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Abstract. This paper studies zeta functions of the form
∑∞

n=1 χ(n)n−s, with
χ a completely multiplicative function taking only unimodular values. We denote
by σ(χ) the infimum of those α such that the Dirichlet series

∑∞
n=1 χ(n)n−s can

be continued meromorphically to the half-plane Re s > α, and denote by ζχ(s) the
corresponding meromorphic function in Re s > σ(χ). We construct ζχ(s) that have
σ(χ) ≤ 1/2 and are universal for zero-free analytic functions on the half-critical
strip 1/2 < Re s < 1, with zeros and poles at any discrete multisets lying in a
strip to the right of Re s = 1/2 and satisfying a density condition that is somewhat
stricter than the density hypothesis for the zeros of the Riemann zeta function. On
a conceivable version of Cramér’s conjecture for gaps between primes, the density
condition can be relaxed, and zeros and poles can also be placed at β + iγ with
β ≤ 1 − λ log log |γ|/ log |γ| when λ > 1. Finally, we show that there exists ζχ(s)
with σ(χ) ≤ 1/2 and zeros at any discrete multiset in the strip 1/2 < Re s ≤ 39/40
with no accumulation point in Re s > 1/2; on the Riemann hypothesis, this strip
may be replaced by the half-critical strip 1/2 < Re s < 1.

1 Introduction

1.1 Background. This paper centers around Bohr’s approach to the Rie-
mann hypothesis, originating in his discovery [6] that in any sub-strip of 1/2 <

Re s < 1, the set of points s at which the Riemann zeta function ζ(s) takes the
value a for a fixed complex number a �= 0, has positive lower density. In view of
the Bohr–Landau theorem [7] on the density of the zeros of ζ(s) to the right of the
critical line, this cannot be true for a = 0. Hence, as concluded by Titchmarsh in
[25, Ch. 11] , “...the value 0 of ζ(s), if it occurs at all in σ > 1/2, is at any rate
quite exceptional, zeros being infinitely rarer than a-values for any value of a other
than zero.” It seems that this state of affairs led Bohr and others to believe in the
unlikeliness of such “exceptional” zeros and that the Riemann hypothesis could
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be proved by establishing that ζ(s) is quasi-periodic in an appropriate sense in the
strip 1/2 < Re s < 1. While the Riemann hypothesis is indeed equivalent to an
assertion about quasi-periodicity, as proved by Bagchi [1] (see Theorem B below),
our aim is to show that there exist zeta functions with zeros located essentially
anywhere in a strip to the right of Re s = 1/2, subject to a density restriction akin
to the density hypothesis for the zeros of the Riemann zeta function, and whose
value distribution properties otherwise cannot be easily distinguished from those
of ζ(s).

The zeta functions that we will consider are of the form

(1.1) ζχ(s) :=
∞∑
n=1

χ(n)n−s =
∏
p

1
(1 − χ(p)p−s)

,

where χ is a completely multiplicative function taking only unimodular values and
the product to the right is over the sequence of prime numbers p. This definition and
the equality to the right make sense for σ := Re s > 1, as the abscissa of absolute
convergence is 1 for both the Dirichlet series and the Euler product in (1.1). We
let σ(χ) denote the infimum of those α such that the function defined by (1.1)
can be continued meromorphically to the half-plane Re s > α. We use the same
symbol ζχ(s) for the meromorphic extension of

∑∞
n=1 χ(n)n−s to Re s > σ(χ) (or

to Re s ≥ σ(χ) if this makes sense) and declare it to be the Helson zeta function
associated with χ. Our usage of the symbol χ comes from the identification of
these functions as characters, as they constitute the (compact) dual group of the
discrete multiplicative group of positive rationals 〈Q+, ·〉. This character group is
closed also in the following analytic sense: The functions ζχ(s) are precisely the
vertical limit functions of ζ(s) in the half-plane σ > 1, i.e., those functions that are
obtained as limits of sequences of vertical translates ζ(s+ iτ), with τ in R. We refer
to [14] for more information about these points.

Strictly speaking, ζ(s) itself is the only Helson zeta function among all Dirichlet
L-functions. We may however think of any such L-function as a Helson zeta
function since it can be made into a function of the form ζχ(s) by multiplication by
a finite Euler product, and such a transformation does not change the basic analytic
properties of the L-function in the half-plane σ > 0. For the same reason, we will
have σ(χ) = −∞ for the corresponding characters χ.

We will sometimes think of the numbers χ(p)—or a subsequence of these
numbers—as a sequence of independent Steinhaus random variables. According
to this model, χ itself or a subsequence of the numbers χ(p) may be considered
as a point on the infinite-dimensional torus T∞, equipped with the natural product
probability measure. This measure is obtained as a product of normalized arc
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length measure on the unit circle for each of the variables χ(p). We have chosen to
use the term “Helson zeta function” because Helson observed in [15] that, almost
surely, the Dirichlet series of ζχ(s) converges and has no zeros in σ > 1/2, whence
in particular σ(χ) ≤ 1/2 (see also [14, Cor. 4.7]). This random model is commonly
used in the study of statistical properties of ζ(s). We refer to the paper by Saksman
and Webb [22], where it was shown that in fact σ(χ) = 1/2 holds almost surely.

Helson’s observation reflects in a rather compelling way the important point
that the multiplicative structure of ζχ(s), combined with moderate growth in the
vertical direction, so to speak “forces” the zeros and poles of ζχ(s) in σ > 1/2,
if any, towards the critical line. Familiar arguments in the theory of the Riemann
zeta function allow us to establish quantitative results to this effect, for example
a variant of the Bohr–Landau theorem, on the proviso that ζχ(s) grows at most
polynomially in the vertical direction. One should bear in mind that there is no
symmetry about the critical line in this respect, even when σ(χ) < 1/2. To see
this, it suffices to choose χ(n) to be the Liouville function, i.e., χ(p) = −1 for all p,
so that ζχ(s) = ζ(2s)/ζ(s). In this case, the poles and zeros of ζχ(s) in the critical
strip are expected to lie respectively on σ = 1/2 and σ = 1/4.

The picture is, however, strikingly different in the general case, as we will
see from Theorem 1.4 below: The geometry of the zeros of ζχ(s) can, in the
literal sense, be completely arbitrary in the strip 1/2 < Re s < 1, at least if we
assume the Riemann hypothesis to be true. Hence, with no a priori restriction
on its meromorphic extension, the value distribution of ζχ(s) may be rather more
complex than and dramatically different from that of the Riemann zeta function.

Our analysis of Helson zeta functions will rely on an extension of the Voronin
universality theorem [26], which is the most remarkable result in the line of research
initiated by Bohr on the value distribution of ζ(s). We will state Voronin’s theorem
as it was developed in subsequent work of Reich [21] and Bagchi [1]. To this end,
let 
 denote the strip 1/2 < Re s < 1 and H(
) be the space of analytic functions
on 
, equipped with the natural topology of locally uniform convergence; we
let H∗(
) be the subset of those h(s) in H(
) such that also 1/h(s) is in H(
).
Moreover, we let M(
) be the larger space of meromorphic functions on 
, for
which we use the topology of locally uniform convergence in the spherical metric.

Recall that the lower and upper density of a measurable set of positive real
numbers A are defined respectively as

d(A) := lim inf
T→∞

m(A ∩ {t : 0 < t ≤ T})
T

and

d(A) := lim sup
T→∞

m(A ∩ {t : 0 < t ≤ T})
T

,
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where m denotes Lebesgue measure on the real line. If d(A) = d(A), then A has a
density d(A) which is this common value. We say that a function h(s) in M(
) is
universal for H∗(
) if, given any f (s) in H∗(
), ε > 0, and compact subset K of 
,

d({t : max
s∈K

|h(s + it) − f (s)| < ε}) > 0.

Bagchi’s version of the universality theorem reads as follows [1, Thm. 3.1].

Theorem A. Every Dirichlet L-function is universal for H∗(
).

In fact, an even stronger result concerning joint universality of the L-functions
associated with the Dirichlet characters to a given modulus k was proved in [1]. In
Section 3, we will establish a general condition for Voronin universality showing
in particular that, almost surely, ζχ(s) is universal for H∗(
).

By a slight extension of Bagchi’s notion of strong recurrence [1], we say that
a function h(s) in M(
) is a strongly recurrent point for vertical translations if for
every compact subset K of 
 and ε > 0,

(1.2) d
({

τ : max
s∈K

|h(s + iτ) − h(s)|
(1 + |h(s + iτ)|)(1 + |h(s)|) < ε

})
> 0.

In [1, Thm. 3.7], Bagchi used Theorem A and the Bohr–Landau theorem for
Dirichlet L-functions to establish the following equivalence1 for the generalized
Riemann hypothesis.

Theorem B. A Dirichlet L-function is zero-free in the half-plane Re s > 1/2
if and only if it is a strongly recurrent point for vertical translations in M(
).

In Section 3, we will observe that this theorem extends as well to a wide class
of Helson zeta functions, and we may in particular conclude that ζχ(s) is almost
surely a strongly recurrent point for vertical translations in M(
).

1.2 Statement of main results. The Bohr–Landau theorem2 asserts that

(1.3) N(σ,T) = O(T1−ε)

for some ε = ε(σ), 0 < ε < 1, whenever σ > 1/2, where as usual N(σ,T) denotes
the number of zerosρ = β+iγ of ζ(s) satisfyingβ > σ and 0 < γ ≤ T . It is clear that
a similar sparseness condition for the zeros and the poles of ζχ(s) must be required

1It may be observed that Theorem B would remain true if in (1.2) we had used the lower density
instead of the upper density to define “strong recurrence”.

2A bound of the form O(T1−ε) was first established by Carlson [8], by a refinement of the work of
Bohr and Landau [7] which only established the bound o(T).
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for ζχ(s) to be universal for H∗(
). A slight adjustment of the conclusion (1.3)
of the Bohr–Landau theorem, called the “Bohr–Landau condition,” will therefore
play a pivotal role in our treatment of universality.

On the other hand, we may ask whether any sequence satisfying a condition
similar to (1.3) may constitute the zeros of a Helson zeta function that is universal
for H∗(
). In fact, keeping in mind that ζ−χ(s) = ζχ(2s)/ζχ(s) and hence that the
zeros of ζχ(s) coincide with the poles of ζ−χ(s) in Re s > 1/2, and vice versa,
we may ask the more general question of whether zeros and poles can be placed
anywhere, subject to a sparseness condition like (1.3). Our first theorem gives
essentially an affirmative answer on the proviso that the points stay sufficiently
close to the critical line.

We will use the following terminology. We say that a set of points Z in the
complex plane is a signed multiset if there is a multiplicity mZ(ρ) in Z \ {0}
associated with every ρ in Z. We may declare that mZ(s) := 0 if s is not in Z and
define the sumZ+Y of two signed multisets Z and Y to be the set of numbers ρ such
that mZ+Y(ρ) := mZ(ρ) + mY(ρ) �= 0. The set of zeros and poles of a meromorphic
function h(s) constitutes in an obvious way a signed multiset, which we will denote
by Z(h(s)). We observe that Z(h(s)g(s)) = Z(h(s)) + Z(g(s)) if two meromorphic
functions h(s) and g(s) are defined on the same domain. A signed multiset Z is
said to be a multiset if mZ(ρ) > 0 for all ρ in Z. We write Z+(h(s)) for the multiset
of zeros of the meromorphic function h(s). We will frequently refer to (signed)
multisets as ordinary sets, without explicit reference to the associated multiplicity
of its elements. In particular, we will permit ourselves to think of (signed) multisets
as subsets of ordinary sets and to perform intersections with ordinary sets.

When the signed multiset Z is a subset of a domain , we say that it is locally
finite in  if there are only finitely many points ρ from Z in each compact subset
of . For a locally finite signed multiset Z in Re s > 1/2, we have the following
natural analogue of the counting function in (1.3):

NZ(σ,T) :=
∑

ρ=β+iγ∈Z:β>σ,|γ|≤T

|mZ(ρ)|

for σ ≥ 1/2. The Bohr–Landau condition will simply be that NZ(σ,T) = o(T) for
every σ > 1/2, which is a slight weakening of (1.3). Our condition for NZ(σ,T)
will depend on our knowledge of large prime gaps. Unconditionally, thanks to a
theorem of Baker, Harman, and Pintz [2], we know that

(1.4) π(x + ξ) − π(x) 
 ξ/ log x

holds for large x when ξ = x21/40, where as usual π(x) is the number of primes not
exceeding x.
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We are now ready to state the unconditional version of our first main result.
In view of the Bohr–Landau condition, we observe that condition (c) below is
essentially optimal close to σ = 1/2.

Theorem 1.1. Let Z be any locally finite signed multiset in the half-plane
Re s > 1/2 such that

(a) Z is a subset of the strip 1/2 < Re s ≤ α for some 1/2 < α < 59/80.
Suppose also that Z satisfies the following conditions:

(b) NZ(σ,T + 1) − NZ(σ,T) = O(Tε) for every σ > 1/2 and ε > 0;

(c) NZ(σ,T) = O(T
α−σ

α+σ−1 ).
Then there exists a Helson zeta function ζχ(s) with σ(χ) ≤ 1/2 so that

(i) Z is the set of zeros and poles of ζχ(s) in Re s > 1/2;
(ii) ζχ(s) is universal for H∗(
);
(iii) ζχ(s) is not a strongly recurrent point for vertical translations in M(
).

On the Riemann hypothesis, (1.4) would still hold for ξ = cx1/2 log x and a
suitable constant c. This would allow us to replace the fraction 59/80 in (a)
by 3/4. For our purposes, however, it would suffice to know a little less than (1.4),
for example that, say,

(1.5) π(x + ξ) − π(x) ≥ ξ

(log x)2+ε

for some ε > 0 and suitable ξ, depending on x. A well known conjecture of Cramér
in the distribution of prime numbers [10, 12], based on his famous random model,
asserts that G(x) = O((log x)2), where G(x) is the distance from x to the smallest
prime larger than x. While some doubt has been cast on this conjecture [20], it
seems still conceivable, as hinted at by Pintz in [19], that G(x) = O((log x)2+ε) may
hold for every ε > 0. If this were true, then the upper bound 59/80 in (a) would
be increased to the optimal value 1. We could then choose α arbitrarily close to 1.

We notice at this point that our density condition (c) is similar to the density
hypothesis for the zeros of ζ(s), i.e., the famous unproven assertion

N(σ,T) = (T1−2(σ−1/2)+ε)

that arose from Ingham’s work [16]. However, even with α arbitrarily close to 1,
our condition is still weaker than the density hypothesis. It would be interesting to
sharpen (c) so that our density condition would be “in accordance”with the density
hypothesis on the assumption that α can be chosen arbitrarily close to 1.

Our next theorem is a conditional variant of Theorem 1.1 in which we address
what happens if we go one step further and allow the points of Z to approach the
1-line:
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Theorem 1.2. Assume that G(x) = O((log x)2+ε) for every ε > 0. Let Z be

any locally finite signed multiset in the half-plane Re s > 1/2 such that for some
λ > κ > 1

(a) every σ = β + iγ in Z satisfies |γ| ≥ ee and 1/2 < β ≤ 1 − λ log log |γ|
log |γ| ;

(b) NZ(1/2,T) = O((logT)κ−1).
Then there exists a Helson zeta function ζχ(s) with σ(χ) ≤ 1/2 so that

(i) Z is the set of zeros and poles of ζχ(s) in Re s > 1/2;

(ii) ζχ(s) is universal for H∗(
);
(iii) ζχ(s) is not a strongly recurrent point for vertical translations in M(
).

Conclusion (iii) of either of the two theorems above may be strengthened if an
additional restriction is put onZ. To see this, we need the following terminology. In
contrast to the notion of strong recurrence, we say that h(s) in M(
) is a wandering
point for vertical translations if there exist a compact subset K of 
 and ε > 0 such
that

max
s∈K

|h(s + iτ) − h(s)|
(1 + |h(s + iτ)|)(1 + |h(s)|) ≥ ε

for every sufficiently large τ. We notice that if h(s) has only a finite number of
zeros and poles in any strip 1/2 + ε ≤ Re s ≤ 1 − ε, then h(s) is a wandering point
for vertical translations. We see this by choosing K to be a closed disc centred at
any of the zeros or poles of h(s), with K so small that K ⊂ 
 and there are no other
zeros or poles in K. For every sufficiently large translation parameter τ, there is
neither a zero nor a pole in K + iτ, and for such τ we may use Rouché’s theorem to
conclude.

Hence, in the special case when Z has finitely many points in

1/2 + ε ≤ Re s ≤ 1 − ε

for every ε, 0 < ε < 1/4, we may replace conclusion (iii) of both Theorem 1.1
and Theorem 1.2 by the following stronger assertion:
(iii’) ζχ(s) is a wandering point for vertical translations in M(
).

Theorem1.1 requires the zeros and poles to be at a positive distance to the 1-line.
We have not been able to improve the upper bound α < 59/80 unconditionally,
but curiously, via ζ(s) itself, we are indeed able to place a pole at the “extreme”
point s = 1:

Theorem 1.3. Let α < ν be two numbers in the interval (1/2, 59/80] and Z

be any locally finite signed multiset in the half-plane Re s > 1/2 such that

(a) mZ(ν) > 0 and Z \ {ν} is a subset of the strip 1/2 < Re s < α .

Suppose also that Z satisfies the following conditions:
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(b) NZ(σ,T + 1) − NZ(σ,T) = O(Tε) for every σ > 1/2 and ε > 0;

(c) NZ(σ,T) = O(T
α−σ

α+σ−1 ).

Then there exists a Helson zeta function ζχ(s) with σ(χ) ≤ 1/2 so that

(i) the set of zeros and poles of ζχ(s) in Re s > 1/2 is the restriction to this

half-plane of the signed multiset Z(ζ(s)) + Z;
(ii) ζχ(s) is universal for H∗(
);
(iii) ζχ(s) is not a strongly recurrent point for vertical translations in M(
).

We will see during the course of the proof that this result could be elaborated to
allow meromorphic continuation as well as zeros and poles beyond the critical line.
We have chosen the current version to have a statement that is suitably “aligned”
with Theorem 1.1 and has essentially the same proof.

We could of course have stated a conditional version of Theorem 1.3, assuming
either the Riemann hypothesis or Cramér’s conjecture, but this would essentially
just mean that ν could be placed closer to the 1-line. The zero at ν prevents us from
placing other zeros closer to the 1-line, so that we are unable to obtain an analogue
of Theorem 1.2.

A reasonable conclusion to be drawn from the three theorems stated above
is that Theorem B, while a striking reformulation of the generalized Riemann
hypothesis, may be an unlikely first step in establishing the truth of it if no other
characteristic feature of the Dirichlet L-functions than Voronin universality is taken
into account.

Our fourth theorem shows that a sparseness condition of Bohr–Landau type is
a rather drastic restriction.

Theorem 1.4. Let Z+ be a locally finite multiset in Re s > 1/2. Suppose that

at least one of the following two conditions hold:

(i) Z+ is a subset of the strip 1/2 < Re s ≤ 39/40;

(ii) Z+ is a subset of 1/2 < Re s < 1 and the Riemann hypothesis is true.

Then there exists a Helson zeta function ζχ(s) with σ(χ) ≤ 1/2 so that Z+ is the set
of zeros of ζχ(s) in Re s > 1/2.

Hence, in particular, there exist Helson zeta functions ζχ(s) with σ(χ) ≤ 1/2
that fail spectacularly to be universal for H∗(
). Here we have chosen to confine
ourselves to the construction of ζχ(s) with prescribed zeros, because this can be
done with essentially the same method as that used to prove Theorem 1.1. The
more general problem of constructing ζχ(s) with prescribed zeros and poles, on
the other hand, would require a further elaboration of our method which we have
chosen not to pursue in this paper.
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For every character χ, there exists a sequence of vertical translates τn such that

ζχ(s) = lim
n→∞ ζ(s + iτn),

with uniform convergence on compact subsets of the half-plane Re s > 1. Keeping
this in mind, we may think of Theorem 1.4 as expressing another kind of univer-
sality of ζ(s): On the Riemann hypothesis, any conceivable set of zeros in the strip
1/2 < Re s < 1 for a function meromorphic in Re s > 1/2 can be reached via
local uniform convergence of vertical translates of ζ(s) in Re s > 1, along with
meromorphic continuation.

From another point of view, the appearance of the Riemann hypothesis in (ii)
may perhaps seem a little deceptive, because Theorem 1.4 has essentially no
relation to arithmetic. In fact, an analogous statement about “universality” of zeros
in 
 could be made for Euler products with the functions p−s replaced by λ−s

n

for any reasonably regular sequence λn satisfying λn ∼ n log n. Curiously, the
Riemann hypothesis implies exactly the regularity we need, expressed in terms of
the admissible range h ≥ c

√
x log x in (1.4), and this is why we have chosen the

formulation of condition (ii) above.
On the assumption that G(x) = O((log x)2+ε) for every ε > 0, we could prove

an analogue of Theorem 1.4 for Z+ being a subset of the entire critical strip
0 < Re s < 1. In this case, a minor extra precaution would have to be taken close
to the 1-line because of the extra logarithmic factor in (1.5) compared to (1.4). Our
proof of Theorem 1.4 should make it clear how to proceed, and we will therefore
refrain from entering the details of such a conditional construction.

1.3 Outline of the paper. We begin in the next section by clarifying the
following simple point: When ζχ(s) has a meromorphic continuation across the
1-line, the intersection of Z(ζχ(s)) with that line can consist of at most one point,
and this point can only be a simple pole or a simple zero. This result is of some
basic importance and will have several applications in subsequent sections.

In Section 3, we turn to our condition for universality and our extensions of
Theorem A and Theorem B. Our approach differs from previous work in this area
(see for example [23]) in that we focus on purely multiplicative conditions for
universality of zeta functions. Indeed, our condition for universality rests on two
pillars, one arithmetic and one analytic: Kronecker’s approximation theorem and
approximation of analytic functions by finite Euler products. For this reason, we
work exclusively with log ζχ(s) rather than with ζχ(s) itself. As in earlier work,
bounded mean squares play a crucial role in carrying out the actual approximation
of analytic functions, but now the mean squares are computed for log ζχ(s), or,
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to be more precise, we rely on the mean square distance from log ζχ(s) to the
logarithm of finitely many factors of the Euler product of ζχ(s). Convergence
of this distance requires much less from ζχ(s) than the boundedness of the mean
squares of ζχ(s). We need however to add the Bohr–Landau condition, which is
not automatically implied by the mean square convergence of the logarithms of the
finite Euler products.

The primary goal of Section 4 is to show that our “multiplicative” condition
for universality, expressed in terms of log ζχ(s), implies the traditional “additive”
condition, expressed in terms of ζχ(s). From a function theoretic point of view,
the distinction between the two conditions can be related to the classical notions
of respectively functions of bounded type and functions of finite order, and our
arguments rely on the canonical factorization of functions in either of these classes.
Up to an inessential factor, a function of finite order is a bounded analytic function,
while a function of bounded type is the ratio of two bounded analytic functions. We
introduce and discuss these notions in the framework of Helson zeta functions and
show in particular that the “explicit formula” for ζ ′

χ(s)/ζχ(s) becomes much more
precise when ζχ(s) is assumed to be of finite order rather than of bounded type.
Nevertheless, digressing briefly from our main discussion, we are able to supply
arguments to show that if ζχ(s) extends to an analytic function of bounded type in
a half-plane including the 1-line and has a zero or a pole on that line, then ζχ(s)
has a zero-free region of the classical de la Vallée–Poussin type whenever a natural
density condition for the zeros is met.

In Section 5, we have collected some auxiliary results to be used in the proof
of our main theorems. Here we express in precise terms the intuitive idea that we
should make sense of

(1.6)
ζ ′
χ(s)

ζχ(s)
− ∑

ρ

mZ(ρ)
(s − ρ)

as an analytic function in Re s > 1/2, when constructing ζχ(s) with Z(ζχ(s)) = Z.
We need to modify (1.6) to get a manageable problem. First, the problem becomes
easier if we replace ζ ′

χ(s)/ζχ(s) by a Dirichlet series over a carefully chosen subse-
quence of the primes and associated values for the character χ. Then the remaining
part of ζ ′

χ(s)/ζχ(s) can be found using our random model. Second, the sum over ρ

in (1.6) need not converge and even if it does, it may be hard to relate the sum to
a Dirichlet series over prime powers. The solution to the latter problem will be to
multiply each term in (1.6) by a suitable exponential factor, allowing us to write
down manageable Mellin transforms. By our density condition on Z, this can be
done such that we also have absolute convergence of the sum in Re s > 1/2. The
proofs in the two subsequent sections exhibit the details of such a construction.
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Section 5 also contains some general estimates required to check the mean square
condition of our universality theorem (Theorem 3.2).

The next three sections give the proofs of our main theorems. We begin in
Section 6 with the the first step of the proof Theorem 1.1, which consists in picking
a sub-product of the Euler product of ζ(s), extending to a meromorphic function
with just one pole of the required multiplicity at s = ν and no other zeros or poles.
When doing this “surgery” on the Euler product of ζ(s), we are faced with many
of the same challenges that will appear in the main part of the proof. The situation
is however simpler because the sum in (1.6) “degenerates” into a single term.

The proofs of Theorem 1.1, Theorem 1.2, and Theorem 1.3 are presented
jointly in Section 1.1. The additional challenge in this section is to pick suitable
exponential factors in the sum in (1.6), as alluded to above. For the proof of
Theorem 1.3, it is essential that we use primes from the “cutout” Euler product
from Section 6 to construct the corresponding Euler product.

In the final Section 8, we prove Theorem 1.4. We rely on essentially the same
construction as before, but resort in this case also to a special dyadic decomposition
of the strip 1/2 < Re s < 1 and a corresponding grouping of the points ρ of the
multiset Z+. In addition, we “assign” a pole to each of the prescribed zeros, in
order to control the convergence of the appropriate counterpart to the sum in (1.6).
We note in passing that this “pairing” of zeros and poles would obviously be
inadmissible if our task were to construct ζχ(s) with a given signed multiset of
zeros and poles.

2 Zeros and poles on the 1-line

The line σ = 1 plays a special role in our subject for the simple reason that it
is the abscissa of absolute convergence for the Dirichlet series of ζχ(s). As far
as universality is concerned, a deep and dramatic conclusion about this line may
be drawn from Theorem A in conjunction with what was observed in [14] about
vertical limits in Re s > 1: Pick any f (s) in H∗(
); then there exists a sequence of
vertical translates ζ(s + iτn), with τn in R, such that

• ζ(s + iτn) → f (s) uniformly on every compact subset of 1/2 < Re s < 1,
• ζ(s+ iτn) → ζχ(s) uniformly on every compact subset of Re s > 1 for some χ

on T∞.

Hence the vertical line Re s = 1 is a “brick wall” between uniform convergence
on compact subsets of respectively the strip 1/2 < Re s < 1 and the half-plane
Re s > 1. In this assertion, we could of course replace ζ(s) by any Helson zeta
function that is universal for H∗(
).
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With this situation in mind, we now establish a “prime number theorem” for
our zeta functions ζχ(s), displaying a different peculiarity of the 1-line.

Theorem 2.1. Suppose that ζχ(s) is meromorphic on the line Re s = 1. Then

only the following three situations may occur:
(i) ζχ(s) has neither a pole nor a zero on σ = 1.

(ii) ζχ(s) has a simple pole and neither a zero nor any other pole on σ = 1.
(iii) ζχ(s) has a simple zero and neither a pole nor any other zero on σ = 1.

Proof. In σ > 1, we may represent ζχ(s) by its Euler product. It follows that
we have

log ζχ(s) =
∑

p

χ(p)p−s + O(1)

uniformly in σ > 1. Since
∑

p

p−σ = log
1

σ − 1
+ O(1),

it is clear that a pole or a zero on σ = 1 must be simple.
Now suppose we have a simple pole at s = 1+ it0. Then log ζ(s)− log ζχ(s+ it0)

is analytic at s = 1. Representing this function by its Dirichlet series, we see that

(2.1)
∑

p

(1 − χ(p)p−it0)p−σ = O(1)

uniformly for σ > 1. Writing χ(p)p−it0 =: eiθp with −π < θp ≤ π, we see that

Re(1 − χ(p)p−it0)p−σ = (1 − cos θp)p
−σ � θ2

pp
−σ,

so that (2.1) implies

(2.2)
∑

p

θ2
pp

−1 < ∞.

We may now write

log ζχ(s) = log ζ(s − it0) + i
∑

p

sin θpp
−s+it0 + O(1),

which holds uniformly for σ > 1. By the Cauchy–Schwarz inequality and (2.2),

(2.3)
∑

p

| sin θpp
−s+it0 | �

(∑
p

p1−2σ

)1/2

∼
(

log
1

(σ − 1)

)1/2
.

Since ζ(s − it0) has only one simple pole and no zeros on σ = 1, the bound in (2.3)
implies that ζχ(s) has neither an additional pole nor a zero on the line σ = 1.

An obvious variation of this argument applies when ζχ(s) has a simple zero
instead of a simple pole at the point 1 + it0. �
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Theorem 2.1 will be used several times in what follows, and it will in particular
allow us to establish a general assertion about zero-free regions in Subsection 4.3.

3 A condition for universality

In this section, we identify the key ingredients required to establish Voronin uni-
versality and also the equivalence between the Riemann hypothesis and strong
recurrence (see Theorem B). We recall the central points of our approach, men-
tioned in the introduction: We focus on purely multiplicative conditions forVoronin
universality, and of central importance are bounded mean squares of log ζχ(s) and
what we will call the Bohr–Landau condition for the density of the zeros and poles
of ζχ(s) in C1/2.

Before presenting our general theorem on universality, we note that the proof
of Theorem A may be applied without any change to establish a condition in terms
of mean squares of the function ζχ(s) itself. Here we introduce the notation

Cα := {s = σ + it : σ > α}

and the terminology that ζχ(s) is of finite order in Cα for α < 1 if ζχ(s) has
σ(χ) ≤ α, is analytic in α ≤ Re s < 1, and satisfies |ζχ(σ + it)| = O(|t|A) for some
A ≥ 0, uniformly in σ ≥ α. Functions of finite order constitute a classical subject
in the theory of Dirichlet series (see for example [24, p. 298]), where one usually
requires the function to be analytic in Cα. In view of Theorem 2.1, we have found
it convenient to allow our functions to have a simple pole on the 1-line, so that ζ(s)
itself can be viewed as a function of finite order in any half-plane Cα for α < 1.

Theorem 3.1. Suppose that σ(χ) ≤ 1/2 and that ζχ(s) is of finite order in Cα

and satisfies

(3.1) sup
T≥1

1
2T

∫ T

−T
|ζχ(α + it)|2dt < ∞

whenever 1/2 < α < 1. Then ζχ(s) is universal for H∗(
).

We will not comment further on the direct proof of this result, because we will
establish later that it is a consequence of the main theorem of this section. The
idea for this new result is essentially to replace ζχ(s) by log ζχ(s) in (3.1). This
will result in a much weaker growth condition on ζχ(s), and it will allow us to
treat zeros and poles on equal terms. We need however, as already mentioned
in the introduction, to add a density condition on the zeros and poles that holds
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automatically on the assumptions of Theorem 3.1. To this end, we set

N(χ, σ,T) := NZ(ζχ(s))(σ,T) =
∑

ρ=β+iγ∈Z(ζχ(s)):β>σ,|γ|≤T

|mZ(ζχ(s))(ρ)| for σ ≥ σ(χ).

In the special case when σ(χ) ≤ 1/2, we say that ζχ(s) satisfies the Bohr–Landau
condition if

(3.2) N(χ, σ,T) = o(T)

for every σ > 1/2.
Wewill use the natural convention for aHelson zeta function ζχ(s) withσ(χ) ≤ α

that log ζχ(s) is the function defined in the domain obtained from Cα by removing
all horizontal line segments between the line Re s = α and the zeros and the poles,
if any, of ζχ(s), by analytic continuation from the half-plane C1 of the Dirichlet
series ∞∑

n=2

�(n)
log n

χ(n)n−s.

Here and in the sequel, �(n) denotes the classical von Mangoldt function which
takes the value log p if n = pk for some k ≥ 1 and otherwise �(n) = 0. We notice
that log ζχ(s) fails to exist only on at most a discrete subset of any vertical line
in Cα, and hence we may compute mean squares along such lines. These mean
squares will all be finite since log ζχ(s) have only logarithmic singularities.

Voronin universality deals primarily with approximation properties of finite
Euler products, and hence we are particularly interested in the products

Pxζχ(s) :=
∏
p≤x

1
(1 − χ(p)p−s)

for which

logPxζχ(s) :=
∑

n≥2:p|n⇒p≤x

�(n)
log n

χ(n)n−s =
∑
p≤x

∞∑
j=1

j−1χ(p)jp−js.

This Dirichlet series converges absolutely for Re s > 0.
Our condition for Voronin universality now reads as follows.

Theorem 3.2. Suppose that σ(χ) ≤ 1/2 and that ζχ(s) satisfies the Bohr–

Landau condition. If, in addition, there exists a constant C, depending only on χ,
such that

(3.3) lim sup
T→∞

1
2T

∫ T

−T
| log ζχ(σ + it) − log Pxζχ(σ + it)|2dt ≤ C

∑
p>x

p−2σ

for x ≥ 1, uniformly for σ ≥ σ0 whenever σ0 > 1/2, then ζχ(s) is universal
for H∗(
).
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Theorem4.1 of the next section shows that the condition of Theorem3.1 implies
that of Theorem 3.2. Hence, in view of Theorem 4.1, the following consequence
of Theorem 3.2 yields an extension of Theorem B.

Corollary 3.1. Suppose that ζχ(s) is a Helson zeta function satisfying the

conditions of Theorem 3.2. Then ζχ(s) is a strongly recurrent point for vertical
translations in M(
) if and only if ζχ(s) is in H∗(
).

Proof. The “if” part is immediate from Theorem 3.2. To see that the “only
if” part also holds, we use Rouché’s theorem as in the proof of [1, Thm. 4.7] to
show that if ζχ(s) is a strongly recurrent point for vertical translations in M(
) and
has a zero or a pole in 
, then there exists a σ > 1/2 and a positive constant c such
that N(χ, σ,T) ≥ cT for large enough T . This is in conflict with the Bohr–Landau
condition (3.2), hence ζχ(s) must belong to H∗(
). �

To prove Theorem 3.2, we will follow [4, Ch. 11]. We begin by stating the
crucial approximation property of finite Euler products.

Lemma 3.1. Let f (s) be a function in H∗(
), and let K be a compact subset
of 
. Given ε, θ > 0 and any χ in T∞, there exist a set A of positive numbers with

positive density and a positive number X such that
(1) sups∈K |f (s) − PXζχ(s + iτ)| < ε for every τ in A;

(2) for every x ≥ X,

d
({

τ ∈ A : sup
s∈K

|Pxζχ(s + iτ) − PXζχ(s + iτ)| < ε
})

> (1 − θ)d(A).

We would like to stress that this remarkable result, originating in Voronin’s
work [26], is valid for every χ, without any assumption on the function ζχ(s). The
proof is word for word the same as that of [4, Thm. 11.2], which in turn relies on
[1].

Proof of Theorem 3.2. We are given a compact set K in 
 and begin by
picking a bounded domain U, K ⊂ U, whose closure is contained in 
. We set

‖g‖2
A2(U) :=

∫
U

|g(s)|2dm2(s),

where g(s) is some measurable function defined on U and m2 is Lebesgue area
measure on C. The Bergman space A2(U) consists of those analytic functions g(s)
on U for which ‖g‖A2(U) < ∞. It is a well known fact (see [5, Lem. 4.8.6]) that
there exists a constant C(K,U) such that

(3.4) max
s∈K

|g(s)| ≤ C(K,U)‖g‖A2(U)

for every g(s) in A2(U).
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Now set
D := {τ > 0 : log ζχ(s + iτ) ∈ A2(U)};

we notice that by the Bohr–Landau condition, d(D) = 1. Using our assumption
(3.3) and Fubini’s theorem, we see that we can make

lim sup
T→∞

1
T

∫
τ∈D,τ≤T

∫
U

| log ζχ(s + iτ) − logPxζχ(s + iτ)|2dm(s)dτ

as small as we wish if we choose x large enough. Hence, in view of (3.4), we have

lim sup
T→∞

1
T

∫
τ∈D,τ≤T

max
s∈K

| log ζχ(s + iτ) − logPxζχ(s + iτ)|2dτ < η

for x sufficiently large, given an arbitraryη > 0. We infer from this, byChebyshev’s
inequality, that

m
({

τ ∈ D, τ ≤ T : max
s∈K

| log ζχ(s + iτ) − log Pxζχ(s + iτ)| ≥ ε
})

≤ (2η/ε2)T

for T large enough. Since d(D) = 1, this entails that

(3.5)
m
({

τ ∈ D, τ ≤ T : max
s∈K

| log ζχ(s + iτ) − log Pxζχ(s + iτ)| < ε
})

≥ (1 − 3η/ε2)T

for sufficiently large T . We now observe that if z and w are two arbitrary complex
numbers, then

|z − w| < ε implies | exp(z − w) − 1| < eε − 1.

Therefore, since we can make η as small as we wish by choosing x sufficiently
large, (3.5) implies that, given an arbitrary compact subset K of 
 and ε, δ > 0,
there exists a positive number Y such that

(3.6) d
({

τ > 0 : max
s∈K

∣∣∣1 − ζχ(s + iτ)
Pxζχ(s + iτ)

∣∣∣ < ε
})

≥ 1 − δ

whenever x ≥ Y .
Now let f (s) be any function in H∗(
) and K any compact subset of 
. We

apply Lemma 3.1 with θ = 1/3 and an arbitray ε > 0. Accordingly, there exist a
set A of positive density and a positive number X such that the set

Ax :=
{
τ ∈ A : max

s∈K
|Pxζχ(s + iτ) − PXζχ(s + iτ)| < ε

}

satisfies
d(Ax) ≥ 2d(A)/3
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whenever x ≥ X. Moreover, using also conclusion (1) of Lemma 3.1 and setting

M := max
s∈K

|f (s)| + 2ε,

we have

(3.7) max
s∈K

|Pxζχ(s + iτ)| < M

for every τ in Ax when x ≥ X. Then setting

Bx :=
{
τ > 0 : max

s∈K

∣∣∣1 − ζχ(s + iτ)
Pxζχ(s + iτ)

∣∣∣ < ε
}
,

we may infer from the triangular inequality that

max
s∈K

|ζχ(s + iτ) − f (s)| < 2ε + Mε

when τ is in Ax ∩ Bx and x ≥ X. Choosing δ = d(A)/3 in (3.6), we find that
d(Bx) ≥ 1 − d(A)/3 for x ≥ Y , and we therefore have

d({τ > 0 : max
s∈K

|ζχ(s + iτ) − f (s)| < 2ε + Mε}) ≥ d(Ax ∩ Bx)

≥ d(Ax) + d(Bx) − 1 ≥ d(A)/3

when both x ≥ X and x ≥ Y . This concludes the proof, since ε may be suitably
adjusted. �

We close this section by observing that we could have dropped the proviso
that Z satisfy the Bohr–Landau condition in Theorem 3.2, if we required Z to be a
multiset instead of a signed multiset. Indeed, setting

nZ(σ,T) :=
∑

ρ=β+iγ∈Z,β>σ,T<|γ|≤T

mZ(ρ),

we may use a classical formula of Littlewood [25, (9.9.1) p. 220] to deduce that

(3.8)
∫

R(σ,T)
(log ζχ(s) − log Pxζχ(s))ds = −2πi

∫ 2

σ
nZ(u,T)du,

where R(σ,T) is the contour obtained by traversing the boundary of the rectangle

{u + iv : σ ≤ u ≤ 2, |v | ≤ T}
in the counterclockwise direction. Assuming that (3.3) holds uniformly for σ ≥ σ0

whenever σ0 > 1/2, we find that
∫ T+1

−T−1

∫ 2

σ0

| log ζχ(σ + it) − log Pxζχ(σ + it)|2dtdσ ≤ CT
∑
p>x

(log p)−1p−2σ0
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when T is large enough. Hence there exists a ξ in [0, 1] such that

∫ 2

σ0

| log ζχ(σ ± i(T + ξ)) − log Pxζχ(σ ± i(T + ξ))|2dσ ≤ CT
∑
p>x

(log p)−1p−2σ.

Returning to (3.8) and applying the Cauchy–Schwarz inequality along each side
of the rectangle, we infer that

(3.9)
∣∣∣∣
∫ 2

σ
nZ(u,T)du

∣∣∣∣ � T
(∑

p>x

p−2σ0

)1/2

.

If Z is a multiset, then nZ(u,T) = NZ(u,T), so that (3.9) entails that

NZ(σ,T) � T
(∑

p>x

p−2σ0

)1/2

for every σ > σ0. This holds for every fixed x ≥ 1 and sufficiently large T , and
hence it implies the Bohr–Landau condition.

Because of possible cancellations in the sum defining nZ(u,T), we may not
conclude similarly from (3.9) in the general case. A variant of the constructions of
Section 7 and Section 8 may in fact be used to show that (3.3) may hold even if the
Bohr–Landau condition fails. Hence the condition that Z satisfy the Bohr–Landau
is not obsolete in Theorem 3.2.

4 Helson zeta functions of bounded type

4.1 Functions of bounded type and the canonical factorization. We
will nowestablish some useful facts aboutHelson zeta functions that are of bounded
type in some half-plane. This discussion will in particular allow us to prove, in the
next subsection, that Theorem 3.1 is a consequence of Theorem 3.2 .

To begin with, we recall that a meromorphic function h(s) in a domain D
of the complex plane is said to be a function of bounded type if we may write
h(s) = f (s)/g(s), with f (s), g(s) bounded analytic functions in D. It is a classical
fact that a function of bounded type in some half-plane Cα admits the following
canonical factorization (see for example [18, p. 197]). First, a signed multiset Z
in Cα will constitute the zeros and poles of some function h(s) of bounded type
in Cα if and only if it satisfies the Blaschke condition

(4.1)
∑

ρ=β+iγ∈Z
|mZ(ρ)| (β − α)

1 + γ2
< ∞.
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Based on this fact, we introduce functions of the form

bρ;α(s) :=
( s − ρ

s − 2α + ρ

)
·
(1 − α + ρ

1 + α − ρ

)
·
∣∣∣1 + α − ρ

1 − α + ρ

∣∣∣
as the “atoms” of our representationof zeros and poleswhen ρ �= 1+α. The function
bρ;α(s) is a conformal map of Cα to the unit disc, sending ρ to 0, normalized to
make the (generalized) Blaschke product

BZ;α(s) :=
(s − 1 − α

s + 1 − α

)mZ(1+α) ∏
ρ∈Z,ρ �=1+α

[bρ;α(s)]
mZ(ρ)

absolutely convergent for every s in Cα when (4.1) holds.
We use also the fact that h(σ+it) tends to a finite boundary value, called h(α+it),

when σ ↘ α for almost every point t of the real line. In fact, this boundary function
will satisfy ∫ ∞

−∞
| log |h(α + it)||

1 + t2
dt < ∞,

which allows us to introduce the outer function

(4.2) U(s) := exp
(

1
π

∫ ∞

−∞

[ 1
s − α − ix

− ix
1 + x2

]
log |h(α + ix)|dx

)
.

In general, the canonocial factorization takes the form

(4.3) h(s) = BZ;α(s)S(s)ea(s−α)+ibU(s),

where a and b are real numbers and S(s) is the ratio of two singular inner functions,
represented by a singular measure on the line Res = α.

We will only be interested in the case when h(s) is a Helson zeta function ζχ(s)
that extends meromorphically to the closed half-planeCα. Then the factor S(s) will
not be present in the canonical factorization of h(s). Also, since log |ζχ(σ)| → 0
when σ → ∞ and we may show that the remaining part of the product will give
a contribution of size o(σ) to log |ζχ(σ)|, it is clear that a = 0. The unimodular
factor eib may now be absorbed in BZ;α(s) so that (4.3) reduces to

ζχ(s) = BZ;α(s)U(s)

when ζχ(s) is of bounded type in Cα and meromorphic in Cα.
It is immediate that if ζχ(s) is of finite order in Cα, then it is also of bounded

type. Indeed, if ζχ(s) has no pole on the 1-line, then ζχ(s) is the ratio of the two
bounded analytic functions ζχ(s)/(s+α+1)A and 1/(s+α+1)A for a suitable A ≥ 0.
If ζχ(s) has a simple pole at 1 + it0, we just multiply each of these function by
s − 1 − it0 and get the same result.
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It requires a little more to see that the functions constructed in Theorem 1.1
and Theorem 1.2, via the conditions of Theorem 3.2, will also be of bounded type.
This fact is of some general interest, but since we will not use it in the sequel,
we only sketch the argument. We observe to begin with that plainly, if Z satisfies
condition (c) of Theorem 1.1, then the Blaschke condition (4.1) holds for every
α > 1/2. Next, by the Cauchy–Schwarz inequality,

∫ σ+i∞

σ−i∞
| log h(σ + it)|

1 + t2
dt ≤ √

π

(∫ σ+i∞

σ−i∞
| log h(σ + it)|2

1 + t2
dt
)1/2

,

and furthermore,
∫ σ+i∞

σ−i∞
| log h(σ + it)|2

1 + t2
dt �

∞∑
k=0

2−2k
∫ σ+i2k

σ−i2k
| log h(σ + it)|2dt

≤ 2
∞∑
k=0

2−k sup
T≥1

1
2T

∫ σ+iT

σ−iT
| log h(σ + it)|2dt.

These two bounds show that (3.3) with x = 1 implies

sup
σ≥α

∫ ∞

−∞
| log ζχ(σ + it)|

1 + t2
dt < ∞.

We may use the Blaschke condition to show that, similarly,

sup
σ≥α

∫ ∞

−∞
| logBZ;α(σ + it)|

1 + t2
dt < ∞.

It then follows that the function

hR(s) :=
[ ζχ(s)
BZ;α(s)

]( R+α
R+s )2

is a bounded zero-free function in the half-planeCα+ε for every R > −α and ε > 0,
and hence

hR(s) = exp
(

1
π

∫ ∞

−∞

[ 1
s − α − ε − ix

− ix
1 + x2

]
log |hR(α + ε + ix)|dx

)

when 0 < ε < σ − α. We now let R → ∞ and use Lebesgue’s dominated
convergence theorem to deduce that

ζχ(s)
BZ;α(s)

= exp
(

1
π

∫ ∞

−∞

[ 1
s − α − ε − ix

− ix
1 + x2

]
log

∣∣∣ ζχ(α + ε + ix)
BZ;α(α + ε + ix)

∣∣∣dx
)

.

Since this holds for every ε > 0, we may use a normal family argument to infer
that ζχ(s)/BZ;α(s) is the ratio of two bounded analytic functions in Cα. This is
exactly what we need to conclude that ζχ(s) is of bounded type in Cα.
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We turn to some bounds that in particular illustrate that much stronger con-
clusions may be drawn if we assume ζχ(s) to be of finite order rather than just of
bounded type.

Lemma 4.1. Suppose that σ(χ) ≤ α < 1 and that ζχ(s) is meromorphic
in Cα and of bounded type in Cα. Then the outer function U(s) of the canonical

factorization of ζχ(s) satisfies

(4.4)
1
π

∫ ∞

−∞
| log |U(α + ix)||

(x − t)2 + 1
dx =

⎧⎨
⎩

O(log |t|), ζχ(s) is of finite order in Cα

o(t2), otherwise

for |t| ≥ 2.

Proof. From (4.2) we find that

(4.5) log |U(σ + it)| =
1
π

∫ ∞

−∞
(σ − α) log |U(α + ix)|

(x − t)2 + (σ − α)2
dx.

We begin with the case when ζχ(s) is of finite order. Then log |BZ;α(2 + it)| ≤ C

for some constant C because BZ;α(s) has at most one pole, which is simple and
located on the 1-line. Since we also have log |ζχ(2 + it)| = O(1), it follows that

|U(2 + it)| ≥ C

for some positive constant C. In view of (4.5) and the bound

log |U(α + ix)| ≤ c log(|x| + 2),

we conclude that (4.4) holds.
When ζχ(s) is of bounded type, we just observe that
∫ ∞

−∞
| log |U(α + ix)||

(x − t)2 + 1
dx � t2

∫
|x|≥|t|/2

| log |U(α + ix)||
1 + x2

dx + O(1) = o(t2). �

Lemma 4.1 yields the following “explicit formula”.

Lemma 4.2. Let the assumptions be as in Lemma 4.1. Then

ζ ′
χ(s)

ζχ(s)
=
∑

ρ

mZ(ρ)
( 1
s − ρ

− 1
s − 2α + ρ

)
+

U′(s)
U(s)

,

where

U′(s)
U(s)

=

⎧⎨
⎩

O(log |t|), ζχ(s) of finite order

o(t2), otherwise

when |t| → ∞ and Re s ≥ σ0 for every fixed σ0 > α.
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Proof. We see from (4.2) that

U′(s)
U(s)

= − 1
π

∫ ∞

−∞
log |U(α + ix)|
(s − α − ix)2

dx.

Hence by (4.4),

U′(s)
U(s)

=

⎧⎨
⎩

O(log |t|), ζχ(s) of finite order

o(t2), ζχ(s) is of bounded type

when σ ≥ σ0 for some fixed σ0 > α. Since the sum is just the logarithmic derivative
of BZ;α(s), the result follows from the canonical factorization. �

The bound for U′(s)/U(s) may seem rather inordinate in the case when ζχ(s) is
assumed only to be of bounded type. We will nevertheless be able to make use of
this estimate in Subsection 4.3 to draw some nontrivial conclusions about zero-free
regions.

4.2 Proof that Theorem 3.2 implies Theorem 3.1. We begin by es-
tablishing the following simple fact.

Lemma 4.3. Suppose that σ(χ) ≤ α < 1 and that ζχ(s) is of finite order in

Cα. Then for every σ > α,

N(χ, σ,T + 1) − N(χ, σ,T) = O(log T).

Proof. We use again Theorem 2.1 according to which ζχ(s) has at most one
pole on the 1-line. This means that, away from this possible pole, we may apply
Jensen’s formula in discs of radius 1−σ/2−α/2 centered on the 1-line to conclude
in a similar way as in [25, Thm. 13.5]. �

The preceding lemmas enable us to show that Theorem3.2 implies Theorem3.1.

Theorem 4.1. Suppose that σ(χ) ≤ 1/2 and that ζχ(s) is of finite order in Cα

and satisfies

(4.6) sup
T≥1

1
2T

∫ T

−T
|ζχ(α + it)|2dt < ∞

whenever 1/2 < α < 1. Then ζχ(s) satisfies the Bohr–Landau condition and

(4.7) lim
T→∞

1
2T

∫ T

−T
| log ζχ(σ + it) − Px log ζχ(σ + it)|2dt =

∑
p>x

∞∑
j=1

j2p−2jσ,

uniformly whenever σ ≥ α and α > 1/2.
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Proof. We rely on familiar arguments and will therefore only sketch the proof.
We may assume without loss of generality that a possible simple pole of ζχ(s) is
not located in the upper half-plane. Our first aim is to show that we will have

(4.8) N(χ, σ,T) = O(T1−ε)

for σ > 1/2 and ε = ε(σ) > 0. This follows by a classical argument of Ingham
[16] which may be used in the following way. Set

MX(s) :=
∑
n<X

μ(n)χ(n)n−s,

where μ(n) is the Möbius function, and set also

fX(s) := ζχ(s)MX(s) − 1 and QX(s) := 1 − fX(s)2,

so that the zeros of ζχ(s) are also zeros of QX(s). We notice that

log |QX(s)| ≤ log(1 + |fX(s)|2) ≤ |fX(s)|
and estimate then∫ T

1
|fX(1/2 + η + it)|dt and

∫ T

1
|fX(1 + 1/ logT + it)|dt

in the usual way for a suitable η, 0 < η < σ − 1, using the Cauchy–Schwarz
inequality in either case. Here it is crucial that the mean squares of MX(s) are
uniformly bounded as long as we stay to the right of the 1/2-line, so that, by our
assumption (4.7), the first of these integrals is O(T), uniformly in X; the second
integral is O(T1/2(T/X + 1)(logT)2) by the bound (17) of [16]. Now appealing
to the same lemma of Littlewood that was used at the end of Section 3 (see also
[25, Sec. 9.9]) and a convexity argument for the moments in a strip [13], we may
conclude in a similar way3 as in [16]; see also [25, pp. 230–235].

We set Z := Z(ζχ(s)) and notice that Lemma 4.3 and Lemma 4.2 give us a
replica of a familiar formula in the theory of the Riemann zeta function, namely

ζ ′
χ(s)

ζχ(s)
=

∑
ρ:|γ−t|≤1,β≥α

mZ(ρ)
s − ρ

+ O(log |t|)

uniformly for σ ≥ α. In fact, since logPxζχ(s) has an absolutely convergent
Dirichlet series in σ > 0, we get more generally

ζ ′
χ(s)

ζχ(s)
− (Pxζχ)′(s)

Pxζχ(s)
=

∑
ρ:|γ−t|≤1,β≥α

mZ(ρ)
s − ρ

+ O(log |t|)

3The explicit value for ε = ε(σ), obtained by this argument, is irrelevant in our analysis, and we
have made no attempt to optimize our proof sketch.
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in the same half-plane σ ≥ α. Using this formula and (4.8), we may employ word
for word the proof of [3, Thm. 2] to conclude that (4.7) holds. �

4.3 Zero-free regions. Our aim is now to investigate under which general
conditions we may establish the classical zero-free region of de la Vallée–Poussin.
It turns out that if there is a zero or pole on the 1-line, then we can do with the
rather weak condition that ζχ(s) be of bounded type in some half-plane, along with
a density condition for the zeros that in particular holds for the zeros of ζ(s).

We begin by stating the following general theorem.

Theorem 4.2. Suppose that σ(χ) ≤ α < 1 and that ζχ(s) is analytic in

α<Re s<1 and of bounded type in Cα. Assume, moreover, that the following
conditions hold.

(a) There exists a constant A such that

∣∣∣B
′
Z;α(1 + 1/ log |t| + it)

BZ;α(1 + 1/ log |t| + it)

∣∣∣ � A log |t|

when |t| is large enough.

(b) There exists a positive constant C such that for every positive δ,

(4.9) −Re
ζ ′
χ2 (σ + it)

ζχ2 (σ + it)
≤C log |t| for σ>1+δ/ log |t| and |t| large enough.

Then there exists a positive constant c such that ζχ(s) has no zero in the region

1 − c
log(| Im s| + 2)

< Re s < 1.

Here it is important that C does not depend on δ, since otherwise our assump-
tion (4.9) would be obsolete. It is fairly easy to establish that (4.9) does hold
whenever ζχ(s) has a pole or a zero on the line σ = 1. This leads to the following
corollary.

Corollary 4.1. Suppose that σ(χ) ≤ α < 1 and that ζχ(s) has a zero or a

pole at s = 1. Assume also that ζχ(s) is analytic in α < Re s < 1, of bounded type

in Cα, and satisfies condition (a) of Theorem 4.2. Then there exists a c > 0 such
that ζχ(s) has no zero in the region

1 − c
log(| Im s| + 2)

< Re s < 1.

By Lemma 4.2, it is clear that (4.9) is satisfied whenever ζχ2 (s) also extends
meromorphically to an analytic function of finite order in a strip to the left of the
line σ = 1.
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Proof of Theorem 4.2. We recall from Lemma 4.2 that

(4.10)
ζ ′
χ(s)

ζχ(s)
=

B′
Z;α(s)

BZ;α(s)
+

U′(s)
U(s)

,

where
U′(s)
U(s)

= o(|t|)
uniformly in σ ≥ α. Our assumption on BZ;α(s) and the trivial bound

∣∣∣ζ
′
χ(1 + 1/ log |t| + it)

ζχ(1 + 1/ log |t| + it)

∣∣∣ ≤ log |t| + O(1)

also gives ∣∣∣U′(1 + 1/ log |t| + it)
U(1 + 1/ log |t|)

∣∣∣ ≤ D log |t|
for some constant D. Now applying the Hadamard three lines theorem to the
function

U′(s)
U(s)(s + 1 − α)

for the three lines σ = α, σ = 1 + 1/ log |t|, and σ = 1 + δ/ log |t| with δ < 1, we get

(4.11)
∣∣∣U′(1 + δ/ log |t| + it)

U(1 + δ/ log |t|)
∣∣∣ � D′|t| 1−δ

(α−1) log |t|−1 log |t| ≤ D′′ log |t|,

uniformly for 0 ≤ δ ≤ 1 and |t| sufficiently large.
Following Mertens, using the familiar inequality 3 + 4 cos θ + cos 2θ ≥ 0, we

find next that

−3
ζ ′(σ)
ζ(σ)

− 4 Re
ζ ′
χ(σ + it)

ζχ(σ + it)
− Re

ζ ′
χ2 (σ + i2t)

ζχ2 (σ + i2t)
≥ 0

whenever σ > 1 and t is an arbitrary real number. We choose σ = 1 + δ/ log |t| for
some δ to be chosen later and use (4.9) to infer that

(4.12) 4 Re
ζ ′
χ(σ + it)

ζχ(σ + it)
≤

(3
δ

+ B
)

log |t| + O(1).

Now suppose there is a zero of ζχ(s) at ρ = β + it with β ≥ α + (1 − α)/2. Then
by (4.10) and (4.11),

Re
ζ ′
χ(σ + it)

ζχ(σ + it)
≥ 1

σ − β
− D log |t| =

1
1 − β + δ/ log |t| − D log |t|

for some constant D. Inserting this into (4.12), we find that

4 log |t|
(1 − β) log |t| + δ

≤
(3

δ
+ C + 4D

)
log |t| + O(1).
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We now conclude in the usual way by choosing δ small enough, say

2δ ≤ 1/(C + 4D),

so that 1 − β ≥ c/ log |t| for a small constant c depending on δ. �
Curiously, our deduction of (4.11) shows that condition (b) holds if ζχ2 (s) meets

the same conditions as those imposed on ζχ(s) in Theorem 4.2.

Proof of Corollary 4.1. We need to check that (4.9) is satisfied. The crucial
point will be to show that

(4.13)
∑
p≤x

|θp|(log p)p−1 = o(log x),

where we have set χ(p) =: eiθp , −π < θ ≤ π. To this end, let ε be an arbitrary
positive number, and set P(k, ε) := {p : 22k

< p ≤ 22k+1
, |θp| ≥ ε}. Then, by (2.2),

∑
p∈P(k,ε)

|θp|
p

≥ ε

for at most a finite number of positive integers k. Hence for all but finitely many k,
we have

∑
22k

<p≤22k+1

|θp|(log p)p−1 ≤ ε · 2k+1
(

1 +
∑

22k
<p≤22k+1

p−1
)

� ε · 2k+1,

where, in the last step, we used Mertens’s theorem
∑

p≤x p−1 = log log x + O(1).
Summing over all k such that 22k+1 ≤ x, we arrive at (4.13) since ε can be chosen
arbitrarily small.

It follows from the proof of Theorem 2.1 that

ζχ2 (s) = ζ(s)E(s),

where
E′(s)
E(s)

=
∑

p

(log p)cpp
−s + O(1), σ > 1,

and |cp| � |θp|. Now (4.9) follows from (4.13) and the classical bound

−ζ ′(s)
ζ(s)

� log |t|,

which holds uniformly when σ ≥ 1 and |t| ≥ 1. �
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5 Further preliminaries for the proofs of the main
theorems

It is convenient to collect in this section some additional auxiliary results that will
be used in the proof of our main theorems. The first result was already mentioned
in the introduction, but we state it here in a precise form for future reference.

Lemma 5.1. There exists a positive constant c such that

(5.1) π(x + x21/40) − π(x) ≥ cx21/40/ log x

for all sufficiently large x. On the Riemann hypothesis,

(5.2) π(x + cx1/2 log x) − π(x) ≥ x1/2

whenever c > 3 and x is sufficiently large.

Proof. The unconditional part (5.1) was established by Baker, Harman, and
Pintz [2, p. 562]. The conditional part goes back to Cramér [9]; the present explicit
bound (5.2) was established by Dudek [11]. �

The next result, while almost evident, will be of basic importance for all the
constructions to be made in the subsequent three sections.

Lemma 5.2. Let  be a simply connected domain in C and Z a locally finite
signed multiset in . If R(s) is meromorphic in  and analytic in  \ Z with

simple poles at each of the points ρ of Z of residue mZ(ρ), then there exists a
meromorphic function F(s) in  with Z(F(s)) = Z and such that F′(s)/F(s) = R(s).
The function F(s) is unique up to multiplication by a nonzero constant.

Proof. Let V(s) be an arbitrary meromorphic function in  with Z(V(s)) = Z.
Such a function exists because Z is assumed to be locally finite in . Then the
function V ′(s)/V(s) − R(s) will be analytic in  and hence, since  is simply
connected, the derivative of some analytic function H(s) in . The function
F(s) := V(s) exp(−H(s)) will then have the required property. The uniqueness
of F(s) up to a multiplicative constant is obvious since the ratio of two functions
with the same logarithmic derivative must be a constant. �

The preceding lemma will be used in the following way. We will pick a
sequence of primes P and select correspondingly unimodular numbers χ(p) for p
in P. This defines χ(n) for every n in N(P) which is the set of positive integers
whose prime divisors are in P. We then set

ζχ;P(s) :=
∏
p∈P

1
(1 − χ(p)p−s)

and log ζχ;P(s) :=
∑

n∈N(P)

χ(n)�(n)
log n

n−s
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and make the construction such that the logarithimic derivative

(5.3)
ζ ′
χ;P(s)

ζχ;P(s)
= − ∑

n∈N(P)

χ(n)�(n)n−s

extends meromorphically to Cσ0 for some σ0 < 1, with simple poles ρ in Z

and prescribed residues mZ(ρ). Since the equality in (5.3) holds for Re s > 1,
Lemma 5.2 shows that also ζχ;P(s) has an analytic continuation to Cσ0 and we have
then Z(ζχ;P(s)) ∩ Cσ0 = Z.

We will also use the probabilistic model mentioned in the introduction to
construct ζχ;P(s) that can be approximated by Pxζχ;P(s) in the sense of (3.3) of
Theorem 3.2.

Lemma 5.3. Let P be an arbitrary sequence of primes and χ(p), p in P,

correspondingly constitute a sequence of independent Steinhaus variables such

that ∑
p∈P

p−2σ < ∞

for every σ > σ0. Then almost surely

(i) the Dirichlet series defining log ζχ;P(s) converges for every s in Cσ0 ,
(ii)

lim
T→∞

1
2T

∫ T

−T
| log ζχ;P(σ + it) − logPxζχ;P(σ + it)|2dt =

∑
p∈P,p>x

∞∑
j=1

j−2p−2jσ

uniformly for σ ≥ α for every α > σ0.

Proof. The lemma is an immediate consequence of [14, Cor. 4.7]. �
We come finally to two estimates that will be used to check the mean square

condition of Theorem 3.2. The first of these is a somewhat specialized version of
a well-known inequality of Montgomery and Vaughan.

Lemma5.4. LetN be a sequence of positive integers and δ : [1,∞) �→ [1,∞)
an associated nondecreasing function such that

(5.4) min
n′ �=n,n′∈N |n − n′| ≥ δ(n)

for every n in N. If an, n in N, are arbitrary unimodular numbers, then
∫ T

−T

∣∣∣∣
∑

n∈N,x<n≤y

ann
−σ−it

∣∣∣∣
2

dt = 2T
∑

n∈N,x<n≤y

n−2σ + O
(∫ y+δ(y)

1
[δ(z)]−2z1−2σdz

)
,

uniformly for σ ≥ 1/2, where the implicit constant on the right-hand side depends
only on δ(z).
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Proof. If 1/2 ≤ n′/n ≤ 2 and n �= n′ for n, n′ in N, then

| log n′ − log n| ≥ (log 2)
|n − n′|

n
≥ (log 2)

δ(n)
n

= c
δ(n)
n

.

The resulting inequality for | log n′ − log n|, possibly after a slight adjustment of
the constant c, then holds in general, without the precaution that 1/2 ≤ n′/n ≤ 2.
Hence, by an inequality of Montgomery and Vaughan [17, Cor. 2],

(5.5)

∫ T

−T

∣∣∣∣
∑

n∈N,x<n≤y

ann
−σ−it

∣∣∣∣
2

dt

= 2T
∑

n∈N,x<n≤y

n−2σ + �
∑

n∈N,x<n≤y

[δ(n)]−1n1−2σ,

where |�| ≤ 6π/c. By the separation condition (5.4),

∑
n∈N,x<n≤y

[δ(n)]−1n1−2σ ≤
∫ y+δ(y)

1
[δ(z)]−2z1−2σdz,

where we also used that z �→ [δ(z)]−2z1−2σ is a decreasing function. Inserting this
into (5.5), we get the desired bound. �

The last lemma of this section is a simple integral variant of the preceding
estimate.

Lemma5.5. Suppose that |f (y)| ≤ ϕ(y) and x ≥ 1, whereϕ : [x,∞) → [1,∞)
is a nondecreasing function satisfying the doubling condition ϕ(2y) ≤ Cϕ(y) and
the growth condition ∫ ∞

x
ϕ(y)y−σ0−1dy < ∞.

Then the function

F(s) :=
∫ ∞

x
f (y)y−s−1dy

will have∫ 2T

T
|F(σ + it)|2dt � (logT)

∫ ∞

x
[ϕ(y)]2y−2σ−2dy +

(∫ ∞

x
ϕ(y)y−σ−1dy

)2

for σ ≥ σ0 and T ≥ 2, where the implicit constant depends only on the doubling

constant C.

Proof. By Fubini’s theorem, we may interchange the order of integration and
make the following direct computation:

(5.6)

∫ 2T

T
|F(σ + it)|2dt =

∫ ∞

x

∫ ∞

x

(∫ 2T

T

(y
z

)−it
dt
)

y−σ−1z−σ−1f (y)f (z)dydz

≤
∫ ∞

x

∫ ∞

x

∣∣∣∣
∫ 2T

T

(y
z

)−it
dt

∣∣∣∣y−σ−1z−σ−1ϕ(y)ϕ(z)dydz.
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Now ∫ 2T

T
(
y
z
)−itdt �

⎧⎨
⎩

T, | log(y/z)| ≤ 1/T,
1

| log(y/z)| , | log(y/z)| > 1/T.

Consequently,

∫
y/2≤z≤2y

∣∣∣∣
∫ 2T

T

(y
z

)−it
dt

∣∣∣∣y−σ−1z−σ−1ϕ(z)dz � ϕ(y)y−σ−1
(

1 +
∫ 2

1/T

1
ξ
dξ

)

≤ ϕ(y)y−σ−1(1 + log T).

Since the inner integral in (5.6) is uniformly bounded for z ≤ y/2 and z ≥ 2y, we
get the desired estimate by plugging the preceding bound into (5.6). �

6 First step of the proof of Theorem 1.3

6.1 Construction of an Euler product whose meromorphic contin-
uation vanishes at s = ν. The first step of the proof of Theorem 1.3 consists in
picking a subsequence Pν of the primes such that the Euler product

ζPν
(s) :=

∏
p∈Pν

1
(1 − p−s)

extends to a meromorphic function in Cν/2 and 1/ζPν
(s) is analytic in Cν/2 with

only one zero, which has multiplicity mZ(ν) and is located at s = ν. The desired
Helson zeta function ζχ(s) of Theorem 1.3 will then be of the form

(6.1) ζχ(s) =
ζ(s)

ζPν
(s)

∏
p∈Pν

1
(1 − χ(p)p−s)

.

We will come back to the question of how to pick the numbers χ(p) for p in Pν in
the next section. One may however notice that the basic ideas to be used to solve
that problem appear, in a simpler form, in the construction to be carried out now.

In the selection of the sequence Pν, it will be essential to ensure that

(6.2) lim sup
T→∞

1
2T

∫ T

−T
| log ζPν

(σ + it) − log PxζPν
(σ + it)|2dt ≤ C

∑
p>x

p−2σ

for some constant C, uniformly for σ ≥ σ0 whenever σ0 > 1/2. It will become
clear that the Dirichlet series

(6.3)
∑
p∈Pν

∞∑
�=2

(log p)p−�s
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will be absolutely convergent4 in Cν/2, and we may therefore restrict our attention
to sums of the form

D(s) :=
∑
p∈Pν

p−s.

We will use the same symbol D(s) for the meromorphic continuation of this
function. Setting m = mZ(ν), we require that

D′(s) +
m

s − ν

defines an analytic function in Cν/2. By integration and summation by parts, we
may express this difference as

(6.4)

D′(s) +
m

s − ν
= − ∑

p∈Pν

(log p)p−s + m
∫ ∞

1
xν−s−1dx

= −s
∫ ∞

1

( ∑
p∈Pν,p≤x

log p − m
(xν − 1)

ν

)
x−s−1dx,

where we initially assume that Re s > 1. We see, however, that the right-hand side
will extend analytically to Re s > ν/2 if

(6.5)
∑

p∈Pν,p≤x

log p =
mxν

ν
+ O(xν/2+ε)

for every ε > 0. Hence we wish to prove that (6.5) holds whenPν has been suitably
chosen. In addition, our aim will be to show that the function D(s), which will
then be analytic in the domain Cν/2 \ (ν/2, ν], satisfies

(6.6) lim
T→∞

1
2T

∫ T

−T

∣∣∣∣D(σ + it) − ∑
p∈Pν,p≤x

p−σ−it

∣∣∣∣
2

dt =
∑

p∈Pν,p>x

p−2σ,

uniformly for σ ≥ σ0 whenever σ0 > 1/2.
We make an inductive construction to find the sequencePν. Let θ be a parameter

such that π(x + xθ) − π(x) 
 xθ/ log x holds for large x. By Lemma 5.1, we may
choose θ = 21/40, but we prefer to carry out the construction keeping the numerical
value of θ unspecified. We define a sequence of real numbers xk inductively by
requiring xk+1 = xk + xθ

k, say, with x1 := 2. We will now describe in detail how we
choose suitable primes in the interval [xk, xk+1). Our induction hypothesis is that

(6.7)
∑

p∈Pν,p≤xk

log p =
mxν

k

ν
+ O(log xk).

4As a matter of fact, to prove Theorem 1.3, we only need the obvious fact that the series in (6.3)
converges absolutely in C1/2, but it is of some independent interest to have meromorphic continuation
to a larger half-plane.
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We may agree that 2 is in Pν, but it does not really matter how we start the
construction, since (6.7) will hold trivially for small k in any case. If we now pick
a suitable number of primes p in the interval [xk, xk+1) and declare these primes to
constitute Pν ∩ [xk, xk+1), then we will be able to have also

∑
p∈Pν,p≤xk+1

log p =
mxν

k+1

ν
+ O(log xk+1).

In fact, we need O(xν+θ−1
k / log xk) primes to achieve this, and by our assumption

on θ, there are 
 xθ
k/ log xk primes in this interval, whence this is feasible. By

induction, we get in this way (6.7) for all positive integers k. It is then plain that
for all positive numbers x, we will have

(6.8)
∑

p∈Pν,p≤x

log p =
mxν

ν
+ O(xν+θ−1),

independently of how the primes in any interval [xk, xk+1) are chosen. Since
1 − θ ≥ 19/40 ≥ ν/2, we have the desired bound for the remainder term in (6.5).
It is also plain that

∑
p∈Pν

p−2σ �
∞∑
k=1

x−2σ
k xν+θ−1

k / log xk �
∞∑
j=1

2(ν−2σ)jj−1 < ∞

whenever σ > ν/2. Hence the Dirichlet series in (6.3) converges absolutely when
Re s > ν/2, as anticipated above.

We are now left with a local problem, namely how to choose appropriately
O(xν+θ−1

k / log xk) primes in [xk, xk+1). Our goal is to do this so that the distance
between consecutive primes is as large as possible.

Since we will now consider just one interval, we set xk = x. The average
distance between our primes in [x, x + xθ) will be of order x1−ν log x; we wish
to have a separation between our primes which is essentially of this magnitude.
This we can achieve in the following way. We enumerate the available primes
in [x, x + xθ): We arrange them by ascending magnitude and call them pj with
j = 1, . . . ,K and K 
 xθ/ log x. Choosing j = �[cx1−ν] for a suitable constant c
and 1 ≤ � ≤ K/[cx1−ν], we get a sufficient number of primes, ensuring also that
the distance between two consecutive primes is 
 x1−ν. We may express this
important separation property of Pν as follows: There exists a positive constant c

such that

(6.9) inf
p′∈Pν,p′ �=p

|p − p′| ≥ cp1−ν

for every p in Pν.
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6.2 Computation of mean square distances. Since (6.5) holds, the
function D(s) defined in the preceding subsection is analytic in C1/2 \ (1/2, ν]. We
now prove that it in fact satisfies (6.6).

While (6.4) gives us the desired meromorphic continuation of D(s), it is not
convenient for computing mean squares. We may rewrite (6.4) to get it into a
more manageable form, by applying summation and integration by parts only to
the “tails” of respectively the Dirichlet series and the integral on the right-hand
side of (6.4). This yields the decomposition

(6.10)

D(s) =
∑

p∈Pν,p≤xk

p−s +
∫ ∞

σ

mxν−u−it
k

(u + it − ν)
du

+
∫ ∞

σ
(u + it)

∫ ∞

xk

( ∑
p∈Pν,p≤x

log p − mxν

ν

)
x−u−1−itdxdu

+ O(x−σ
k log xk),

where we used (6.7) to get the remainder term. The exact cut-off value xk is chosen
only for convenience, giving us one term less to account for. From (6.10) we then
get

(6.11)

D(s)− ∑
p∈Pν,p≤x

p−s

=
∑

p∈Pν,x<p≤xk

p−s +
∫ ∞

σ

mxν−u−it
k

(u + it − ν)
du

+
∫ ∞

σ
(u + it)

∫ ∞

xk

( ∑
p∈Pν,p≤x

log p − mxν

ν

)
x−u−it−1dxdu + O(x−σ

k ),

assuming that x < xk and t �= 0. Our goal is now to compute the contribution from
each of the terms in this composition and to choose a value for xk that yields an
optimal balance between the respective bounds. For the first term on the right-hand
side of (6.11), we have

(6.12)
∫ T

−T

∣∣∣∣
∑

p∈Pν,x<p≤xk

p−σ−it

∣∣∣∣
2

= 2T
∑

p∈Pν,x<p≤xk

p−2σ + O(1 + x2ν−2σ
k )

by the separation property (6.9) of Pν along with Lemma 5.4. For the second term,
we have trivially

(6.13)
∫ T

−T

∣∣∣∣
∫ ∞

σ

mxν−u−it
k

(u + it − ν)
du

∣∣∣∣
2

dt � 1 + x2ν−2σ
k / log xk.
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Finally, by the Cauchy–Schwarz inequality,

∣∣∣∣
∫ ∞

σ
(u + it)

∫ ∞

xk

( ∑
p∈Pν,p≤x

log p − mxν

ν

)
x−u−1−itdxdu

∣∣∣∣
2

≤ 1
σ

∫ ∞

σ
|u + it|2u2

∣∣∣∣
∫ ∞

xk

( ∑
p∈Pν,p≤x

log p − mxν

ν

)
x−u−1−itdx

∣∣∣∣
2

du.

(6.14)

By (6.8) and Lemma 5.5 applied with ϕ(y) = Cyν+θ−1, we find that

∫
�≤|t|≤2�

∣∣∣∣
∫ ∞

xk

( ∑
p∈Pν,p≤x

log p − mxν

ν

)
x−σ−1−itdx

∣∣∣∣
2

dt � x2ν+2θ−2−2σ
k log �

whenever � ≥ 2. Using Fubini’s theorem and splitting the integral dyadically
when integrating (6.14) in the range 2 ≤ |t| ≤ T , this yields

(6.15)

∫ T

−T

∣∣∣∣
∫ ∞

σ
(u + it)

∫ ∞

xk

( ∑
p∈Pν,p≤x

log p − mxν

ν

)
x−u−1−itdxdu

∣∣∣∣
2

dt

� x2ν+2θ−2−2σ
k T2 log T.

Choosing k such that xk ∼ T1/(2ν−1) and taking into account (6.12), (6.13), and
(6.15), we therefore get

(6.16)

1
2T

∣∣∣∣
∫ T

−T
D(σ + it) − ∑

p∈Pν,p≤x

p−σ−it

∣∣∣∣
2

dt

=
∑

p∈Pν,x<p≤xk

p−2σ + O(T−1) + O(T− 2σ−1
2ν−1 ) + O(T

4ν+2θ−3−2σ
2ν−1 log T),

which is uniform for σ ≥ σ0. We get the convergence for σ > 1/2 required by
Theorem 3.2 if ν ≤ (2 − θ)/2. This means that we should have ν ≤ 59/80 when
θ = 21/40, in accordance with the condition on ν in Theorem 1.3.

7 Proof of Theorem 1.1, Theorem 1.2 and Theorem 1.3

7.1 Main lines of the proof. The proof of each of the three theorems
mentioned in the title of this section is essentially the same, and we therefore
give a joint presentation of the proof. By assumption, the Bohr–Landau condition
holds trivially in all three cases, so we only need to verify that condition (3.3)
of Theorem 3.2 holds. Our plan is first to present the common main lines of the
proof and then, when we come to the technical details of each of the three cases,
to treat them in parallel. In each step of the argument, we present first the case
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of Theorem 1.1 and Theorem 1.3 and then we show how to modify it to cover the
more manageable case of Theorem 1.2 as well.

In either case, we will construct a sequence of primes P and a sequence of
unimodular numbers χ(p) so that the function

ζχ;P(s) :=
∏
p∈P

1
(1 − χ(p)p−s)

extends meromorphically to C1/2 and has Z(ζχ;P(s)) ∩ C1/2 = Z. In the case of
Theorem 1.3, it is crucial that we choose P as a subsequence of the sequence Pν of
the preceding section, so that our Helson zeta function takes the form

ζχ(s) :=
ζ(s)

ζPν
(s)

ζχ;P(s)ζχ;Pν\P(s).

Here the values χ(p) for p in Pν \ P are chosen using our random model so that

(7.1)

lim
T→∞

1
2T

∫ T

−T
| log ζχ;Pν\P(s) − log Pxζχ;Pν\P(s)|2dt

=
∑

p∈N(Pν\P),p>x

∞∑
�=1

�−2p−2�σ,

uniformly for σ ≥ σ0 for every σ0 > 1/2 and x > 1. In the other two cases, instead
of Pν\P, we use the whole sequence of primes not belonging to P which we denote
by P′. Then our Helson zeta function is defined as

ζχ(s) := ζχ;P(s)ζχ;P′(s),

where ζχ;P′(s) is chosen by means of the same random model that was used in the
case of Theorem 1.3.

Most of the proof will consist in first constructing and then analyzing the
function

(7.2) D(s) :=
∑
p∈P

χ(p)p−s,

which is the “essential part” part of the Dirichlet series of log ζχ;P in the precise
sense that the remaining part log ζχ;P(s) − D(s) is absolutely convergent in C1/2.
Writing respectively

log ζχ(s) = D(s) + log ζ(s) − log ζPν
(s) + log ζχ;P(s) − D(s)(7.3)

+ log ζχ;Pν\P(s)

log ζχ(s) = D(s) + log ζχ;P(s) − D(s) + log ζχ;P′(s),(7.4)

we then check that
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(A) each of the terms log ζ(s), log ζPν
(s), log ζχ;P(s)−D(s), log ζχ;Pν\P(s) in (7.3)

can be approximated by the partial sum of its Dirichlet series in the mean
square sense;

(B) each of the terms log ζχ;P(s)−D(s), log ζχ;P′(s) in (7.4) can be approximated
by the partial sum of its Dirichlet series in the mean square sense.

In the case of (A),we then use respectively a well-knownproperty of log ζ(s), (6.16)
of the preceding section, the fact that log ζχ;P(s)−D(s) has an absolutely convergent
Dirichlet series, and (7.1). In the case of (B), we just use that log ζχ;P(s) − D(s)
has an absolutely convergent Dirichlet series and the identity for log ζχ;P′(s) corre-
sponding to its counterpart to (7.1).

We conclude that since log ζχ;P(s) − D(s) is analytic in C1/2 independently
of how χ is chosen, what remains to establish our three theorems is to pick P

and corresponding values χ(p) for p in P such that first, by Lemma 5.2, D′(s) is
meromorphic in C1/2, with simple poles at each of the points ρ of Z of residue
mZ(ρ), and second, that

(7.5) lim
T→∞

1
2T

∫ T

−T

∣∣∣∣D(σ + it) − ∑
p≤x

χ(p)p−σ−it

∣∣∣∣
2

dt =
∑
p>x

p−2σ,

uniformly for σ ≥ σ0 whenever σ0 > 1/2 and x > 1, so that Theorem 3.2 applies.
The next four subsections will accomplish these two tasks given Z satisfying either
of the conditions of our three theorems.

We notice that from this point on, the work to be done is word for word the
same for the two cases of Theorem 1.1 and Theorem 1.3. The only significant
difference occurred above when we applied our random model respectively to P′

and Pν \ P. This explains why we, with some extra work, could have considered
meromorphic extensions of ζχ(s) to Cν/2 in the context of Theorem 1.3, in contrast
to what our methods permit us to do in relation to Theorem 1.1.

7.2 Selection of P and χ(p) for p in P. It will be convenient to agree that
α = 1 in the case of Theorem 1.2. We begin by assuming that Z is a locally finite
signed multiset5 in Cα/2 satisfying the conditions of either of our three theorems.
We set

(7.6) R(s) :=
∑
ρ

mZ(ρ)
yρ−s
ρ

s − ρ
,

where yρ are positive numbers to be chosen such that the series on the right-hand
side converges absolutely in Cα/2 \ Z. Whatever choice we make for yρ, the virtue

5At this stage, it is convenient to demand a little less from the location of Z than what is required in
Theorem 1.1 and Theorem 1.2.



ZEROS AND POLES OF SOME ZETA FUNCTIONS 367

of R(s) is that it has a simple pole at each point ρ of Z of residue mZ(ρ). We now
make the specific choice

(7.7) yρ := (|γ| + 1)1/(α+β−1)

for the proofs of Theorem 1.1 and Theorem 1.3, and set simply

(7.8) yρ := |γ|

when proving Theorem 1.2, where as always ρ = β + iγ. These particular values
for yρ may at this point seem somewhat arbitrary, but it should become clear during
the course of the proof that they are carefully tuned with the various requirements
to be taken into account.

Our density condition on Z ensures the required convergence of the series in
(7.6). Indeed, in the first case, for x ≥ 2|t|, we have

∑
ρ:x≤|γ|<2x

|mZ(ρ)| yβ−σ
ρ

|σ + it − ρ| ≤ 2
∑

ρ:|γ|≤2x

|mZ(ρ)|x β−σ
α+β−1 −1

= 2x
1−σ−α
α−1/2 NZ(1/2, 2x)

+ 2
∫ α

1/2
(log x)

d
du

(1 − σ − α

α + u − 1

)
x

1−σ−α
α+u−1 NZ(u, 2x)du

� x
1/2−σ
α−1/2 log x,

where in the last step we used condition (c) of either of the two theorems. Hence
summing over all dyadic intervals of the form 2kx ≤ |γ| < 2k+1x, we get

∑
ρ:|γ|≥2x

|mZ(ρ)| yβ−σ
ρ

|σ + it − ρ| � (log x)x
1/2−σ
α−1/2 .

In the second case, on the conditions of Theorem 1.2, we get

∑
ρ:x≤|γ|<2x

|mZ(ρ)| yβ−σ
ρ

|σ + it − ρ| � x−σ(log x)−1,

again assuming x ≥ 2|t|. We then conclude as in the first case by making another
summation over dyadic intervals.

We next introduce the function

q(x) :=
∑

ρ:yρ≤x

mZ(ρ)xρ−1,
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which will play a crucial role in our construction. In the case of Theorem 1.1 and
Theorem 1.3, we find that

|q(x)| ≤ ∑
yρ≤x

|mZ(ρ)|xβ−1 ≤ ∑
ρ:|γ|≤xα+β−1

|mZ(ρ)|xβ−1,

using the definition of yρ. Now, since

xβ = (1 − 1/e)−1(log x)
∫ β

β−1/ log x
xudu,

we infer from this that

|q(x)| ≤ (1 − 1/e)−1(log x)
∫ α

1/2−1/ log x
xu−1NZ(u, exα+u−1)du.

Using finally condition (c) of either of the two theorems, we see that

(7.9) q(x) � xα−1 log x.

The corresponding computation on conditions (a) and (b) of Theorem 1.2 takes the
simpler form

(7.10)

|q(x)| ≤ ∑
ρ:yρ≤x

|mZ(ρ)|xβ−1 =
∑

ρ:|γ|≤x

|mZ(ρ)|xβ−1

≤ (log x)−λ
∑

ρ:|γ|≤x

|mZ(ρ)| = (log x)−λNZ(1/2, x)

= O((log x)−1−(λ−κ)).

We now make an inductive construction to find the sequence P suitable for the
proof of either Theorem 1.1 or Theorem 1.3, by essentially the same argument
that was used in Subsection 6.1. It will in either case be convenient to pick P as a
subsequence of Pν that was constructed in the preceding section. We let θ and xk

have the same meaning as before. Our induction hypothesis is now that

(7.11)
∑

p∈P,p≤xk

χ(p) logp =
∫ xk

1
q(y)dy + O(log xk).

If we now pick a suitable number of primes p from Pν in the interval [xk, xk+1) and
declare these primes to constitute P ∩ [xk, xk+1), then we will be able to have also

∑
p∈P,p≤xk+1

χ(p) logp =
∫ xk+1

1
q(y)dy + O(log xk+1).
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In view of (7.9), we need O(xα+θ−1
k ) primes to achieve this. By construction, there

are 
 xν+θ−1/ log x primes from Pν in [xk, xk+1), so this is feasible. Hence, if
∫ xk+1

1
q(y)dy − ∑

p∈P,p≤xk

χ(p) logp = Rke
ick , 0 < Rk � xα+θ−1,

we may therefore choose ∼ Rk/ log xk primes p in [xk, xk+1) to get precisely (7.11);
we set χ(p) = eick for these primes and declare them to be P ∩ [xk, xk+1). Arguing
as in the preceding section and using the separation property (6.9) of Pν, we can
do this in such a way that

(7.12) inf
p′∈P,p′ �=p

|p − p′| ≥ cp1−α/ log p

for every p in P.
By induction, we get in this way (7.11) for all positive integers k. It is then

plain that for all positive numbers x, we will have

(7.13)
∑

p∈P,p≤x

χ(p) logp =
∫ x

1
q(y)dy + O(xα+θ−1 log x),

independently of how the primes in any interval [xk, xk+1) are chosen.
On the assumptions of Theorem 1.2, we act in the same way, but require instead

xk+1 = xk + C(log xk)2+ε for 0 < ε < λ − κ and a constant C which is so large that
π(xk+1) − π(xk) ≥ 1 holds for all k. This is feasible because, by (7.10), we need
to pick at most one prime in each interval [xk, xk+1). The same construction then
gives us a sequence of primes P and corresponding values χ(p) such that

(7.14)
∑

p∈P,p≤x

χ(p) logp =
∫ x

1
q(y)dy + O(log x).

7.3 Construction and representation of D(s). Our next goal is to an-
alyze the function D(s) defined in (7.2) in a similar way as was done for its
counterpart in the preceding section. We first consider the meromorphic contin-
uation of D(s). We assume that Re s > 1 and use again partial summation to
obtain

D′(s) − R(s) = s
∫ ∞

1

( ∑
p∈P,p≤x

χ(p) logp −
∫ x

1
q(y)dy

)
y−s−1dy.

Here the right-hand side extends to an analytic function in either Cα+θ−1 or C0,
depending on whether (7.13) or (7.14) holds. In the first case, we have

α + θ − 1 ≤ 59/80 + 21/40 − 1 < 1/2.
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This means that in either case, the function D′(s) − R(s) is analytic in C1/2.
Since R(s) has simple poles at each of the points ρ of Z of residue mZ(ρ), we
conclude that D′(s) has a meromorphic continuation of the desired type. As be-
fore, we continue to use the symbols D(s) and D′(s) for respectively the analytic
and meromorphic continuation as well.

We are now left with the problem of verifying (7.5). To this end, we begin by
making a suitable decomposition of D(s), analogous to that found in (6.10). By
summation by parts, we obtain first

(7.15)

D′(s) = − ∑
p∈P,p≤x

χ(p)(logp)p−s

− s
∫ ∞

x

( ∑
p∈P,x<p≤y

χ(p) logp
)

(log y)−1y−s−1dy.

We will again choose x = xk for some k, to save us one term to estimate. With this
choice, the integral on the right-hand side of (7.15) can be written as

s
∫ ∞

xk

( ∑
p∈P,xk<p≤y

χ(p) logp
)

y−s−1dy

= s
∫ ∞

xk

( ∑
p∈P,p≤y

χ(p) logp −
∫ y

1
q(z)dz

)
y−s−1dy

+ s
∫ ∞

xk

∫ y

xk

q(z)dzy−s−1dy

+ s
∫ ∞

xk

(∫ xk

1
q(z)dz − ∑

p∈P,p≤xk

χ(p) logp
)

y−s−1dy

= s
∫ ∞

xk

( ∑
p∈P,p≤y

χ(p) logp −
∫ y

1
q(z)dz

)
y−s−1dy +

∑
yρ≤xk

mZ(ρ)
xρ−s
k

s − ρ

+
∑

yρ>xk

mZ(ρ)
yρ−s
ρ

s − ρ
+ O(x−σ

k log xk).

Hence combining (7.15) with the latter expression and assuming xk > x for some
fixed x, we obtain the decomposition

(7.16) D(s) − ∑
p∈P,p≤x

χ(p)(logp)p−s = Fk(s) + Ik(s) + Sk(s) + �k(s) + O(x−σ
k ),
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where

Fk(s) :=
∑

p∈P,x<p≤xk

χ(p)p−s,

Ik(s) :=
∫ ∞+it

s
w

∫ ∞

xk

( ∑
p∈P,p≤y

χ(p) logp −
∫ y

1
q(z)dz

)
y−w−1dydw,

Sk(s) :=
∫ ∞+it

s

( ∑
yρ≤xk

mZ(ρ)
xρ−w
k

w − ρ

)
dw,

�k(s) :=
∫ ∞+it

s

( ∑
yρ>xk

mZ(ρ)
yρ−s
ρ

w − ρ

)
dw,

where as usual t = Im s. It is natural to group the computations into two subsections,
one dealing with Fk(s) and Ik(s) and the other with the two sums Sk(s) and �k(s)
over the zeros and the poles.

7.4 Computation of the mean squares of Fk(s) and Ik(s). We will now
show that the mean squares of Fk(s) are in accordance with (3.3) and that the mean
squares of Ik(s) are uniformly O(T1−ε) in every half-plane σ ≥ σ0 > 1/2, in both
cases on the condition that xk is suitably chosen.

7.4.1 The case of Theorem 1.1 and Theorem 1.3. By the separation
condition (7.12) and Lemma 5.4, we have

(7.17)
∫ T

−T
|Fk(σ + it)|2dt = 2T

∑
p∈P,x<p≤xk

p−2σ + O(x2α−2σ
k log xk),

uniformly for σ ≥ 1/2. If we require that xk � T1/(2α−1), then the remainder term
in (7.17) is uniformly O(T1−ε) when σ ≥ σ0 > 1/2.

Now applying the Cauchy–Schwarz inequality as in Subsection 6.2, we get

|Ik(s)|2 ≤ 1
σ

∫ ∞

σ
|u + it|2u2

∣∣∣∣
∫ ∞

xk

( ∑
p∈P,p≤y

χ(p) logp −
∫ y

1
q(z)dz

)
y−u−1−itdy

∣∣∣∣
2

du.

Hence, by Fubini’s theorem and Lemma 5.5, applied with ϕ(y) = cyα+θ−1 log y, we
obtain∫

�≤|t|≤2�
|Ik(σ + it)|2dt

� 1
σ

∫ ∞

σ
|u + i�|2u2x2(α+θ−1)−2u

k ((log�) log u + (log u)2)du

� �2(log� + log xk)x
2(α+θ−1)−2σ
k .
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Adding this estimate dyadically, we find that

∫ T

−T
|Ik(σ + it)|2dt � T2(logT + log xk)x

2(α+θ−1)−2σ
k ,

which is of admissible size if xk ≥ T1/(3−2α−2θ). Combining our two restrictions
on α, we see that

3 − 2α − 2θ ≥ 2α − 1,

which yields α ≤ (2 − θ)/2, in accordance with condition (a) of Theorem 1.1 by
the specific choice θ = 21/40, made in accordance with Lemma 5.1. We could
have chosen k such xk would depend on σ, but this is of no special use, and we will
in the sequel assume that xk ∼ T1/(2α−1).

7.4.2 The case of Theorem 1.2. By Lemma 5.4, we get trivially

∫ T

−T
|Fk(σ + it)|2dt = 2T

∑
p∈P,x<p≤xk

p−2σ + O(x2−2σ
k ),

and hence the remainder term is of appropriate size if xk � T . Furthermore, arguing
as in the preceding case, using (7.14) and Lemma 5.5, now with ϕ(y) = c log y, we
get ∫ T

−T
|Ik(σ + it)|2dt � T2(logT + log xk)x

−2σ
k .

Choosing k such that xk ∼ T , we see that the integral is O(T2−2σ0 logT), which
gives the desired behavior.

7.5 Bounds for the sums over the zeros and the poles. We will start
from the trivial bounds

|Sk(s)| ≤
∫ ∞+it

σ

( ∑
ρ:yρ≤xk

|mZ(ρ)| xβ−u
k

|u + it − ρ|
)

du,(7.18)

|�k(s)| ≤
∫ ∞+it

σ

( ∑
ρ:yρ>xk

|mZ(ρ)| yβ−u
ρ

|u + it − ρ|
)

du,(7.19)

where we assume that t is not an ordinate of any of the points ρ = β + iγ. What
remains to establish the mean square condition (3.3), is to show that

(7.20)
∫ T

−T
|Sk(σ + it)|2dt � T1−ε and

∫ T

−T
|�k(σ + it)|2dt � T1−ε

for some ε > 0, uniformly when σ ≥ σ0 > 1/2.
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7.5.1 The case of Theorem 1.1 and Theorem 1.3. To begin with, we
observe that the inequality yρ ≤ xk is equivalent to 1 + |γ| ≤ T (α+β−1)/(2α−1), and
hence

|Sk(s)| ≤ Sk,T (s) :=
∫ ∞

σ

∑
ρ:|γ|≤T

|mZ(ρ)| xβ−u
k

|u + it − ρ|du.

We wish to restrict the summation on the right-hand side of (7.19) similarly, to the
range |γ| ≤ 2T . To this end, we find that

(7.21)

∑
ρ

|mZ(ρ)| yβ−u
ρ

|u + it − ρ|

� ∑
ρ:|γ|≤2T

|mZ(ρ)| yβ−u
ρ

|u + it − ρ| +
∑

ρ:|γ|>2T

|mZ(ρ)|y
β−u
ρ

|ρ| .

The contribution from the latter term to the right-hand side of (7.19) is

�
∫ ∞

σ

( ∑
ρ:|γ|>2T

|mZ(ρ)| yβ−u
ρ

(T + |ρ|)
)

du � ∑
ρ

|mZ(ρ)|y
β−σ
ρ

|ρ| .

We consider dyadic blocks and use that

∑
ρ:X/2<|γ|≤X

|mZ(ρ)|yβ−σ
ρ � ∑

ρ:|γ|≤X

|mZ(ρ)|X β−σ
α+β−1

which holds because yρ = (1+ |γ|)1/(α+β−1). Here the right-hand side can be written
as

∑
ρ:|γ|≤X

|mZ(ρ)|X β−σ
α+β−1

= X1/2−σNZ(1/2,X) + log X
∫ α

1/2

d
du

( u − σ

α + u − 1

)
X

u−σ
α+u−1 N(u,X)du.

Hence, using again condition (c) of either of the two theorems, we infer from this
that

(7.22)
∑

ρ:X/2<|γ|≤X

|mZ(ρ)|yβ−σ
ρ � (logX)X

α−σ
α−1/2 .

Summing dyadically and using (7.22), we get a total contribution which is
O((logT)T− σ−1/2

α−1/2 ). Hence, returning to (7.21), we get

�k(s) �
∫ ∞

σ

∑
ρ:|γ|≤2T

|mZ(ρ)| xβ−u
k

|u + it − ρ|du + O((logT)T− σ−1/2
α−1/2 ),
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and we are left with the problem of computing the integrals for

�k,T (s) :=
∫ ∞

σ

∑
ρ:|γ|≤2T

|mZ(ρ)| yβ−u
ρ

|u + it − ρ|du.

We now turn to the integrals for the two functions Sk,T (s) and �k,T (s). By
Fubini’s theorem and a direct computation, we get

(7.23)

∫ T

−T
|Sk,T (σ + it)|2dt

≤
∫ ∞

σ

∫ ∞

σ

∑
ρ,ρ′:T/2≤γ,γ′≤3T

∫ T

−T

|mZ(ρ)||mZ(ρ′)|xβ−u
k xβ′−u′

k

|u + it − ρ||u′ + it − ρ′| dtdudu′

� ∑
ρ,ρ′:|γ|,|γ′ |≤T

|mZ(ρ)||mZ(ρ′)|xβ−σ
k xβ′−σ

k

(|ρ − ρ′| + 1)
log(e + |ρ − ρ′|).

We apply the Cauchy–Schwarz inequality and the assumption that |mZ(ρ)| � Tε

to infer from this that
∫ T

−T
|Sk,T (σ + it)|2dt � Tε

∑
ρ,ρ′:|γ|,|γ′ |≤T

|mZ(ρ)| x2(β−σ)
k

(|ρ − ρ′| + 1)
,

where the term log(e+ |ρ−ρ′|) has been absorbed in the factor Tε. Summing over
ρ′ and using condition (b) of Theorem 1.1, we then get

∫ T

−T
|Sk,T (σ + it|2dt � T2ε

∑
ρ:|γ|≤T

|mZ(ρ)|x2(β−σ)
k .

Observing that

∑
ρ:|γ|≤T

|mZ(ρ)|x2(β−σ)
k = NZ(1/2,T)x2(1/2−σ)

k + (log xk)
∫ α

1/2
x2(u−σ)
k NZ(u,T)du

and using that xk ∼ T1/(2α−1) and condition (c) of either of the two theorems, we
get ∫ T

−T
|Sk,T (σ + it|2dt � T2ε · T1− 2σ−1

2α−1 .

Since ε can be chosen arbitrarily small, the desired estimate for Sk(s) in (7.20)
follows.

Finally, acting in exactly the same way, we get

∫ T

−T
|�k,T (σ + it)|2dt � T2ε

∑
ρ:|γ|≤2T

|mZ(ρ)|y2(β−σ)
ρ .
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We now use that yρ ∼ |γ|1/(α+β−1), whence

∑
ρ:X<|γ|≤2X

|mZ(ρ)|y2(β−σ)
ρ � NZ(1/2, 2X)X

2(1/2−σ)
α−1/2 + (log xk)

∫ α

1/2
X

2(u−σ)
α+u−1 NZ(u, 2X)du.

Summing dyadically, we conclude that
∫ T

−T
|�k,T (σ + it)|2dt � T2ε · T1− 2σ−1

2α−1 ,

which implies that the desired estimate for �k(s) in (7.20) holds as well.

7.5.2 The case ofTheorem1.2. The required estimates are again straight-
forward in this case. From (7.18), we get that

Sk(s) �
∫ ∞

σ

( ∑
ρ:|γ|≤2T

|mZ(ρ)| xβ−u
k

|u + it − ρ|
)

du,

since yρ = |γ| and xk ∼ T . It follows that

∫ T

−T
|Sk(σ+ it)|2dt � ∑

ρ,ρ′:|γ|,|γ′ |≤2T

|mZ(ρ)||mZ(ρ′)|T2−2σ(logT)−2λ

(|ρ − ρ′| + 1)
log(e+ |ρ−ρ′|).

Summing trivially and using condition (b) of Theorem 1.2, we then get
∫ T

−T
|Sk(σ + it)|2dt � T2−2σ,

which yields the desired bound in (7.20).
Finally, to deal with �k(s), we find that

�k(s) �
∫ ∞

σ

( ∑
ρ:|γ|≤2T

|mZ(ρ)| yβ−u
ρ

|u + it − ρ|
)

du + O((logT)T−σ)

when |t| ≤ T . Since yρ ≤ 2T in the sum on the right-hand side, the computation
we just made covers this case as well.

8 Proof of Theorem 1.4

8.1 General scheme of the construction of ζχ(s) with Z+(ζχ(s)) = Z+.
Throughout this section, we assume that Z+ is a locally finite multiset in C1/2 that
is confined to either of the two strips 1/2 < Re s < 1 or 1/2 < Re s ≤ 39/40,
depending on whether we take the truth of the Riemann hypothesis for granted or
not.
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We begin by making the following dyadic partition of the strip 1/2 < Re s < 1.
We set

Uj := {s = σ + it : 1/2 + 2−(j+1) ≤ σ < 1/2 + 2−j, |t| ≤ 2j},
Vj := {s = σ + it : 1/2 + 2−(j+1) ≤ σ < 1, 2j < |t| ≤ 2j+1},

and observe that ∞⋃
j=1

(Uj ∪ Vj) = {s : 1/2 < Re s < 1}.

We will, during the course of the proof, assign to each ρ in Z+ ∩ (
⋃∞

j=1 Vj) a
nearby point ρ′. It will be a tacit assumption that the points ρ′ are distinct and not
contained in Z+. We assign the multiplicity −mZ+ (ρ) to ρ′ and let Z denote the
signed multiset obtained by adjoining the extraneous points ρ′ to Z+. With each
integer j, we associate two numbers uj, vj ≥ 1 so that the following function is well
defined in C1/2:

(8.1) R(s) :=
∞∑
j=1

( ∑
ρ∈Uj

mZ+ (ρ)
uρ−s

j

s − ρ
+
∑
ρ∈Vj

mZ+(ρ)
( v

ρ−s
j

s − ρ
− v

ρ′−s
j

s − ρ′
))

.

We will make the specific choice vj := 2j. It is clear that if we choose uj sufficiently
large and ρ′ sufficiently close to ρ, then the series over j will converge absolutely
when s is in C1/2 \ Z and uniformly on compact subsets of this domain. Conse-
quently, (8.1) will then define a meromorphic function in C1/2 with simple poles at
the points ρ of Z+ as well as at the “extraneous” points ρ′. Moreover, the residue
of the pole at ρ is mZ+(ρ), and the residue of the pole at ρ′ is −mZ+(ρ). Hence if
we can find a sequence of primes P and unimodular numbers χ(p) so that

(8.2) R(s) +
∑
p∈P

χ(p)(logp)p−s

defines an analytic function in C1/2, then Z+(ζχ;P(s)) ∩ C1/2 = Z+ by the same
reasoning as in Subsection 7.1. Having accomplished this, we use againLemma 5.3
to construct χ(p) for p not in P. To finish the proof of Theorem 1.4, it will therefore
be enough to make the function in (8.2) analytic in C1/2.

We begin by setting u1 := 1 and define inductively

(8.3) uj := exp
(

j +
∑
ρ∈Uj

|mZ+(ρ)|
)

for j > 1. For a fixed s = σ+ it in C1/2 \Z, we choose m such that 2−m+1 < σ−1/2
and set ε := σ − 1/2 − 2−m. Then

∞∑
j=m

∣∣∣∣
∑
ρ∈Uj

|mZ+(ρ)| uρ−s
j

s − ρ

∣∣∣∣ �
∞∑
j=m

u−ε
j log uj < ∞
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by the exponential decay of uj. We require next

δj ≤
[∑

ρ∈Vj

mZ+(ρ)
]−1

.

Hence if m is so large that 2me ≥ |s|, then we also get

∞∑
j=m

∑
ρ∈Vj

∣∣∣mZ+(ρ)
( v

ρ−s
j

s − ρ
− v

ρ′−s
j

s − ρ′
)∣∣∣ �

∞∑
j=m

jδj2
−σj

∑
ρ∈Vj

≤
∞∑
j=m

j2−σj < ∞.

We conclude that our requirements for uj and δj entail the desired uniform conver-
gence on compact subsets of C1/2 \ Z.

We now set

(8.4) q(x) :=
∑

j:uj≤x

∑
ρ∈Uj

mZ(ρ)xρ−1 +
∑

j:2j≤x

∑
ρ∈Vj

mZ(ρ)(xρ−1 − xρ′−1).

We may then write

(8.5) R(s) =
∫ ∞

1
q(x)x−sdx

when Res > 1. Hence our task is to pick P and χ(p) such that

R(s) +
∑
p∈P

χ(p)(logp)p−s

has an analytic continuation to C1/2. We use once again partial integration and
summation to deduce that

(8.6) R(s)+
∑
p∈P

χ(p)(logp)p−s = s
∫ ∞

1

(∫ x

1
q(y)dy− ∑

p∈P,p≤x

χ(p) logp
)

x−s−1dx.

As in the preceding section, we will make an inductive construction to ensure that

(8.7)
∫ x

1
q(y)dy +

∑
p∈P,p≤x

χ(p) logp � x1/2+ε

for every ε > 0, which will yield absolute convergence in C1/2 of the integral on
the right-hand side of (8.6).

The construction differs slightly depending on whether we assume the Riemann
hypothesis to be true or not. In either case, it will be convenient to require

ρ′ = β′ + iγ, β′ < β,

which implies that

(8.8) |xρ − xρ′ | ≤ xβ|β − β′| log x.
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8.2 Construction of P and χ(p) in the unconditional case. We start
from (8.4). Recalling that Reρ ≤ 39/40 for all ρ and (8.8) holds, we find that

(8.9)
|q(x)| ≤ x−1/40

∑
j:uj≤x

log uj + x−1/40(log x)
∑

j:2j≤x

δj

∑
ρ∈Vj

mZ+(ρ)

� x−1/40(log x)2,

since each of the sums in (8.9) contains at most (log x)/ log 2 terms.

We now set x1 := 2 and define inductively xk+1 := xk + x21/40
k for k ≥ 1. We will

now describe in detail how to choose suitable primes in the interval [xk, xk+1). We
make the induction hypothesis that

(8.10)
∑

p∈P,p≤xk

χ(p) logp =
∫ xk

1
q(y)dy + O(log xk)

holds for all k. This is trivially true for k = 1 independently of how we start the
construction. We may for example choose to include p = 2 in P and set χ(2) = 1.
Our aim is now to pick a suitable number of primes p in the interval [xk, xk+1) and
declare these primes to constitute P ∩ [xk, xk+1), to have also

(8.11)
∑

p∈P,p≤xk+1

χ(p) logp =
∫ xk+1

1
q(y)dy + O(log xk+1).

By (8.9) and the definition of the sequence xk, we have
∫ xk+1

xk

q(y)dy � x21/40−1/40
k (log x)2 = x1/2

k (log x)2.

Hence we need O(x1/2
k log xk) primes to achieve (8.11). According to Lemma 5.1,

there are 
 x21/40
k log xk primes in [xk, xk+1). Setting

∫ xk+1

1
q(y)dy − ∑

p∈P,p≤xk

χ(p) logp = Rke
ick, 0 < Rk � x1/2

k ,

we may therefore choose ∼ Rk log xk primes p in [xk, xk+1) to get precisely (8.11);
we set χ(p) = eick for these primes and declare them to be P ∩ [xk, xk+1).

By induction, we get in this way (8.10) for all positive integers k. It is then
plain that for all positive numbers x, we will have

∑
p∈P,p≤x

χ(p) logp =
∫ x

1
q(y)dy + O(x1/2(log x)2)

which means that (8.7) holds.
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8.3 Construction of P and χ(p) in the conditional case. It will suffice
to have q(x) = o(1) because then

∫ x+2x1/2 log x

x
q(y)dy = o(x1/2 log x),

and we may use (5.2) of Lemma 5.1 and act as in the preceding case, now with

xk+1 := xk + 2x1/2
k log xk.

This will give us

∑
p∈P,p≤x

χ(p) logp =
∫ x

1
q(y)dy + o(x1/2 log x),

and hence (8.7) will again hold.
To achieve the required asymptotics q(x) = o(1), we define a new sequence

β0 := max{Reρ : ρ ∈ U1} and βj := max{Reρ : ρ ∈ Vj}, j ≥ 1.

Starting again from (8.4) and using (8.8), we then get

|q(x)| ≤ xβ0−1
∑
j:uj≤x

log uj + (log x)
∑
j:vj≤x

xβj−1δj

∑
ρ∈Vj

|mZ(ρ)|.

Hence requiring

δj ≤ (βj − 1)
[
j2
∑
ρ∈Vj

mZ+ (ρ)
]−1

,

we infer that

|q(x)| ≤ xβ0−1(log x)2 +
∞∑
j=1

[(βj − 1) log x]xβj−1j−2 = o(1),

where in the last step we used that

[(βj − 1) log x]xβj−1 ≤ e−1 and lim
x→∞[(βj − 1) log x]xβj−1 = 0.
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