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Abstract. A set � ⊂ R
d is said to be spectral if the space L2(�) has an

orthogonal basis of exponential functions. It is well-known that in many respects,
spectral sets “behave like” sets which can tile the space by translations. This
suggests a conjecture that a product set � = A × B is spectral if and only if the
factors A and B are both spectral sets. We recently proved this in the case when A
is an interval in dimension one. The main result of the present paper is that the
conjecture is true also when A is a convex polygon in two dimensions. We discuss
this result in connection with the conjecture that a convex polytope � is spectral if
and only if it can tile by translations.

1 Introduction

1.1 Let � ⊂ R
d be a bounded, measurable set of positive Lebesgue measure.

It is said to be spectral if there exists a countable set � ⊂ R
d such that the system

of exponential functions

(1.1) E(�) = {eλ}λ∈�, eλ(x) = e2πi〈λ,x〉,

is orthogonal and complete in L2(�), that is, the system is an orthogonal basis for
the space. Such a set � is called a spectrum for �.

The classical example of a spectral set is the unit cube � = [−1
2 ,

1
2 ]

d, for which
the set � = Z

d serves as a spectrum.
Which other sets � are spectral? The study of this question was initiated by

Fuglede in 1974 [Fug74], and it is known as Fuglede’s spectral set problem.
The research on spectral sets has been motivated for many years by an observa-

tion due to Fuglede, that the notion of spectrality is related to another, geometrical
notion—the tiling by translations. We say that � tiles the space by translations
along a countable set � ⊂ R

d if the collection of sets {� + λ}, λ ∈ �, constitutes
a partition of Rd up to measure zero.

∗Research supported by ISF grant No. 227/17 and ERC Starting Grant No. 713927.
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With time, it became apparent that in many respects, spectral sets “behave like”
sets which can tile the space by translations. It was observed that many results
about spectral sets have analogous results for sets which can tile, and vice versa.
However, the precise connection between the notions of spectrality and tiling is
still not clear.

1.2 One of the interesting open problems in the subject is Fuglede’s conjecture
for convex bodies, which states that a convex body � ⊂ R

d is spectral if and only if
it can tile the space by translations (originally this conjecture was stated in [Fug74]
for general, not necessarily convex sets �, but it turned out that in this generality
the conjecture is not true; see [KM10, Section 4] and the references therein).

It has long been known that a convex body � which can tile by translations
must be a polytope, and that it is a spectral set (see, for example, [Kol04, Section
3.5]). Much less is known, however, about the converse assertion. It was proved
by Iosevich, Katz and Tao [IKT03] that if a convex polygon � ⊂ R

2 is a spectral
set, then it must be either a parallelogram or a centrally symmetric hexagon, and
hence it tiles by translations. Recently, we proved [GL16, GL17] that Fuglede’s
conjecture is true also for convex polytopes in dimension d = 3. That is, if a convex
polytope � ⊂ R

3 is spectral, then it can tile by translations.

1.3 One of the difficulties in proving Fuglede’s conjecture for convex poly-
topes in dimensions d � 3 is concerned with the existence of polytopes � ⊂ R

d

which can be mapped by an invertible affine transformation to a cartesian product
A × B of two convex polytopes A ⊂ R

n, B ⊂ R
m (n,m � 1) where n + m = d. A

convex polytope � with this property is said to be directly decomposable, see
[Sch14, Section 3.3.2]. For brevity, in this paper we will omit the word “directly”,
and just say that � is decomposable.

For example, one can easily verify that a two-dimensional convex polygon is
decomposable if and only if it is a parallelogram, while in three dimensions a
convex polytope is decomposable if and only if it is a prism.

The proof that a spectral convex polytope � in R
2 or in R

3 can necessarily tile
by translations was based on the fact that if such an � is indecomposable, then it
has a unique spectrum up to translation; see [GL17, Theorems 1.3 and 1.4]. The
latter fact is no longer true if � is decomposable. Nevertheless, in two dimensions
the situation when � is decomposable does not present any difficulty, as in this
case � is a parallelogram and so it automatically tiles by translations. However,
in dimensions d � 3, decomposable polytopes do not necessarily tile. For this
reason, the case when � is a prism inR

3 required a different approach in our result;
see [GL16].
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1.4 The study of decomposable spectral convex polytopes leads to the fol-
lowing, more general problem. Let � = A × B be the cartesian product of two
bounded, measurable sets A ⊂ R

n, B ⊂ R
m. When is � spectral? This question

was posed in [Kol16].
The answer is conjectured to be the following:

Conjecture 1.1. Let A ⊂ R
n and B ⊂ R

m be two bounded, measurable sets.

Then their product � = A × B is spectral if and only if A and B are both spectral
sets.

The “if” part of this conjecture is obvious. Indeed, if U ⊂ R
n is a spectrum

for A, and V ⊂ R
m a spectrum for B, then the product � = U ×V is a spectrum for

� = A × B (see, for example, [JP99]). However the converse, “only if” part of the
conjecture, is non-trivial. The difficulty lies in that we assume the product set � to
be spectral, but we do not know that the spectrum � also has a product structure.
So it is not obvious which sets U and V may serve as spectra for the factors A and
B, respectively.

One reason to expect that Conjecture 1.1 should be true is the fact that the
analogous assertion for tiling by translations is known to hold. Indeed, it was
observed in [Kol16, Section 1.2] that the product set � = A × B can tile the space
R

n × R
m by translations if and only if both A tiles R

n and B tiles R
m. So the

analogy between spectrality and tiling suggests that Conjecture 1.1 should be true
as well.

1.5 In [GL16] we proved the first result in the direction of Conjecture 1.1:

Theorem 1.2 ([GL16]). Let � = A × B, where A is an interval in R and B is

a bounded, measurable set in R
m. Then � is spectral if and only if B is a spectral

set.

This result implies that Conjecture 1.1 is true whenever A is a parallelepiped
in R

n. Indeed, due to the invariance under affine transformations, it is enough
to consider the case when A is the n-dimensional unit cube [−1

2 ,
1
2 ]

n, and the
conclusion then follows from Theorem 1.2 by induction on n.

Theorem 1.2 played an important role in the proof of Fuglede’s conjecture for
three-dimensional convex polytopes. It allowed us to use “dimension reduction”
in order to resolve the case when � is decomposable—that is, when � is a prism
in R

3. Indeed, in this case we could assume, by applying an affine transformation,
that � is the cartesian product A × B of an interval A ⊂ R, and a convex polygon
B ⊂ R

2 (the polygon B constitutes the base of the prism). By Theorem 1.2, the
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spectrality of � implies that B must also be spectral, and we could then invoke the
two-dimensional result of [IKT03] to conclude that B, and hence also �, tiles by
translations (see [GL17, Section 9]).

Kolountzakis found in [Kol16] another proof of Theorem1.2, different from the
one in [GL16]. His approachmoreover allowed him to establish that Conjecture 1.1
is true also in the case when the set A is the union of two intervals in R.

1.6 An important special case of Conjecture 1.1 is when the two sets A,B

are assumed to be convex polytopes. A proof of the conjecture in this special case
amounts to showing that the spectrality of a decomposable convex polytope � can
be characterized by the spectrality of the factors in the decomposition. Such a
result would reduce the proof of Fuglede’s conjecture for convex polytopes to the
case when � is indecomposable.

In this paper, our main focus will be on the situation when A is a convex
polytope in R

n, while B is an arbitrary bounded, measurable set in R
m.

2 Results

2.1 Our first result is concerned with necessary conditions for the spectrality
of convex polytopes in R

n. By a result due to Kolountzakis [Kol00a], if a convex
polytope A ⊂ R

n is spectral, then A must be centrally symmetric. We proved in
[GL17] that also the central symmetry of all the facets of A is a necessary condition
for its spectrality.

The following theorem supports Conjecture 1.1 by showing that these condi-
tions are necessary also for the spectrality of the product set A × B.

Theorem 2.1. Let � = A × B, where A is a convex polytope in R
n and B is

a bounded, measurable set in R
m. If � is a spectral set, then A must be centrally

symmetric and have centrally symmetric facets.

The condition that the convex polytope A is centrally symmetric and has cen-
trally symmetric facets is also necessary for A to tile by translations; see [McM80].

2.2 If A is a convex body in R
n which is not a polytope, then A cannot tile by

translations; see [McM80]. It is conjectured that such an A can neither be spectral.
In this connection, a result from [IKP99] states that if A is a ball in R

n (n � 2)
then A is not a spectral set. In [IKT01] the same was proved for any centrally
symmetric convex body A with a smooth boundary.

The following theorem supports Conjecture 1.1 by extending these results to
the context of product sets:
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Theorem 2.2. Let A be a centrally symmetric convex body in R
n (n � 2)

with a smooth boundary, and B be any bounded, measurable set in R
m. Then the

product set � = A × B cannot be spectral.

2.3 The next theorem is the main result of this paper. The result confirms that
Conjecture 1.1 is true if A is a convex polygon in two dimensions:

Theorem 2.3. Let � = A × B, where A is a convex polygon in R
2, and B is a

bounded, measurable set in R
m. Then � is spectral if and only if A and B are both

spectral sets.

If A is a parallelogram, then this is a consequence of Theorem 1.2. The
new result is therefore that Theorem 2.3 is true also if A is a convex polygon
which is not a parallelogram. Our proof establishes that in this case, A must be a
centrally symmetric hexagon. In particular, this implies the result from [IKT03]
that the spectral convex polygons are exactly the parallelograms and the centrally
symmetric hexagons.

If both A and B are convex polygons in R
2, then Theorem 2.3 implies that

their product � = A × B is a spectral set if and only if � tiles by translations.
Combining this with the results obtained in [GL16, GL17], we can confirm that
Fuglede’s conjecture is true for the class of decomposable convex polytopes in four
dimensions:

Corollary 2.4. Let � ⊂ R
4 be a convex polytope, and assume that � is

decomposable. Then � is a spectral set if and only if it can tile by translations.

Thus, if we want to prove Fuglede’s conjecture for convex polytopes in dimen-
sion d = 4, then the case when � is decomposable is now covered by Corollary 2.4,
and what remains to be proved is that an indecomposable convex polytope � ⊂ R

4

can be spectral only if it tiles by translations. We will address this problem in a
future work.

3 Preliminaries

3.1 Notation. We use 〈·, ·〉 and | · | for the Euclidean scalar product and
norm in R

d.
If A ⊂ R

d then A� denotes the complement of A (i.e., the set Rd \ A), 1A is the
indicator function of A, and |A| or mes(A) is the Lebesgue measure of A. We use
A+B, A−B to denote the set of sums and set of differences of two sets A,B ⊂ R

d.
If f and g are two measurable functions on R

n and R
m respectively, then we

denote by f ⊗ g the function on R
n × R

m defined by (f ⊗ g)(x, y) = f (x)g(y).
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3.2 Spectra. If � is a bounded, measurable set in R
d of positive measure,

then by a spectrum for � we mean a countable set � ⊂ R
d such that the system

of exponential functions E(�) defined by (1.1) is orthogonal and complete in the
space L2(�).

For any two points λ, λ′ in R
d we have

〈eλ, eλ′〉L2(�) = 1̂�(λ′ − λ),

where

1̂�(ξ) =
∫

�
e−2πi〈ξ,x〉dx, ξ ∈ R

d,

is the Fourier transformof the indicator function1� of the set �. The orthogonality
of the system E(�) in L2(�) is therefore equivalent to the condition

(3.1) (� − �) \ {0} ⊂ Z(1̂�),

where Z(1̂�) := {ξ ∈ R
d : 1̂�(ξ) = 0} is the set of zeros of the function 1̂�.

The property of � being a spectrum for � is invariant under translations of
both � and �. If M is a d × d invertible matrix, then � is a spectrum for � if and
only if the set (M−1)�(�) is a spectrum for M(�).

A set � ⊂ R
d is said to be uniformly discrete if there is δ > 0 such that

|λ′−λ| � δ for any two distinct points λ, λ′ in �. The maximal constant δ with this
property is called the separation constant of �, and will be denoted by δ(�).

The condition (3.1) implies that every spectrum � of � is a uniformly discrete
set, and that its separation constant δ(�) is at least as large as the constant

(3.2) χ(�) := min
{|ξ| : ξ ∈ Z(1̂�)

}
> 0.

3.3 Weak limits. Let �k be a sequence of uniformly discrete sets in R
d,

such that δ(�k) � δ > 0. The sequence �k is said to converge weakly to a set �
if for every ε > 0 and every R there is N such that

�k ∩ BR ⊂ � + Bε and � ∩ BR ⊂ �k + Bε

for all k � N, where Br denotes here the open ball of radius r centered at the origin.
The weak limit � is also a uniformly discrete set, and satisfies δ(�) � δ.

A compactness argument shows that any sequence �k satisfying δ(�k) � δ > 0
has a subsequence �kj which converges weakly to some (possibly empty) set �.

If for each k the set �k is a spectrum for �, and if �k converges weakly to a
limit �, then also � is a spectrum for �. See [GL16, Section 3].
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3.4 Tiling and packing. Let f � 0 be a measurable function onR
d, and �

be a countable set in R
d. We will say that f + � is a tiling if the condition

(3.3)
∑
λ∈�

f (x − λ) = 1 a.e.

is satisfied. If we only have

(3.4)
∑
λ∈�

f (x − λ) � 1 a.e.

then we will say that f + � is a packing.

If f = 1� is the indicator function of a bounded, measurable set � ⊂ R
d, then

the condition (3.3) means that the sets �+λ (λ ∈ �) constitute a partition of Rd up
to measure zero, while (3.4) says that these sets are pairwise disjoint up to measure
zero. In the former case we will say that � + � is a tiling, while in the latter we
say that � + � is a packing.

The following lemma may be found, for example, in [Kol04, Section 3.1]. It
gives a characterization of the spectra of �, or the exponential systems orthogonal
in L2(�), by a tiling or a packing condition, respectively.

Lemma 3.1. Let � be a bounded, measurable set in R
d, and define the

function

f := |�|−2 |1̂�|2.
(i) For a set � ⊂ R

d to be a spectrum for � it is necessary and sufficient that

f + � is a tiling.
(ii) For a system of exponentials E(�) to be orthogonal in L2(�) it is necessary

and sufficient that f + � is a packing.

A proof of part (i) of Lemma 3.1 is given also in [GL16, Section 2.4]. The
proof of part (ii) is similar.

The next lemma may be found, e.g., in [Kol04, Sections 1.1 and 3.3].

Lemma 3.2. Let f, g ∈ L1(Rd), f, g � 0. Assume that � ⊂ R
d is a set such

that f + � is a tiling, while g + � is a packing. Then:

(i)
∫

g �
∫

f .

(ii)
∫

g =
∫

f if and only if g + � is a tiling.

Proof. Since f + � is a tiling and g + � is a packing, we have

f ∗ δ� = 1 a.e., g ∗ δ� � 1 a.e.,
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where we denote
δ� :=

∑
λ∈�

δλ.

The function h := 1 − g ∗ δ� is therefore nonnegative a.e., which implies that

0 � f ∗ h = f ∗ 1 − f ∗ (g ∗ δ�) = f ∗ 1 − g ∗ (f ∗ δ�) =
∫

f −
∫

g,

and this proves (i).
It also follows that

∫
g =

∫
f if and only if f ∗ h = 0. But the convolution of

two nonnegative functions cannot be everywhere zero, unless at least one of the
functions vanishes a.e. Observe that f cannot vanish a.e., since f + � is a tiling.
Hence f ∗ h = 0 if and only if h = 0 a.e., which means that g + � is a tiling. This
proves (ii). �

3.5 Definition. If W ⊂ R
d is a bounded, measurable set, then we define

(3.5) 
(W) := {x ∈ R
d : mes(W ∩ (W + x)) > 0}.

The set 
(W) is a bounded open set, symmetric with respect to the origin.
One can think of the set 
(W) as the measure-theoretic analog of the set of

differences W − W. In particular, one can check that if W is an open set then

(W) = W − W. In general we have 
(W) ⊂ W − W, but this inclusion can be
strict.

The following fact is easy to verify:

Lemma 3.3. Let W be a bounded, measurable set inR
d, and � be a countable

set in R
d. Then W + � is a packing if and only if (� − �) \ {0} ⊂ 
(W)�.

3.6 Orthogonal packing regions. If � and W are two bounded, measur-
able sets in R

d, then we will say that W is an orthogonal packing region for �

if we have

(3.6) 
(W) ∩ Z(1̂�) = ∅.
The notion of an orthogonal packing region was introduced in the paper

[LRW00] but in less generality. In [LRW00] it was additionally assumed that
the boundary of W is a set of measure zero, and instead of (3.6) the condition

(W◦ − W◦) ∩ Z(1̂�) = ∅
was used as the definition of an orthogonal packing region, where W◦ denotes
the interior of W. In the present paper we use the definition (3.6) to extend the
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notion of an orthogonal packing region to the situation where W is any bounded,
measurable set in R

d. It is easy to verify that the new definition coincides with
the one given in [LRW00] in the case when the boundary of W is a set of measure
zero.

The reason for the name “orthogonal packing region” is the fact that if a
system of exponentials E(�) is orthogonal in L2(�), and if W is an orthogonal
packing region for �, then W + � is a packing. This follows from (3.1), (3.6) and
Lemma 3.3.

3.7 Convex polytopes. By a convex polytope � ⊂ R
d we mean a

compact set which is the convex hull of a finite number of points. By a facet of �

we refer to a (d − 1)-dimensional face of �.

We say that � is centrally symmetric if −� is a translate of �. In this case,
there is a unique point x ∈ R

d such that −� + x = � − x, and � is said to be
symmetric with respect to the point x.

A convex polytope � ⊂ R
d will be called decomposable if � can be mapped

by an invertible affine transformation to a cartesian product A × B of two convex
polytopes A ⊂ R

n, B ⊂ R
m (n,m � 1) where n + m = d. (Usually such a polytope

is said to be “directly decomposable”, see, e.g., [Sch14, Section 3.3.2], but in this
paper we use the term “decomposable” for brevity.)

If � is not decomposable, then we say that � is indecomposable.

4 Kolountzakis’ theorem

In this section we discuss a result of Kolountzakis, which gives a method for
proving in certain situations that the spectrality of a product set � = A × B implies
the spectrality of the factors A,B. We give a simple proof of the result in a stronger
form.

4.1 Let A ⊂ R
n and B ⊂ R

m be two bounded, measurable sets.

Definition 4.1. Let � ⊂ R
n × R

m be a spectrum for the product � = A × B,
and let W ⊂ R

n be a bounded, measurable set. We say that � is W-compatible
if the condition

(4.1) (� − �) \ {0} ⊂ (
(W)� × R
m) ∪ (Rn × Z(1̂B))

is satisfied.
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The condition (4.1) can be equivalently stated as follows: given any pair of
distinct points (u, v ) and (u′, v ′) in �, the set (W + u) ∩ (W + u′) cannot have
positive measure unless the exponential functions ev and ev ′ are orthogonal in
L2(B).

Notice that every spectrum � of � = A × B satisfies the condition

(4.2) (� − �) \ {0} ⊂ Z(1̂�) = (Z(1̂A) × R
m) ∪ (Rn × Z(1̂B)),

which follows from (3.1) and the fact that 1̂� = 1̂A⊗1̂B. This implies that condition
(4.1) holds whenever W is an orthogonal packing region for A.

4.2 The following result is basically due to Kolountzakis [Kol16].

Theorem 4.2. Let A ⊂ R
n and B ⊂ R

m be two bounded, measurable sets.
Assume that � = A × B is a spectral set, and let � be a spectrum for �. Suppose

that there exists a bounded, measurable set W ⊂ R
n, |W| � |A|−1, such that � is

W-compatible. Then

(i) |W| = |A|−1;

(ii) B is a spectral set.

This result was formulated in [Kol16, Theorem 2] in the special case when W
is assumed to be an orthogonal packing region for A. This assumption implies that
every spectrum � of � = A × B is W-compatible. So in this case the result says:1

Corollary 4.3 ([Kol16]). Let � = A × B be the product of two bounded,
measurable sets A ⊂ R

n and B ⊂ R
m. Suppose that A has an orthogonal packing

region W, |W| � |A|−1. If � is spectral, then conclusions (i) and (ii) in Theorem4.2

are true.

However, the proof in [Kol16] of this result in fact uses the assumption that W
is an orthogonal packing region for A only to ensure that condition (4.1) holds. So
actually Theorem 4.2 follows from that proof.

If A ⊂ R is an interval, then any interval W of length |W| = |A|−1 is an
orthogonal packing region for A. Hence Corollary 4.3 can be used in this case to
conclude that the spectrality of � = A × B implies the spectrality of B. This yields
Theorem 1.2.

1Strictly speaking, in [Kol16] the notion of an orthogonal packing region for � was defined using
the condition (W −W) ∩Z(̂1�) = ∅, so formally a special case of Corollary 4.3 was proved in [Kol16].
However, the proof in [Kol16] can be easily extended to the situation in the present paper, where an
orthogonal packing region for � is defined using condition (3.6). Moreover, if W is an open set, then
the two definitions of an orthogonal packing region used in [Kol16] and in the present paper coincide.



SPECTRALITY OF PRODUCT DOMAINS AND FUGLEDE’S CONJECTURE 419

In general, however, it is not obvious how to use Theorem 4.2 in order to prove
that the spectrality of a given product set � = A × B implies the spectrality of the
factorsA,B. Indeed, to apply this theoremone must first establish the existence of a
set W ⊂ R

n, |W| � |A|−1, and of a spectrum � for �, such that � is W-compatible.
This would imply the spectrality of B by part (ii) of the theorem. Secondly, to
conclude that also A must be spectral, one must show in addition that if this is not
the case then W can be chosen such that |W| > |A|−1. Then part (i) of Theorem 4.2
would lead to a contradiction.

Kolountzakis showed [Kol16, pp. 107–108] that if A ⊂ R is the union of two
intervals then A admits an orthogonal packing region W, such that |W| = |A|−1 if A
is spectral, while |W| > |A|−1 otherwise. Thus Corollary 4.3 can be applied in this
situation, to conclude that the spectrality of � = A × B implies the spectrality of
both A and B; see [Kol16, Corollary 5].

4.3 Kolountzakis’ proof involves a construction which is often referred to as
“cut-and-project”.

Let p1 and p2 denote the projections fromR
n ×R

m ontoR
n andR

m respectively,
that is, p1(u, v ) = u and p2(u, v ) = v .

Definition 4.4. Assume that � ⊂ R
n×R

m is a countable set, and that W ⊂ R
n

is a bounded, measurable set. Then the set

(4.3) �(�,W) := p2(� ∩ (W × R
m)) ⊂ R

m

will be called the cut-and-project set based on � and W (see Figure 4.1).

(It should be remarked that in the literature, by a “cut-and-project” construction
one usually refers to the special situation where the set � is assumed to be a lattice.
However, we do not make such an assumption in Definition 4.4.)

In many situations when working with cut-and-project sets, it is natural to
impose the extra assumption that the projection p2 is a one-to-one map when
restricted to the set � ∩ (W × R

m). This means that for every v ∈ �(�,W) there
exists a unique u ∈ W such that the point (u, v ) belongs to �.

Now suppose that � = A × B is the product of two bounded, measurable
sets A ⊂ R

n and B ⊂ R
m. Kolountzakis observed that the assumptions in The-

orem 4.2 imply that for a.e. x ∈ R
n the projection p2 is one-to-one on the set

� ∩ ((W + x) × R
m), and its image �(�,W + x) constitutes a set of frequencies in

R
m whose corresponding exponential systemE(�(�,W+x)) is orthogonal in L2(B).

Moreover, he showed that there exist choices of x such that in addition, the so-
called upper uniform density of the set �(�,W + x) is bounded from below by
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R
n

R
m

W

�(�,W)

Figure 4.1. The cut-and-project set �(�,W).

values arbitrarily close to |A| · |B| · |W| (for the definition of the upper uniform
density, see [Kol16, p. 100]). Finally, Kolountzakis proved a result of independent
interest [Kol16, Theorem 1] which implies that the latter fact suffices to establish
the conclusion of Theorem 4.2.

4.4 In what follows, we give a simple proof of Theorem 4.2. The proof
moreover establishes a new conclusion about the structure of the spectrum �:

Theorem 4.5. Under the same assumptions as in Theorem 4.2, the following
conclusion is true: for a.e. x ∈ R

n the projection p2 is one-to-one on the set

� ∩ ((W + x) × R
m) and its image �(�,W + x) is a spectrum for the set B.

In other words, the new result is that for a.e. x ∈ R
n, not only the exponential

system E(�(�,W + x)) is orthogonal in L2(B), but this system is also complete in
the space.

Proof of both Theorem 4.2 and Theorem 4.5. We divide the proof into
several steps.

Step 1. We show that for a.e. x ∈ R
n, the map p2 is one-to-one on the set

� ∩ ((W + x) × R
m), and the exponential system E(�(�,W + x)) is orthogonal in

L2(B).
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This amounts to showing that the set

(4.4)
{x ∈ R

n : there exist distinct points (u, v ), (u′, v ′) in �

such that u, u′ ∈ W + x but v ′ − v /∈ Z(1̂B)}
has measure zero. To show this, let (u, v ), (u′, v ′) be two distinct points in � such
that v ′ − v /∈ Z(1̂B). Since � was assumed to be W-compatible, it follows from
condition (4.1) that u′ −u /∈ 
(W). Using the definition (3.5) of the set 
(W), this
implies that

mes{x ∈ R
n : u, u′ ∈ W + x} = mes((W − u) ∩ (W − u′)) = 0.

Since � is a countable set, this shows that the set in (4.4) can be decomposed into a
countable union of sets of measure zero, and hence this set itself also has measure
zero, as we had to prove.

In what follows, we denote fA := |A|−2 |1̂A|2 and fB := |B|−2 |1̂B|2.
Step 2. We show that (1−W ⊗ fB) + � is a packing.
This means that the sum

(4.5)
∑

(u,v )∈�

1−W(x − u)fB(y − v )

should be not greater than 1 for a.e. (x, y) ∈ R
n × R

m.
Assume that x ∈ R

n is a point lying outside the set in (4.4). Since the map p2

is one-to-one on the set � ∩ ((W + x) × R
m), the sum in (4.5) is equal to

(4.6)
∑

v ∈�(�,W+x)

fB(y − v ).

Since the system E(�(�,W + x)) is orthogonal in L2(B), it follows from part (ii) of
Lemma 3.1 that the sum in (4.6) is not greater than 1 for a.e. y ∈ R

m. The claim
thus follows from Fubini’s theorem.

Step 3. We show that (fA ⊗ fB) + � is a tiling.
This is a consequence of part (i) of Lemma 3.1, since fA ⊗ fB = |�|−2 |1̂�|2 and

the set � is a spectrum for �.
Step 4. We show that |W| = |A|−1.
The fact that (fA ⊗ fB) + � is a tiling and (1−W ⊗ fB) + � is a packing allows us

to use Lemma 3.2. It follows from part (i) of the lemma that

(4.7) |W| · |B|−1 =
∫∫

Rn×Rm
1−W ⊗ fB �

∫∫
Rn×Rm

fA ⊗ fB = |A|−1 · |B|−1,

and so we obtain |W| � |A|−1. However, we assumed a priori that |W| � |A|−1, so
the equality |W| = |A|−1 must hold. This establishes part (i) of Theorem 4.2.
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Step 5. We show that (1−W ⊗ fB) + � is a tiling.

Indeed, since |W| = |A|−1 we see that the inequality in (4.7) is in fact an equality.
Hence the claim follows from part (ii) of Lemma 3.2.

Step 6. We show that for a.e. x ∈ R
n, the set �(�,W + x) is a spectrum for B.

We have seen that, for a.e. (x, y) ∈ R
n×R

m, the sums in (4.5) and (4.6) coincide,
and the sum in (4.5) is equal to 1 since (1−W ⊗ fB) + � is a tiling. So a further
application of Fubini’s theorem yields that for a.e. x ∈ R

n there is a set Y(x) ⊂ R
m

of full measure, such that the sum in (4.6) is equal to 1 for all y ∈ Y(x). Hence for
a.e. x ∈ R

n we have that fB + �(�,W + x) is a tiling, and we conclude from part
(i) of Lemma 3.1 that the set �(�,W + x) is a spectrum for B. This establishes
Theorem 4.5 and in particular also part (ii)of Theorem 4.2. �

5 Orthogonal exponentials and relatively dense sets

In this section our main goal is to prove Theorem 2.1, which says that if a product
set � = A × B is spectral, and if the set A is a convex polytope in R

n, then A
must be centrally symmetric and have centrally symmetric facets. We also prove
Theorem 2.2.

5.1 A set � ⊂ R
d is said to be relatively dense if there is R = R(�) > 0

such that every ball of radius R contains at least one point from �.

It is known that if � is a spectrum for some bounded, measurable set � ⊂ R
d

then � must be a relatively dense set (see, for example, [GL17, Section 2C]).

Lemma 5.1. Let A ⊂ R
n and B ⊂ R

m be two bounded, measurable sets, and

suppose that their product � = A×B is a spectral set. Then there exists a relatively

dense set � ⊂ R
n such that the system of exponentials E(�) is orthogonal in L2(A).

One can view this lemma as establishing a weak formof Conjecture 1.1. Indeed,
the conjecture asserts that the spectrality of � = A × B implies the existence of a
spectrum � for A. The relative denseness of � and the orthogonality of the system
E(�) in L2(A) are necessary conditions for � to be a spectrum for A. However,
these conditions are not sufficient, since they do not guarantee that the system E(�)
is also complete in L2(A).

Proof of Lemma 5.1. Assume that the assertion of the lemma is not true,
so that every set � ⊂ R

n for which the system E(�) is orthogonal in L2(A) is not
relatively dense. We will show that this leads to a contradiction.

First, we will establish the following:
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Claim. Let G be an open set in R
m, and V be an open ball in R

m of diam-

eter χ(B) (where χ(B) is defined as in (3.2)). Suppose that � has a spectrum �

satisfying

(5.1) � ∩ (Rn × G) = ∅.

Then there exists also a spectrum �′ for � such that

(5.2) �′ ∩ (Rn × (G ∪ V)) = ∅.

Indeed, consider the set2

(5.3) � := {u ∈ R
n : there is v ∈ V such that (u, v ) ∈ �}.

Let us show that the system E(�) is orthogonal in L2(A). To see this, let u, u′

be two distinct elements in �. Then by (5.3) there exist v, v ′ ∈ V such that the
(distinct) points λ := (u, v ) and λ′ := (u′, v ′) are in �. Hence λ′ − λ ∈ Z(1̂�).
Since 1̂� = 1̂A ⊗ 1̂B, we must have u′ −u ∈ Z(1̂A) or v ′ − v ∈ Z(1̂B). But as v, v ′

both lie in the open ball V of diameter χ(B), the latter possibility cannot occur.
It follows that u′ − u ∈ Z(1̂A), which means that the exponentials eu and eu′ are
orthogonal in L2(A).

Once we know that the system E(�) is orthogonal in L2(A), it follows that the
set � cannot be relatively dense. Hence there is a sequence tj of vectors in R

n

satisfying

(5.4) � ∩ (Qj + tj) = ∅,

where Qj := (−j, j)n denotes the open cube in R
n of side length 2j centered at the

origin. By the definition (5.3) of �, the condition (5.4) means that

(5.5) � ∩ ((Qj + tj) × V) = ∅.

Define
�j := � − (tj, 0).

Then �j is also a spectrum for �. It follows from (5.1) and (5.5) that

(5.6) �j ∩ (Qj × (G ∪ V)) = ∅,

for every j. Wemay extract from the sequence�jaweakly convergent subsequence,
whose limit �′ is also a spectrum for �. The condition (5.6) guarantees that the
new spectrum �′ satisfies (5.2). The claim is therefore proved.

2One may notice that the set � in (5.3) is a cut-and-project set as in Definition 4.4, except that in
the present case the roles of p1 and p2 are interchanged.
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Next, we will conclude the proof of Lemma 5.1 based on the above claim. We
choose a sequence of open balls Vk ⊂ R

m whose union covers the whole R
m, and

such that each Vk has diameter χ(B). We construct inductively a sequence �k of
spectra for �, such that

(5.7) �k ∩ (Rn × (V1 ∪ · · · ∪ Vk)) = ∅

for each k. The construction is done as follows. We start by taking �0 to be any
spectrum for �. Then, in the k’th step of the construction, we apply the claim with
� = �k−1, G = V1 ∪ · · · ∪ Vk−1 and V = Vk. The claim yields a spectrum �k for �

that satisfies (5.7), as required.
Finally observe that, since the balls Vk cover the wholeRm, it follows from (5.7)

that the sequence �k converges weakly to the empty set. This is a contradiction,
since a weak limit of spectra for � must be a spectrum as well. Lemma 5.1 is thus
proved. �

Remark 5.2. The conclusion of Lemma 5.1 remains true if we relax the
assumption that the product set � = A × B is spectral, and instead only require
the existence of a relatively dense set � ⊂ R

n × R
m such that the system E(�) is

orthogonal in L2(�). Indeed, it is not difficult to check that the proof given above
remains valid under this weaker assumption.

5.2 Now assume that A is a convex polytope in R
n. In order to prove

Theorem 2.1 we will rely on the following two results.

Theorem 5.3 (Kolountzakis [Kol00a]). Let A be a convex polytope inR
n. If A

is a spectral set, then A is centrally symmetric. 3

Theorem 5.4 ([GL17]). Let A be a convex, centrally symmetric polytope

in R
n. If A is spectral, then all the facets of A are also centrally symmetric.

Suppose now that the product set � = A × B is spectral. If we knew that the
spectrality of � implies that A must also be spectral, then we could deduce from
Theorems 5.3 and 5.4 that A is centrally symmetric and has centrally symmetric
facets. Recall that by Lemma 5.1, there is a relatively dense set � ⊂ R

n such that
the system of exponentials E(�) is orthogonal in L2(A). Nevertheless, this does
not mean that A is spectral, since we do not know that the system E(�) is also
complete in L2(A). We therefore cannot formally deduce Theorem 2.1 based on
the statements of Lemma 5.1 and Theorems 5.3 and 5.4.

3Actually it was proved in [Kol00a] that any convex body (not assumed to be a polytope) in R
n

which is spectral, must be centrally symmetric.
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However, there is a proof of Theorem 5.3 which in fact does not require the
completeness of the system E(�) in L2(A), only its orthogonality and the relative
denseness of � [KP02] (see also [GL17, Section 3]). The same is true also for
the proof of Theorem 5.4; see [GL17, Section 4]. Hence a consequence of these
proofs is that the following more general version of the results is actually true:

Theorem 5.5. Let A be a convex polytope in R
n. Assume that there exists a

relatively dense set � ⊂ R
n such that the system of exponentials E(�) is orthogonal

in L2(A). Then A must be centrally symmetric and have centrally symmetric facets.

This more general version is suitable for combining with Lemma 5.1, and this
yields Theorem 2.1 as an immediate corollary.

Remark 5.6. The conclusion of Theorems 5.3 and 5.4 (or Theorem 5.5)
cannot be further improved by showing that also all the k-dimensional faces of A,
for some 2 � k � n − 2, must be centrally symmetric (see [GL17, Section 4A]).

Remark 5.7. In the special case when the set B is also a convex polytope, we
can derive Theorem 2.1 directly from Theorems 5.3 and 5.4, without the use of
Lemma 5.1. Indeed, in this case the product � = A × B is a convex polytope in
R

n ×R
m. Hence � must be centrally symmetric (Theorem 5.3), which means that

the set −� = (−A)× (−B) is a translate of �. It follows that −A is a translate of A,
thus A is centrally symmetric. Next, suppose that F is a facet of A. Then F ×B is a
facet of �, hence it is also centrally symmetric (Theorem 5.4). Thus (−F) × (−B)
is a translate of F × B, and as before we can deduce that F is centrally symmetric.

Remark 5.8. For n � 2, the convex polytopes A ⊂ R
n which satisfy the

assumptions in Theorem 5.5 form a strictly larger class than the spectral convex
polytopes. As an example, let P be any convex, centrally symmetric polygon inR

2,
which is neither a parallelogram nor a hexagon, and whose vertices lie in Z

2. Then
the zero set Z(1̂P) contains Z

2 \ {0} (this follows, for instance, from the results
in [Kol00b]). Hence if we define A := P × [0, 1]n−2, then A is a convex polytope
in R

n such that the system E(Zn) is orthogonal in L2(A). However A is not spectral,
by Theorem 1.2 and the fact (due to [IKT03]) that P is not spectral.

5.3 There is another result about spectral sets, whose proof in fact requires
only the existence of an orthogonal (but not necessarily complete) system of
exponentials E(�) with a relatively dense set of frequencies �. The result states
that a ball [IKP99], or more generally, a centrally symmetric convex body with
a smooth boundary [IKT01] in R

n (n � 2) cannot be spectral. The proof of this
result shows that the following more general version is true:
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Theorem 5.9. Let A be a centrally symmetric convex body in R
n (n � 2) with

a smooth boundary. Then there cannot exist a relatively dense set � ⊂ R
n such

that the system of exponentials E(�) is orthogonal in L2(A).

Combining Lemma 5.1 and Theorem5.9 we conclude that the product�=A×B

of a centrally symmetric convex body A ⊂ R
n (n � 2) with a smooth boundary, and

a bounded, measurable setB ⊂ R
m, can never be spectral. This yields Theorem2.2.

6 Convex polygons: Effective constraints for spectra

One of the difficulties in the spectral set problem for convex polytopes � involves
the structure of the zero set Z(1̂�). If � is a spectrum for �, then this zero
set appears in condition (3.1) which is equivalent to the orthogonality of the
exponential systemE(�) in the spaceL2(�). However, unless� is a parallelepiped,
there is no explicit description of the zero set Z(1̂�), a fact which presents a certain
difficulty in using the condition (3.1) effectively.

Our purpose in this section is to circumvent this difficulty in the case when
� = A × B is the product of a convex polygon A ⊂ R

2, and a bounded, measurable
set B ⊂ R

m. We do this by introducing a new set that we denote by H(A), and
which can be used in some sense as a substitute for the zero set Z(1̂A).

Using the asymptotics of the Fourier transform 1̂A we will prove that if
� = A × B is a spectral set, then it has a spectrum � satisfying a version of
condition (3.1), obtained by replacing the zero set Z(1̂A) with the new set H(A).
The advantage of the set H(A) is that it can be explicitly calculated, which provides
us with more effective information on the structure of the spectrum �. This addi-
tional information will be used in Section 7 to prove the main result of the paper,
Theorem 2.3.

6.1 Let A ⊂ R
2 be a convex, centrally symmetric polygon. If e is any edge

of A, then by the central symmetry there is another edge e′ of A which is parallel
to e and has the same length. Hence e is a translate of e′, so there is a translation
vector τe in R

2 which carries e′ onto e (see Figure 6.1). Define

(6.1) H(A, e) := {t ∈ R
2 : 〈t, τe〉 ∈ Z or 〈t, e〉 ∈ Z \ {0}},

where we use e also to denote a vector in R
2 which has the same direction and

length as the edge e (such a vector is unique up to a sign). The set H(A, e) consists
of an infinite system of straight lines with directions perpendicular either to τe or
to e.

The sets H(A, e) are used to construct another set H(A), defined as follows:



SPECTRALITY OF PRODUCT DOMAINS AND FUGLEDE’S CONJECTURE 427

e

e′

τe

Figure 6.1. Two parallel edges e and e′ of A, and the vector τe.

Definition 6.1. We denote

(6.2) H(A) :=
⋂
e

H(A, e) \ {0},

where the intersection is taken over all the edges e of A.

For example, suppose that A is a parallelogram spanned by two linearly inde-
pendent vectors a, b in R

2. Then it is not difficult to check that

(6.3) H(A) = {t ∈ R
2 : 〈t, a〉 ∈ Z \ {0} or 〈t, b〉 ∈ Z \ {0}}.

The set H(A) thus consists of infinitely many straight lines with directions perpen-
dicular to one of the edges of A. Notice that in this case we have H(A) = Z(1̂A).

On the other hand, if A is not a parallelogram, then one can verify that H(A)
is a discrete closed set, contained in the union of a finite number of lattices.
This observation can essentially be found in [Kol00b]. (The paper [Kol00b] was
concernedwith a different subject—the structure of multi-tilings ofR2 by translates
of polygonal regions, but interestingly the set which we denote by H(A) was used
in that paper as well.)

It is obvious that the set H(A) remains invariant under translations of A. It is also
easy to check that if M is a 2 × 2 invertible matrix then H(M(A)) = (M−1)�(H(A)).

6.2 Before we move on to study the spectrality of the product set � = A × B,
we will first illustrate the idea of how to use the set H(A) in connection with a
simpler problem, namely, the spectrality of the convex polygon A itself.

It was proved in [IKT03] that the spectral convex polygons in R
2 are precisely

the parallelograms and the centrally symmetric hexagons. Another proof of this
fact was given in [GL17, Section 8]. In this paper we will obtain a third proof of
this result. The proof relies on the following lemma:
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Lemma 6.2. Let A be a convex, centrally symmetric polygon in R
2. If A is a

spectral set, then it admits a spectrum � satisfying

(6.4) (� − �) \ {0} ⊂ H(A).

In order to understand the point of this lemma, recall that every spectrum � of A
satisfies the condition (� − �) \ {0} ⊂ Z(1̂A). Lemma 6.2 asserts that at least one
spectrum � exists for which the alternative condition (6.4), obtained by replacing
the zero set Z(1̂A) with the set H(A), is also satisfied. We will see in Section 7 that
this alternative condition can be used in order to deduce that A must be either a
parallelogram or a centrally symmetric hexagon.

Proof of Lemma 6.2. First we show that it will be enough to prove the
following:

Claim. Assume that e is an edge of A, and that � is a spectrum for A. Then
there exists a sequence of translates of �, which converges weakly to a spectrum �′

of A satisfying the condition

(6.5) �′ − �′ ⊂ H(A, e).

Indeed, if this claim is true, then Lemma 6.2 can be established as follows. We
enumerate all the edges of A as e1, e2, . . . , eN . We let �0 be any spectrum of A,
and apply the claim with e = e1 and � = �0. The claim yields a spectrum �1 of A,
satisfying �1 − �1 ⊂ H(A, e1). We then apply again the claim with e = e2 and
� = �1, and obtain a spectrum �2 for A such that �2 − �2 ⊂ H(A, e2). Moreover,
as �2 is a weak limit of translates of �1, the set �2 − �2 is contained in the closure
of �1 − �1. Since �1 − �1 ⊂ H(A, e1) and the set H(A, e1) is closed, we deduce
that �2 − �2 ⊂ H(A, e1) as well. We continue applying the claim with e = e3 and
� = �2, and so on. At the k’th step we obtain a spectrum �k for A, which satisfies
�k − �k ⊂ H(A, ej) for all 1 � j � k. Then the set � := �N , obtained after N steps,
would satisfy (6.4) as needed.

It therefore remains to prove the claim. To begin, notice that by applying an
affine transformation we may assume that A is symmetric about the origin, that the
points ( 1

2 ,−1
2 ) and ( 1

2,
1
2 ) are vertices of A, and that the edge e is the line segment

which connects these two points. These assumptions imply, by (6.1), that

(6.6) H(A, e) = (Z × R) ∪ (R × (Z \ {0})).

Consider the sequence�k := �−(k, 0), k = 1, 2, 3, . . . , of translates of �. From
this sequence we may extract a weakly convergent subsequence, whose limit �′ is
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also a spectrum for A. There is therefore an infinite set S of positive integers, such
that �k → �′ as k → ∞, k ∈ S. We will show that �′ satisfies (6.5).

To show this, we let (u′, v ′) and (u′′, v ′′) be two points in �′ and we need to
verify that (u′′ − u′, v ′′ − v ′) belongs to the set H(A, e) given in (6.6). We will
assume that v ′′ − v ′ ∈ Z \ {0} and prove that this implies that u′′ − u′ ∈ Z. We
choose two sequences k′

j and k′′
j in S, such that each one of them tends to infinity

and also k′′
j − k′

j → ∞. Since �′ is the weak limit of the sequence �k, k ∈ S, there
exist two sequences (u′

j, v
′

j ) and (u′′
j , v

′′
j ) in � such that

(6.7) (u′
j − k′

j, v
′

j ) → (u′, v ′) and (u′′
j − k′′

j , v
′′

j ) → (u′′, v ′′).

Then, as we have chosen k′
j and k′′

j to satisfy k′′
j − k′

j → ∞, we obtain that also
u′′

j − u′
j → ∞. In particular, for all large enough j, the points (u′

j, v
′

j ) and (u′′
j , v

′′
j )

are distinct, and since they both belong to �, we have

(6.8) 1̂A(u′′
j − u′

j, v
′′

j − v ′
j ) = 0.

We will now use the fact that for any fixed C > 0,

(6.9) πu1̂A(u, v ) = sinπu · 1̂I(v ) + O(|u|−1), |u| → ∞, |v | � C,

where I denotes the interval [−1
2 ,

1
2 ] (a proof of this fact can be found in [GL17,

Lemma 6.1]). Notice that (6.7) implies that there is C > 0 such that |v ′′
j −v ′

j | � C

for all j. Thus, as we have also seen that u′′
j − u′

j → ∞, we may use (6.9), which
implies by (6.8) that

sin π(u′′
j − u′

j) · 1̂I(v
′′

j − v ′
j ) → 0.

Recall now that we have assumed that v ′′ − v ′ ∈ Z \ {0}. Then, as Z(1̂I) =
Z \ {0}, we obtain from (6.7) that |1̂I(v ′′

j − v ′
j )| remains bounded away from zero

as j → ∞. It follows that sinπ(u′′
j −u′

j) → 0, or equivalently, dist(u′′
j −u′

j,Z) → 0.
Notice that as both k′

j and k′′
j are integers, we have

(6.10) dist(u′′ − u′,Z) � dist(u′′
j − u′

j,Z) + |u′
j − k′

j − u′| + |u′′
j − k′′

j − u′′|.
It follows that u′′ − u′ ∈ Z, since by combining both (6.7) and the fact that
dist(u′′

j − u′
j,Z) → 0 we obtain that the right-hand side of (6.10) tends to zero.

This establishes the claim, and thus completes the proof of Lemma 6.2. �

Remark 6.3. The claim in the proof of Lemma 6.2 is actually a special case
of a more general result, which can be stated in any dimension, and which was
proved in [GL17, Sections 6, 7].
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6.3 Now we turn to the spectrality problem for the product set � = A × B. In
this case we know that every spectrum � of � satisfies the condition

(6.11) (� − �) \ {0} ⊂ Z(1̂�) = (Z(1̂A) × R
m) ∪ (R2 × Z(1̂B)).

If we replace in (6.11) the zero set Z(1̂A) with the set H(A), then we obtain a
new condition:

(6.12) (� − �) \ {0} ⊂ (H(A) × R
m) ∪ (R2 × Z(1̂B)).

We will show that this condition is satisfied by at least one spectrum � of �:

Lemma 6.4. Let A be a convex, centrally symmetric polygon in R
2, and B be

a bounded, measurable set in R
m. If � = A × B is a spectral set, then there is a

spectrum � of � which satisfies condition (6.12).

This lemma will be used in Section 7 in order to prove Theorem 2.3.

Proof of Lemma 6.4. The proof is very similar to that of Lemma 6.2, and
so it will only be sketched. First we show that the lemma can be reduced to the
following claim:

Claim. If e is an edge of A, and if � is a spectrum of � = A × B, then there

is a sequence of translates of � which converges weakly to a spectrum �′ of �

satisfying

(6.13) �′ − �′ ⊂ (H(A, e) × R
m) ∪ (R2 × Z(1̂B)).

If this claim is true then, by iterating through all the edges e1, e2, . . . , eN of A,
we can obtain a spectrum � for � such that � − � is contained simultaneously in
all the sets (H(A, ej) ×R

m) ∪ (R2 × Z(1̂B)), 1 � j � N. Moreover, � satisfies also
condition (6.11) which is true for any spectrum of �. Notice that we have

H(A, e1) ∩ H(A, e2) ∩ · · · ∩ H(A, eN) ∩ Z(1̂A) ⊂ H(A),

which is a consequence of (6.2) and the fact that the zero setZ(1̂A) does not contain
the origin. Combining together all the mentioned properties yields that � satisfies
condition (6.12) as required.

We now turn to prove the claim. We may assume that A is symmetric about the
origin, and that e = { 1

2}×[−1
2,

1
2 ]. Then we have H(A, e) = (Z×R)∪(R×(Z\{0})).

Let �′ be a spectrum of �, obtained as a weak limit of some subsequence of

�k := � − (k, 0, 0, . . . , 0), k = 1, 2, 3, . . . .
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That is, �k → �′ as k → ∞, k ∈ S, where S is a certain infinite set of positive
integers. We will show that the spectrum �′ satisfies (6.13).

To show this, we assume that

(u′, v ′, w′), (u′′, v ′′, w′′) ∈ R × R × R
m

are two points in �′, such that v ′′ − v ′ ∈ Z \ {0} and also w′′ − w′ ∈ Z(1̂B). We
then need to verify that u′′ − u′ ∈ Z. Let k′

j, k′′
j be two sequences in S satisfying

k′
j → ∞, k′′

j → ∞, k′′
j − k′

j → ∞. Then there exist two corresponding sequences
(u′

j, v
′

j , w′
j), (u′′

j , v
′′

j , w′′
j ) in � such that

(6.14) (u′
j−k′

j, v
′

j , w′
j) → (u′, v ′, w′) and (u′′

j −k′′
j , v

′′
j , w′′

j ) → (u′′, v ′′, w′′).

From (6.11)we deduce that for all large enough j, either (u′′
j − u′

j, v
′′

j − v ′
j ) ∈ Z(1̂A)

or w′′
j − w′

j ∈ Z(1̂B). However, combining (6.14) with the assumption that
w′′ − w′ ∈ Z(1̂B), we obtain that w′′

j − w′
j ∈ Z(1̂B) for all large enough j, and

so we must have 1̂A(u′′
j −u′

j, v
′′

j − v ′
j ) = 0. One can now continue in the same way

as in the proof of Lemma 6.2, and establish that u′′ − u′ ∈ Z, which completes the
proof. �

7 Convex polygons: The notion of a window

In this section we obtain the main result of the paper, Theorem 2.3. The theorem
states that if � = A×B is the product of a convex polygon A ⊂ R

2, and a bounded,
measurable set B ⊂ R

m, then � is spectral if and only if A and B are both spectral
sets. In other words, Conjecture 1.1 is true if A is a convex polygon in two
dimensions.

The non-trivial part is to prove that the spectrality of � = A × B implies that
both A and B must be spectral. We therefore assume that � is a spectral set. By
Theorem 2.1 we know that in this case, the convex polygon A must be centrally
symmetric.

Now supposewe knew that A has an orthogonal packing regionW, |W| � |A|−1,
and that moreover, if A is neither a parallelogram nor a hexagon, then W can be
chosen such that |W| > |A|−1. In such a case, we would be able to use Corollary 4.3
to conclude that both A and B must be spectral sets.

However, the problem with this strategy is that, unless A is a parallelogram,
no such orthogonal packing region W is known to exist for A. In fact we find the
existence of such a W unlikely, although no proof of this claim is known to us
either.
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To resolve this problem we will introduce a new notion that we call a “window”,
and which replaces the notion of an orthogonal packing region in our context. The
advantage of this new notion is that we can prove that if A is a convex, centrally
symmetric polygon, then it has a window W such that |W| � |A|−1, and if A is
neither a parallelogram nor a hexagon, then |W| > |A|−1.

Moreover, we will see that if � = A × B is a spectral set, then it has at least one
spectrum � which is W-compatible (in the sense of Definition 4.1). This allows
us to apply Theorem 4.2 in order to conclude that A must be either a parallelogram
or a hexagon, and hence A is a spectral set; and moreover, that the set B must also
be spectral. Thus we will obtain Theorem 2.3.

7.1 First of all we need to define what we mean by a “window”.

Definition 7.1. Let A ⊂ R
2 be a convex, centrally symmetric polygon. We

say that a bounded, measurable set W ⊂ R
2 is a window for A if the condition

(7.1) 
(W) ∩ H(A) = ∅

is satisfied.

The set H(A) was defined in Section 6 (see Definition 6.1). If we replace the
set H(A) in condition (7.1) with the zero set Z(1̂A), then the condition becomes the
definition of an orthogonal packing region for A. Thus our notion of a window
differs from that of an orthogonal packing region in that the set H(A) replaces the
zero set Z(1̂A).

Recall that if A is a parallelogram then H(A) = Z(1̂A). Hence, for a paral-
lelogram the notion of a window coincides with that of an orthogonal packing
region.

7.2 The following result establishes a key fact concerning the notion of a
window.

Theorem 7.2. Let A be a convex, centrally symmetric polygon in R
2. Then:

(i) If A is a parallelogram or a hexagon, then it has a window W, |W| = |A|−1.
(ii) Otherwise, A admits a window W such that |W| > |A|−1.

As we have mentioned, it is not known whether this result remains true if we
replace the word “window” with “orthogonal packing region” in the statement.
Hence the fact that we can prove Theorem 7.2 constitutes the main advantage of
the notion of a window over that of an orthogonal packing region in the context of
convex polygons.
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Proof of Theorem 7.2. First observe that if the assertions (i) and (ii) of
the theorem are true for a certain convex, centrally symmetric polygon A, then
these assertions are true also for any polygon A′ which is the image of A under an
invertible affine transformation. Indeed, we may write A′ = M(A) + x, where M is
a 2 × 2 invertible matrix, and x is a vector in R

2. Assuming that assertion (i) or (ii)
is true for A with some window W, it follows that the corresponding assertion for A′

is true with the window W ′ := (M−1)�(W).

It will therefore suffice that we prove (i) and (ii) under the following additional
assumptions: the polygon A is symmetric about the origin, two of its vertices lie at
the points ( 1

2,−1
2 ) and ( 1

2,
1
2 ), and the line segment that connects these two points

is an edge of A. We will denote this edge by e1. We will also denote by e2 the edge
of A that shares the vertex ( 1

2 ,
1
2 ) with e1, and by (a, b) the other vertex of A that

lies on e2. See Figure 7.1.

( 1
2 ,

1
2 )(− 1

2 ,
1
2 )

( 1
2 ,− 1

2 )(− 1
2 ,− 1

2 )

(a, b)

(−a,−b)

e1

e2

Figure 7.1. The convex polygon A in the proof of Theorem 7.2.

Notice that if A is a parallelogram, then it follows from the assumptions above
that A is in fact the unit cube, A = [− 1

2 ,
1
2 ]

2. In this case we have (a, b) = (−1
2,

1
2 ).

Now, to prove Theorem 7.2, it is required to show that there is a bounded,
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measurable set W in R
2 satisfying:

(1) W is a window for A.
(2) If A is a parallelogram or a hexagon then |W| = |A|−1, and otherwise

|W| > |A|−1.
We claim that the rectangle

(7.2) W := {(u, v ) ∈ R
2 : |u| < 1

2 , |v | < 1
2 (b + 1

2)
−1}

satisfies these conditions.
We will first prove that the rectangle W in (7.2) is a window for A. To show

this, we need to verify that (7.1) holds. Notice that as W is an open set, we have

(W) = W − W, which in turn implies that 
(W) = 2W, since W is convex and
symmetric about the origin. This gives

(7.3) 
(W) = {(u, v ) ∈ R
2 : |u| < 1, |v | < (b + 1

2)
−1}.

It is then required to verify that 
(W) is disjoint from the set H(A). In fact, we
will prove that

(7.4) 
(W) ∩ H(A, e1) ∩ H(A, e2) \ {0} = ∅.
According to Definition 6.1, the set H(A) is contained in H(A, e1)∩H(A, e2) \ {0}.
Therefore (7.1) would follow from (7.4).

To establish (7.4), we assume that (u, v ) is a vector lying in


(W) ∩ H(A, e1) ∩ H(A, e2),

and we must show that (u, v ) is the zero vector. First we will use the fact that
(u, v ) ∈ H(A, e1). Notice that we have τe1 = (1, 0) and e1 = (0, 1) (where here e1

is regarded as a vector in R
2). Hence, by the definition (6.1) of H(A, e1) we have

(7.5) u ∈ Z or v ∈ Z \ {0}.
Moreover, as the vector (u, v ) belongs also to the set 
(W), it follows from (7.3)
that

(7.6) |u| < 1 and |v | < (b + 1
2)

−1 � 1,

where the last inequality is due to the fact that b � 1
2 , by the convexity of A. By

combining (7.5) and (7.6), we obtain that u = 0.
Next we use the fact that the vector (u, v ) lies in H(A, e2) as well. Notice that

τe2 = (a + 1
2 , b + 1

2) and e2 = (a − 1
2 , b − 1

2 ) (where, as before, e2 is regarded here
as a vector). Hence, since we have seen that u = 0, we have

v (b + 1
2) = 〈(u, v ), (a + 1

2 , b + 1
2)〉 ∈ Z,
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or
v (b − 1

2 ) = 〈(u, v ), (a − 1
2 , b − 1

2 )〉 ∈ Z \ {0}.
Therefore, if v = 0, then in each one of these cases we obtain that |v | � (b+ 1

2)
−1,

which contradicts (7.6). We conclude that the set 
(W)∩H(A, e1)∩H(A, e2) does
not contain any vector other than the zero vector. This establishes (7.4), which, as
we have seen, implies that W is a window for A.

For our claim to be proved, it remains to show that the rectangle W in (7.2)
satisfies |W| = |A|−1 if A is a parallelogram or a hexagon, and |W| > |A|−1

otherwise. To begin, notice that the definition of W implies that

(7.7) |W| = (b + 1
2)

−1.

Let P denote the convex hull of the points

(7.8) ( 1
2,−1

2 ), ( 1
2,

1
2 ), (a, b), (−1

2,
1
2 ), (−1

2 ,−1
2 ), (−a,−b)

(see the shaded region in Figure 7.1). Observe that in the case where the polygon A

is a parallelogram then P is the unit cube, P = [−1
2 ,

1
2 ]

2, and otherwise P is a
hexagon of measure b + 1

2 . In any case, it follows from (7.7) that

(7.9) |W| = |P|−1.

Furthermore, as A is convex and all the points in (7.8) are vertices of A, the
polygon P is contained in A. We conclude that if A is a parallelogram or a hexagon,
then it coincides with P and so |P| = |A|; whereas otherwise, P is strictly contained
in A, and |P| < |A|. Combining the latter conclusion with (7.9) completes the proof
of our claim, as it shows that if A is a parallelogram or a hexagon then |W| = |A|−1,
and otherwise |W| > |A|−1, as required. �

7.3 It should be noted that the condition |W| = |A|−1 in part (i) of Theorem 7.2
is sharp in the sense that the window W cannot be chosen to have measure strictly
greater than |A|−1. This is a consequence of the following lemma:

Lemma 7.3. Let A be a convex, centrally symmetric polygon in R
2. If A is a

spectral set, then any window W of A satisfies |W| � |A|−1.

This result is analogous to [LRW00, Lemma 2.3], where it was shown that if A

is a spectral set and if W is an orthogonal packing region for A, then |W| � |A|−1.

Proof of Lemma 7.3. Suppose that W is a window for A, which means that
(7.1) holds. Since A is spectral, Lemma 6.2 allows us to choose a spectrum � for A

which satisfies (6.4). Thus, from (6.4) and (7.1), it follows that

(� − �) \ {0} ⊂ 
(W)�.
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Observe that according to Lemma 3.3, this implies that W + � is a packing, or
equivalently, 1W +� is a packing. On the other hand, part (i) of Lemma 3.1 implies
that if f := |A|−2 |1̂A|2, then f + � is a tiling. Now, as f + � is a tiling and 1W + � is
a packing, we may apply part (i) of Lemma 3.2 and deduce that

|W| =
∫

1W �
∫

f = |A|−1,

which completes the proof. �

One can think of Lemma 7.3 as imposing a necessary condition for the spec-
trality of a convex, centrally symmetric polygon A ⊂ R

2. Namely, A cannot be
spectral if it has a window W such that |W| > |A|−1. Using this proposition to-
gether with part (ii) of Theorem 7.2 yields a new proof of the result from [IKT03]
which characterizes the spectral convex polygons in two dimensions:

Corollary 7.4 ([IKT03]). Let A be a convex polygon in R
2. Then A is a

spectral set if and only if A is either a parallelogram or a centrally symmetric
hexagon.

Proof. We know that parallelograms and centrally symmetric hexagons are
spectral sets (as these are convex polygons that tile by translations). Conversely,
suppose that A is a spectral convex polygon. According to Theorem 5.3, A must
be centrally symmetric. If A is neither a parallelogram nor a hexagon, then by
part (ii) of Theorem 7.2 there is a window W for A, |W| > |A|−1. However, this
contradicts Lemma 7.3. �

7.4 We can now complete the proof of our main result.

Proof of Theorem 2.3. We assume that � = A × B is the product of a
convex polygon A ⊂ R

2, and a bounded, measurable set B ⊂ R
m. We already

know that the spectrality of both A and B implies the spectrality of �. It remains
therefore to prove the converse assertion, namely, if � is spectral then both A and B
must be spectral sets.

So suppose that � is spectral. Then according to Theorem 2.1, the convex
polygon A must be centrally symmetric. By Theorem 7.2 we can find a window
W for A, such that |W| = |A|−1 if A is either a parallelogram or a hexagon, and
|W| > |A|−1 otherwise.

Using Lemma 6.4 we can find a spectrum � for � which satisfies condition
(6.12). As W is a window for A, it satisfies (7.1). Combining these two conditions
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implies that

(� − �) \ {0} ⊂ (
(W)� × R
m) ∪ (R2 × Z(1̂B)).

That is, the spectrum � is W-compatible in the sense of Definition 4.1.
We may therefore invoke Theorem 4.2 in our present situation. It follows from

part (ii) of this theorem that the set B must be spectral, so the spectrality of B

is established. To conclude that A must also be spectral, we can use part (i) of
Theorem 4.2, which yields that |W| = |A|−1. This is not possible unless A is either
a parallelogram or a hexagon. In particular this implies the spectrality of A, as we
had to show. �

7.5 Based on Theorem 2.3 and the results obtained in [GL16, GL17] we can
now deduce Corollary 2.4, which states that spectrality and tiling are equivalent
properties for decomposable convex polytopes in four dimensions.

Proof of Corollary 2.4. We assume that � is a convex polytope in R
4,

and that � is decomposable. The decomposability assumption means that � can
be mapped by an invertible affine transformation to a cartesian product A × B of
two convex polytopes A ⊂ R

n, B ⊂ R
m (n,m � 1) where n + m = 4. By the

invariance under affine transformations, it would be enough to consider the case
when � = A × B.

We need to prove that � is spectral if and only if it can tile by translations. It
is already known that the convex polytopes which tile by translations are spectral,
and what has to be proved is that � can be spectral only if it tiles.

We therefore assume that � is spectral. We may suppose that n � m, which
leaves two possibilities, n = 1 and m = 3, or n = m = 2.

If n = 1 and m = 3, then A is an interval in R, and B is a convex polytope in R
3

(so in this case, � is a prism with base B). Using Theorem 1.2 we obtain that B
is a spectral set. Hence B is a spectral three-dimensional convex polytope, and so
we know from [GL17, Theorem 1.2] that B can tile R

3 by translations. Since the
interval A can obviously tile R, it follows that the product � = A × B tiles R

4 by
translations, as we had to show.

Next we consider the remaining case, when n = m = 2. In this case, both A
and B are convex polygons in R

2, hence we may apply Theorem 2.3. It follows
from the proof of this theorem that A must be either a parallelogram or a centrally
symmetric hexagon, and since the roles played by A and B are symmetric, the
same is true also for B. Hence each one of the sets A,B can tile R

2 by translations,
which again implies that their product � tiles R4 by translations. This concludes
the proof. �
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8 Remarks

8.1 It is a natural problem to extend Theorems 1.2 and 2.3 to higher dimen-
sions.

Problem 8.1. Let A be a convex polytope in R
n, and B be a bounded, mea-

surable set in R
m. Prove that their product � = A × B is spectral if and only if A

and B are both spectral sets.

Theorems 1.2 and 2.3 say that this is true for dimensions n = 1, 2. For
any dimension n, we know from Theorem 2.1 that the spectrality of the product
� = A×B implies that A must be centrally symmetric and have centrally symmetric
facets.

One may attempt to solve Problem 8.1 for dimensions n � 3 by adapting the
approach used in this paper for n = 2. Such a solution should involve two main
steps:

(i) The set H(A) should be defined in an appropriate way, such that the corre-
sponding versions of Lemmas 6.2 and 6.4 would be true.

(ii) A result analogous to Theorem 7.2 should be proved, stating that A has a
window W of measure |W| � |A|−1, and moreover if A is not spectral then W can
be chosen such that |W| > |A|−1. Here a “window” is again defined by (7.1) but
with respect to the definition of H(A) made in the previous step.

Once these two steps are accomplished, a proof of the assertion in Problem 8.1
can be completed using Theorem 4.2, in the same way as we have done above for
n = 2.

8.2 In dimension n = 3, we are able to perform the first step in the above
scheme. That is, we can define the set H(A) in a natural way, and then prove the
corresponding versions of Lemmas 6.2 and 6.4. In what follows, we explain the
definition of the set H(A) in the three-dimensional setting.

LetA ⊂ R
3 be a convex polytope,which is centrally symmetric and has centrally

symmetric facets. We will assume that A is not a prism. (If A is a prism, then A is
decomposable, so in this case Problem 8.1 can be solved using Theorems 1.2 and
2.3.)

Let F be one of the facets of A. Then by the central symmetry of both A and F,
the opposite facet F′ is a translate of F, hence there is a translation vector τF which
carries F′ onto F. Further, if e is an edge of A which is contained in F, then the
central symmetry of F implies that there is another edge e′ of F, which is parallel
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to e and has the same length. Let τF,e be the translation vector which carries e′

onto e. Denote

(8.1) H(A,F, e) := {t ∈ R
3 : 〈t, τF〉 ∈ Z or 〈t, τF,e〉 ∈ Z or 〈t, e〉 ∈ Z \ {0}}.

Finally, we define

(8.2) H(A) :=
⋂
(F,e)

H(A,F, e) \ {0},

where the intersection is taken over all the pairs (F, e) such that F is a facet of A,
and e is an edge of A which is contained in F.

(It turns out that the same set was used also in the paper [GKRS13], where the
structure of multi-tilings of R3 by translates of a convex polytope was studied.)

In [GL17, Sections 6, 7, 12] the following claim was proved: if � is a spectrum
for A, and if (F, e) is a pair as above, then there exists a sequence of translates
of � which converges weakly to a spectrum �′ of A that satisfies the condition
�′ − �′ ⊂ H(A,F, e). By iterating this process over all the pairs (F, e) we can
obtain:

Lemma 8.2. Let A ⊂ R
3 be a convex polytope, centrally symmetric and with

centrally symmetric facets. If A is a spectral set, then it has a spectrum � satisfying

(8.3) (� − �) \ {0} ⊂ H(A).

This is the analog in dimension n = 3 of Lemma 6.2. In a similar way, we can
also prove the corresponding version of Lemma 6.4, namely:

Lemma 8.3. Let A be a convex polytope in R
3, centrally symmetric and with

centrally symmetric facets, and let B be a bounded, measurable set in R
m. If

� = A × B is a spectral set, then there is a spectrum � of � such that

(8.4) (� − �) \ {0} ⊂ (H(A) × R
m) ∪ (R3 × Z(1̂B)).

Actually, if some of the facets of A happen to be quadrilateral, then the conclu-
sions in the last two lemmas can be somewhat improved, in the following sense: for
each pair (F, e) such that F is a quadrilateral facet of A, we can redefine H(A,F, e) to
be a set smaller than the one in (8.1), but such that Lemmas 8.2 and 8.3 will remain
true. The new definition of the set H(A,F, e) in the case when F is quadrilateral is
obtained from (8.1) by replacing the condition 〈t, τF,e〉 ∈ Z with the stronger one
〈t, τF,e〉 ∈ Z \ {0}.

We conjecture that if A ⊂ R
3 is a convex polytope, centrally symmetric and

with centrally symmetric facets, but A is not a prism, and if the set H(A) is defined
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as above, then a corresponding version of Theorem 7.2 should be true. That is,
if A can tile the space by translations then it has a window W, |W| = |A|−1; and
otherwise, A admits a window W such that |W| > |A|−1. Such a result would
imply a solution to Problem 8.1 for dimension n = 3. Moreover, it would provide
an alternative approach to the main result in [GL17] which states that if a convex
polytope in R

3 is spectral, then it can tile by translations. This will be the subject
of a future work.
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