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Abstract. We consider the averages of a function f on R
n over spheres of

radius 0 < r < ∞ given by Ar f (x) =
∫
Sn−1 f (x − ry)dσ(y), where σ is the normal-

ized rotation invariant measure on S
n−1. We prove a sharp range of sparse bounds

for two maximal functions, the first the lacunary spherical maximal function, and
the second the full maximal function.

Mlac f = sup
j∈Z

A2 j f, Mfull f = sup
r>0

Ar f.

The sparse bounds are very precise variants of the known Lp bounds for these
maximal functions. They are derived from known Lp-improving estimates for the
localized versions of these maximal functions, and the indices in our sparse bound
are sharp. We derive novel weighted inequalities for weights in the intersection of
certain Muckenhoupt and reverse Hölder classes.

1 Introduction

For a smooth function f on Rn, let Ar f (x) =
∫
Sn−1 f (x − ry)dσ(y) be the average

of f over the sphere centered at x and of radius r. Here, σ is normalized measure
on Sn−1. We consider the two maximal functions

Mlac f = sup
j∈Z

A2 j f, Mfull f = sup
r>0

Ar f.

The first is the lacunary maximal function, and the second is the full maximal
function, introduced by E. M. Stein [34]. For both of these, we prove sparse
bounds. The latter are particular quantifications of the known Lp inequalities
for these operators. In particular, these bounds quickly imply novel weighted in-
equalities, for weights in intersections of certain Muckenhoupt and reverse Hölder
classes. These inequalities are the sharpest known for these operators.
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We set notation for the sparse bounds. Call a collection of cubes S in Rn

sparse if there are sets {ES : S ∈ S} which are pairwise disjoint, ES ⊂ S
and satisfy |ES | > 1

4 |S| for all S ∈ S. For any cube Q and 1 ≤ r < ∞, set
〈 f 〉rQ,r = |Q|−1

∫
Q| f |rdx. Then the (r, s)m-sparse form �S,r,s,m = �r,s, indexed by

the sparse collection S, is

(1.1) �S,r,s,m( f, g) =
∑
S∈S

|S|〈 f 〉S,r〈g1FS〉S,s.

Here, the subscript m is a reminder that the formhas a maximal function component:
The sets {FS : S ∈ S} are a collection of pairwise disjoint sets with FS ⊂ S for all
S ∈ S (with no requirement on a lower bound on the measure of FS). If there is
no subscript m , we mean the same bilinear form, but with 1FS ≡ 1S for all cubes S.
The sparse collection S is also frequently suppressed in the notation.

Given a sublinear operator T , and 1 ≤ r, s < ∞, we set ‖T : (r, s)m‖ to
be the infimum over constants C so that for all bounded compactly supported
functions f, g,

|〈T f, g〉| ≤ C sup�r,s,m( f, g),

where the supremum is over all sparse forms. It is essential that the sparse form be
allowed to depend upon f and g. But the point is that the sparse form itself varies
over a class of operators with very nice properties.

We include a discussion of the lacunary maximal operator for pedagogical
reasons. The following Lp bounds are well known.

Theorem A ([6, 3]). For all 1 < p < ∞, and dimensions n, we have

‖Mlac : Lp �→ Lp‖ <∞.

The proofs for the result above compare to the Hardy–Littlewood maximal
function, and pass through a square function. For the sparse bound, we will argue
directly. The bounds below contains the Lp bounds as a trivial corollary, and so
it represents a new proof of this fact, one that is intrinsic, in that it only uses
properties of spherical averages.

Theorem 1.2. Let Ln be the triangle with vertexes (0, 1), (1, 0) and ( n
n+1,

n
n+1 ).

(See Figure 2.) For n ≥ 2, and all ( 1
r ,

1
s ) in the interior of Ln, we have the inequality

(1.3) ‖Mlac : (r, s)m‖ < ∞.

Moreover, for 1
r + 1

s > 1 not in the closed set Ln, the inequality (1.3) fails.
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The case of the full maximal operator is more delicate. The foundational work
is due to E. M. Stein, in dimensions n ≥ 3, and Bourgain in the delicate case of
n = 2.

Theorem B ([6, 3]). For dimensions n ≥ 2, we have

‖Mfull : Lp �→ Lp‖ <∞,
n

n − 1
< p <∞.

The sparse bound below is again a very precise refinement of the well-known
inequalities above.

Theorem 1.4. For n ≥ 2, let Fn be the trapezium with vertexes P1 = (0, 1),
P2 = ( n−1

n ,
1
n ), P3 = ( n−1

n ,
n−1
n ), and P4 = ( n2−n

n2+1 ,
n2−n+2
n2+1 ). (See Figure 2.) For all

( 1
r ,

1
s ) in the interior of Fn, we have

(1.5) ‖Mfull : (r, s)m‖ <∞.

Moreover, for 1
r + 1

s > 1 not in the closed set Fn, the inequality (1.5) fails.

One of the great advantages of sparse bounds is that one can easily derive
weighted inequalities for sparse operators, indeed inequalities with sharp depen-
dence upon the Muckenhoupt and reverse Hölder constants. We will discuss this
in detail in §6. Weighted inequalities for the spherical maximal function in the
category of Muckenhoupt and reverse Hölder classes has been studied in [8, 13].
We recover and extend their results using the sparse bound. See for instance
Proposition 6.7

Sparse bounds for different operators is a recent topic of research. These
arguments have delivered the most powerful known proof [19] of the A2 conjecture.
They quickly prove sharp weighted estimates for commutators [23]. In other
settings, they establish weighted inequalities [9] for the bilinear Hilbert transform,
as well as other objects in phase plane analysis [12]. Some of these arguments
are rather short and elegant, using familiar TT ∗ style arguments [7] to provide
remarkably sharp control of rough singular integrals. Also see [16, 25, 17] for
further work in this direction. In the setting of Radon transforms, the paper [10]
discusses a particular arithmetic example, showing that sparse bounds are possible
in that setting. Random examples have been considered in [18, 21, 15]. This paper
proves the first sparse bounds for a Radon transform in the continuous case.

Our sparse bounds are sharp in the scale of Lp averages. Sharper results can
be obtained using local Lorentz–Orlicz averages at the endpoint cases. The latter
is the focus of the article of Richard Oberlin [29]. Given the close association be-
tween sparse bounds and weighted inequalities in other settings, one then suspects
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that the weighted inequalities that follow are the best possible in the category of
Muckenhoupt and reverse Hölder classes. In another direction, the core innovation
is the identification of the central role of the Lp improving inequalities. The sharp
range of improving inequalities are known for a wide range of Radon transforms.
Many of these can now be extended to sparse bounds for allied maximal functions.

We prove the sparse bounds for Mlac first, followed by that for Mfull. Both use
the same tool, the Lp improving mapping properties of the unit scale version of the
maximal operators. In fact, we need a ‘continuity’ version of these inequalities.
These appear to be new, and are proved in §4. Once the continuity inequalities
are established, the remaining argument is a variant, but not a corollary, of the
innovative paper of Conde, Culiuc, Di Plinio andOu [7]. The argument is presented
in detail. We then turn to the consequences for weighted inequalities in §6. A final
section includes various complements.

Acknowledgments. It is a pleasure to acknowledge the interest and input of
several people: Laura Cladek, Francesco Di Plinio, Richard Oberlin, Yumeng Ou,
and Betsy Stovall, as well as the anonymous referee.

2 The Lacunary case

The argument has two components, one being a (small) improvement to the clas-
sical Lp-improving properties of the spherical averages due to Littman [26] and
Strichartz [35]. We set Ln to be the triangle with vertexes (0, 1), (1, 0) and
( n
n+1,

n
n+1 ). Consider the dual to Ln, defined by L′

n = {( 1
p,

1
q ) : ( 1

p , 1 − 1
q ) ∈ Ln}.

See Figure 2.

Theorem C ([26, 35]). For any point ( 1
r ,

1
s ) in the closed triangle L′

n, there
holds

‖A1 : Lr �→ Ls‖ <∞.

The inequality strengthens as s increases. In particular, the critical case is ver-
tex ( 1

r ,
1
s ) = ( n

n+1,
1

n+1 ). The improvement is a ‘continuity’ condition, namely
the inequality is preserved, with a small gain, under small translations. Let
τy f (x) = f (x − y) be the translation of f by y.

Theorem 2.1. Let L′
n be the closed triangle with vertexes (0, 0), (1, 1) and

( n
n+1,

1
n+1 ). For ( 1

r ,
1
s ) in the interior of L′

n we have the inequalities

(2.2) ‖A1 − τyA1 : Lr �→ Ls‖ � |y|η, |y| ≤ 1,

for a choice of η = η(n, r, s) > 0.
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1
r
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n+1,

n
n+1 )
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1
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r
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( n
n+1,

1
n+1 )

L′
n

Figure 1. The triangle Ln on the left, and L′
n on the right.

A proof is presented in §4. We need a scale invariant version of the inequalities
above, which is very easy to prove by a change of variables.

Lemma 2.3. Let f1, f2 be supported on a cube Q, and let t � �Q. For ( 1
r ,

1
s )

as in the interior of Ln, we have

(2.4) |〈At f − Atτy f1, f2〉| � |y/�Q|η|Q|〈 f1〉Q,r〈 f2〉Q,s, |y| ≤ �Q.

We set some notation for the statement of the main lemma. For a cube Q with
side length 2q, for q ∈ Z, let

AQ f = A2q−2 ( f 1 1
3 Q).

It is important for the proof below that the support of AQ f is contained in Q. There
are a choice of 3n dyadic grids D1, . . . ,D3n so that

A2q−2 f =
3n∑
t=1

∑
Q∈Dt:�Q=2q

AQ f.

Therefore, it suffices to prove the sparse bound for each of the maximal operators

(2.5) MDt f := sup
Q∈Dt

AQ f, 1 ≤ t ≤ 3n.

The specific dyadic grid in question is immaterial, so we fix such a grid below, and
write D = Dt. This is the kernel of the proof.
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Lemma 2.6. Let 1 < r, s < ∞ be as in Theorem 1.2, and let C0 > 1 be a

constant. Let Q be a collection of sub cubes of Q0 ∈ D for which

sup
Q′∈Q

sup
Q:Q′⊂Q⊂Q0

{ 〈 f1〉Q,r
〈 f1〉Q0,r

+
〈 f2〉Q,s
〈 f2〉Q0,s

}
< C0.

Then,

(2.7)
〈
sup
Q∈Q

AQ f1, f2
〉
� |Q0|〈 f1〉Q0,r〈 f2〉Q0,s.

Proof. By homogeneity, we can assume 〈 f1〉Q0,r = 〈 f2〉Q0,s = 1. The supreu-
mum is linearized. Thus, for pairwise disjoint sets {FQ : Q ∈ Q} with FQ ⊂ Q, set
fQ = f21FQ . We estimate

(2.8)
∑
Q∈Q

〈AQ f1, 1FQ f2〉.

We take B to be the maximal dyadic subcubes of Q0 so that we have

(2.9) 〈 f1〉Q,r + 〈 fQ〉Q,s > 2C0.

Perform a standard Calderón–Zygmund decomposition on f1. Set f1 = g1 + b1

where

(2.10) b1 =
∑
P∈B

( f1 − 〈 f1〉P)1P =
q0−1∑

k =−∞

∑
P∈B(k)

( f1 − 〈 f1〉P)1P =:
q0−1∑

k =−∞
B1,k,

where above we write �Q0 = 2q0 , and set B(k) = {P ∈ B : �P = 2k}.
The bilinear expression in (2.8) is dominated by a sum of two terms. The first

places the good function g1 in the first place. It is a bounded function, so that∑
Q∈Q

|〈AQg1, fQ〉| �
∑
Q∈Q

‖ f21FQ‖1 � |Q0|.

This just depends upon the disjointness of the sets FQ.
The second has b1 in the first position. We have this following easy, but

essential, fact: For all Q ∈ Q and P ∈ B, if Q ∩ P �= ∅, then P � Q. Therefore, for
any Q ∈ Q, with �Q = 2q, we have, using the notation of (2.10),

〈AQb1, fQ〉 =
∑
k:k<q

〈AQB1,k, fQ〉 =
∞∑

k =1

〈AQB1,q−k, fQ〉.

Therefore,

∣∣∣∑
Q∈Q

〈AQb1, fQ〉
∣∣∣ ≤

∞∑
k =1

∑
Q∈Q

|〈AQB1,q−k, fQ〉|. (�Q = 2q)
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We achieve the desired bound, with geometric decay in k, derived from our
continuity inequalities. For Q ∈ Q, with �Q = 2q, we estimate as follows, using
the mean zero properties of the bad functions.

(2.11)

|〈AQB1,q−k, fQ〉|
= |〈B1,q−k,A

∗
Q fQ〉|

=
∑

P∈B(q−k)

1
|P|

∣∣∣∫
P

∫
P
[A∗

Q fQ(x) − A∗
Q fQ(x′)] · B1,q−k(x)dxdx′

∣∣∣
� 1

|P0|
∣∣∣∫ [A∗

Q fQ(x) − τyA
∗
Q fQ(x)] · B1,q−k(x)dx

∣∣∣dy

� 2−ηk|Q|〈B1,q−k1Q〉Q,r〈 fQ〉Q,s.

Above, P0 is the cube of side length 2q−k+1 centered at the origin, and we use our
continuity inequality (2.2).

It remains to argue that uniformly in k ≥ 1,

∑
Q∈Q

|Q|〈B1,q−k1Q〉Q,r〈 f21FQ〉Q,s � |Q0|.

This follows from (a) the disjointness of the sets FQ, (b) the disjointness of the
supports of B1,k1Q, for k ≥ 1 fixed, and (c) 1/r + 1/s ≥ 1. In particular, the
inequality is clear in the case of 1/r + 1/s = 1, and also clear in the case of
min{r, s} = 1, so that the remaining cases follow by interpolation. �

Proof of Theorem 1.2. We deduce the m-sparse bound for the operator MD

in (2.5). From this it follows that Mlac is bounded by the sum of a finite number of
sparse forms. But, the principle described in (5.2) shows that there is a constant C,
so that given f, g, there is a fixed sparse form�S0,r,s, so that

sup
S

�S,r,s( f, g) ≤ C�S0,r,s( f, g).

Thus, the sparse bound as claimed will follow.
We can assume that f1, f2 are bounded functions supported on a dyadic cube

Q0 ∈ D. Indeed, we can even assume that for any cube Q � Q0, we have AQ f ≡ 0.
Namely, for the construction of the sparse bound, we need only consider cubes
Q ⊂ Q0.

We then add the cube Q0 to S. We take the S-children of Q0 to be the collection E

ofmaximal childrenP � Q0 forwhich 〈 f1〉P,r > Cn〈 f1〉Q0,r , or 〈 f2〉P,s > Cn〈 f2〉Q0,s.
Let E be the union of these maximal children. For a choice of constant Cn > 1,
we have |E | < 1

2 |Q0|. Set Q = {P ⊂ Q0 : P �⊂ E}. Associated to the set Q0 we
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need the set
FQ0 = {x ∈ Q0 : MD f (x) = sup

Q∈Q
AQ f (x)}.

Then apply Lemma 2.6 to the collection Q, with the second function being f21FQ0
.

We see from (2.7), and the support condition on AQ f , that it remains to recurse
inside the cubes E. The proof is complete. �

3 The full supremum

The analog of the Lp-improving properties of A1 in Theorem C concern the ‘unit
scale’ maximal function M̃ f = sup1≤t≤2 At f . This is due to Schlag [30]; also see
Schlag and Sogge [31].

Theorem D. Let F′
n be the closed convex hull of the four points P′

1 = (0, 0),
P′

2 = ( n−1
n ,

n−1
n ), P′

3 = ( n−1
n ,

1
n ), and P′

4 = ( n2−n
n2+1 ,

n−1
n2+1 ). For all ( 1

r ,
1
s ) in F′

n, we have

(3.1) ‖M̃ : Lr �→ Ls‖ <∞.

This ‘continuity property’ is a corollary.

Theorem 3.2. For all ( 1
r ,

1
s ) in the interior of F′

n, for some η = η(n, r, s) > 0,

we have

(3.3) ‖ sup
1≤t≤2

|At f − τyAt f |‖s � |y|η‖ f ‖r, |y| < 1.

We will delay the proof of this theorem to the next section. See Figure 2 for a
picture of the trapeziums Fn and F′

n.
We again make a dyadic reduction. For a cube Q with side length 2q, for q ∈ Z,

let
M̃Q f = sup

2q−3≤t<2q−2

At( f 1 1
3 Q), �Q = 2q.

There are a choice of 3n dyadic grids D1, . . . ,D3n so that

sup
2q−3≤t<2q−2

At( f 1 1
3 Q) ≤

3n∑
s=1

∑
Q∈Ds:�Q=2q

M̃Q f.

Therefore, it suffices to prove the sparse bound for each of the maximal operators

MDs f := sup
Q∈Dt

M̃Q f, 1 ≤ s ≤ 3n.

We fix such a grid below, and write D = Ds. The main Lemma is as before. We
will prove it, and leave the details of the derivation of Theorem 1.4 to the reader.
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4

F ′
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Figure 2. The trapezium Fn on the left, and F ′
n on the right. (When n = 2, they are

in fact triangles.)

Lemma 3.4. Let ( 1
r ,

1
s ) be in the interior of Fn. Let Q ⊂ D be a collection of

sub cubes of Q0 so that

sup
Q′∈Q

sup
Q:Q′⊂Q⊂Q0

{ 〈 f1〉Q,r
〈 f1〉Q0,r

+
〈 f2〉Q,s
〈 f2〉Q0,s

}
< C0.

Then, there holds

〈
sup
Q∈Q

M̃Q f1, f2
〉
� |Q0|〈 f1〉Q0,r〈 f2〉Q0,s.

Proof. The proof closely follows the lines of the proof of Lemma 2.6. Assume
〈 f1〉Q0,r = 〈 f2〉Q0,s = 1. Define the collection of ‘bad’ cubes B as in (2.9). We
bound the bilinear form

(3.5)
∑
Q∈Q

〈M̃Q f1, fQ〉,

where {FQ : Q ∈ Q} is a family of disjoint sets with FQ ⊂ Q, and fQ = 1FQ f2.

Use the Calderón–Zygmund decomposition, just like in (2.10). The bilinear
form in (3.5) is divided into two terms, of which the first has the good function g1

in the first place:

∑
Q∈Q

|〈M̃Qg1, 1FQ f2〉| �
∑
Q∈Q

∫
FQ

| f2|dx � |Q0|.

The second term has b1 in the first place, and fQ in the second. Namely, we
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have to bound

∑
Q∈Q

|〈M̃Qb1, fQ〉| ≤
∞∑

k =1

∑
Q∈Q

|〈M̃QB1,q−k, fQ〉| (�Q = 2q).

Above, we have used the expansion in (2.10). We will use the continuity inequality
(3.3) to establish the desired bound with geometric decay in k. Let us argue by
duality. For each Q ∈ Q we can replace M̃Q by LQφ(x) = AtQ(x)φ(x), where
tQ : 1

3Q �→ [2q−2, 2q−1] is measurable. Then, estimate

|〈LQB1,q−k1 , fQ〉| = |〈B1,q−k,L
∗
Q fQ〉|

≤ ∑
P∈B(q−k)

P⊂Q

1
|P|

∫
P

∣∣∣∣
∫

P
B1,q−k1 (x) · (L∗

Q fQ(x) − L∗
Q fQ(x′))dx

∣∣∣∣dx′

� 2−ηk|Q|〈B1,q−k〉Q,r〈 fQ〉Q,s.
Here, the notation is similar to (2.11), and we appeal to the scale-invariant and
dual form of (3.3). The remainder of the argument is exactly as in the proof of
Lemma 2.6. �

4 Proof of the continuity inequalities

4.1 Proof of Theorem 2.1. From Plancherel’s theorem, we have

‖A1 f − A1τy : L2 �→ L2‖ = ‖(1 − eiy·ξ )d̂σ(ξ )‖∞ � |y|η0, η0 = ηo(n) > 0.

To see this last inequality, we need only appeal to the well known decay estimate
for |d̂σ(ξ )| which we recall below.

In interpolation between this L2 estimate and the Lr improving estimates of
Theorem C, it is clear that the conclusion (2.2) holds for ( 1

r ,
1
s ) in the interior of

the triangle L′
n.

4.2 Proof of Theorem 3.2. We recall that the Fourier transform of σ, the
uniform measure on the sphere Sn−1, is

(4.1) d̂σ(ξ ) = e−i|ξ |a−(ξ ) + ei|ξ |a+(ξ ),

where |∂αa±(ξ )| � (1 + |ξ |)−(n−1)/2−|α|.
The trapezium F′

n is contained in the triangle L′
n. Thus, if T ⊂ [1, 2] is a finite

set, it follows from Theorem 2.1 that we have

‖sup
t∈T

|At f − τyAt f |‖p2 � �(T)1/p2 · |y|η‖ f ‖p1 ,
( 1

p1
,

1
p2

)
∈ F′

n \ {(0, 1), (1, 0)}.
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Taking T be a |y|η-net in [1, 2], it clearly suffices to show this modulus of continuity
result.

Proposition 4.2. Subject to ( 1
r ,

1
s ) satisfying the hypotheses of Theorem 3.2,

there is a η > 0 so that for all 0 < δ < 1
2 , we have

(4.3) ‖ sup
s,t∈[1,2]
|s−t|<δ

|At f − As f |‖s � δη‖ f ‖r .

The proof in dimensions n ≥ 3. It suffices to prove a version of (4.3) at
the point ( 1

2,
1
2 ), and then interpolate to the other points in the interior of F′

n. Using
(4.1) and Plancherel, we see that there is a full derivative in t:

‖∂tAt f ‖L2(Rn×[1,2)) � ‖ f ‖2.

It follows that for each x ∈ Rn, At f (x) continuously embeds as a function of t into
the class Lip( 1

4 ), so that (4.3) follows.

The proof in dimension n = 2. We rely upon the detailed analysis of
Sanghyuk Lee [22], which refines the work of Schlag [30] and Schlag–Sogge [31]
in the convolution setting. Again, we prove the estimate (4.3) at a single point in
the triangle F′

2, and obtain the result as stated by interpolation.
A Littlewood–Paley decomposition is needed. Let 1[1,2] ≤ ζ ≤ 1[ 1

2 ,
5
2 ]

be a smooth function on R so that
∑

j≥1 ζ (y/2
j ) = 1, if |y| ≥ 4. Then set

ζ0 = 1 − ∑
j≥1 ζ (y/2

j ). For f ∈ L2(Rn), set f̂ j (ξ ) = ζ (|ξ |/2 j ) f̂ (ξ ), for j ≥ 1, and
f̂0 = ζ0 f̂ .

Let Mδ be the maximal function in (4.3), and let Mδ, j f = Mδ f j . We have

Mδ f ≤ ∑
j≥0

Mδ, j f.

Now, it follows from [22, just above eqn. (1.5)] that

(4.4) ‖Mδ, j : Lp �→ Lq‖ � 2 j (1− 5
q ),

1
p

+
3
q

= 1, q >
14
3
.

The exponent on j above is negative for 14
3 < q < 5. At q = 5, we have

(p, q) = ( 5
2 , 5), which corresponds to the crucial vertex ( 2

5 ,
1
5 ) of the triangle F′

2.
See Figure 3.

It again follows from (4.1) that

‖∂tAt f j‖L2(R2×[1,2)) � 2
j
2 ‖ f ‖2.
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1
p

1
q ( 1

2,
1
2 )

( 2
5,

1
5 )

Figure 3. The triangle F′
2, and the elements of the proof of Theorem 3.2 in the case

of dimension 2. The thick line inside the triangle goes from ( 5
14,

3
14 ) to ( 2

5,
1
5 ). The

point ( 1
3,

2
9 ) is on the thick line, and we will interpolate between an estimate at that

point, and an estimate at ( 1
2 ,

1
2 ).

As a consequence, At f j continuously embeds into Lip( 1
4) with norm at most 2 j/2.

That is, we have the bound

‖Mδ, j : L2 �→ L2‖ � δ
1
4 2

j
2 .

Interpolation with (4.4), say with p = 3, q = 9
2 , shows that with ( 1

p ,
1
q ) sufficiently

close to ( 1
3,

2
9 ), we have for a positive choice of η > 0,

‖Mδ, j : Lp �→ Lq‖ � δη2−η j .

This is summable in j ≥ 0, so completes our proof.

5 Sharpness of the sparse bounds

Sharpness of the sparse bounds is not immediate from the sharpness of the Lp

improving estimates, as the sparse bound is defined as the largest possible sparse
bound. Nevertheless, sharpnesswill follow from the examples that show that the Lp

improving estimates are sharp.

Proposition 5.1. Suppose that 1 ≤ r, s <∞ satisfy 1
r + 1

s ≥ 1.

(1) If the sparse bound ‖Mlac : (r, s)m‖ < ∞ holds, then ( 1
r ,

1
s ) ∈ Ln, where the

last set is the triangle defined in Theorem 1.2.
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x

fδ

Figure 4. The example showing sharpness of the bounds in Theorem 2.1. The
function fδ is the indicator of the thin annulus, of width δ . For a point x within
say δ/2 of the center of the annulus, one has A1 fδ (x) ≥ c. The dashed circle is
centered at x, and has radius 1. At least 1

4 of the dashed circle is inside the support
of fδ . This leads to the inequality (5.3).

(2) If the sparse bound ‖Mfull : (r, s)m‖ < ∞ holds, then ( 1
r ,

1
s ) ∈ Fn, where the

latter set is the trapezium defined in Theorem 1.4.

We recall this elementary fact, [20, Lemma 4.7]. For all 1 ≤ r, s < ∞, there is
a constant C so that for all f and g, there is a sparse form�0 so that

(5.2) sup
S

�S,r,s( f, g) ≤ C�0( f, g).

For the pairs f, g that we describe below, it will be very easy to verify this principle.
The largest sparse form�0 will consist of a single cube, namely one that contains
the support of the functions defined below, and is of minimal side length.

Proof of Proposition 5.1(1). We begin with the lacunary maximal oper-
ator, Mlac, and the Lp-improving bounds of Littman [26] and Strichartz [35]. For
0 < δ < 1

4 , let fδ = 1||x|−1|<δ be the indicator of a thin annulus around the unit
circle. Note that for small absolute constant c, we have

A1 fδ (x) ≥ cgδ (x) = c1|x|<cδ .

This example is illustrated in Figure 4. It establishes the sharpness of expo-
nents r and s in Theorem 2.1. Suppose that Mlac satisfies an (r, s)-bound, where
1/r + 1/s > 1. We then have

δ n � 〈A1 fδ , gδ 〉 = 〈 fδ ,A1gδ 〉 � min{�S,r,s( fδ , gδ ),�S′,s,r( fδ , gδ )).

for some choice of sparse collections S and S′. Note that we have two bounds on
the right, due to the convolution structure of the question.

But each cube in the collections S and S′ should intersect the support of f and
of g. That is, we can assume that {x : |x| < 2} ⊂ Q, for each Q ∈ S. But then, the
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R1

Cδ

C
√
δ

R2

≈ 1

≈ 1

√
δx

Figure 5. An example for the operator M̃ . The rectangle R1 is on the left, and
at each point x ∈ R2, there is a circle of radius 1 ≤ r ≤ 2 which intersects a
substantial portion of the rectangle R1, as indicated by the dashed arc of a circle.
We have M̃1R1 (x) � δ

n−1
2 . The assumed (r, s) bound leads to the restriction (5.4).

contribution of such cubes decreases as the side length of the cube increases. So,
it suffices to have S to consist of just a single cube Q of side length, 2 say. Our
assumption leads to the conclusion

δn � 〈A1 fδ , gδ 〉 � min{‖ fδ‖r‖gδ‖s, ‖ fδ‖s‖gδ‖r} � δmax{ 1
r + n

s ,
n
r + 1

s }.

We conclude that we need to have the inequality below, which tells us that
( 1

r ,
1
s ) ∈ Ln:

(5.3) max
{1

r
+

n
s
,
n
r

+
1
s

}
≤ n.

And so, we cannot do better than theLp-improving bounds of Littman andStrichartz
for the lacunary maximal function. �

Proof of Proposition 5.1(2). We turn to the case of the full spherical
maximal function. The sharpness of the trapezium in Theorem 3.2 is given by
three examples. One of these is the thin annulus example just used, and this
demonstrates the sharpness along the line from P1 = (0, 1) to P4 = ( n2−n

n2+1 ,
n2−n+2
n2+1 ).

Here, we are referring to the trapezium Fn in Figure 2.
The second example is a Knapp type example illustrated in Figure 5. Define

two rectangles by

R1 = [−C
√
δ,C

√
δ ]n−1 × [−Cδ,Cδ ], R2 = [−√

δ ,
√
δ ]n−1 ×

[4
3
,
5
3

]
.
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Then, note that the localized maximal function M̃ applied to 1R1 satisfies
M̃1R1 � δ

n−1
2 1R2 . Then, assuming the (r, s) sparse bound for the full maximal

function, we have
δ n−1 � 〈M̃ f, g〉 � �S,r,s(1R1, 1R2 ).

The sparse form on the right is largest, up to a constant, taking S to consist of a
single cube of bounded side length, which contains the two rectangles R1 and R2.
We deduce that

δ n−1 � |R1|1/r |R2|1/s � δ
n+1
2r + n−1

2s .

From this, we see that we necessarily must have

(5.4)
n + 1

r
+

n − 1
s

≤ 2(n − 1).

This gives the restriction on the line from the point P4 to P3 = ( n−1
n ,

n−1
n ).

A third example of Stein is the function h(x) = 1|x|<1|x|1−n(log|x|)−1; we have
Mfullh(x) is infinite on a set of positive measure. Hence, Mfull is unbounded on Lp,
for 1 < p ≤ n

n−1 . Now, if Mfull satisfies an (r, s) bound for any 1 < r ≤ n
n−1 and

any finite s, it would follow that Mfull is of weak-type Lr , which is impossible. This
shows the sharpness of the line from P2 toP3. �

These examples also show that the ‘continuity’ condition cannot hold at the
critical indexes for the Lp improving inequalities.

Proposition 5.5. Suppose that 1 ≤ r, s <∞ satisfy 1
r + 1

s > 1.
(1) If the inequality (2.4) holds, then ( 1

r ,
1
s ) is in the interior of Ln, the triangle

defined in Theorem 1.2.
(2) If the inequality (3.3) holds, then, ( 1

r ,
1
s ) is in the interior of Fn, where the

latter set is the trapezium defined in Theorem 1.4.

Proof. This is a corollary to the fact that the relevant examples in the Lp

improving estimates are supported on small sets.
(1) Suppose that ( 1

r ,
1
s ) is on the boundary of Ln, which is to say that it satisfies

equality (5.3). We have the assumed inequality (2.2) with |y| much smaller than
one. Apply it to the function fδ , where δ is much smaller than |y|. It follows that
there is no cancellation after translation by y, so that

‖A1 fδ − τyA1 fδ‖s � ‖ fδ‖r � |y|η‖ fδ‖r .

This is a contradiction.
(2) Suppose that ( 1

r ,
1
s ) is on the boundary of Fn, and that we have the assumed

inequality (3.3). It follows from the first part of the argument that ( 1
r ,

1
s ) cannot lie
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on the line from P1 to P4, where we are referring to the points in Figure 2. By the
example of Stein described above, it cannot lie on the line from P2 to P3. And, by
a similar argument to the one above, but using the example from Figure 5, it also
follows that ( 1

r ,
1
s ) cannot lie on the line from P3 to P4. This is a contradiction, so

the argument is complete. �

6 Weighted inequalities

The maximal function Mlac applied to the indicator of a ball B of radius 1 centered
at the origin is dominated by

Mlac1B(x) � 12B(x) +
∞∑

k =1

2−k(n−1)1||x|−2k |≤2.

Thus, there is no reason to think that Muckenhoupt weights are the correct tool to
understand the behavior of this (or the full) spherical maximal function in weighted
spaces. (See Figure 5 for an example showing that the full supremum is poorly
adapted to Muckenhoupt weights.)

Nevertheless, the question of weighted inequalities forweights of Muckenhoupt
type has attracted interest [13, 8]. And the sparse bounds are especially efficient
for such weights. We detail here some of the implications of our main theorems
in this direction. We will see that our sparse bound contains the best known prior
bound for Mfull, and yields new information. The full implications would be a little
technical, and so we do not develop them here.

We indicate here how easy it is to prove Lp bounds for sparse forms, and leave
the details of the weighted case to the references. The familiar Lp bounds for the
spherical maximal functions are seen to trivially follow from our sparse bounds.

Proposition 6.1. Let 1 ≤ r < p < s′ <∞. We have the inequality

�r,s( f, g) � ‖ f ‖p‖g‖p′ .

Proof. The notation for the sparse form is in (2.8). Recall that to each cube Q

in the sparse collection S, there is a set EQ ⊂ Q, with |EQ| ≥ 1
2 |Q|, so that the sets

{EQ : Q ∈ S} are pairwise disjoint. Thus

�r,s( f, g) < 2
∫ ∑

Q∈S
1EQ〈 f 〉Q,r〈g〉Q,sdx

≤
∫

Mr f · Msgdx � ‖Mr f ‖p‖Msg‖p′ � ‖ f ‖p‖g‖p′.

Above Mr f = supQ〈 f 〉Q,r 1Q is the maximal function with rth powers. �
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A weight is a function w(x) > 0 a.e., which is the density of a measure on Rn,
also written as w(E) =

∫
E wdx. For 1 < p < ∞, the dual space to Lp(w) (with

respect to Lebesgue measure) is Lp′
(σ), where p′ = p

p−1 and σ = w1−p′
. Note that

w ·σp−1 ≡ 1. A weightw ∈ Ap if this equality holds in an average sense, uniformly
over all locations and scales. Namely, define

[w]Ap = sup
Q
〈w〉Q〈σ〉p−1

Q < ∞, σ = w1−p′
.

Above, the supremum is over all cubes Q. At p = 1, we define

[w]A1 = sup
Q

sup
x∈Q

〈w〉Q
w(x)

.

A weight w is in the reverse Hölder class RHr , 1 ≤ r < ∞, if

[w]RHr = sup
Q

〈w〉Q,r
〈w〉Q <∞.

Qualitatively, the conditions of aweightwbeing in the intersection ofAp and reverse
Hölder spaces is the same asw having a factorizationw∈Aα1A

β
1={uα1uβ2 : u1, u2∈A1}.

This is made precise in this proposition.

Proposition 6.2. Let u1, u2 ∈ A1, and let ρ > 0, and 1 < r < p < ∞. We
have

A
1
ρ

1 A
− p

r +1
1 = Ap

r
∩ RHρ.

Proof. These two facts are well-known.
(1) A weight in Ap can be factored into the product of A1 weights

w ∈ Ap ⇐⇒ w = u1u
1−p
2 , u1u2 ∈ A1.

(2) The condition w ∈ Ap/r ∩ RHρ is equivalent to wρ ∈ Aρ(p/r−1)+1. Combining
these two facts proves the proposition.

�
We focus on qualitative aspects of weighted inequalities for the sparse maximal

functions. While quantitative estimates are available, and not too hard to prove,
we think that what we can prove right now is improvable. (See §7.2.) Set Lp to
be those weights w for which Mlac maps Lp(w) to Lp(w), for 1 < p < ∞. Use the
same type of notation Fp for Mfull.

We have these two corollaries to our sparse bounds for the lacunary and full
spherical maximal operators. These are obtained by combining our main theorems
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1
r

1
s

1/φlac

( n
n+1,

n
n+1 )

1

1

1
r

1
s

P1 P4 = ( n2−n
n2+1 ,

n2−n+2
n2+1 )

P3 = ( n−1
n ,

n−1
n )

1/φfull

Figure 6. The two functions 1/φlac and 1/φfull of Corollary 6.3. The dashed line is
the function 1/ψ, the function in (6.6).

with the bounds in Theorem G. As we only seek qualitative results, and the
conditions of Ap and RHr are open, we are free to work on the boundary of the
figures Ln and Fn. See Figure 6 for graphs of the two functions introduced below.

Corollary 6.3. For the lacunary and full spherical maximal function, we have

these two sets of weighted inequalities.
(1) Define 1

φlac(1/r)
to be a piecewise linear function on [0, 1] whose graph con-

nects the points Q1 = (0, 1), Q2 = ( n−1
n ,

n−1
n ), and Q3 = (1, 0). That is,

1
φlac(1/r)

=

⎧⎨
⎩1 − 1

rn 0 < 1
r ≤ n

n+1 ,

n(1 − 1
r )

n
n+1 <

1
r < 1.

Assuming 1 < r < p < φ(r)′, we have

Ap/r ∩ RH(φlac(r)′/p)′ ⊂ Lp.

(2) Define 1
φfull(1/r)

to be the piecewise linear function on [0, n−1
n ] whose graph

connects the points P1 = (0, 1), P4 = ( n2−n
n2+1 ,

n2−n+2
n2+1 ) and P3 = ( n−1

n ,
n−1
n ).

Assuming n
n−1 < r < p < φfull(r)′, we have

(6.4) Ap/r ∩ RH(φfull(r)′/p)′ ⊂ Fp.

The case of radial weights has been completely analyzed by Duoandikoetxea
and Vega [13]. Here, we recall this result, which records the possible inequalities
for radial weights. These are sharp, except possibly the a = 1 − n endpoint case
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in (6.5). (In particular, this shows that the class Lp does not satisfy the classical
duality Lp′ = L1−p′

p . See [13] for more details.)

Theorem E ([13]). Let wa(x) = |x|a be a radial weight on Rn, for a ∈ R. We

have the inequalities below, for 1 < p <∞:

(6.5)
wa ∈ Lp, 1 − n ≤ a < (n − 1)(p − 1),

wa ∈ Fp, 1 − n < a < (n − 1)(p − 1) − n.

In (6.5), the restriction on a implies that n
n−1 < p <∞.

We cannot recover the full strength of this theorem. But this is to be expected:
the category of Ap weights is not the correct one to characterize the weights for
the spherical maximal function, and our sparse results are sharp. This suggests
that the sparse bounds are proving the sharpest possible results in the category of
Muckenhoupt type weights. We can improve upon the result below of Cowling,
Garcia-Cuerva and Gunawan [8]. It gives sufficient conditions for Mfull to satisfy
a weighted inequality in terms of a factorization of the weight.

Theorem F ([8, Thm 3.1]). Let n
n−1 < p <∞, and max{0, 1− p

n} ≤ δ < n−2
n−1 .

Then Aδ1A
δ (d−1)−(d−2)
1 ⊂ Fp.

We will deduce this as a special case of (6.4).

Proof of Theorem F. Rather than use the exact form of φfull in (6.4), we
use the restricted form

(6.6) ψ(r)−1 = 1 − 1
r(n − 1)

,
n

n − 1
< r < ∞.

It follows that we have a sparse form bound (r, ψ(r)). This function corresponds to
the dashed line in Figure 6. Provided r < p < ψ(r)′ = (r(n − 1))′ =: s′, we have a
weighted inequality, for w ∈ Ap/r ∩ RH(s′/p)′ . Now, (s′/p)′ = r(n−1)

r(n−1)−p = 1 − p
r(n−1) .

By Proposition 6.2, we have A
1− p

r(n−1)

1 A
1− p

r
1 ⊂ Fp. Setting δ = 1 − p

r(n−1) , we have
1 − p

r = δ (n − 1) − (n − 2). This matches the conclusion of the Theorem, so the
proof is complete. �

As the proof above indicates, stronger results than those of Theorem F hold.

The authors of [8] raised the possibility that A
1− 1

n
1 ⊂ Fp. Here, we show that this is

indeed the case, provided p is sufficiently large. It will be clear that more is true,
but we do not pursue the details here.

Proposition 6.7. For n ≥ 2, we have A
1− 1

n
1 ⊂ Fp, for n2+1

n2−n < p < ∞.
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Proof. We use the proof strategy for Theorem F, but use the sparse bound
provided to us by the point P4 = ( n2−n

n2+1 ,
n2−n+2
n2+1 ).

Indeed, assuming a sparse bound of the form (r0, s0), we have the inequality

‖Mfull : Lp(w) �→ Lp(w)‖ <∞, w = u1/ρ, u ∈ A1,

provided r0 < p < s′
0, and ρ = (s′

0/p)′.
Setting (1/r0, 1/s0) = P4, we have

1
s0

=
n2 − n + 2

n2 + 1
,

1
s′
0

=
n − 1
n2 + 1

,

1
r0

=
n2 − n
n2 + 1

,
s′
0

r0
= n.

It follows that ρ = (s′
0/p)′ = n

n−1 . For p> r0, we are allowed to take w =u
1
ρ =u1− 1

n ,
as claimed, provided p > r0. �

7 Further remarks

7.1 Endpoint issues. Richard Oberlin [29] has investigated the endpoint
issues. Namely, for a class of Radon transforms, a sparse bound is proved at the
boundary of the sparse region. The ‘local Lr norm’ is adjusted with a logarithmic
factor. It would be interesting to further develop the endpoint estimates.

7.2 Weighted estimates for m-sparse forms. For 1 < p < ∞, the
dual space to Lp(w) (with respect to Lebesgue measure) is Lp′

(σ), where p′ = p
p−1

and σ = w1−p′
. This is referenced in the statement of the Theorem below, which

gives weighted inequalities for sparse forms. These estimates are sharp in the
Muckenhoupt and reverse Hölder indices.

Theorem G ([1, §6]). Let 1 ≤ r < s′ < ∞. Then,

�r,s( f, g) ≤ {[w]Ap/r · [w]RH(s′/p)′ }α‖ f ‖Lp(w)‖g‖Lp′ (σ), r < p < s′,

whereα = max
{ 1

p − 1
,
s′ − 1
s′ − p

}
.

For sparse forms of type (1, 1), we recall that we have these estimates.

�1,1( f, g) � [w]
max{1, 1

p−1 }
Ap

‖ f ‖Lp(w)‖g‖Lp′ (σ),

�1,1,m( f, g) � [w]
1

p−1

Ap
‖ f ‖Lp(w)‖g‖Lp′ (σ).
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Both estimates are well-known. A very nice proof of the first bound can be found
in [28]. The second follows from a comparison to the maximal function, namely
Buckley’s inequality [2]. Thus, the sparse forms and the m-sparse forms can obey
different weighted estimates.

The papers [1, 24] supply explicit and sharp estimates for (r, s)-sparse forms.
But, they do so only for the form (1.1), with FQ ≡ Q. As this paper indicates,
obtaining the sharp estimates for the m-sparse forms is also interesting.

7.3 Sharpnessof theweighted estimates. Weconjecture that the bounds
in Corollary 6.3 are sharp in the category of weights allowed. For the sake of clarity,
let us state a conjecture for the lacunary maximal function.

Conjecture 7.1. Using the notation of Corollary 6.3, this holds. Let

1 < r < p < φlac(r)′, and set ρ = (φlac(r)′/p)′. If 1/ρ < α, then there is a weight
w = uα1u

− p
r +1

2 , for weights u1, u2 ∈ A1, so that Mlac is not bounded on Lp(w).

7.4 The endpoint estimate. A result of Seeger, Tao and Wright addresses
an endpoint estimate for the lacunary spherical maximal function, showing this.

Theorem H ([33]). The lacunary maximal function Mlac is bounded as a map
from L log logL into weak L1.

Also see the recent significant improvement by Cladek and Krause [4]. The
proof is based upon TT ∗ methods, and so it is tempting to think that a reading of
the paper might prove a sparse bound for Mlac of the form (r, 2), for all 1 < r < 2.
But such a sparse bound cannot hold. It is however interesting to speculate about
what sparse bound the argument of [33] would imply.

7.5 Other themes. (1) As was pointed out by Duoandikoetxea and Vega
[13], it is interesting to establish inequalities of Fefferman–Stein type, namely

‖Mlac : Lp(w) �→ Lp(Nw)‖,

for some auxiliary maximal operator N . This has been addressed in [27]. It would
be interesting to extend the results of this paper.

(2) The paper [8] studies weighted inequalities from Lp to Lq spaces for the
maximal operator

sup
t>0

tαAt f, α = n(
1
p

− 1
q
).

Sparse bounds should be possible for such an operator.
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(3) Variants of the maximal operator, formed over restricted ranges of radii of
spheres, have been considered, namely,

sup
t∈E

At f, E ⊂ (0,∞).

See [32]. Subject to a dimensionality condition on E , a range of Lp inequalities
can be proved. Again, sparse bounds should be available in this setting.

(4) The paper of Jones, Seeger and Wright [14, Thm 1.4] prove variational
results for the full spherical maximal function. It would be interesting to extend
this bound to a sparse bound. Also see [11] for some sparse variational results.

(5) Sparse bounds should hold for other Radon transforms. Key components
would be (a) an appropriate dilation structure, and (b) variants of the continuity
results Theorem 2.1 and Theorem 3.2. Note that these will become more involved
in the cases in the variable curve case, as in [31].

(6) Cladek and Y. Ou [5] have studied sparse bounds for Hilbert transforms
and averages along a general class of curves.
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