + d(�0, �))

≥ δ

2DC2
R(1 + d(�0, �))

ν(B) = θν(B).

Note (4.9) implies that G is the bi-Lipschitz image of an interval with bi-Lipschitz
constantD. In particular, G is a regular curvewith a regularity constant independent
of the choice of G, and

(4.10) diam(γ−1(B(x, r) ∩ G)) ≤ Dr for all x ∈ G, r > 0.

Given any ball B(x, r) with x ∈ supp(ν), we have chosen a set G = Gx,r. We
now define the measure σ := σx,r. If x and r are as in Cases 1 and 2, then G ⊂ �0

and we set σ = H1|�0 . Clearly, σ ∈ � and reg (σ) = 2. On the other hand, if x and r

are as in Case 3, then G ⊂ �. Note once again that the diameter of the support of σ
must be infinite. We will now describe how to choose σ in this case.

Suppose x and r are as in Case 3. Define the horizontal ray

�G = {(sv0,0 ) : s ∈ [3 diam(G),∞)},

where v0 ∈ R
n is a unit vector. We set LG = x�G. Note that

2 diam(G) ≤ d(LG,G) ≤ 3 diam(G)

since x ∈ G. We define G̃ = G ∪ LG and σ = H1|G̃. Observe that σ ∈ �, and, since
LG is a controlled distance away from G, it follows that reg (σ) depends only on the
regularity constant CR of �. Moreover, ν(A ∩ G) = σ(A) for all A ⊂ G. Therefore,
our choices of G and σ satisfy (1), (2), and (3) of Proposition 23.

We will now verify Proposition 23 (4), i.e., we will show that Tσ,∗ is Lp(σ)-
bounded for any 1 < p < ∞ with constants only dependent on γ,K,G, and p. In
particular, the constants will be independent of the choice of G and σ. To this end,
it will suffice to show that

(4.11) ‖Tσ‖L2(σ)→L2(σ) = C(γ,K,G) < ∞.

Indeed, once this is achieved, [12, Theorem 2.4, p. 74] (see also [9, Theorem 9,
p. 94] and [33, Theorem 2.21]) will allow us to deduce that Tσ is bounded in
Lp(σ), p ∈ (1,∞), and in weak L1(σ) with bounds only depending on γ,K,G,



318 V. CHOUSIONIS, S. LI AND S. ZIMMERMAN

and p. Then, using Cotlar’s inequality as in [25, Lemma 20.25] (wherein the
Lemma is stated only for Euclidean spaces but the proof translates without issue
to our setting), we infer that Tσ,∗ is bounded on Lp(σ), p ∈ (1,∞), with bounds
only depending on γ,K,G, and p. Note that, for the last step, we could also use
the version of Cotlar’s Lemma stated in [28, Theorem 7.1], but this is rather an
overkill since the measures discussed in [28] merely require polynomial growth.

In Cases 1 and 2 above, σ = H1|�0 , and hence (4.11) follows from the UBHL
condition. Thus we are left with Case 3. Fix a set G and measure σ as in Case 3.
We first note that, by the UBHL condition and Remark 12,

(4.12) ‖TH1|LG
‖L2(H1|LG )→L2(H1|LG ) ≤ C(K) <∞.

Set μ := σ|G = ν|G = H1|G. In the remainder of the proof, we will show that

(4.13) ‖Tμ‖L2(μ)→L2(μ) ≤ C(K,G, γ) <∞.

We start by recalling the so-calledChrist cubeswhich were introduced in [10]
and provide decompositions of spaces of homogeneous type much like the usual
dyadic cube tiling of Euclidean space. In particular, Christ’s theorem applied to
(G, d, μ) reads as follows:

Theorem 24. For each j ∈ Z, there is a family �j of disjoint open subsets

of G satisfying
(1) G =

⋃
Q∈�j

Q,

(2) if k ≤ i and Q ∈ �i and Q′ ∈ �k, then either Q ∩ Q′ = ∅ or Q ⊂ Q′,
(3) if Q ∈ �j, then diam(Q) ≤ 2−j,

(4) there is a constant co > 0 (depending only on CR) so that, for each Q ∈ �j,
there is some point zQ ∈ Q so that B(zQ, co2−j) ∩ G ⊂ Q,

(5) there is a constant C∂ ≥ 1 (depending only on CR) so that for any ρ > 0 and

any Q ∈ �j,

μ({q ∈ Q : d(q,G \ Q) ≤ ρ2−j}) ≤ C∂ρ
1/C∂μ(Q).

Write
� :=

⋃
j

�j.

According to the T1 theorem of David and Journé [14] applied to the homogeneous
metric measure space (G, d, μ), in order to show that T is bounded in L2(μ) with
bounds independent of G, it suffices to prove that there exists some constant
C := C(γ,K,G) ≥ 1 such that, for any Q ∈ �,

(4.14) ‖Tμ,εχQ‖2
L2(μ|Q) ≤ Cμ(Q) and ‖T̃μ,εχQ‖2

L2(μ|Q) ≤ Cμ(Q),
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where T̃μ,ε is the formal adjoint of Tμ,ε (recall Definition 13). The previous
statement of the T1 theorem can be found in [33, Theorem 3.21]. Although, there,
it is formulated for Euclidean spaces and measures with polynomial growth, it is
also valid in spaces of homogeneous type. For details of this argument, see the
honors thesis of Surath Fernando [19] which extends the proof from [34] to spaces
of homogeneous type.

Note that we can reduce the problem even further as it suffices to prove that
there exists some constant C := C(γ,K,G) ≥ 1 such that

(4.15) ‖Tμ,εχQ‖2
L2(μ|Q) ≤ Cμ(Q).

Indeed, recalling Definition 13 and the discussion afterwards, K̃ is the kernel of
the adjoint T̃μ,ε. Moreover, since K̃(p) = K(p−1) it follows immediately that K̃ is
a CZ kernel with the same constants B, β as K. Moreover, K̃ obeys the annular
boundedness condition since the the Hausdorff 1-measure is invariant on horizontal
lines under the mapping p �→ p−1, and the functions appearing in Definition 2.5
are radial (and d(p, 0) = d(0, p−1)).

We now perform a Littlewood–Paley decomposition of the operator T as in
[3, 4, 5]. Fix a smooth, even functionψ : R → R satisfying χB(0,1/2) ≤ ψ ≤ χB(0,2)

and define the G-radial functions ψj : G → R as

ψj(p) := ψ(2jd(p, 0)) for all p ∈ G, j ∈ Z.

Set ηj := ψj − ψj+1 and K(j) := ηjK. In particular, we have

suppK(j) ⊂ B(0, 2−(j−1)) \ B(0, 2−(j+2)),

and it is a standard exercise to verify that Kj is a 1-dimensional CZ kernel with
(growth and Hölder continuity) constants only depending on the corresponding
constants of K.

Define the operator T(j) as

T(j)f (p) =
∫

G
K(j)(q

−1p)f (q) dμ(q)

and the sum
SN :=

∑
j≤N

T(j).

Note that, since diam(�) < ∞, there is an index N0 ∈ Z depending only on � so
that G ⊂ B(p, 2−(j+2)) for all j < N0 and p ∈ G. Observe that properties (1) and
(4) of the Christ cubes imply that we can choose N0 such that �j = ∅ for j < N0.
Since the map q �→ K(j)(q−1p) vanishes on B(p, 2−(j+2)), it follows that T(j)f ≡ 0
when j < N0. Hence we may write SN =

∑
N0≤j≤N T(j).

The following lemma justifies the above decomposition by allowing us to
approximate Tμ,ε by some SN for small values of ε.
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Lemma 25. Fix N ∈ Z and 2−N ≤ ε < 2−(N−1). Then

|SNf (p) − Tμ,εf (p)| � Mμf (p) for all f ∈ L1
loc(μ),

and hence we have in particular

‖Tμ,εχR‖L2(μ|R) � μ(R)1/2 + ‖SNχR‖L2(μ|R) for all R ∈ �.
The proof of Lemma 25 is identical to the proof of [3, Lemma 3.3], and we

omit it. As such, it remains to prove

(4.16) ‖SNχR‖2
L2(μ|R) � μ(R) for all R ∈ �, N ∈ Z.

Fix R ∈ � and N ∈ Z. We will prove (4.16) for these choices of indices.
Note that R ∈ �J for some J ≥ N0. We need only consider those terms in SNχR

for which j ≥ J − 2 (i.e., for the small supports). Indeed, for any p ∈ R, the
mapping q �→ K(j)(q−1p) vanishes on B(p, 2−(j+2)) by definition, and note that
R ⊂ B(p, 2−(j+2)) whenever 2−j > 2−(J−2) since diam(R) ≤ 2−J by property (3) in
the definition of the Christ cubes. Therefore,

(4.17) T(j)χR ≡ 0 on R whenever j < J − 2.

Let us now decompose the L2 norm of SNχR into integrals over slices of the
cube. Define

∂ρR = {q ∈ R : ρ2−(J+1) < d(q,G \ R) ≤ ρ2−J}.
According to condition (5) for the Christ cubes, μ(∂ρR) ≤ C∂ρ1/C∂μ(R). Set
ρ(k) = 21+J−k so that, when k is very large, ∂ρ(k)R is very thin. Note that ∂ρ(k)R = ∅
whenever k < J since diam(R) ≤ 2−J. We can therefore write

‖SNχR‖2
L2(μ|R) =

∑
k≥J

∫
∂ρ(k)R

|SNχR|2 dμ.

Why do we make this decomposition? Fix a slice size k ≥ J and a point p ∈ ∂ρ(k)R.
Then we have d(p,G \ R) > 2−k, so G ∩ B(p, 2−k) ⊂ R. Also, for j > k, the
support of q �→ K(j)(q−1p) is contained in B(p, 2−(j−1)) ⊂ B(p, 2−k). This allows
us to write

(4.18)
T(j)χR(p) =

∫
R
K(j)(q

−1p) dμ(q) =
∫

G∩B(p,2−k)
K(j)(q

−1p) dμ(q)

=
∫

G
K(j)(q

−1p) dμ(q)

which will be essential when applying Proposition 20.
We will also choose an index J0 depending only on G and �. The value of this

index will be made clear later in the proof.
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Writing m(k) = max{k, J0}, we have

‖SNχR‖2
L2(μ|R) =

∑
k≥J

∫
∂ρ(k)R

|SNχR|2 dμ

(4.17)
=

∑
k≥J

∫
∂ρ(k)R

∣∣∣∣
N∑

j=J−2

T(j)χR

∣∣∣∣
2

dμ

�
∑
k≥J

∫
∂ρ(k)R

∣∣∣∣
m(k)∑

j=J−2

T(j)χR

∣∣∣∣
2

dμ +
∑
k≥J

∫
∂ρ(k)R

∣∣∣∣
N∑

j=m(k)+1

T(j)χR

∣∣∣∣
2

dμ

:= A + B.

(Here, we use the convention that
∑b

n=a xn = 0 when a > b.) Thus, in order to
prove (4.16), it suffices to bound A and B by a constant multiple of μ(R) where
this constant depends only on K,G, and γ.

Let us first establish a (very rough) bound for A. (This sum is over the
larger annuli where (4.18) may not hold.) Fix p ∈ G and any j ∈ Z. Since the
support of q �→ K(j)(q−1p) is contained in B(p, 2−(j−1)), it follows from (2.2) that
|K(j)(q−1p)| � 2j. Thus, for any f ∈ L∞(μ), we have

|T(j)f (p)| � ‖f‖∞
∫

B(p,2−(j−1))
2j dμ = ‖f‖∞2jμ(B(p, 2−(j−1))) � ‖f‖∞

by the regularity (2.1) of G. In particular, this gives for each k ≥ J

m(k)∑
j=J−2

|T(j)χR(p)| � m(k) − J + 3 for any p ∈ ∂ρ(k)R.

Thus, by property (5) of the Christ cube construction,

A =
∑
k≥J

∫
∂ρ(k)R

∣∣∣∣
m(k)∑

j=J−2

T(j)χR

∣∣∣∣
2

dμ �
∑
k≥J

(m(k) − J + 3)2μ(∂ρ(k)R)

�
∑
k≥J

(m(k) − J + 3)2 2(1+J−k)/C∂μ(R) � μ(R),

where for the last inequality we also used that J ≥ N0.

We will now bound B. Fix k ≥ J and p ∈ ∂ρ(k)R, and choose t0 ∈ [a, b] so that
γ(t0) = p. Writing γ(t) = (γ1(t), γ2(t)) ∈ R

n × R
N−n for each t ∈ [0, 1], we define

as before

L(t) = p ∗ ((t − t0)γ
′
1(t0), 0) for all t ∈ R

to be the horizontal approximation of γ at t0.
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Using Proposition 20, for any m(k) < j ≤ N we have

T(j)χR(p) =
∫

R
K(j)(q

−1p) dμ(q)
(4.18)
=

∫
G

K(j)(q
−1p) dμ(q)

=
∫ b

a
K(j)(γ(t)

−1p)|γ′
1(t)| dt,

and we can write

∫ b

a
K(j)(γ(t)

−1p)|γ′
1(t)| dt

=
∫ b

a
K(j)(γ(t)

−1p)|γ′
1(t)| dt −

∫ b

a
K(j)(L(t)−1p)|γ′

1(t0)| dt(4.19)

+
∫ b

a
K(j)(L(t)−1p)|γ′

1(t0)| dt.(4.20)

We will first provide a bound on the sum over j of (4.20). Let

L̃ := {L(s)−1p : s ∈ [a, b]} ⊂ R
n × {0}.

Proposition 17 implies that K satisfies the annular boundedness condition. Hence,
using Proposition 20 we get

∣∣∣∣
N∑

j=m(k)+1

∫ b

a
K(j)(L(t)−1p)|γ′

1(t0)| dt

∣∣∣∣

≤
∣∣∣∣

N∑
j=m(k)+1

∫
L([a,b])

K(j)(q
−1p) dH1(q)

∣∣∣∣
=
∣∣∣∣
∫

L([a,b])
(ψ(2m(k)+1d(p, q)) − ψ(2N+1d(p, q)))K(q−1p) dH1(q)

∣∣∣∣
=
∣∣∣∣
∫

L̃
(ψ(2m(k)+1d(q, 0)) − ψ(2N+1d(q, 0)))K(q) dH1(q)

∣∣∣∣
(2.5)
� A.

(4.21)

Let us now provide a bound for (4.19). Fix an index m(k) < j ≤ N. Note that,
for any t ∈ γ−1(B(p, 2−(j−1)) ∩ G), we have

(4.22) |t − t0| ≤ diam(γ−1(B(p, 2−(j−1))))
(4.10)
� 2−j.
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We have that
∣∣∣∣
∫ b

a
K(j)(γ(t)

−1p)|γ′
1(t)| dt −

∫ b

a
K(j)(L(t)−1p)|γ′

1(t0)| dt

∣∣∣∣
≤

∫ b

a
|K(j)(γ(t)

−1p) − K(j)(L(t)−1p)||γ′
1(t)| dt(4.23)

+
∫ b

a
|K(j)(L(t)−1p)|||γ′

1(t0)| − |γ′
1(t)|| dt.(4.24)

We will first bound (4.23). We would like to apply the Hölder estimate (2.3)
directly for each t ∈ γ−1(B(p, 2−(j−1)) \ B(p, 2−(j+2)) ∩ G), but, in order to do so,
we need d(γ(t),L(t)) ≤ d(γ(t), p)/2. If this bound does not hold, then we have by
Proposition 21

2−j � d(γ(t), p)/2 < d(γ(t),L(t))
(3.1)∧(4.22)

� 2−j(1+ α
s ).

However, we may choose the index J0 depending only on G and � so that, for
j > m(k) ≥ J0, this is a contradiction, and it must be true that

d(γ(t),L(t)) ≤ d(γ(t), p)/2.

Hence,

|K(j)(γ(t)
−1p) − K(j)(L(t)−1p)|

(2.3)
� d(γ(t),L(t))β

d(γ(t), p)1+β

� |t − t0|(1+α/s)β

2−(j+2)(1+β)

(3.1)∧(4.22)
� 2j−αβj/s

for any t ∈ γ−1(B(p, 2−(j−1)) \ B(p, 2−(j+2)) ∩ G). Since suppK(j) ⊂ B(p, 2−(j−1)),

(4.25)

∫ b

a
|K(j)(γ(t)

−1p)−K(j)(L(t)−1p)||γ′
1(t)| dt

� 2j−αβj/s
∫
γ−1(B(p,2−(j−1))∩G)

|γ′
1(t)| dt

(4.10)
� 2−αβj/s.

In order to bound (4.24), we note again that |K(j)| � 2j follows here from (2.2);
using the Hölder continuity of γ′ we obtain the following bound on (4.24):

(4.26)

∫ b

a
|K(j)(L(t)−1p)|||γ′

1(t0)| − |γ′
1(t)|| dt

� 2j
∫
γ−1(B(p,2−(j−1))∩G)

|t − t0|α dt
(4.10)∧(4.22)

� 2−αj.
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We are now ready to bound B:

∣∣∣∣
N∑

j=m(k)+1

T(j)χR(p)
∣∣∣∣

(4.21)∧(4.25)∧(4.26)
� A +

N∑
j=k+1

(2−αβj/s + 2−αj) � 1.

Hence by condition (5) on the Christ cubes,

B =
∑
k≥J

∫
∂ρ(k)R

∣∣∣∣
N∑

j=m(k)+1

T(j)χR

∣∣∣∣
2

dμ �
∑
k≥J

μ(∂ρ(k)R)

�
∑
k≥J

2(1+J−k)/C∂μ(R) � μ(R),

where for the last inequality we also used that J ≥ N0. Hence, we have proved
(4.15) and thus we have established (4.13).

Lemma 22 together with (4.12) and (4.13) imply (4.11). Hence, we can apply
Proposition 23 and obtain for p ∈ (1,∞) and f ∈ Lp(ν)

‖Tν,∗f‖Lp(ν) ≤ Ap‖f‖Lp(ν).

Recalling the definition of ν, this implies that

‖TH1|�,∗f‖Lp(H1|�) ≤ Ap‖f‖Lp(H1|�)

for p ∈ (1,∞) and f ∈ Lp(H1|�). The proof is complete. �
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L2 pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), 361–387.

[12] R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces
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