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Abstract. It is well known that the space of invariant probability measures
for transitive sub-shifts of finite type is a Poulsen simplex. In this article we prove
that in the non-compact setting, for a large family of transitive countable Markov
shifts, the space of invariant sub-probability measures is a Poulsen simplex and
that its extreme points are the ergodic invariant probability measures together with
the zero measure. In particular, we obtain that the space of invariant probability
measures is a Poulsen simplex minus a vertex and the corresponding convex
combinations. Our results apply to finite entropy non-locally compact transitive
countable Markov shifts and to every locally compact transitive countable Markov
shift. In order to prove these results we introduce a topology on the space of
measures that generalizes the vague topology to a class of non-locally compact
spaces, the topology of convergence on cylinders. We also prove analogous results
for suspension flows defined over countable Markov shifts.

1 Introduction

Ever since the work of Parthasarathy [Par1] and Oxtoby [O] in the early 1960s
a great deal of attention has been paid to the problem of describing the space of
invariant probability measures of a dynamical system. Remarkable results have
been obtained relating the geometry of the space with the dynamical properties of
the system. A result by Downarowicz [D] states that for every Choquet simplex K

there exists a minimal sub-shift (X,T) for which the space of invariant probability
measuresM(X,T) is affinely homemorphic to K. In this article we will be interested
in a very special Choquet Simplex.

Definition 1.1. A metrizable convex compact Choquet simplex with at least
two points K is a Poulsen Simplex if its extreme points are dense in K.

The first example of such a simplex was constructed by Poulsen [Pou] in 1961.
It was later shown by Lindenstrauss, Olsen and Sternfeld [LOS, Theorem 2.3]
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that the Poulsen simplex is unique up to affine homemorphism. This simplex
enjoys remarkable properties. For example, as proved in [LOS, Section 3], the
set of extreme points in the Poulsen simplex is path connected. The relation of
this simplex with dynamical systems directly follows from the seminal work of
Sigmund [Si1]; see also [Si2, Si3]. Indeed, if (�,σ) is a transitive sub-shift of
finite type with infinitely many elements then M(�,σ) is affinely homeomorphic
to the Poulsen simplex. Note that the extreme points in this setting correspond to
the ergodic measures.

This article describes the space of invariant measures for transitive one-sided
countable state Markov shifts (see Section 2 for precise definitions). The major
difference with previous work on the subject is that the phase space is no longer
compact and therefore the escape ofmass phenomenonhas to be taken into account.
Notions of convergence in the space of measures are required to describe loss of
mass. Indeed, the weak* topology preserves the total mass of the space, thus
it can not capture the escape of mass. For locally compact spaces the space of
invariant measures can be endowed with the vague topology; in this context it is
possible for mass to be lost. We introduce a new notion of convergence in the
space of measures, the so-called topology of convergence on cylinders, that
generalizes the vague topology. This notion of convergence does not require the
underlying space to be locally compact.

In the non-compact setting the space of invariant probability measures is not
necessarily compact. The lack of compactness of the space of invariant probability
measures is a major difficulty in the development of the corresponding ergodic
theory: in many arguments it is natural to take limits of invariant measures and it
is important to know that the limiting object is indeed a measure. We stress that
this is a very subtle phenomenon, it could happen that for topologies that naturally
generalize the weak* topology the limit of a sequence of invariant probability
measures is not a countably additive measure. In this paper we will compactify
the space of invariant probability measures for a large family of countable Markov
shifts, including a wide range of non-locally compact shifts. As we will see, our
compactification is strongly related to the escape of mass phenomenon.

For completeness we will briefly describe the topology on the space of invariant
sub-probability measures we will focus on in this work. Let (�,σ) be a transitive
countable Markov shift and M≤1(�,σ) the space of σ-invariant sub-probability
measures on� (for precise definitions we refer the reader to Sections 2 and 3). We
say that (μn)n ⊂ M≤1(�,σ) converges on cylinders to μ if

lim
n→∞μn(C) = μ(C),
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for every cylinder C ⊂ �. This notion of convergence induces a topology, the
topology of convergence on cylinders. We prove that this topology is metrizable
(see Proposition 3.15). For general facts about the topology of convergence on
cylinders we refer the reader to Section 3.3.

We consider a large class of countable Markov shifts that satisfy the so-called
F-property (see Definition 4.9). This includes locally compact and finite entropy
non-locally compact countable Markov shifts. The F-property essentially rules
out the possibility of having infinitely many periodic orbits of a given length that
intersect a fixed cylinder. One of the main results of this work is

Theorem 1.2. Let (�,σ) be a transitive countable Markov shift satisfying

the F-property. Then the space of invariant sub-probability measures M≤1(�,σ)
endowed with the topology of convergence on cylinders is affine homeomorphic

to the Poulsen simplex. In particular, M≤1(�,σ) is compact with respect to the
topology of convergence on cylinders.

The topology of convergence on cylinders restricted to M(�,σ) coincides with
the weak* topology (see Lemma 3.17). Theorem 1.2 has the following corollary.

Corollary 1.3. Let (�,σ) be a transitive countable Markov shift satisfying the

F-property. Then the space of invariant probability measures M(�,σ) endowed
with the weak* topology is affine homeomorphic to the Poulsen simplex minus a

vertex and all of its convex combinations.

In order to prove Theorem 1.2 we will need to prove three key properties: (1)
there exists a sequence of ergodic measures converging on cylinders to the zero
measure, (2) every sequence of periodic measures has an accumulation point (in
the topology of convergence on cylinders) which is a countably additive measure,
and (3) the set of periodic measures is weak* dense in M(�,σ). While point (3)
is fairly standard and uses shadowing and closing properties of the shift, the other
two are more subtle. Indeed, a combinatorial assumption is required on (�,σ) for
these properties to hold (hence the F-property assumption).

It is worth pointing out that Theorem 1.2 is optimal for the topology of conver-
gence on cylinders. More precisely, if (�,σ) does not satisfy the F-property, then
M(�,σ) contains a sequence of periodic measures which converges on cylinders to
a finitely additive measure which is not countably additive (see Proposition 4.19).
In particular, if we want to compactify M(�,σ) we must give up the convergence
on all cylinders (which does not seem reasonable) or modify the topology in a
more substantial way.
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We also study suspension flows defined over countable Markov shifts. These
are continuous time dynamical systems defined over non-compact spaces. The sus-
pensions we consider are constructed over arbitrary countable Markov shifts (�,σ)
and for roof functions τ : � → R belonging to a class that we denote by R (see
Definition 6.2). If τ is bounded away from zero there is a one-to-one correspon-
dence between the space of invariant probability measures for the flow, which we
denote by M(�,σ, τ), and Mτ = {μ ∈ M(�,σ) :

∫
τdμ < ∞}. The space of sub-

probability measures invariant by the suspension flow is denoted by M≤1(�,σ, τ).
In Section 6 we define a topology onM≤1(�,σ, τ), the topology of convergence
on cylinders for the suspension flow, that shares many properties with the
topology of convergence on cylinders on M≤1(�,σ) (see Definition 6.4).

The class of suspension flows that we study includes a wide range of symbolic
models for geometric systems. For example, the symbolic model of the geodesic
flow over the modular surface satisfies all of our assumptions. In this context
we prove

Theorem 1.4. Let (�,σ) be a transitive countable Markov shift and τ ∈ R.

Then the space of invariant sub-probability measures of the suspension flow
M≤1(�,σ, τ), endowed with the topology of convergence on cylinders for the

suspension flow, is affine homeomorphic to the Poulsen simplex. In particular,
M≤1(�,σ, τ) is compact with respect to the topology of convergence on cylinders.

Some countableMarkov shifts without theF-property are particularly important
(for instance, the full shift, or shifts with the BIP property [Sa2]), and we do want
to have some understanding on their spaces of invariant probability measures. The
work done in Section 6 and our auxiliary potential τ allows us to regain control
in this setting. Indeed, in this general context we are able to describe the set of
invariant probabilitymeasures forwhich the function τ is integrable (see Lemma6.1
and Theorem 6.18).

We stress that the compactifications constructed in this paper have several
interesting applications to the thermodynamic formalism of countable Markov
shifts. For instance, in joint work with M. Todd [ITV], we consider finite entropy
countable Markov shifts (�,σ) and study the behavior of the measure theoretic
entropy of a sequence (μn)n ⊂ M(�,σ). By the results in this paper there exists
a measure μ ∈ M≤1(�,σ) and a sub-sequence of (μn)n which converges to μ in
the cylinder topology. This property is used to establish stability results for the
measure of maximal entropy, relate the escape of mass with the entropy of the
system and to prove upper-semi continuity of the entropy map. In the compact
setting there is no escape of mass and the properties of the entropy map and the
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measure of maximal entropy are classical [Wa, Chapter 8], but in the non-compact
case new ideas were needed. We also mention that the results in [ITV] can be
pushed even further to include potentials; this is discussed in [V] by the second
author.

Finally, we remark that over the last few years countable Markov shifts have
been used to code relevant parts of the dynamics for a wide range of dynamical
systems. For example, it was shown by Sarig [Sa2] that countable Markov parti-
tions can be constructed for positive entropy diffeomorphisms defined on compact
surfaces. The corresponding symbolic coding captures positive entropy measures.
These results have recently been used to prove that C∞ surface diffeomorphisms of
positive entropy have at most finitely many measures of maximal entropy [BCS].
In a different direction, countable Markov partitions have been constructed for
Sinai and Bunimovich billiards; this has allowed for the proof of lower bounds on
the number of periodic orbits of a given period [LM]. Based on the work of Sarig,
countable Markov partitions have been constructed for large classes of dynamical
systems. Our results apply not only to all countable Markov shifts obtained as
symbolic codings of these systems, but also to several symbolic models that are
not locally-compact, for instance, symbolic codings of interval maps having a
parabolic fixed point [H, MP, Sa1] or loop systems [BBG].

Acknowledgments. We would like to thank Mike Todd for a wealth of
relevant and interesting comments on the subject of this article. We would also
like to thank the referee for many useful comments and suggestions. This paper
was initiated while the second author was visiting the first author at Pontificia
UniversidadCatólica de Chile. The second author would like to thank the dynamics
group at PUC for making his visit very stimulating. He would also like to thank
Richard Canary for his invitation to participate in ‘Workshop on Groups, Geometry
and Dynamics’ held at Universidad de la República, where an important part of
this work was prepared.

2 Countable Markov shifts

In this section we define the dynamical systems that will be studied throughout the
article. Let B be a transition matrix defined on the alphabet of natural numbers.
That is, the entries of the matrix B = B(i, j)N×N are zeros and ones (with no row and
no column made entirely of zeros). The one-sided countable state Markov shift
(�,σ) defined by the matrix B is the set

� := {(xn)n∈N : B(xn, xn+1) = 1 for every n ∈ N},
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together with the shift map σ :� →� defined by σ(x1, x2, . . . ) = (x2, x3, . . . ).
In what follows we will simply call (�,σ), countable Markov shift. For
(a1, . . . , an)∈Nn, we define a cylinder set [a1 . . . an] of length n by

[a1 . . . an] := {x ∈ � : xj = aj for 1 ≤ j ≤ n}.
We endow � with the topology generated by cylinder sets. This is a metrizable
non-compact space. Indeed, let d̃ : �×� → R be the function defined by

(2.1) d̃(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if x0 �= y0;

2−k if xi = yi for i ∈ {0, . . . , k − 1} and xk �= yk;

0 if x = y.

The function d̃ is a metric and it generates the same topology as that of the cylinder
sets.

A countable Markov shift defined by the transition matrix B = B(i, j)N×N is
locally compact if and only if for every i ∈ N we have

∑∞
j=1 B(i, j) < ∞ (see [Ki,

Observation 7.2.3]).
An admissible word is a word w = a1 · · · an, where ai ∈ N and [a1, . . . , an]

is non-empty. To emphasize the difference between admissible words and points
in � we use bold letters for admissible words.

Definition 2.1. A countable Markov shift (�,σ) is transitive if for all open
sets U,V ⊂ � there exists n ∈ N such that U ∩ σ−nV �= ∅. Similarly, a countable
Markov shift (�,σ) is topologically mixing if for all open sets U,V ⊂ � there
exists N(U,V) ∈ N such that for every n > N(U,V) we have U ∩ σ−nV �= ∅.

Let ϕ : � → R be a function. We define varn(ϕ) = supx,y |ϕ(x) − ϕ(y)|, where
the supremum runs over points x and y satisfying d̃(x, y) ≤ 2−n. Observe that a
function ϕ is uniformly continuous if and only if varn(ϕ) goes to zero as n goes to
infinity. A potential ϕ has summable variations if

∑∞
k=2 vark(ϕ) is finite.

In the late 1960’s Gurevich [Gu1, Gu2] introduced a suitable notion of entropy
in this setting. Note that since the space� is not compact the classical definition of
topological entropy obtained bymeans of (n, ε)-separated sets (see [Wa, Chapter 7])
depends upon themetric, that is, two equivalentmetrics can yield different numbers.
Since the entropy of an invariant measure depends only on the Borel structure and
not on the metric, this is a major problem if the entropy is to satisfy a variational
principle. Gurevich introduced the following notion of entropy:

h(σ) := lim sup
n→∞

1
n

log
∑

x:σnx=x

1[a](x),



INVARIANT MEASURES FOR COUNTABLE MARKOV SIFTS 467

where a ∈ N is an arbitrary symbol and 1[a] is the characteristic function of the
cylinder [a]. Gurevich proved that this value is independent of the symbol a
if (�,σ) is transitive and that the limit exists if (�,σ) is topologically mixing.
Moreover, he also proved that this notion of entropy is the correct one in the sense
that it satisfies the variational principle, that is

h(σ) = sup{h(μ) : μ ∈ M(�,σ)},
where h(μ) is the entropy of the invariant measure μ (see [Wa, Chapter 4]) and
M(�,σ) is the space of invariant probability measures.

3 Topologies in the space of measures

In this section we recall definitions and properties of the weak* and the vague
topologies and define a new notion of convergence in the space of probability
measures on�, namely the topology of convergence on cylinders. It is with respect
to these three topologies that we will describe the space of invariant probability
measures M(�,σ). It is worth emphasizing that the weak* topology does not
allow escape of mass, but the vague topology and the topology of convergence on
cylinders do allow it.

3.1 The weak* topology. Let (X, ρ) be a metric space. We denote by
Cb(X) the space of bounded continuous function f : X → R. We endow Cb(X)
with the C0-topology. This is the topology induced by the norm ‖f‖ = supx∈X |f (x)|.
It is a standard fact that Cb(X) is a Banach space. Denote by M(X) the set of Borel
probability measures on the metric space (X, ρ). Our first notion of convergence
in this set is the following,

Definition 3.1. A sequence of probability measures (μn)n ⊂ M(X) converges
to a measure μ in the weak* topology if for every f ∈ Cb(X) we have

lim
n→∞

∫
fdμn =

∫
fdμ.

Remark 3.2. Note that in this notion of convergence we can replace the set
of test functions (bounded and continuous) by the space of bounded uniformly
continuous functions (see [B, 8.3.1 Remark]) or by the space of bounded Lipschitz
functions (see [Kl, Theorem 13.16 (ii)]). That is, if for every bounded uniformly
continuous (or bounded Lipschitz) function f : X → R we have

lim
n→∞

∫
fdμn =

∫
fdμ,

then the sequence (μn)n converges in the weak* topology to μ.
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The weak* topology is the coarsest topology such that for every f ∈ Cb(X) the
map μ → ∫

f dμ, with μ ∈ M(X), is continuous. The following classical result
characterizes weak* convergence (see [Bi, Theorem 2.1]).

Proposition 3.3 (Portmanteau Theorem). Let (μn)n, μ be probability mea-
sures on X. The following statements are equivalent:

(a) The sequence (μn)n converges to μ in the weak* topology.

(b) For every open set O ⊂ X, the following holds: μ(O) ≤ lim infn→∞ μn(O).
(c) For every closed set C ⊂ X, the following holds: μ(C) ≥ lim supn→∞ μn(C).
(d) For every set A ⊂ X such that μ(∂A) = 0, the following holds:

μ(A) = lim
n→∞μn(A).

A relevant feature of the weak* convergence is that there is no loss of mass
since the constant function equal to one belongs to Cb(X). That is,

Remark 3.4. If the sequence of probability measures (μn)n converges in the
weak* topology to μ, then μ is also a probability measure.

Also note that if the space (X, ρ) is compact, then the space of Borel probability
measures, M(X), is also compact with respect to the weak* topology (see [Wa,
Theorem 6.5]). An interesting fact is that if (X, ρ) is a separable metric space
then M(X) can be metrized as a separable metric space (see [Par2, Theorem 6.2]).
Actually, there exists an explicit metric that generates the weak* topology and for
which M(X) is separable if X is separable. This is the so-called Prohorov metric
(see [Bi, pp. 72–73]). Therefore, if X is a separable metric space then so is M(X),
despite the fact that the space Cb(X) might not be separable. Actually, if (�,σ) is
a non-compact countable Markov shift then Cb(�) is not separable, as below.

Remark 3.5. Let (�,σ) be a countable (non-compact) Markov shift; then
Cb(�) is not separable. Indeed, let (xn)n be a fixed sequence of elements of� with
xn ∈ [n], where [n] := {(y1, y2, . . .) ∈ � : y1 = n}. Define the set

L := {ϕ ∈ Cb(�) : ϕ(xn) = 0 or ϕ(xn) = 1, for every n ∈ N}.

Note that L contains uncountably many elements. For every countable subset
C ⊂ Cb(�) there exists ϕ ∈ L such that for every ψ ∈ C we have

‖ϕ− ψ‖ ≥ 1
2
,

hence Cb(�) is not separable.
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Let T : (X, ρ) → (X, ρ) be a continuous dynamical system defined on a metric
space. We denote by M(X,T) the space of T-invariant probability measures.
In the following lemma we collect relevant information regarding the structure
of M(X,T).

Lemma 3.6. Let T : (X, ρ) → (X, ρ) be a continuous dynamical system
defined on a metric space. Then:

(a) The space M(X,T), as a subset of M(X), is closed in the weak* topology

([Wa, Theorem 6.10]).
(b) If X is compact, then so is M(X,T) with respect to the weak* topology (see

[Wa, Theorem 6.10]).
(c) The spaceM(X,T) is a convex set for which its extreme points are the ergodic

measures (see [Wa, Theorem 6.10]). It is actually a Choquet simplex (each
measure is represented in a unique way as a generalized convex combination

of the ergodic measures [Wa, p. 153]).

Definition 3.7. Let T : (X, ρ) → (X, ρ) be a continuous dynamical system
defined on a metric space. We denote by Me(X,T) the set of ergodic T-invariant
probability measures. An ergodic measure μ ∈ Me(X,T) supported on a periodic
orbit will be called a periodic measure. Denote by Mp(X,T) the set of periodic
measures.

The next result was obtained by Coudène and Schapira [CS, Section 6] as a
consequence of shadowing and the Anosov closing Lemma.

Theorem 3.8. Let (�,σ) be a transitive countable Markov shift. Then

Mp(�,σ) is dense in M(�,σ) with respect to the weak* topology.

3.2 The vague topology. Let (X, ρ) be a locally compact metric space.
Denote by M≤1(X) the set of Borel non-negativemeasures on X such thatμ(X) ≤ 1.
The set of continuous functions of compact support, that is continuous functions
f : X → R for which the closure of the set {x ∈ X : f (x) �= 0} is compact, will
be denoted by Cc(X). Note that Cc(X) ⊂ Cb(X). We will consider the following
notion of convergence.

Definition 3.9. A sequence (μn)n ⊂ M≤1(X) converges to μ ∈ M≤1(X) in the
vague topology if for every f ∈ Cc(�) we have

lim
n→∞

∫
fdμn =

∫
fdμ.
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The vague topology is the coarsest topology on M≤1(X) such that for every f

continuous and of compact support, the map μ → ∫
fdμ is continuous. We stress

that the total mass is not necessarily preserved in the vague topology. A sequence of
probability measures can converge in the vague topology to a non-negativemeasure
of total mass less than or equal to one. If X is compact, then Cc(X) = Cb(X) and
therefore the vague topology coincides with the weak* topology. We collect the
following results:

Remark 3.10. Let (X, ρ) be a metric space. Note that the weak* topology
extends to M≤1(X).

(a) If X is compact, then M≤1(X) is compact with respect to the weak* topology
(see [Kl, Corollary 13.30]).

(b) If X is a locally compact separable metric space, then M≤1(X) is compact
with respect to the vague topology (see [Kl, Corollary 13.31]) and metrizable
(see [Di, 13.4.2]).

(c) Let X be a locally compact separable metric space. The sequence (μn)n
converges vaguely to μ and limn→∞ μn(X) = μ(X) if and only if (μn)n
converges in weak* topology to μ (see [Kl, Theorem 13.16]).

(d) Let X be a locally compact separable metric space. The sequence (μn)n
converges vaguely to μ and the sequence (μn)n is tight if and only if (μn)n
converges in weak* topology to μ (see [Kl, Theorem 13.35]).

Let T : (X, ρ) → (X, ρ) be a continuous dynamical system defined on a metric
space. If (μn)n ⊂ M(X,T) is a sequence of T-invariant probability measures that
converges in the vague topology to a non-zero measure μ, then the normalized
measureμ(·)/μ(X) is a T-invariant probability. We call the measureμ an invariant
sub-probability and denote by M≤1(X,T) the space of T-invariant sub-probability
measures. Observe that the zero measure belongs to M≤1(X,T).

Lemma 3.11. Let T : (X, ρ) → (X, ρ) be a continuous dynamical system

defined on a metric space, then

(a) The space M(X,T) is a closed subset of M≤1(X,T) in the weak* topology.
(b) If X is a locally compact separable metric space, then the space M≤1(X,T)

is compact in the vague topology.

Proof. The first claim is a consequence of Lemma 3.6, while the second
follows from Remark 3.10. �

Proposition 3.12. Let T : (X, ρ) → (X, ρ) be a continuous dynamical system
defined on a metric space. Then the spaceM≤1(X,T) is a convex set and its extreme

points are the ergodic probability measures and the zero measure.
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Proof. The convexity of the space M≤1(X,T) is direct. Note that every invari-
ant sub-probabilityμ ∈ M≤1(X,T), with 0 < μ(X) < 1, is the convex combination
of a measure in M(X,T) and the zero measure. Also note that the zero measure
is not the convex combination of any set of positive measures. The result then
follows from Lemma 3.6. �

3.3 The topology of convergence on cylinders. Several relevant count-
ableMarkov shifts are not locally compact. Therefore a good notion of convergence
in the space of sub-probabilities is required in this setting. The vague topology
is of no use in the non-locally compact setting since in this case the space Cc(X)
might be empty, as below.

Remark 3.13. If � is a non-locally compact transitive countable Markov
shift then Cc(�) = ∅. Indeed, if K ⊂ � is a compact set then it must have empty
interior (see [Ki, Observation 7.2.3 (iv)]). Therefore K = ∂K, that is, the compact
set equals its topological boundary. If f ∈ Cc(�) then consider the open set

A := {x ∈ � : f (x) �= 0} = f−1(R� {0}).
Note that the support of f is K = A, that is the closure of the set A. But since
f ∈ Cc(�) the set K is compact. This means that the compact set K contains an
open set A, contradicting the fact that K = ∂K. Therefore Cc(�) = ∅.

We now define the notion of convergence—that generalizes the vague topology
to the non-locally compact setting—which is the main topic of this work.

Definition 3.14. Let (�,σ) be a countable Markov shift and (μn)n, μ invariant
sub-probability measures. We say that a sequence (μn)n converges on cylinders
to μ if limn→∞ μn(C) = μ(C), for every cylinder C ⊂ �. The topology on
M≤1(�) induced by this convergence is called the topology of convergence on
cylinders.

We emphasize that this notion of convergence induces a topology because the
collection of cylinders is countable and it is a basis for the topology on �. For
brevity we will frequently say that (μn)n ⊂ M≤1(�) converges on cylinders
to μ if the sequence converges in the topology of convergence on cylinders.

Proposition 3.15. The topology of convergence on cylinders on M≤1(�) is
metrizable.

Proof. Consider the metric

d(μ, ν) =
∑
n≥1

1
2n

|μ(Cn) − ν(Cn)|,(3.1)
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where (Cn)n is some enumeration of the cylinders on �. Note that d(μ, ν) = 0, if
and only if μ = ν. Indeed, if d(μ, ν) = 0 then μ(C) = ν(C), for every cylinder C.
By the outer regularity of Borel measures on a metric space we conclude that this
is equivalent to saying that μ = ν. Symmetry is clear and the triangle inequality
follows directly from the triangle inequality inR. It is clear from the definition of d

that it induces the desired notion of convergence on M≤1(�), that is, it generates
the topology of convergence on cylinders. �

It worth pointing out that since Cb(�) is not separable we can not endow the
weak* topology with a metric like d.

Remark 3.16. Note that the topology of convergence on cylinders, like the
vague topology, allows for mass to escape. Indeed, let � be the full shift on N,
which is not locally compact. Denote by δn the atomic measure supported on the
point n := (n, n, n, . . . ). Then the sequence (δn)n converges in the topology of
convergence on cylinders to the zero measure.

Despite Remark 3.16 the topology of convergence on cylinders is closely related
to the weak* topology. If there is no loss of mass both notions coincide.

Lemma 3.17. Let (�,σ) be a countable Markov shift, μ and (μn)n be proba-
bility measures on �. The following assertions are equivalent:

(a) The sequence (μn)n converges in the weak* topology to μ.
(b) The sequence (μn)n converges on cylinders to μ.

Proof. First assume that (μn)n converges in the weak* topology to μ. Define
f := 1C ∈ Cb(�), where 1C is the characteristic function of a cylinder. The weak*
convergence implies that limn→∞

∫
fdμn =

∫
fdμ, which is equivalent to say that

lim
n→∞μn(C) = μ(C).

Since the cylinder C was chosen arbitrarily we conclude that (μn)n converges on
cylinders to μ. Now assume that (μn)n converges on cylinders to μ. Observe that
an open set O can be written as a countable union of disjoint cylinders, saying
O =

⋃
k≥1 Ck. Therefore

lim inf
n→∞ μn(O) ≥ lim inf

n→∞ μn

( M⋃
k=1

Ck

)
= μ

( M⋃
k=1

Ck

)
,

for every M. We conclude that

lim inf
n→∞ μn(O) ≥ μ(O).

Proposition 3.3 implies that (μn)n converges in the weak* topology to μ. �
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We will now prove that the topology of convergence on cylinders generalizes
the vague topology. More precisely, on locally compact countable Markov shifts
both topologies coincide.

Lemma 3.18. Let (�,σ) be a locally compact countable Markov shift and

μ, (μn)n ∈ M≤1(�). The following assertions are equivalent:

(a) The sequence (μn)n converges in the vague topology to μ.
(b) The sequence (μn)n converges on cylinders to μ.

Proof. First note that if� is locally compact then every cylinder is a compact
set (see [Ki, Observation 7.2.3]). Assume that (μn)n converges in the vague
topology to μ. Let C ∈ � be a cylinder set; then the characteristic function of C,
denoted by 1C, belongs to Cc(�). Thus,

lim
n→∞

∫
1Cdμn =

∫
1Cdμ.

Therefore, the sequence (μn)n converges on cylinders to μ.
Suppose now that (μn)n converges on cylinders to μ and let f ∈ Cc(�). We

will prove that limn→∞
∫

fdμn =
∫

fdμ. The function f is uniformly continuous, in
particular for every ε > 0 there exists n = n(ε) ∈ N such that varn(f ) ≤ ε. Since the
support of f is a compact set there exists M ∈ N such that it is contained in

⋃M
i=1[i].

By the locally compactness of � there are finitely many (non-empty) cylinders of
length n, that we denote by (Ci)

q
i=1, intersecting

⋃M
i=1[i]. Note that if a cylinder

of length n intersects a cylinder of length one then it is contained in it, therefore⋃q
i=1 Ci =

⋃M
i=1[i]. We now define a locally constant function f̃ : � → R that

approximates f . For every i ∈ {1, . . . , q} choose a point xi ∈ Ci and let f̃ : � → R

be the function defined by

f̃ (x) :=

⎧⎨
⎩

f (xi) if x ∈ Ci, for i ∈ {1, . . . , q};
0 if x /∈ ⋃q

i=1 Ci.

By construction the function f̃ is locally constant depending only on the first n
coordinates, thus varn(f̃ ) = 0. Moreover, it is zero on the complement of the set⋃M

i=1[i]. In particular f̃ =
∑q

i=1 ai1Ci , for some sequence of real numbers (ai)
q
i=1.

By the definition of the topology of convergence on cylinders we know that
limm→∞

∫
f̃ dμm =

∫
f̃ dμ. Moreover, it follows from our construction that

‖f − f̃‖ = sup
x∈�

|f (x) − f̃ | ≤ ε.

The construction of f̃ can be made for every ε > 0. In particular, we can construct
a sequence (f̃k)k such that ‖f − f̃k‖ ≤ 1/k, and limm→∞ f̃kdμm =

∫
f̃kdμ. This

immediately implies that limm→∞
∫

fdμm =
∫

fdμ, which completes the proof. �
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3.4 The space of test functions for the topology of convergence
on cylinders. The space of test functions for the weak* topology is Cb(�).
Similarly, the space of test functions for the vague topology is Cc(�). For duality
reasons it is actually convenient to have a Banach space as the space of test
functions. For the vague topology this is not a serious issue, we can simply
consider the closure of Cc(�) in Cb(�); this gives us the space C0(�) of functions
that vanish at infinity. More precisely, a function f ∈ C0(�) if it is a continuous
function such that for every ε > 0 there exists a compact set K ⊂ � such that for
every x ∈ �� K we have |f (x)| < ε.

It is a natural question to determine what is the space of test functions for the
topology of convergence on cylinders. More precisely, determine a Banach space
V such that (μn)n converges on cylinders to μ if and only if limn→∞

∫
fdμn =

∫
fdμ

for every f ∈ V . From the definition of the topology of convergence on cylinders
(Definition 3.14) it is clear that the space V should contain the characteristic
function of a cylinder and finite linear combination of those. Define

H :=
{

f ∈ Cb(�) : f =
n∑

i=1

ai1Ci, where ai ∈ R and Ci is a cylinder for each i
}
.

As with the vague topology, our space of test functions will be the closure of H

in Cb(�), that we denote by H̄. The following is direct from the definition of the
topology of convergence on cylinders.

Lemma3.19. Let (�,σ) be a countableMarkov shift andμ, (μn)n ⊂ M≤1(�).
Then (μn)n converges on cylinders to the measure μ if and only if for every f ∈ H̄
we have

lim
n→∞

∫
fdμn =

∫
fdμ.

In what follows we will characterize the space H̄; in order to do so we will
require the following notions.

Definition 3.20. Let (�,σ) be a countable Markov shift and f : � → R a
function. If C is a cylinder of length m, denote

C(≥ n) :=
{

x ∈ C : σm(x) ∈ ⋃
k≥n

[k]
}
.

For a non-empty set A ⊂ � we define

varA(f ) := sup{|f (x) − f (y)| : (x, y) ∈ A × A}.
We declare varA(f ) = 0 if A is the empty set.
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Lemma 3.21. A function f ∈ Cb(�) belongs to H̄ if and only if the following

three conditions hold:
(a) f is uniformly continuous.

(b) limn→∞ supx∈[n] |f (x)| = 0.
(c) limn→∞ varC(≥n)(f ) = 0, for every cylinder C ⊂ �.

Moreover, if � is locally compact, then H̄ coincides with C0(�), the space of
functions that vanish at infinity.

Proof. Denote by H0 the space of bounded functions satisfying conditions
(a), (b) and (c). The space H0 is a closed subset of Cb(�). The inclusion H ⊂ H0

follows directly from the definition of H. Since H0 is closed we obtain that H̄ ⊂ H0.
We will now prove that H0 ⊂ H̄. Fix f ∈ H0 and ε > 0. We will construct a

function g ∈ H such that ‖f − g‖ < ε. This would imply that f ∈ H̄.
Since f is uniformly continuous, there exists q ∈ N such that varq(f ) < ε. Let

n1 ∈ N be such that
sup
x∈[m]

|f (x)| < ε,

whenever m > n1. Choose n2 ∈ N such that var[i](≥m)(f ) < ε, whenever
i ∈ {1, . . . , n1} and m > n2. Similarly, choose n3 ∈ N such that var[ij](≥m)(f ) < ε,
whenever (i, j) ∈ ∏2

s=1{1, . . . , ns} and m > n3. Inductively, we obtain a sequence
{n1, . . . , nq, nq+1} such that for every k ∈ {1, . . . , q} we have var[i1,...,ik](≥m)(f ) < ε,
whenever (i1, . . . , ik) ∈ ∏k

s=1{1, . . . , ns} and m > nk+1.
Let f ∗ ∈ H0 and C be a non-empty cylinder of length q. We will define a number

that depends on f ∗ and C, which we denote by lf ∗ (C), as follows. Let us first assume
that C(≥ n) = ∅, for some n ∈ N. In this case we define lf ∗(C) = 0. Now assume
there exists a strictly increasing sequence (nk)k ⊂ N and points xk ∈ C ∩ σ−q[nk].
In this case we define lf ∗ (C) := limk→∞ f ∗(xk). It follows from condition (c) that
lf ∗(C) is well defined: it is independent of the sequences (nk)k and (xk)k.

A point (a1, . . . , ak) ∈ ∏k
s=1{1, . . . , ns} defines the cylinder [a1, . . . , ak]. Col-

lect all the non-empty cylinders that arise in this way and call this set �k. Define
� =

⋃q
k=1�k.

Let us first prove the result when lf (C) = 0 holds for every C ∈ �. By our
choice of {n1, . . . , nq+1} and the assumption lf (C) = 0, we know that for every
k ∈ {1, . . . , q} we have

(3.2) sup
x∈[i1,...,ik](≥m)

|f (x)| < ε,

whenever (i1, . . . , ik) ∈ ∏k
s=1{1, . . . , ns}, and m > nk+1 (for consistency define the

supremum over the empty set as zero). For every C ∈ �q choose a point xC ∈ C.
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Define g :=
∑

C∈�q
f (xC)1C. Observe that if x ∈ ⋃

C∈�q
C, then |f (x) − g(x)| < ε

(recall that varq(f ) < ε). If x does not belong to
⋃

C∈�q
C, then x belongs to

a cylinder of the form [i1, . . . , ik, b], where (i1, . . . , ik) ∈ ∏k
s=1{1, . . . , ns} and

b > nk+1 (if k = 0, then x ∈ [b] where b > n1). By (3.2) and our choice of n1 we
obtain that |f (x)| < ε.We therefore have ‖f − g‖ < ε.

We will now explain how to reduce the general case to the situation where
lf (C) = 0 holds for every C ∈ �.

Define

h1 :=
∑

C∈�1

lf (C)1C and f1 := f − h1.

We claim that lf1 (C) = 0, for every C ∈ �1. First suppose that there exists n such
that C(≥ n) = ∅. In this case, by definition, we have that lf1 (C) = 0. It remains to
consider the non-trivial case in the definition of lf1 (C). Let (nk)k ⊂ N be a strictly
increasing sequence and (xk)k points in � such that xk ∈ C ∩ σ−1[nk]. Then

lf1 (C) = lim
k→∞ f1(xk) = lim

k→∞(f (xk) − h1(xk)) = lf (C) − lim
k→∞ h1(xk).

Since h1 =
∑

C∈�1
lf (C)1C, we know that h1(xk) = lf (C) (observe that all cylinders

in �1 have length 1). In particular lf1 (C) = 0.

Now define

h2 :=
∑
C∈�2

lf1 (C)1C, and f2 := f1 − h2.

We claim that lf2 (C) = 0, for every C ∈ �1 ∪�2. As before, first suppose that there
exists n such that C(≥ n) = ∅. In this case, by definition, we have that lf2 (C) = 0.
It remains to consider the non-trivial case in the definition of lf2 (C). Let C1 ∈ �1

and C2 ∈ �2. Choose a strictly increasing sequence (nk)k ⊂ N and points (xk)k
in � such that xk ∈ C2 ∩ σ−2[nk]. Then

lf2 (C2) = lim
k→∞ f2(xk) = lim

k→∞(f1(xk) − h2(xk)) = lf1 (C2) − lim
k→∞ h2(xk).

As before h2(xk) = lf1 (C2), because xk ∈ C2 ∩σ−2[k]. We conclude that lf2 (C2) = 0.
Similarly, choose sequences (mk)k ⊂ N and (yk)k ⊂ � such that yk ∈ C1 ∩σ−1[mk];
then

lf2 (C1) = lim
k→∞ f2(yk) = lim

k→∞(f1(yk) − h2(yk)) = lf1 (C1) − lim
k→∞ h2(yk).

Since h2 is a finite linear combination of indicators of cylinders of length 2 we
obtain that limk→∞ h2(yk) = 0. By construction we have that lf1 (C1) = 0. We
conclude that lf2 (C) = 0, for every C ∈ �1 ∪�2.
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Continue this process and define

(hk)
q
k=1 and (fk)

q
k=1

such that fk = fk−1 − hk, for every k ∈ {1, . . . , q} (where we set f0 = f ). By
construction lfk(C) = 0 for every cylinder C ∈ ⋃k

i=1�i. In particular lfq(C) = 0, for
every cylinder C ∈ �. Finally, observe that fq = f − ∑q

k=1 hk. Since h :=
∑q

k=1 hk

is a function in H, it is enough to approximate fq (we can add back the function h

afterwards, H is a vector space).

We will now assume that � is locally compact. Since � is locally compact
the set C(≥ m) is empty for large enough m. In particular condition (c) is always
satisfied. By definition a function f ∈ Cb(�) belongs to C0(�) if and only if
condition (b) holds. In particular condition (b) implies condition (a). Therefore H̄
coincides with C0(�). �

By abuse of notation we denote by C0(�) the space of test functions for the
topology of convergence on cylinders; this is reasonable because H̄ = C0(�) in
the locally compact case. We say that f vanishes at infinity if f ∈ C0(�). To
summarize, a function f ∈ Cb(�) vanishes at infinity if it satisfies conditions (a),
(b) and (c). It follows from the discussion above that the Banach space C0(�) is the
space of test functions for the topology of convergence on cylinders. In particular,
the map μ �→ ∫

fdμ is continuous in M≤1(�,σ), whenever f ∈ C0(�).

4 The space of invariant sub-probability measures is
compact

We already noticed in Lemma 3.11 that if (�,σ) is a locally compact transitive
countable Markov shift, the space of invariant sub-probability measuresM≤1(�,σ)
is compact with respect to the vague topology. It is a consequence of Lemma 3.18
that M≤1(�,σ) is also compact with respect to the topology of convergence on
cylinders. In this section we prove that the space M≤1(�,σ) is compact with
respect to the topology of convergence on cylinders for a larger class of transitive
countable Markov shifts, that is, for countable Markov shifts with the F-property
(see Definition 4.9). Our results are also sharp: if (�,σ) does not satisfy the F-
property, then there are sequences of periodic measures that converge to a finitely
additive measure that is not countably additive (see Proposition 4.19). Our next
result states that invariance is preserved under limits provided the limiting object
is a countably additive measure.
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Lemma 4.1. Let (�,σ) be a countable Markov shift. Let (μn)n be a sequence

of invariant probability measures converging on cylinders to a sub-probability
measure μ. Then μ is an invariant measure.

Proof. The measure μ is invariant if it is equal to σ∗μ := μ(σ−1). Note that,
in order to prove the invariance, it is enough to prove that σ∗μ(D) = μ(D), for
every cylinder D. Observe that if D is a cylinder then σ−1D =

⋃
i≥1 Di, where (Di)i

is a finite or countable collection of cylinders. Since μn is invariant we have that
μn(D) = μn(σ−1D). If σ−1D =

⋃m
i=1 Di is a finite union of cylinders we obtain that

μ(D) = lim
n→∞μn(D) = lim

n→∞μn(σ
−1D) = lim

n→∞μn

( m⋃
i=1

Di

)
= μ(σ−1D).

If σ−1D is a union of infinitely many cylinders we have

μ(D) = lim
n→∞μn(D) = lim

n→∞μn(σ
−1D) ≥ lim

n→∞μn

( M⋃
i=1

Di

)
= μ

( M⋃
i=1

Di

)
,

for every M ∈ N. We conclude that μ(D) ≥ μ(σ−1D). We have therefore proved
that for every cylinder D we have μ(D) ≥ μ(σ−1D). Suppose D is a cylinder
of length s and enumerate all cylinders of length s by (Ek)k with E1 = D. Since
μ(Ek) ≥ μ(σ−1Ek), for every k ∈ N, we obtain

(4.1) μ

( ⋃
k≥1

Ek

)
≥ μ

( ⋃
k≥1

σ−1Ek

)
.

Observe that (Ek)k and (σ−1Ek)k are partitions of �, in particular

� =
⋃
k≥1

Ek =
⋃
k≥1

σ−1Ek.

This implies that (4.1) is an equality, thereforeμ(Ek) = μ(σ−1Ek), for every k ∈ N.
In particular, we obtained that μ(D) = μ(σ−1D), as desired. �

Remark 4.2. Recall that if (�,σ) is transitive, then the periodic measures are
dense in M(�,σ) with respect to the weak* topology (see Theorem 3.8). It is a
consequence of Lemma 3.17 that the same holds for the topology of convergence
on cylinders. In other words, given an invariant probability measureμ, there exists
a sequence (μn)n of periodic measures such that limn→∞ d(μ,μn) = 0.

Remark 4.3. Recall that every element ofM≤1(�,σ) is of the formλμ, where
μ ∈ M(�,σ) and λ ∈ [0, 1].
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In order to study the spaceM≤1(�,σ) we will model it with a space of functions.

Definition 4.4. Denote byFinCyl(�) the collection of non-emptyfinite unions
of cylinders in �. Let M(�) be the space of functions F : FinCyl(�) → [0, 1] and
L(�) ⊂ M(�) the space of functions satisfying the following conditions:

(a) If C ⊂ C′ are cylinders, then F(C) ≤ F(C′).
(b) F(

⋃n
k=1 Ck) =

∑n
k=1 F(Ck), for every (finite) collection of disjoint cylinders

(Ck)k.

Remark 4.5. Observe that FinCyl(�) is a countable set. Fix a bijection
between FinCyl(�) and N. This bijection allow us to identify M(�) with [0, 1]N.
From now on we consider L(�) as a subset of [0, 1]N. We endow M(�) with the
product topology. Observe that (Rn)n ⊂ M(�) converges to R ∈ M(�) if and only
if

lim
n→∞ Rn(D) = R(D),

for every D ∈ FinCyl(�).

Remark 4.6. Observe that the metric d, see equation (3.1), also defines a
metric on L(�). Indeed, if F,G ∈ L(�) then

(4.2) d(F,G) =
∑
n≥1

1
2n

|F(Cn) − G(Cn)|,

where (Cn)n is some enumeration of the cylinders on �, is a metric on L(�). It is
important to observe that the topology induced by d on L(�) is compatible with
the product topology on M(�) = [0, 1]N. Indeed, limn→∞ d(Fn,F) = 0, if and only
if limn→∞ Fn(C) = F(C), for every cylinder C. By condition (b) in the definition
of L(�) this is equivalent to limn→∞ Fn(D) = F(D), for every D ∈ FinCyl(�). In
other words, there exists a continuous injective map from the set L(�), endowed
with the topology generated by the metric d, into the space [0, 1]N endowed with
the product topology.

Lemma 4.7. The set L(�) is compact with respect to the topology induced

by d.

Proof. We will first prove that L(�) is a closed subset of M(�). Let (Fn)n
be a sequence of functions in L(�) that converges to F ∈ M(�). Let C and D be
cylinders such that C ⊂ D. Then Fn(C) ≤ Fn(D), for every n ∈ N. We conclude
that

F(C) = lim
n→∞ Fn(C) ≤ lim

n→∞ Fn(D) = F(D).
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Similarly, if (Ck)mk=1 is a finite collection of disjoint cylinders we have that

F
( m⋃

k=1

Ck

)
= lim

n→∞ Fn

( m⋃
k=1

Ck

)
= lim

n→∞

m∑
k=1

Fn(Ck) =
m∑

k=1

F(Ck).

We conclude that F ∈ L(�). It follows that L(�) is a closed subset of M(�). Since
[0, 1]N is compact, by virtue of Remark 4.6 we have that L(�) is compact with the
topology induced by d. �

Remark 4.8. Observe that every sub-probability measure on � can be iden-
tified with a unique function F ∈ L(�). More precisely, given μ ∈ M≤1(�,σ)
we define Fμ ∈ L(�) by Fμ(D) := μ(D), for every D ∈ FinCyl(�). The map
μ �→ Fμ defines a continuous embedding M(�,σ) ↪→ L(�), when we endow
M(�,σ) with the topology of convergence on cylinders. We say that a sequence
(μn)n ⊂ M(�,σ) converges to F ∈ L(�) if (Fμn)n ⊂ L(�) converges to F.

In light of Remark 4.8, in order to prove that the space of invariant sub-
probability measures is compact with respect to the cylinder topology, it suffices to
prove that M(�,σ) ⊂ L(�) consists of invariant sub-probability measures. At this
pointwe will make a further assumption on the countableMarkov shifts considered.

Definition 4.9. A countable Markov shift (�,σ) is said to satisfy the F-
property if for every element of the alphabet i and natural number n, there are
only finitely many admissible words of length n starting and ending at i.

Remark 4.10. Every countable Markov shift (�,σ) of finite topological en-
tropy and every locally compact countable Markov shift satisfies the F-property.
There also exist infinite entropy non-locally compact countable Markov shifts sat-
isfying the F-property. Indeed, let (an)n be a sequence of positive integers such
that

lim
n→∞

1
n

log an = ∞.

Consider the countable Markov shift defined by a graph made of an simple loops
of length n which are based at a common vertex and otherwise do not intersect.
This system has the desired properties.

Proposition 4.11. Let (�,σ) be a transitive countable Markov shift satisfying

theF-property. If (μn)n is a sequence of periodic measures converging to a function
F ∈ L(�), then F extends to an invariant sub-probability measure.

Proof. We start by proving that F extends to a measure. Fix a cylinder
C = [a1, . . . , am], and denote by Ck the cylinder [a1, . . . , am, k]. We will need the
following lemma.
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Lemma 4.12.

(4.3) F(C) =
∑
k≥1

F(Ck).

We assume that F(C) > 0, otherwise there is nothing to prove (both the left-
and right-hand side would be zero). From now on assume that n is sufficiently
large so that μn(C) > 0. Let pn be a periodic point associated to μn such that
pn ∈ C.

Proof of Lemma 4.12. Observe that

F(C) −
k−1∑
s=1

F(Cs) = lim
n→∞

(
μn(C) −

k−1∑
s=1

μn(Cs)
)

= lim
n→∞μn

(⋃
s≥k

Cs
)
,

therefore Lemma 4.12 is equivalent to proving that

lim
k→∞ lim

n→∞μn

(⋃
s≥k

Cs
)

= 0.

We will argue by contradiction and assume that

lim
k→∞ lim

n→∞μn

(⋃
s≥k

Cs
)

= A > 0.

Observe that (limn→∞ μn(
⋃

s≥k Cs))k decreases as k goes to infinity. We obtain that

lim
n→∞μn(

⋃
s≥k

Cs) ≥ A,

for every k ∈ N.
Recall that C = [a1, . . . , am] and define the set Q ⊂ N by the following rule:

q ∈ Q if and only if amq is an admissible word. Define a function p : Q → Z as
follows: p(i) = k if there exists an admissible word starting at i and ending at a1 of
length k + 1, but there is not any such word of length less than or equal to k. The
map p is proper, in other words, p−1([a, b]) is finite for every a, b ∈ R. Indeed,
assume by contradiction that p−1([a, b]) is infinite; this would imply that p−1(c)
is infinite for some c ∈ N. For each w ∈ p−1(c) we have an admissible word of
length c + 1 connecting w and a1; this will create an admissible word (with length
m+c+1) of the form a1 · · · amw · · · a1. This contradicts the fact that (�,σ) satisfies
the F-property. We conclude that p : Q → Z is proper.

Choose k0 ∈ N such that p(s) ≥ � 4
A� + 1, for every s ∈ Q satisfying s ≥ k0.

Recall that pn is a periodic point associated to the measure μn. We denote the
minimal period of pn by m + tn, and let [a1 · · · amb1 · · · btn] be a neighborhood
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of pn. By the definition of μn we know thatμn(Cs) is approximately the number of
times that the word a1 · · · ams appears in wn := a1 · · · amb1 · · · btn a1 · · · am, divided
by m + tn. If s ≥ k0, then each block a1 · · · ams appearing in wn is contained in
a longer block of the form a1 · · · amsr1 · · · rB, where B ≥ � 4

A� + 1, and rt �= a1,
for all t ∈ {1, . . . ,B}. In particular, for s ≥ k0, each block of the form a1 · · · ams
generates B letters that do not contribute to the number of blocks a1 · · · am in wn.
Choose n0 such that

μn

( ⋃
s≥k0

Cs
)

≥ A
2
,

for every n ≥ n0. This implies that the number of blocks of the form a1 · · · ams,
where s ≥ k0, in wn is at least (m+tn)A/2. As explained above, each of those blocks
generates a disjoint block of length (m+B+1). The number of letters used in those
disjoint blocks add up to (m+ B + 1)(m+ tn)A/2. Observe that (m+ B + 1)A/2 > 1,
which contradicts that the total number of letters is (m + tn). We conclude that
A = 0. �

We will now use Kolmogorov’s extension theorem to prove that F comes
from a measure on �. To each In := {1, . . . , n} ⊂ N we associate a measure
on NIn : this is the atomic measure νn that assigns to [m1, . . . ,mn] the number
F([m1, . . . ,mn]). We remark that if m1 · · · mn is not an admissible word of �,
then F([m1, . . . ,mn]) = 0. In order to use Kolmogorov’s extension theorem and
obtain a measure on NN we need to verify the consistency of the family (νn)n, in
other words, that

νn((m1, . . . ,mn)) = νn+1((m1, . . . ,mn) × N).

By definition of the family (νn)n this is equivalent to the formula

F(D) =
∑
k≥1

F(Dk),

for D = [m1, . . . ,mn]. Lemma 4.12 implies the consistency of (νn)n. It follows
from Kolmogorov’s extension theorem that F extends to a measure μ on the full
shift NN. Observe that by definition of F the measure μ is supported on � ⊂ NN.
The invariance of μ follows from Lemma 4.1. �

Remark 4.13 (Limits are not always measures). We now exhibit examples
of countable Markov shifts that do not satisfy the F-property for which sequences
of measures converge to a function F that can not be extended to a measure.
Let � = NN be the full shift. Consider the periodic point pn = 1n, and de-
note by μn the periodic measure associated to pn. Observe that (μn)n converges
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to F ∈ L(�), where F is given by F([1]) = 1/2, and F(C) = 0, for any other
cylinder C � �. In this case it is clear that F does not come from a measure:
use the decomposition [1] =

⋃
s≥1[1s], and the definition of F. Equivalently, the

formula F([1]) =
∑

s≥1 F([1s]) does not hold. In the full shift we can not expect
to always have a measure as the limit of probability measures (in the topology of
convergence on cylinders). Similar examples are easy to construct. For instance,
consider the countable Markov shift defined by the matrix M = (Mij), where
M1k = 1 = Mk1, for all k ∈ N, and Mij = 0 for the remaining entries. In this case the
same choice of measures (μn)n would provide a sequence of invariant probability
measures that do not converge to a countably additive measure.

Proposition 4.14. Let (�,σ) be a transitive countable Markov shift satisfying
the F-property. Then any sequence of invariant probability measures (μn)n has a

sub-sequence that converges on cylinders to an invariant sub-probability measure.

Proof. Since M(�,σ) ⊂ L(�), by compactness of L(�) there exists a sub-
sequence (μnk)k converging to a function F ∈ L(�). Since the periodic measures
are dense in M(�,σ) (see Remark 4.2) we can find a sequence of periodic mea-
sures (νk)k such that d(μnk, νk) ≤ 1

k . It follows that limk→∞ d(νk,F) = 0. We
can now use Proposition 4.11 and conclude that F corresponds to an invariant
sub-probability measure. �

Remark 4.15. The proof of Proposition 4.14 also implies that

M(�,σ) ⊂ M≤1(�,σ).

Indeed, if F ∈ M(�,σ), then we have a sequence of invariant probability measures
(μn)n converging to F. As in the proof of Proposition 4.14 we conclude that F can
be approximated by periodic measures, and therefore Proposition 4.11 implies the
result.

As mentioned in the introduction, to prove that M≤1(�,σ) is affine homeo-
morphic to the Poulsen simplex we need to prove the existence of a sequence of
invariant measures that converges on cylinders to the zero measure. In our next
result we obtain such a property. We emphasize that if (�,σ) does not satisfy the
F-property, then this is not necessarily true (see Example 4.17).

Lemma 4.16. Let (�,σ) be a transitive countable Markov shift satisfying

the F-property. Then there exists a sequence of invariant probability measures
converging on cylinders to the zero measure.



484 G. IOMMI AND A. VELOZO

Proof. Fix some natural number k. We say that Property (k) holds if there exist
arbitrarily long admissiblewords of the form a1 · · · am, where {a1, am}⊂{1, . . . , k},
and ai ≥ k + 1, for all i ∈ {2, . . . ,m − 1}. If Property (k) holds we can construct a
sequence of periodic measures (μ(k)

n )n such that

lim
n→∞μ

(k)
n

( k⋃
s=1

[s]
)

= 0.

First observe that there exists M0 = M0(k) such that every two letters in {1, . . . , k}
can be connected with an admissible word of length less than or equal to M0. By
hypothesis for every n ∈ N there exists an admissible word wn = a(n)

1 · · · a(n)
mn

, where
{a(n)

1 , a
(n)
mn

} ⊂ {1, . . . , k}, and a(n)
i ≥ k + 1, for all i ∈ {2, . . . ,mn − 1}, and mn ≥ n.

We can extend the word wn into an admissible word

w′
n = a(n)

1 · · · a(n)
mn

b(n)
1 · · · b(n)

sn
a(n)

1 , where sn ≤ M0.

The word w′
n can be used to define a periodic orbit, and therefore a periodic

measure, say μ(k)
n , on �. Observe that

μ(k)
n

( k⋃
s=1

[s]
)

≤ sn + 2
sn + mn

≤ M0 + 2
n

,

which readily implies that limn→∞ μ(k)
n (

⋃k
s=1[s]) = 0.

We will now verify that under the hypothesis of Lemma 4.16, Property (k)
holds. Assume by contradiction that this is not possible, in other words that any
such word has length less than or equal to N0. Define

T : {n ∈ N : n ≥ k + 1} → N,

in the following way: T(n) = r, if there exists an admissible word of length r with
first letter in {1, . . . , k} and ending at n, but there is no such admissible word of
length strictly less than r. Similarly define

S : {n ∈ N : n ≥ k + 1} → N,

in the following way: S(n) = r, if there exists an admissible word of length r + 1
with first letter n and ending at some letter in {1, . . . , k}, but there is no such
admissible word of length less than or equal to r. By definition of T and S we
know that given n ≥ k + 1, there exists an admissible word

yn := c(n)
1 · · · c(n)

T(n)−1nd(n)
1 · · · d(n)

S(n),
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where {c(n)
1 , d

(n)
S(n)} ⊂ {1, . . . , k} and the rest of the letters are strictly larger than k.

Observe that by assumption we have T(n) + S(n) ≤ N0, for every n ≥ k + 1. For
n ≥ k + 1 define W(n) as the biggest letter in the word yn. We can inductively
choose a sequence (nt)t such that W(nt) < nt+1, and observe that (ynt)t are pairwise
distinct. As with the words (wn)n, we can extend each yn to an admissible word
y′

n := e(n)
1 · · · e(n)

sn
ynf(n)

1 · · · f(n)
rn

, where sn and rn are less than M0, and e(n)
1 = 1 = f (n)

rn
.

The word y′
n defines a periodic point of period ≤ 2M0+N0. Since (ynt)t are pairwise

distinct we found infinitely many periodic points of periods less than or equal to
2M0 + N0 (starting and ending at 1), which contradicts that (�,σ) satisfies the
F-property. We conclude that Property (k) holds for every k ∈ N.

For every k ∈ N we obtain a sequence of periodic measures (μ(k)
n )n such that

limn→∞μ(k)
n (

⋃k
s=1[s]) = 0. Let nk be such that μ(k)

nk
(
⋃k

s=1[s]) ≤ 1
k . To simplify

notation we define νk := μ(k)
nk

. We claim that (νk)k converges on cylinders to the
zero measure. Observe that for k ≥ m, we have

νk([m]) ≤ νk

( m⋃
s=1

[s]
)

≤ νk

( k⋃
s=1

[s]
)

≤ 1
k
.

We conclude that limk→∞ νk([m]) = 0. Since m ∈ N was arbitrary, and every
cylinder C is contained in a cylinder of length one, we conclude that (νk)k converges
on cylinders to the zero measure. �

Example 4.17. We exhibit an example of a countable Markov shift of infinite
entropy not satisfying the F-property, for which there is no sequence of measures
converging to zero in the cylinder topology. Let (�,σ) be the countable Markov
shift defined by the graph formed by infinitely many loops of length two rooted
at a common vertex. That is, the allowed transitions are of the form 1 → N and
N → 1 for every N ∈ N; this example was also considered in Remark 4.13. The
system has infinite entropy, since it has infinitely many periodic orbits of period
two intersecting [1]. The frequency of the digit 1 is at least 1/2 for every element
of �. Therefore, if μ is an ergodic measure then μ([1]) ≥ 1/2. Thus, for any
sequence of invariant measures (μn)n we must have that lim infn→∞ μn([1]) ≥ 1/2.
In particular, the sequence (μn)n does not converge to zero in the cylinder topology.

We can nowprove the compactness of the space of sub-probabilitymeasures. As
explained in the introduction a compactification of the space of invariant probability
measures is important for applications (for instance, see [ITV] and [V]).

Theorem 4.18. If (�,σ) is a transitive countable Markov shift satisfying the

F-property, then the space M≤1(�,σ) is compact with respect to the topology of
convergence on cylinders.
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Proof. It is a consequence of Remark 4.15 that M(�,σ) ⊂ M≤1(�,σ). It is
enough to prove that M(�,σ) = M≤1(�,σ). Let (μn)n be a sequence of invariant
probability measures converging on cylinders to the zero measure (see Lemma
4.16). An element in M≤1(�,σ) has the form λμ, where μ is an invariant prob-
ability measure and λ ∈ [0, 1]. Define νn = λμ + (1 − λ)μn. Observe that (νn)n
converges on cylinders to λμ. This concludes that M(�,σ) = M≤1(�,σ), and
therefore M≤1(�,σ) is compact. �

The idea behind Remark 4.13 can be used to prove that Theorem 4.18 is sharp.
We will prove that without the F-property it is possible to construct a sequence of
invariant measures that converges on cylinders to a finitely additive measure that is
not countably additive. In particular, Theorem 4.18 is false without the F-property
assumption.

Proposition 4.19. Suppose that (�,σ) does not satisfy the F-property. Then
there exists a sequence of periodic measures that converges on cylinders to

F ∈ L(�), where F can not be extended to a measure.

Proof. Since (�,σ) does not satisfy the F-property there exists a symbol i and
natural number n such that there are infinitely many admissible words of length n

that start and end at i. The set of admissible words of length k + 1 starting and
ending at i, where the symbol i only appears at the beginning and at the end of the
word, is denoted by Ak. By hypothesis there exists q ≤ n such that |Aq| = ∞. Set
Aq = {wk : k ∈ N}. Observe that each wk ∈ Aq defines a periodic measure that we
denote by μk. Maybe after passing to a sub-sequence we can assume that (μk)k
converges on cylinders to F ∈ L(�). By construction we know that μk([i]) = 1

q .
Observe that μk([ir]) is equal to 0 or 1

q , for every k and r. If limk→∞ μk([ir]) = 0,
for every r, then F can not come from a measure:

∑
r≥1 F([ir]) = 0, but F([i]) = 1

q .
We assume there exists r1 such that limk→∞ μk([ir1]) = 1

q , which is equivalent to
saying that μk([ir1]) = 1

q , for every k sufficiently large. We can repeat the process
and conclude that if limk→∞ μk([ir1s]) = 0, for every s, then F does not come from
a measure. We can assume that there exists r2 such that μk([ir1r2]) = 1

q , for k
sufficiently large. By repeating this process we obtain that F does not come from
a measure or that μk([ir1 · · · rq−1]) = 1

q , for k sufficiently large. This last condition
is equivalent to saying that the sequence (μk)k stabilizes, which contradicts that
the measures are pairwise different. �

In Section 6 we will be interested in countable Markov shifts that do not
necessarily have the F-property. Despite Proposition 4.19 we can regain control
by imposing an integrability condition on the sequence of probability measures
(see Proposition 6.12). This integrability condition will rule out the sequence
constructed in Proposition 4.19.
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5 The Poulsen simplex

We now prove one of our main results, in which we characterize the spaces
M≤1(�,σ) and M(�,σ) for countable Markov shifts satisfying the F-property.

Theorem 5.1. Let (�,σ) be a transitive countable Markov shift satisfying the

F-property. Then M≤1(�,σ) is affine homeomorphic to the Poulsen simplex.

Proof. An element in M≤1(�,σ) has the form λμ, where μ is an invariant
probability measure and λ ∈ [0, 1]. To prove that M≤1(�,σ) is the Poulsen
simplex it is enough to prove that the extreme points of M≤1(�,σ) are dense (we
already know that M≤1(�,σ) is a metrizable convex compact Choquet simplex).
We will approximate the measure λμ with periodic measures. As explained in
the proof of Theorem 4.18, we can construct invariant probability measures (νn)n
such that limn→∞ d(νn, λμ) = 0. By Remark 4.2 we can find a sequence (νn)n of
periodic measures such that d(νn, νn) ≤ 1

n . This implies that (νn)n converges on
cylinders to λμ, and therefore, by the main result of [LOS], M≤1(�,σ) is affine
homeomorphic to the Poulsen simplex. �

Since the extreme points of M≤1(�,σ) are the ergodic probability measures
together with the zero measures, it follows directly from Theorem 5.1 and Lemma
3.17 that

Theorem 5.2. Let (�,σ) be a transitive countable Markov shift satisfying the

F-property. Then M(�,σ) is affinely homeomorphic to the Poulsen simplex minus
a vertex and all of its convex combinations.

Corollary 5.3. Let (�,σ) be a transitive countable Markov shift satisfying

the F-property. Then the set Me(�,σ) is path connected.

Proof. The set of extreme points of the Poulsen simplex is path connected
[LOS, (4) p. 101]. It follows from Theorem 5.1 that the set Me(�,σ) ∪ {0m},
where 0m denotes the zero measure, is path connected. Denote by Q := [−1, 1]N

the Hilbert cube and let

P := {(x1, x2, . . . ) ∈ Q : |xn| < 1, for every n ∈ N}.
It was proved in [LOS, Theorem 3.1] that there exists a homeomorphism h between
the Hilbert cube Q and the Poulsen simplex which maps P onto the set of extreme
points of the Poulsen simplex. Denote z = h−1(0m) ∈ P. For any x, y ∈ P�{z} it is
clear that there exists a continuous path p : [0, 1] → P such that p(0) = x, p(1) = y

and p(t) �= z for every t ∈ [0, 1]. Therefore the set Me(�,σ) is path connected. �



488 G. IOMMI AND A. VELOZO

6 The space of invariant measures for suspension flows

In this section we study the space of invariant probability measures of a suspension
flow defined over a countable Markov shift.

6.1 Suspensionflows. Let (�,σ) be a countableMarkov shift and τ :�→R

a continuous positive function bounded away from zero, that is, there exists
c = c(τ) > 0 such that τ(x) ≥ c, for all x ∈ �. Consider the space

Y = {(x, t) ∈ �× R : 0 ≤ t ≤ τ(x)},
with the points (x, τ(x)) and (σ(x), 0) identified for each x ∈ �. The suspension
flow over σ with roof function τ is the semi-flow� = (θt)t≥0 on Y defined by

θt(x, s) = (x, s + t), whenever s + t ∈ [0, τ(x)].

In particular, θτ(x)(x, 0) = (σ(x), 0). The space of invariant probability measures for
the shift is related to the space of invariant probability measures for the flow, that
we denote byM(�,σ, τ). Indeed, it follows from a classical result of Ambrose and
Kakutani [AK] (see [PP, Chapter 6] for details) that

Lemma 6.1. Let (Y,�) be a suspension flow over (�,σ) with roof function τ

bounded away from zero. Let

Mτ :=
{
μ ∈ M(�,σ) :

∫
τdμ < ∞

}
.

The map ϕ : Mτ → M(�,σ, τ) defined by

μ �→ μ× Leb∫
τdμ

,

where Leb is the one-dimensional Lebesgue measure, is a bijection.

We denote the inverse of ϕ by ψ. We will be particularly interested in a special
class of roof functions.

Definition 6.2. A positive function τ : � → R belongs to the class R if the
following properties hold:

(a) τ is uniformly continuous, bounded away from zero, and var2(τ) is finite,
(b)

lim
k→∞ inf

x:x1≥k
τ(x) = ∞,

where x1 is the first coordinate of x.
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Remark 6.3. The class R includes a wealth of interesting examples. For
instance, the geodesic flow over the modular surface can be coded as a suspension
flow over the full-shift on a countable alphabet, � = NN, with a roof function τ
belonging to R; see [GK, KU] for details. A large class of examples belonging
to the class R is to be found in one-dimensional dynamics. Indeed, the class of
Expanding–Markov–Renyi (EMR) maps is a class of interval maps with infinitely
many branches which was introduced by Pollicott and Weiss in [PW] and has been
extensively studied. It turns out that if f is an EMR map, then the symbolic version
of the corresponding geometric potential log |f ′| belongs to R. These potentials
carry the relevant fractal information of the system as well as the coding of relevant
equilibrium measures such as Sinai–Ruelle–Bowen measures. An example of an
EMR map is the Gauss map.

6.2 The topology of convergence on cylinders. The space of invariant
sub-probability measures of the suspension flow is denoted by M≤1(�,σ, τ). In
this section we endow this space with a topology that makes it compact whenever
τ ∈ R (see Theorem 6.16). The topology we consider is an adaptation of the
cylinder topology defined in sub-section 3.3. Let (Y,�) be a suspension flow over
(�,σ) with roof function τ and c = c(τ) > 0 such that inf τ > c.

Definition 6.4. Let (νn)n and ν be measures in M≤1(�,σ, τ). We say that
(νn)n converges on cylinders to ν if

lim
n→∞ νn(C × [0, c]) = ν(C × [0, c]),

for every cylinder C ⊂ �.

Recall that by Kac’s formula we know that

ν(C × [0, c]) =
cμ(C)∫
τdμ

,

whenever ν ∈ M(�,σ, τ) and μ = ψ(ν).

Remark 6.5. Let ν and (νn)n be invariant probability measures for the sus-
pension flow and set μn = ψ(νn), and μ = ψ(ν). From the definition of ψ we have
that the following statements are equivalent:

(a) The sequence (νn)n converges on cylinders to λν, where λ ∈ [0, 1].
(b) The following limit holds:

lim
n→∞

μn(C)∫
τdμn

= λ
μ(C)∫
τdμ

,

for every cylinder C ⊂ �.
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Moreover, λ1ν1 and λ2ν2 are equal if and only if

λ1ν1(C × [a, b]) = λ2ν2(C × [a, b]),

for every cylinder C ⊂ � and a, b ∈ R. By Kac’s formula this is equivalent to

λ1
μ1(C)∫
τdμ1

= λ2
μ2(C)∫
τdμ2

,

for every cylinder C ⊂ �.

Lemma 6.6. The topology of the convergence on cylinders in M≤1(�,σ, τ) is

metrizable.

Proof. Let ρ : M≤1(�,σ, τ) × M≤1(�,σ, τ) → R be defined by

ρ(ν1, ν2) =
∑
k≥1

1
2k

|ν1(Ci × [0, c]) − ν2(Ci × [0, c])|,

where (Ci)i is some enumeration of the cylinders of � and c = c(τ). The map ρ is
a metric. Indeed, let ν1 = λ1ϕ(μ1) and ν2 = λ2ϕ(μ2) be in M≤1(�,σ, τ), where λ1

and λ2 are in [0, 1]. Suppose that ρ(ν1, ν2) = 0. By Remark 6.5 we know that

λ1
μ1(C)∫
τdμ1

= λ2
μ2(C)∫
τdμ2

,

for every cylinder C ⊂ �. If λ1 = 0 we necessarily have λ2 = 0: in this case ν1

and ν2 are both the zero measure. Assume that λ1 �= 0; then

μ1(C) =
λ2

λ1

∫
τdμ1∫
τdμ2

μ2(C),

for every cylinder C ⊂ �. By the outer regularity of Borel measures on a metric
space we conclude that μ1 = Aμ2, where A = λ2

λ1

∫
τdμ1∫
τdμ2

. This immediately implies
that

λ1
μ1∫
τdμ1

= λ2
μ2∫
τdμ2

,

and therefore ν1 = ν2. The other properties of a metric are easily verified. Note
that (νn)n converges on cylinders to ν if and only if limn→∞ ρ(νn, ν) = 0, that is,
the topology of convergence on cylinders is metrizable. �

Our next result should be compared with Lemma 3.17. It says that the topology
of convergence on cylinders coincides with the weak* topology onM(�,σ, τ). We
emphasize that this result holds for every τ which is bounded below.

Lemma 6.7. Let ν and (νn)n be measures in M(�,σ, τ). The following asser-
tions are equivalent:
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(a) The sequence (νn)n converges in the weak* topology to ν.

(b) The sequence (νn)n converges on cylinders to ν.

Proof. Let C ⊂ � be a cylinder. Observe that

∂(C × [0, c]) = C × {0, c}.
Since ν is a flow invariant probability measure we know that ν(C × {x}) = 0, for
each x ∈ R. We conclude that ν(∂(C× [0, c])) = 0. Finally, use Proposition 3.3 (d)
to conclude that (a) implies (b).

We will now prove that (b) implies (a). A base for the topology in Y is given by

� := {C × (a, b) ⊂ Y : C cylinder for � and a, b ∈ Q with a < b}.
It follows from the flow invariance of the measures that for every set C× (a, b) ⊂ Y
we have

lim
n→∞ νn(C × (a, b)) = ν(C × (a, b)).

Observe that a finite intersection of elements in � is still in �. Note that each
open set O ⊂ Y can be written as a countable union of elements in �, say
O =

⋃
k≥1(Ck × (ak, bk)). The result now follows from [Bi, Theorem 2.2]. �

One of the main properties of the class R is that we can rule out the escape of
mass by imposing a uniform bound on the integral of τ (see Lemma 6.8). This
illustrates the importance of part (b) in Definition 6.2.

Lemma 6.8. Let (μn)n ⊂ M(�,σ) and μ ∈ M≤1(�,σ) be such that (μn)n
converges on cylinders to the measure μ. Let τ ∈ R and assume there exists
M ∈ R such that

∫
τdμn ≤ M, for every n ∈ N. Then μ is a probability measure.

Moreover, (μn)n converges to μ in the weak* topology.

Proof. Observe that for every k ∈ N we have

(
inf

x:x0≥k
τ(x)

)
μn

(⋃
s≥k

[s]
)

≤
∫
τdμn ≤ M;

then

μn

(⋃
s≥k

[s]
)

≤ M
infx:x0≥k τ(x)

.

This is equivalent to μn(
⋃

s<k[s]) ≥ 1− M
infx:x0≥k τ(x)

. By definition of the convergence
on cylinders we have

μ

( ⋃
s<k

[s]
)

= lim
n→∞μn

( ⋃
s<k

[s]
)

≥ 1 − M
infx:x0≥k τ(x)

.
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Since τ ∈ R we can conclude that

lim
k→∞μ

(⋃
s<k

[s]
)

= 1,

and therefore μ is a probability measure. Since the sequence (μn)n converges on
cylinders to a probability measure we conclude that (μn)n converges in the weak*
topology (see Lemma 3.17). �

Our next two lemmas completely describe the topology of convergence on
cylinders in terms of convergence of measures in �.

Lemma 6.9. Let τ ∈ R. A sequence (νn)n ⊂ M(�,σ, τ) converges on cylin-
ders to the zero measure if and only if

lim
n→∞

∫
τdψ(νn) = ∞.

Proof. To simplify notation define μn = ψ(νn). We will first prove that

(6.1) lim
n→∞

∫
τdμn = ∞

implies that (νn)n converges on cylinders to the zero measure. Note that equation
(6.1) implies that

lim
n→∞

μn(C)∫
τdμn

= 0,

for every cylinder C. In virtue of Remark 6.5 we get that (νn)n converges on cylin-
ders to the zero measure. To prove the other implication we argue by contradiction:
suppose that the sequence (νn)n converges to the zero measure and that there exists
a sub-sequence (nk)k such that

∫
τdμnk ≤ M, for some M ∈ R. From Remark 6.5

we obtain

0 = lim
k→∞

μnk(C)∫
τdμnk

≥ 1
M

lim sup
k→∞

μnk(C).

In particular, (μnk)k convergeson cylinders to the zeromeasure. Lemma 6.8 implies
that limk→∞

∫
τdμnk = ∞, which contradicts the choice of the sequence (nk)k. �

Lemma 6.10. Let τ ∈ R and (νn)n, ν be invariant probability measures for

the suspension flow. Define μn = ψ(νn) and μ = ψ(ν). Then the following are
equivalent:

(a) The sequence (νn)n converges on cylinders to λν, where ν ∈ M(�,σ, τ) and
λ ∈ (0, 1].

(b) The sequence (μn)n converges to μ in the weak* topology and

lim
n→∞

∫
τdμ∫
τdμn

= λ ∈ (0, 1].
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Proof. We first prove that (b) implies (a). If (μn)n converges in the weak*
topology to μ, then limn→∞ μn(C) = μ(C), for every cylinder C. It follows from
the hypothesis on λ that

lim
n→∞

μn(C)∫
τdμn

= λ
μ(C)∫
τdμ

.

Remark 6.5 implies that (νn)n converges on cylinders to λν.
Now suppose that (νn)n converges on cylinders to λν. It follows from Lemma

6.9 and the assumption that λ > 0 that (
∫
τdμn)n is a bounded sequence. After

passing to a sub-sequence we can assume that (
∫
τdμn)n is convergent. Let L ∈ R

be such that limn→∞
∫
τdμn = L. Remark 6.5 implies that

lim
n→∞μn(C) =

λL∫
τdμ

μ(C),

for every cylinder C. We conclude that (μn)n converges on cylinders to

μ0 :=
λL∫
τdμ

μ.

Observe that for sufficiently large n we have
∫
τdμn ≤ (L +1). Lemma 6.8 implies

that μ0 is a probability measure and that (μn)n converges in the weak* topology
for μ0. Since μ is a probability measure we conclude that λL =

∫
τdμ, and

therefore μ0 = μ. This argument shows that every sub-sequence of our initial
sequence (μn)n has a sub-sub-sequence converging to μ. This readily implies that
the whole sequence converges to μ, and that limn→∞

∫
τdμ∫
τdμn

= λ. �
Our next result should be compared with Lemma 4.16. As mentioned in the

introduction, this is a necessary ingredient to prove thatM≤1(�,σ, τ) is the Poulsen
simplex.

Lemma 6.11. If τ ∈ R, then there exists a sequence of periodic measures

(νn)n ⊂ M(�,σ, τ) that converges on cylinders to the zero measure.

Proof. We will separate our analysis into two cases.
Case 1 (assume (�,σ) satisfies the F-property). By Lemma 4.16 there

exists a sequence of periodic measures (μn)n which converges on cylinders to the
zero measure. Observe that every periodic measure belongs to Mτ, in particular
ϕ(μn) ∈ M(�,σ, τ). Now, by Lemma 6.8 we conclude that limn→∞

∫
τdμn = ∞. It

follows from Lemma 6.9 that the sequence (ϕ(μn))n converges to the zero measure.
Case 2 (assume (�,σ) does not satisfy the F-property). In this case

there exists an element a in the alphabet, l ∈ N, and a sequence (pn)n of distinct
periodic points of length l such that pn ∈ [a]. The periodic measure associated
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to pn is denoted by ηn. Since τ ∈ R, for N ∈ R there exists nN such that for n ≥ nN

we have Slτ(pn) > N. Here Slτ is the Birkhoff sum of τ of length l. In particular,∫
τdηn = 1

l Slτ(pn) ≥ N/l. This implies that limn→∞
∫
τdηn = ∞. The result then

follows from Lemma 6.9. �
Recall that the set L(�) was introduced in Definition 4.4. We will now prove

a compactness result similar to Proposition 4.11. The proof of Proposition 6.12
is significantly simpler than the one of Proposition 4.11; it would be interesting if
this result can be generalized to a larger class of potentials.

Proposition 6.12. Assume that τ ∈ R. Let (μn)n be a sequence of periodic
measures on �. Suppose that (μn)n converges on cylinders to F ∈ L(�), and that

there exists M ∈ R such that
∫
τdμn ≤ M, for all n ∈ N. Then F extends to an

invariant probability measure.

Proof. We will follow the strategy of the proof of Proposition 4.11. It is
enough to prove that

lim
k→∞ lim

n→∞μn

(⋃
s≥k

Cs
)

= 0,

where C = [a0 · · · am−1] is a cylinder. Let pn ∈ � be a periodic point of period rn

andμn be the periodic measure associated to the point pn. It is important to observe
that

(6.2) μn

(⋃
s≥k

[s]
)

≥ μn

(⋃
s≥k

Cs
)
.

Indeed, the probability measure μn is equidistributed on the set

{pn, σ(pn), . . . , σ
rn−1(pn)}.

Observe that σk(pn) ∈ Cs implies that σk+m(pn) ∈ [s], from which inequality (6.2)
follows. Since

∫
τdμn ≤ M, we obtain that

μn

(⋃
s≥k

[s]
)

≤
∫
τdμn

infx:x1≥k τ(x)
≤ M

infx:x1≥k τ(x)
,

but this immediately implies that

lim
k→∞ lim

n→∞μn

(⋃
s≥k

[s]
)

≤ lim sup
k→∞

M
infx:x1≥k τ(x)

.

Since τ ∈ R we obtain that the right hand side in the last inequality is zero. Finally
use inequality (6.2) to conclude that

lim
k→∞ lim

n→∞μn

(⋃
s≥k

Cs
)

= 0.



INVARIANT MEASURES FOR COUNTABLE MARKOV SIFTS 495

As in the proof of Proposition 4.11 we have that F extends to a measure on �.
Lemma 6.8 implies that F is a probability measure. The invariance follows from
Lemma 4.1. �

Proposition 6.12 states that, assuming an integrability condition, limits of pe-
riodic measures are invariant probability measures. It is then of particular im-
portance to know whether it is possible to approximate a sequence of invariant
measures (μn)n by periodic measures such that the assumption supn

∫
τdμn < ∞

still remains true for the sequence of periodic measures. Proposition 6.14 ad-
dresses this question. In the proof of Proposition 6.14 we will need to approximate
a measure in M(�,σ) by a convex combination of finitely many ergodic probabil-
ity measures. This result is classical in the compact case: the space of invariant
probability measures is a compact convex set, and therefore the result follows from
the Krein–Milman theorem. With lack of a good reference we provide a proof of
this result that avoids the Krein–Milman theorem.

Lemma 6.13. Let μ ∈ M(�,σ) and (fi)ni=0 be real-valued functions in L1(μ).
Given ε > 0, there exists μ1 ∈ M(�,σ) that is a convex combination of finitely
many ergodic probability measures which satisfies∣∣∣∣

∫
fidμ−

∫
fidμ1

∣∣∣∣ ≤ ε,

for every i ∈ {0, . . . , n}.
Proof. It is enough to prove the result under the assumption that each fi is non-

negative. Indeed, let f +
i and f−

i be the positive and negative parts of fi. Applying
the result to the set (f +

i )i
⋃

(f−
i )i and ε/2, we obtain a measure μ1. By the triangle

inequality, the measureμ1 verifies the inequalities in the statement of Lemma 6.13.
From now on we assume that each fi is non-negative. Let μ =

∫
μxdm(x) be the

ergodic decomposition of μ, in particular,∫
fkdμ =

∫ (∫
fkdμx

)
dm(x),

for k ∈ {0, . . . , n}. By ergodic decomposition, the measure μx is ergodic for μ-
almost every x ∈ �. We choose a measurable set S ⊂ � such that μ(S) = 1, μx is
ergodic for every x ∈ S, and fk is μx-integrable for every x ∈ S and k ∈ {0, . . . , n}.
Given x ∈ S we define Fk(x) :=

∫
fkdμx. Observe that∫
fkdμ =

∫
S
Fkdμ.

By definition of the integral we know that∫
S
Fkdμ = sup

{∫
S
gdμ : g is simple and g ≤ Fk

}
.
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This immediately implies that there exists a measurable partition

Uk = {U(k)
1 , . . . ,U

(k)
pk

} of S,

such that, given ε > 0,

∫
S
Fkdμ− ε <

pk∑
i=1

(
inf

x∈U(k)
i

Fk(x)
)
μ(U(k)

i ) ≤
∫

S
Fkdμ.

If P and Q are partitions, then P ∧ Q denotes the common refinement of P and Q.
That is, A ∈ P∧Q if A = P1 ∩Q1, where P1 ∈ P and Q1 ∈ Q. Consider the partition
U =

∧n
i=0 Ui of S, and write U = {U1, . . . ,Uq}. Choose a point xi ∈ Ui, for every

i ∈ {1, . . . , q}. Note that

∫
S
Fkdμ− ε <

q∑
i=1

Fk(xi)μ(Ui) ≤
∫

S
Fkdμ,

for every k ∈ {0, . . . , n}. We conclude that

∣∣∣∣
∫

fkdμ−
q∑

i=1

μ(Ui)
∫

fkdμxi

∣∣∣∣ ≤ ε,

for every k ∈ {0, . . . , n}. Finally define μ1 =
∑q

i=1 μ(Ui)μxi . �
We will now prove a refinement of Theorem 3.8. As mentioned before, this is

an important ingredient to increase the applicability of Proposition 6.12. Recall
that τ is positive and bounded away from zero.

Proposition 6.14. Let (�,σ) be a transitive countable Markov shift and τ be
a uniformly continuous function such that var2(τ) is finite. For every μ ∈ Mτ there

exists a sequence of periodic measures (μn)n that converges in the weak* topology
to μ and such that limn→∞

∫
τdμn =

∫
τdμ.

Proof. In virtue of Lemma 6.13 it is possible to find a sequence (μn)n of mea-
sures, each a convex combination of finitely many ergodic probability measures,
satisfying d(μn, μ) ≤ 1

n , and such that limn→∞
∫
τdμn =

∫
τdμ. In particular, it

is enough to prove that the result holds for measures which are a finite convex
combination of ergodic measures. We can moreover assume that the weights in
the convex combination are rational numbers. Thus, from now on we assume that

μ =
1
N

N∑
j=1

μj,

where each μj is ergodic.
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Let F0 = {f1, . . . , fl} ⊂ Cb(�) be a collection of bounded uniformly contin-
uous functions on � and define F := F0 ∪ {τ}. By assumption each f ∈ F is
uniformly continuous. In particular, given ε > 0, there exists N0 = N0(ε) such that
varn(f ) ≤ ε

4 , for every f ∈ F and n ≥ N0. Define C0 := maxf∈F0 maxx∈� |f (x)|.
Choose M such that μj(KM) > 9/10, for every j ∈ {1, . . . ,N}, where

KM =
M⋃
s=1

[s].

By transitivity of (�,σ) there exists a number L such that every pair of numbers
in {1, . . . ,M}2 can be connected with an admissible word of length at most L. For
each pair (a, b) ∈ {1, . . . ,M}2 we choose a point pa,b such that pa,b ∈ [a] and
σc(a,b)−1(pa,b) ∈ [b], where c(a, b) ≤ L. Recall that Snτ(x) denotes the Birkhoff
sum of length n of the point x. Set C1 = maxa,b |Sc(a,b)τ(pa,b)|. Define

As
j,ε =

{
x ∈ � :

∣∣∣∣ 1
m

m−1∑
i=0

f (σix) −
∫

fdμj

∣∣∣∣ < ε

4
, for every f ∈ F and m ≥ s

}
.

It follows from the Birkhoff ergodic theorem that μj(As
j,ε) → 1 as s → ∞. Choose

s0 ∈ N such that μj(A
s0
j,ε) ≥ 9/10, for every j ∈ {1, . . . ,N}. We assume that s0 is

sufficiently large (relative to our constants C0, C1, N0 and L) to be determined later.
Observe that

μj(A
s0
j,ε ∩ KM ∩ σ−s0 (KM)) >

1
2
.

Pick a point xj ∈ As0
j,ε ∩ KM ∩ σ−s0 (KM). We will construct a periodic point x0 out

of the sequence (xj)Nj=1. Let yj be the admissible word coming from the first (s0 + 1)
coordinates of xj. Observe that the first and last letters of yj are in {1, . . . ,M}. We
construct an admissible word of the form

y = y1w1y2w2 · · · yNwN,

where wi are admissible words of length less than or equal to L that connects yi

with yi+1 (where we consider yN+1 = y1). We will moreover assume that the
admissible word wi is the same one we used to construct the point pa,b, for the
corresponding a and b. In this case l(yi) = c(a, b) and the point associated to wi

is denoted by pi ∈ (pa,b)a,b. Then define x = (yy · · ·). We claim that the periodic
measure associated to x, say μx, belongs to the set

� =
{
ν ∈ M(�,σ) :

∣∣∣∣
∫

fdν−
∫

fdμ

∣∣∣∣ < ε, for every f ∈ F

}
.
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Our construction ensures the following inequalities:
(a) |Ss0−N0 f (x)−Ss0−N0 f (x1)| ≤ (s0 −N0)varN0 f ≤ (s0 −N0)ε/4, for every f ∈ F.
(b) |SN0+l(y1)f (σ

s0−N0x)−SN0+l(y1)f (σ
s0−N0x)| ≤ 2(N0 + l(y1))C0 ≤ 2(N0 +L)C0, for

every f ∈ F0.
(c) |SN0τ(σ

s0−N0x) − SN0τ(σ
s0−N0x1)| ≤ N0var2(τ).

(d) |Sl(y1)τ(σ
s0x) − Sl(y1)τ(p1)| ≤ l(y1)var2(τ) ≤ Lvar2(τ).

We can use the last inequality to obtain that

|Sl(y1)τ(σ
s0x)| ≤ Lvar2(τ) + C1.

Combining these inequalities we obtain that

|Ss0+l(y1)τ(x) − Ss0τ(x1)| ≤ 1
4
(s0 − N0)ε + N0var2(τ) + Lvar2(τ) + C1,

and that

|Ss0+l(y1)f (x) − Ss0+l(y1)f (x1)| ≤ 1
4
(s0 − N0)ε + 2(N0 + L)C0,

where f ∈ F0. Similar inequalities can be obtained when comparing the value of
our function f at σ(k−1)s0+

∑k−1
i=1 l(yi)(x) and at xk, where f ∈ F. Using the triangle

inequality and the definition of As0
j,ε we can estimate | ∫ fdμx − ∑N

j=1

∫
fdμj| in an

effective way. By taking s0 large enough (in terms of our constants C0, C1, N0

and L) we can ensure that μx ∈ �.We leave the details to the reader. We have now
proved that the result holds for convex combinations of ergodic measures and, as
explained at the beginning of the proof, the general result follows from Lemma
6.13. �

Corollary 6.15. Assume that τ ∈ R. Then the space of ergodic measures
Me(�,σ, τ) is weak* dense in M(�,σ, τ).

Proof. Fix ν ∈ M(�,σ, τ). We will prove that ν can be approximated in the
topology of convergence on cylinders by ergodic measures. Let μ = ψ(ν). By
Proposition 6.14 we can find a sequence of periodic measures (μn)n ⊂ M(�,σ)
converging to μ in the weak* topology and such that limn→∞

∫
τdμn =

∫
τdμ. Set

νn = ϕ(μn). Lemma 6.10 implies that (νn)n converges in the cylinder topology to ν.
In virtue of Lemma 6.7 we have that (νn)n converges in the weak* topology to ν.
Moreover, each νn is ergodic, since each μn is ergodic. This concludes the proof
of the corollary. �

We have finally all the ingredients to prove the main result of this section: the
compactness of M≤1(�,σ, τ). We already know that M≤1(�,σ, τ) is a metrizable
topological space; it is enough to prove it is sequentially compact.
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Theorem 6.16. Assume that τ ∈ R. Let (νn)n be a sequence of invariant

probability measures of the suspension flow. Then there exists a sub-sequence
(νnk)k converging on cylinders to an invariant sub-probability measure ν.

Proof. Let μn = ψ(νn). If lim supn→∞
∫
τdμn = ∞, there exists a sub-

sequence of (νn)n that converges on cylinders to the zero measure. We will assume
that ∫

τdμn ≤ M,

for all n ∈ N. By compactness of L(�) there exists a sub-sequence (μnk)k that
converges on cylinders to F ∈ L(�). Maybe after passing to a sub-sequence
we can assume that limk→∞

∫
τdμnk = L, for some L ∈ R. We can now use

Proposition 6.14 to obtain periodic measures ηk satisfying d(μnk, ηk) ≤ 1
k and∫

τdηk ≤ (
∫
τdμnk + 1). Note that limk→∞ d(ηk,F) = 0 and

∫
τdηk ≤ (M + 1),

for all k ∈ N. We can now use Proposition 6.12 to conclude that F extends to an
invariant probability measure that we denote by μ. It follows that (μnk)k converges
on cylinders to μ and that limk→∞

∫
τdμnk = L. Finally, use Lemma 6.10 to obtain

that (νnk)k converges on cylinders to λν, where ν = ϕ(μ) and λ =
∫
τdμ
L .

6.3 The space of flow invariant sub-probability measures is the
Poulsen simplex. In Section 5 we proved that M≤1(�,σ) is affine homeomor-
phic to the Poulsen simplex if (�,σ) has the F-property. In this section we prove
an analogous result for the suspension flow, that is, that M≤1(�,σ, τ) is affine
homeomorphic to the Poulsen simplex, provided that τ ∈ R.

Theorem 6.17. Let τ be a potential in R. The space M≤1(�,σ, τ) endowed

with the topology of convergence on cylinders is affine homeomorphic to the Poulsen
simplex.

Proof. In Theorem 6.16 we proved that the space M≤1(�,σ, τ) is compact
with respect to the cylinder topology. In Lemma 6.6 we showed that it is a
metrizable space. Since the space is also a convex Choquet simplex (from the
ergodic decomposition), it suffices to prove that the set of extreme points is
dense. Note that every element of M≤1(�,σ, τ) is of the form λν, with λ ∈ [0, 1]
and ν ∈ M(�,σ, τ). In Lemma 6.11 we proved that there exists a sequence
of flow invariant ergodic measures (ν̃n)n converging to the zero measure. Set
ν̂n := λν + (1 − λ)ν̃n, and observe that the sequence (ν̂n)n converges on cylinders
to λν. It follows from Corollary 6.15 that the ergodic measures are dense in
M(�,σ, τ). This allows us to approximate (ν̂n)n by a sequence of ergodic mea-
sures that converges in cylinders to λν. It follows from the main result of [LOS,
Theorem 2.3] that M≤1(�,σ, τ) is affine homeomorphic to the Poulsen simplex. �
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As in Section 5 we conclude that

Theorem 6.18. Let (�,σ) be a transitive countable Markov shift and τ ∈ R.

Then M(�,σ, τ) is affinely homeomorphic to the Poulsen simplex minus a vertex
and all of its convex combinations.

Proof. Note that the set of extreme points of M≤1(�,σ, τ) is the zero measure
together with the set of ergodic measures in M(�,σ, τ). The result now follows
fromTheorem6.17 togetherwith the relation betweenweak* and cylinder topology
(see Lemma 6.7). �
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